
HAL Id: hal-01534533
https://hal.inria.fr/hal-01534533

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating the Verification of Floating-Point Programs
Clément Fumex, Claude Marché, Yannick Moy

To cite this version:
Clément Fumex, Claude Marché, Yannick Moy. Automating the Verification of Floating-Point Pro-
grams. 9th Working Conference on Verified Software: Theories, Tools and Experiments, Jul 2017,
Heidelberg, Germany. �hal-01534533�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132062245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01534533
https://hal.archives-ouvertes.fr

Automating the Verification of Floating-Point
Programs?

Clément Fumex1,2,3, Claude Marché1,2, and Yannick Moy3

1 Inria, Université Paris-Saclay, F-91120 Palaiseau
2 LRI, CNRS & Univ. Paris-Sud, F-91405 Orsay

3 AdaCore, F-75009 Paris

Abstract. In the context of deductive program verification, handling
floating-point computations is challenging. The level of proof success
and proof automation highly depends on the way the floating-point op-
erations are interpreted in the logic supported by back-end provers. We
address this challenge by combining multiple techniques to separately
prove different parts of the desired properties. We use abstract inter-
pretation to compute numerical bounds of expressions, and we use mul-
tiple automated provers, relying on different strategies for representing
floating-point computations. One of these strategies is based on the na-
tive support for floating-point arithmetic recently added in the SMT-LIB
standard. Our approach is implemented in the Why3 environment and
its front-end SPARK 2014 for the development of safety-critical Ada
programs. It is validated experimentally on several examples originating
from industrial use of SPARK 2014.

1 Introduction

Numerical programs appear in many critical software systems, for example to
compute trajectories, to control movements, to detect objects. As most proces-
sors are now equipped with a floating-point (FP for short) unit, many numerical
programs are implemented in FP arithmetic, to benefit from the additional pre-
cision of FP numbers around the origin compared to fixed-point numbers, and
from the speed of FP computations performed in hardware.

Safety conditions for critical software systems require strong guarantees on
the functional behavior of the computations performed. Automatically verifying
that these guarantees are fulfilled is desirable. Among other verification ap-
proaches, deductive program verification is the one that offers the largest ex-
pressive power for the properties to verify: complex functional specification can
be stated using expressive formal specification languages. Verification then relies
on the abilities of automated theorem provers to check that a code satisfies a
given formal specification.
? Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007,
http://www.spark-2014.org/proofinuse) and by the SOPRANO project (ANR-
14-CE28-0020, http://soprano-project.fr/) of the French national research orga-
nization

http://www.spark-2014.org/proofinuse
http://soprano-project.fr/

For some time, FP arithmetic was not well-supported by automated provers
and thus deductive verification of FP programs was relying on interactive proof
assistants, requiring a lot of expertise [6]. In recent years, FP arithmetic started
to be supported natively by the automated solvers of the SMT (Satisfiability
Modulo Theory) family. A theory reflecting the IEEE-754 standard for FP arith-
metic [24] was added in the SMT-LIB standard in 2010 [33]. This theory is now
supported by at least the solvers Z3 [32] and MathSAT5 [8].

Our initial goal is to build upon the recent support for FP arithmetic in SMT-
LIB to propose an environment for deductive verification of numerical programs
with a higher level of automation. We implemented this approach in the program
verifier Why3 and in its front-end SPARK for verifying Ada programs. Indeed
a support for FP arithmetic in Why3 already existed before [1,6], but it was
based on an axiomatization of FP operations in terms of their interpretations
into operations on real numbers. It was suitable for using as back provers either
the Gappa solver dedicated to reason about FP rounding [14], for the simplest
verification conditions, or the Coq proof assistant for the rest. To achieve a
higher level of automation, in particular on the examples we considered coming
from users of SPARK, we identified the need for combining several theorem
provers, and even more, a need for combining deductive verification with an
abstract interpretation based analysis (namely the CodePeer tool for Ada). The
main goal of the new support we designed is thus to exploit the SMT solvers
with native support for FP arithmetic (Z3), while maintaining the ability to
use solvers that do not offer native support (CVC4, Alt-Ergo, Gappa, Coq).
Our new approach can prove automatically FP properties that were beyond the
reach of the previous approach. For example, we were previously unable to prove
automatically the assertion in the following toy Ada code, because the rounding
error on X + 2.0 was over-approximated.

procedure Range_Add (X : Float_32; Res : out Float_32) is
begin

pragma Assume (X in 10.0 .. 1000.0);
Res := X + 2.0;
pragma Assert (Res >= 12.0);

end Range_Add;

We first give a quick introduction to auto-active verification with the envi-
ronments SPARK and Why3 in Section 2. In Section 3, we present a new Why3
theory used in the verification condition generation process so as to exploit the
support of FP arithmetic in SMT-LIB, while still keeping use of other provers,
thanks to an axiomatization. We evaluate experimentally our approach in Sec-
tion 4, showing our results on 22 examples extracted from industrial programs.
We also present a case study for the computation of safe bounds for the trajectory
of a device from an embedded safety-critical software, where the combination of
techniques is achieved through the insertion of ghost code. We refer to our ex-
tended research report [19] for more details on our approach, including the full
axiomatization and the complete source code of our examples. Section 5 draws
conclusions and discusses some related work and future work.

2

SPARK 2014
source code

and
contracts

WhyML
files

Proof
obligations

Proof
results

CodePeer

Gnat2why Why3

CVC4

Z3

Alt-Ergo

GNATprove

Fig. 1. Deductive verification in SPARK 2014

2 Quick Introduction to SPARK and Why3

Why3 is an environment for deductive program verification, providing a rich
language for specification and programming, called WhyML. WhyML is used as
an intermediate language for verification of C, Java or Ada programs [17,25],
and is also intended to be comfortable as a primary programming language.
Why3 generates proof obligations, called verification conditions (VCs for short),
from program annotations using a weakest-precondition calculus. It relies on
external provers, both automated and interactive, in order to discharge the aux-
iliary lemmas and VCs. As most of the provers do not support some of the
language features (typically pattern matching, polymorphic types, or recursion),
Why3 applies a series of encoding transformations to eliminate unsupported
constructions before dispatching a VC. Why3 comes with a rich standard li-
brary providing general-purpose theories useful for specifying programs [3]. This
naturally includes integer and real arithmetic. In this work, we added a new
theory of floating-point arithmetic, that we present in Section 3. Why3 provides
a mechanism called realization that allows a user to construct a model for her
axiomatizations, using a proof assistant. This feature can be used to guarantee
that an axiomatization is consistent, or even that it is a faithful abstraction of
an existing model. In Section 3.6, we use this feature to ensure that our own
axiomatization of FP arithmetic is faithful to the IEEE-754 standard [24].

SPARK is an environment for the verification of Ada programs used in critical
software development [10,29]. The SPARK language subset and toolset for static
verification has been applied for many years in on-board aircraft systems, control
systems, cryptographic systems, and rail systems. As displayed in Figure 1, to
formally prove a SPARK program, the tool GNATprove uses WhyML as an
intermediate language. The SPARK program is translated into an equivalent
WhyML program which can then be verified using the Why3 tool. Since version
SPARK 17, GNATprove also includes the static analyzer CodePeer as prover.
CodePeer [2] is a tool developed at AdaCore to detect errors in Ada programs,
based on modular abstract interpretation. The benefit of this integration for our
work is that CodePeer computes precise bounds on FP computations.

3

Automatic verification in both Why3 and GNATprove relies on the ability
to interact with users through assertions, and more generally verification-only
code also called ghost code [25]. This type of verification is called auto-active
verification, to characterise tools where user input is supplied before VC genera-
tion [and] therefore lie between automatic and interactive verification (hence the
name auto-active) [26]. We use ghost code in Section 4.2 to prove a case study
involving FP computations.

3 VC Generation for Floating-Point Computations

We now describe what we designed for the support for FP types in Why3 and
then how we use this support to enhance SPARK’s already existing support for
FP types. In Section 3.1 we present the signature, in other words the user in-
terface, of our Why3 formalization of the IEEE-754 standard. That signature is
generic, parameterized by the size of FP numbers. In Section 3.2 we show how we
build specific instances for 32 and 64 bits formats, and how we can write literal
constants in these formats. Then in Section 3.3 we show how the FP compu-
tations in Ada programs are translated by GNATprove into Why3 intermediate
code based on our formalization, thus producing verification conditions involv-
ing the symbols of our signature. Section 3.4 explains how we map our signature
to the SMT-LIB FP theory, so as to exploit SMT solvers with native support
for that theory. Section 3.5 presents an axiomatization for our Why3 theory of
FP, to be used by provers that do not support FP natively. Finally Section 3.6
explains how we ensure that our theory and axiomatization is conformant to the
IEEE standard.

The IEEE-754 standard [24] defines an expected behavior of FP computa-
tions. In any binary formats, an interpretation of a bit sequence under the form
of a sign, a mantissa and an exponent is given, so that the set of FP numbers
denotes a finite subset of real numbers.

sign s biased exponent e mantissa m

The number of bits of e is denoted eb. The significand is the mantissa plus a
hidden bit which is 1 for the so-called normal numbers and 0 for subnormal
ones. The number of bits of the significand, that is also the number of bits
of the mantissa plus 1, is denoted sb. The numbers eb and sb characterize the
format, for the standard binary format on 32 bits and 64 bits we respectively
have eb = 8, sb = 24 and eb = 11, sb = 53. Let us call bias the number 2eb−1− 1.
The interpretation of the sequence of bits above is then as follows.

– if 0 < e < 2eb− 1, it represents the real number (−1)s · 1.m · 2e−bias (normal
numbers)

– if e = 0, it represents ±0 if m = 0 (positive and negative zeros), (−1)s · 0.m ·
2−bias+1 otherwise (subnormal numbers)

– if e = 2eb − 1, ±∞ if m = 0 (positive and negative infinities) Not-a-Number
otherwise, abbreviated as NaN.

4

For each of the basic arithmetic operations (add, sub, mul, div, and also sqrt,
fused-multiply-add, etc.) the standard requires that it acts as if it first computes
a true real number, and then rounds it to a number representable in the chosen
format, according to some rounding mode. The standard defines five rounding
modes: if a real number x lies between two consecutive representable FP numbers
x1 and x2, then the rounding of x is as follows. With directed modes toward +∞
(resp. −∞) it is x2 (resp. x1). With directed mode toward 0, it is x1 if x > 0
and x2 if x < 0. With directed modes to nearest, it is the closest to x among x1
and x2, and if x is exactly the middle of [x1, x2] then in the case ’ties to away’
it is x2 if x > 0 and x1 if x < 0 ; whereas in the case ’ties to even’ the one with
even mantissa is chosen.

As seen above, the standard defines three special values: −∞,+∞ and NaN.
It also distinguishes between positive zero (+0) and negative zero (-0). These
numbers should be treated both in the input and the output of the arith-
metic operations as usual, e.g. (+∞) + (+∞) = (+∞), (+∞) + (−∞) = NaN,
1/(−∞) = −0, ±0/± 0 = NaN, etc.

3.1 Signature for a Generic Theory of IEEE FP Arithmetic

We first present the signature of our theory. Such a signature presents the el-
ements that some user should use: type names, constants, logic symbols for
functions and predicates. These elements are only declared with their proper
profiles, but no definition nor axiomatization are given.

One of our goals was to make this signature as close as possible to the SMT-
LIB theory. One of the difficulty is that one wants to describe a generic signature,
in the sense that it should be parameterized by the number of bits eb and sb.
In SMT-LIB, this is done using the ad-hoc built-in construct with underscore
character to handle parametric sorts, e.g. (_ FloatingPoint 8 24) denotes the
sort of IEEE 32-bits binary floating-point numbers. In Why3 there is no such
ad-hoc construct, but instead it is possible to define a parametric theory that
can be cloned later on, for particular instances of the parameters.

Our generic signature for floats thus starts as follows.

theory GenericFloat
constant eb : int (* number of bits of the exponent *)
constant sb : int (* number of bits of the significand *)
axiom eb_gt_1: 1 < eb
axiom sb_gt_1: 1 < sb
type t (* abstract type of floats *)

The abstract type t denotes the sort of FP numbers for the given eb and sb,
both assumed greater than 1.

The next part of the signature provides the rounding modes and the arith-
metic operations.

type mode = RNE | RNA | RTP | RTN | RTZ
function add mode t t : t (* add *)
function sub mode t t : t (* sub *)

5

function mul mode t t : t (* mul *)
function div mode t t : t (* div *)

It continues with the comparison operators

predicate le t t
predicate lt t t
predicate ge (x:t) (y:t) = le y x
predicate gt (x:t) (y:t) = lt y x
predicate eq t t (* different from = *)

It includes predicates for classification of numbers.

predicate is_infinite t
predicate is_nan t
predicate is_finite t

Finally, it includes rounding and conversion functions.

function roundToIntegral mode t : t (* rounding to an integer *)
function to_real t : real (* conversion to a real number *)
function of_int mode int : t (* conversion from an integer *)
function to_int mode t : int (* conversion to an integer *)

Conversions from and to integers need a rounding mode in both ways, since
not all integers are representable. of_int may even return an infinite value. The
results of to_int and to_real are unspecified if the argument is infinite or NaN.
See [19] for additional elements in the signature.

3.2 Theory Clones and FP Literals

The theory above is generic. So far, it does not allow the construction of FP
literals. Indeed it is possible only on clones of our theory for the binary formats
of standard sizes 32 and 64 bits. For the purpose of allowing literal constants,
we implemented a new feature in Why3 itself: the possibility to declare a type
denoting FP values. Cloning the generic theory for 32-bit format is then done
by the Why3 code below.

theory Float32

type t = < float 8 24 >

clone export GenericFloat with
type t = t, constant eb = t’eb, constant sb = t’sb,
function to_real = t’real, predicate is_finite = t’isFinite

end

The new declaration feature is the line of the form type t = < float eb sb >
above. It introduces a new type identifier t that represents the FP values for the
given sizes for eb and sb. It also introduces the functions t’eb, t’sb, t’isFinite
and t’real, that are used in the cloning substitution above. The main purpose

6

this new built-in Why3’s declaration is the handling of literals: what is normally
a real literal in Why3 can be cast to the type t, so that one may write float literals
in decimal (e.g. (1.0:t), (17.25:t)), possibly with exponent (e.g. (6.0e23:t)
), possibly also in hexadecimal4 (e.g (0x1.8p-4:t) that represents 3

32). A very
important design choice is that only the real numbers that are representable in
the target type can be cast. Casting a literal constant that is not representable
is rejected by Why3’s typing engine, e.g. (0.1:t) will raise a typing error5. See
below for implications of this choice.

Finally, each clone contains declarations of conversions with bitvectors of the
appropriate sizes. We reuse here existing Why3 theories for bitvectors [18].

function to_bv mode t : BV32.t
function of_bv mode BV32.t : t

3.3 Interpreting FP Computations in Ada

The Ada standard does not impose the rounding mode used for FP computations,
except for conversion between floats and integers where it is nearest, ties to away.
To avoid non-determinism, the SPARK fragment of Ada imposes the rounding
mode nearest, ties to even, for arithmetic operations. Moreover, in SPARK,
overflow is forbidden, so special values for infinities and NaN are not allowed
to appear. Thus encoding an FP operation from an Ada program amounts to
generating the corresponding operation in Why3 with the proper rounding mode,
and to insert a check for the absence of overflow. Roughly speaking, a piece of
Ada code like:

procedure P (X : in out Float_32) is
begin

X := X + 2.0;
end P;

is translated into WhyML intermediate code as follows:
let p (x : ref Float32.t) : unit

requires { is_finite x }
= let tmp = Float32.add RNE x (2.0:Float32.t) in

assert { is_finite tmp };
x := tmp

The additional assertion will lead to a VC to check the absence of overflow.
All operations are handled in a similar way. Signed integers in Ada are inter-

preted as integers in Why3, and Ada unsigned integers are interpreted as bitvec-
tors [18]. The conversions are translated using the functions to_int, of_int,
to_bv and of_bv with the mode RNA.
4 C99 notation for hexadecimal FP literals: 0xhh.hhpdd, where h are hexadecimal
digits and dd is in decimal, denotes number hh.hh× 2dd

5 For that purpose, we had to implement in the typing engine a specific code that
checks that a literal is representable and compute its mantissa and exponent. It is
worth to note that implementing such a code is significantly easier than a code that
would compute a correct rounding for any literals.

7

A remark about literals: in the translation from SPARK to Why3, the FP
literals of the Ada source are first interpreted by the GNAT compiler. For ex-
ample, if one uses the constant 0.1 in Ada for a 32-bit float, it is rounded to the
closest representable value 0x1.99999Ap-4. Thus the rounded value that may be
used for such constants to produce a binary code is the very same value that is
passed to Why3. Thus, not only are we sure that the generated Why3 literals are
representable, but we are also sure that we use the same value as the executable.

3.4 Proving VCs Using Native Support for SMT-LIB FP

To attempt to discharge generated VCs using an SMT solver like Z3 that provides
native support for floats, we simply have to map the symbols of our theory to
the ones of SMT-LIB. The mapping is quite straightforward since most symbols
have an SMT counterpart, with the same name, prefixed by ‘fp.’. An exception
is the predicate is_finite which does not exists in SMT-LIB, we encode it as
(not (or (fp.isInfinite x) (fp.isNaN x))). Other notable exceptions are
the conversions with integers, of_int and to_int, which do not exist in SMT-
LIB. The two functions are left uninterpreted, and such conversions are dealt
with the axiomatization below.

Regarding the literals, we use the mechanism that we implemented in Why3
together with our extension of float type declarations, that allows Why3 to
print literals under the SMT-LIB bitvector form (fp s e m), for example the
constant 0x1.99999Ap-4 in 32 bits is written as

(fp #b0 #b01111011 #b10011001100110011001101)

3.5 Axiomatization for Provers without Native Support

Because the VCs generated from Ada programs mix FP computations with other
data-types (integers, bitvectors, arrays. . .) but also quantified hypotheses, we
cannot hope the solver to be complete. With an axiomatization, we can hope
that a prover may discharge goals including elements outside the SMT-LIB FP
theory (such as conversions with integers) and we can even call a prover without
native support of FP arithmetic. We provide an axiomatization for the operators
introduced in our theory, thus we rely on the generic handling of first-order
axioms the prover may have. Our axiomatization is naturally incomplete: our
intent is to provide the axioms that are useful in practice to discharge VCs.
Notice that when using a solver with native FP support, the driver mechanism
of Why3 removes all these axioms, so as to avoid the prover getting lost with
the extra logic context.

Handling of literals. We need a mechanism to interpret our built-in Why3
support for literals for provers without native support. This is done using a Why3
transformation that replaces each literal of the proof task by an extra constant
with an axiom that specifies its value. That is, if some FP literal (v : t) appears
in the proof task, it is replaced by a fresh constant l of type t, declared with the
axiom (t’isFinite l) ∧ (t’real l = v).

8

Overflow checks. We start by introducing a few useful constants derived from
eb and sb:

constant pow2sb : int = pow2 sb (* 2^{sb} *)
constant emax : int = pow2 (eb - 1) (* 2^{eb-1} *)
constant max_int : int = pow2 emax - pow2 (emax - sb)
constant max_real : real = FromInt.from_int max_int

The constants max_real and max_int both represent the exact value of the
biggest finite float, as a real and an integer respectively. In order to speak about
overflows and finiteness, we introduce the following predicates.

predicate in_range (x:real) = - max_real <= x <= max_real
predicate no_overflow (m:mode) (x:real) = in_range (round m x)
axiom is_finite: forall x:t. is_finite x → in_range (to_real x)
axiom Bounded_real_no_overflow :

forall m:mode, x:real. in_range x → no_overflow m x

The predicate in_range specifies the range of floats. The predicate no_overflow
composes round and in_range to check for overflows. We stress that the two
axioms specify that to be finite implies that the projection is in the float range,
which in turns implies that there is no overflow. However we do not specify that
no overflows implies finiteness in order to force the provers to reason on reals as
well as avoid circularity in their proof attempts.

Rounding and arithmetic. The rounding function, that is used to specify the
FP operations, plays a central role in our axiomatization. This rounding function
operates on real numbers, as defined in IEEE-754. It takes a rounding mode m,
a real value x and returns the value of the FP number nearest to x up to m.

function round mode real : real
axiom Round_monotonic :

forall m:mode, x y:real. x <= y → round m x <= round m y
axiom Round_idempotent :

forall m1 m2:mode, x:real. round m1 (round m2 x) = round m2 x
axiom Round_to_real :

forall m:mode, x:t. is_finite x → round m (to_real x) = to_real x

Those axioms are completed with axioms in the clones for 32 and 64 bits, giving
quite precise bounds on the error made by rounding [31]. Here are the ones for
32 bits:

lemma round_bound_ne :
forall x:real [round RNE x]. no_overflow RNE x →

x - 0x1p-24 * Abs.abs(x) - 0x1p-150 <= round RNE x
<= x + 0x1p-24 * Abs.abs(x) + 0x1p-150

lemma round_bound :
forall m:mode, x:real [round m x]. no_overflow m x →

x - 0x1p-23 * Abs.abs(x) - 0x1p-149 <= round m x
<= x + 0x1p-23 * Abs.abs(x) + 0x1p-149

9

For 64 bits, the constants 0x1p-24, 0x1p-150, 0x1p-23, 0x1p-149 are replaced
by 0x1p-53, 0x1p-1075, 0x1p-52 and 0x1p-1074.

Of course the axioms are not completely specifying the rounding function but
only give bounds. A complete specification is not an objective. Indeed, giving a
complete semantic with axioms would only lose the provers, the function round
is too complex for that. Furthermore we don’t want solvers to “reason” about the
function round itself but rather up to it. Hence we only provide some properties
to help provers move the predicate around. This is at the cost of losing precision
in computations, in particular proof of equality and proofs dealing with precise
ranges are hard, or even impossible.

The axiomatization of arithmetic operators derives from the rounding func-
tion. We only present the float addition, the other arithmetic operators are in
the same line. It is axiomatized through the projection to reals. The main axiom
add_finite specifies the non overflowing addition of two finite floats.

axiom add_finite: forall m:mode, x y:t [add m x y].
is_finite x → is_finite y →
no_overflow m (to_real x + to_real y) →
is_finite (add m x y) ∧
to_real (add m x y) = round m (to_real x + to_real y)

lemma add_finite_rev: forall m:mode, x y:t [add m x y].
is_finite (add m x y) → is_finite x ∧ is_finite y

lemma add_finite_rev_n: forall m:mode, x y:t [add m x y].
(m = RNE ∨ m = RNA) → is_finite (add m x y) →
no_overflow m (to_real x + to_real y) ∧
to_real (add m x y) = round m (to_real x + to_real y)

The two lemmas specify what we can deduce from the finiteness of an addition,
add_finite_rev for the general case and add_finite_rev_n for the rounding
modes RNE and RNA. The two lemmas are important when the finiteness of an
addition appears in the context of a VC without any other fact about how it
was proven (e.g. it was proven in another VC, or provided as an hypothesis).
As mentioned, a second axiom is provided in the theory to specify all other
cases dealing with special values (overflows, addition with a NaN, etc.). All other
arithmetic operators, namely subtraction, multiplication, division, negation as
well as absolute value, square root and fused multiply-add are specified in the
same way. See [19] for all the axioms.

Conversions with integers. Since these conversions are not supported by
SMT-LIB, we handle them specially with a set of axioms that are useful to dis-
charge goals coming from our Ada examples. Here is an excerpt of these axioms
concerning the addition of FP numbers that come from integer conversions.

predicate in_int_range (i:int) = - max_int <= i <= max_int
predicate in_safe_int_range (i: int) = - pow2sb <= i <= pow2sb
axiom of_int_add_exact: forall m n, i j.

in_int_range i → in_int_range j → in_safe_int_range (i + j) →
eq (of_int m (i + j)) (add n (of_int m i) (of_int m j))

10

The predicate in_int_range specifies the range of all finite integers in
the float format, note that all are not representable though. The predicate
in_safe_int_range, building on pow2sb, specifies the range in which every
integer is representable in the float format. The axiom then expresses the nec-
essary conditions to deduce that some addition is indeed exact. We have similar
axioms for other operations. See [19] for a more detailed description of this part
of the axiomatization.

3.6 Consistency and Faithfulness

Our FP theory, with all its axioms, is proven conformant to the IEEE standard
by realizing a model of it in Coq, using the existing library Flocq [7]. While part
of the realization was simply to reuse results already proved in Flocq, we did
provide significant proof efforts, in particular to deal with the relation between
integers and floats which is absent from this library (and might end up contribute
to it). The faithfulness of the axiomatization with regard to IEEE standard is
then enforced by modeling the theory’s operators with Flocq’s corresponding
IEEE operators.

For SMT solvers with native support, we need to ensure that the axioma-
tization is coherent with the SMT-LIB theory of floats. This is the case if the
implementation of SMT-LIB FP in a given solver is itself consistent with the
IEEE standard, which is supposed to be the case.

4 Experiments

The tables from Figures 2 and 4 summarize the proof results with provers from
the current SPARK toolset: SMT solvers CVC4, Alt-Ergo, Z3 and static analyzer
CodePeer. We add in these figures two provers: AE_fpa, the prototype of Alt-
Ergo with FP support [12], and COLIBRI, a prover based on constraint solving
techniques [28,11]. Dark cells correspond to unproved VCs with a given prover.
Light gray and half gray cells correspond to proved VCs with a given prover,
and the running time of the prover is given in seconds (round to nearest, away
from zero).

4.1 Small Representative Examples

We start with 22 simple examples representative of the problems encountered
with proof of industrial programs using FP arithmetic. Each example consists
in a few lines of code with a final assertion. Although each assertion should
be provable, none of the assertions were provable with the version of SPARK
released in 2014, when we established this list. These examples show a vari-
ety of FP computations that occur in practice, combining linear and non-linear
arithmetic, conversions between integers and FP, conversions between single and
double precision FP. The first 11 examples correspond to reduced examples from

11

Example C
V
C
4

A
lt
-E

rg
o

Z3 C
od

eP
ee
r

A
E
_
fp
a

C
O
L
IB

R
I

Range_Add 0 1 0 0
Range_Mult 0 0
Range_Add_Mult 0
Int_To_Float_Simple 25 0 0 1 0
Float_To_Long_Float 0 0 0 1 0 0
Incr_By_Const 12
Polynomial 2 0
Float_Different 0 1 0
Float_Greater 0 1 0
Diffs 1
Half_Bound 7 0 1 4 0

Example C
V
C
4

A
lt
-E

rg
o

Z3 C
od

eP
ee
r

A
E
_
fp
a

C
O
L
IB

R
I

User_Rule_2 0 1 1 0
User_Rule_3 2 0 0
User_Rule_4 2 0 0
User_Rule_6 2 1 2 0
User_Rule_7 1 0
User_Rule_9 0
User_Rule_10 0
User_Rule_11 1 1 2 0
User_Rule_13 20 0
User_Rule_14 1 0
User_Rule_15 0

Fig. 2. Proof times in seconds for the reduced examples (timeout = 30 seconds)

actual programs. The last 11 examples correspond to so-called user rules, i.e. ax-
ioms that were manually added to the proof context in the SPARK technology
prior to SPARK 2014. Out of 22 examples, 20 directly come from industrial
needs. See [19] for the complete Ada source code for these small examples. Ta-
ble 2 summarizes the proof results. It can be noted that all examples are now
proved by the combination of provers.

4.2 A Case Study

We now present a simple case study representative of production code from an
embedded safety-critical software, on which we have applied the combination of
techniques presented previously. The complete Ada source code for this case
study is available online at http://toccata.lri.fr/gallery/trajectory_
computation.en.html. This program computes the speed of a device submitted
to gravitational acceleration and drag from the atmosphere around it. The for-
mula to compute the new speed S(N + 1) from the speed S(N) at the previous
step, after a given increment of time is:

S(N + 1) = S(N) + δ (1)

where δ = drag + factor ×G× framelength, where factor is a value between -1
and 1 reflecting the importance of Archimedes’ principle on the system, G is the
gravitational acceleration constant, and framelength is a constant that defines
the time in seconds between two steps in the computations.

Because of the types and the values of constants involved, both CodePeer
and Z3 can prove that there is no possible overflow. To go beyond absence of
overflows, we aim at proving safe bounds for the speed computed by the program
at each step, based on the extreme values allowed for drag and the initial speed.

12

http://toccata.lri.fr/gallery/trajectory_computation.en.html
http://toccata.lri.fr/gallery/trajectory_computation.en.html

Bound : constant Float64 :=
Drag_T ’Last + Float64 ’Ceiling (G * Frame_Length)

with Ghost;

function Low_Bound (N : Frame) return Float64 is
(Float64 (N) * (- Bound))

with Ghost;

function High_Bound (N : Frame) return Float64 is
(Float64 (N) * Bound)

with Ghost;

function Invariant (N : Frame; Speed : Float64) return
Boolean is

(Speed in Low_Bound (N) .. High_Bound (N))
with Ghost;

procedure Compute_Speed (N : Frame;
Factor : Ratio_T;
Old_Speed : Float64;
New_Speed : out Float64)

with Global => null ,
Pre => N < Frame ’Last

and then Invariant (N, Old_Speed) ,
Post => Invariant (N + 1, New_Speed);

Fig. 3. Formal Specification of Compute_Speed

Reasoning in real numbers, we’d like to state that (showing only the upper bound
here, the lower bound is similar):

δ ≤ maxdrag + factor ×G× framelength

and, starting from an initial speed S(0) of value zero, by summation over N
steps, that

S(N) ≤ N × (maxdrag + factor ×G× framelength)

Naturally, these bounds in real numbers do not necessarily hold for the FP
computations in the program. But they do hold when considering the ceiling
value of the FP computations above, using ⊕ for FP addition and ⊗ for FP
multiplication:

δ ≤ dmaxdrag ⊕ factor ⊗G⊗ framelengthe (2)

S(N) ≤ N ⊗ dmaxdrag ⊕ factor ⊗G⊗ framelengthe (3)

Indeed, given the magnitude of the integers involved (both operands and re-
sults of arithmetic operations), they are in a safe range where all integers are

13

VC C
V
C
4

A
lt
-E

rg
o

Z3 C
od

eP
ee
r

A
E
_
fp
a

C
O
L
IB

R
I

Delta_Speed in -Bound .. Bound 1 3 0
In_Bounds (High_Bound(N)) 1 1
In_Bounds (Low_Bound(N)) 0 1 2
Float64(N_Bv) * Bound + Bound

= (Float64(N_Bv) + 1.0) * Bound
42 0

Float64(N) * Bound + Bound
= (Float64(N) + 1.0) * Bound

44 1 25 0

Float64(N) * (-Bound) - Bound
= (Float64(N) + 1.0) * (-Bound)

1 0

T(1) = 1.0 0 0 1 0 0
Float64(N) + 1.0 = Float64(N + 1) 0 1 1 0
New_Speed >= Float64 (N) * (-Bound) Bound 27 0
New_Speed >= Float64 (N + 1) * (-Bound) 1 0
New_Speed <= Float64 (N) * Bound + Bound 26 0
New_Speed <= Float64 (N + 1) * Bound 1 0
Postcondition 20 0 1

Fig. 4. Proof times in seconds for the case study (timeout = 60 seconds). Under-
lined cells correspond to provers actually used by GNATprove when using switches
--codepeer=on --level=2

represented exactly as FP numbers, and arithmetic operations like additions
and multiplications are thus exact as well on such integers. This is expressed
in axioms such as of_int_add_exact of our axiomatization relating floats and
integers, as presented in Section 3.5. Hence, for the integer value Q of ceiling
in the equation above, we have that (N ⊗ Q) ⊕ Q = (N ⊕ 1) ⊗ Q which al-
lows to prove the bounds on S(N) by induction on N , from equations (1), (2)
and (3). We follow this strategy in proving a corresponding contract on proce-
dure Compute_Speed which computes the value of S(N), shown in Figure 3. The
ghost function Invariant expresses a bound on the N th term of the series S(N).

The automatic proof of Compute_Speed in GNATprove requires the collab-
oration of static analyzer CodePeer and SMT solvers Alt-Ergo, CVC4 and Z3.
The way that we make this collaboration work is that we state intermediate
assertions that are proved by either CodePeer or an SMT solver, and which are
used by all to prove subsequent properties. Table 4 gives the list of intermedi-
ate assertions that we wrote to fully prove the case study, and summarizes the
proof results. It can be noted that all VCs in the case study are proved by the
combination of provers.

We start by bounding all quantities involved using a ghost function
In_Bounds. CodePeer is used to prove automatically three assertions bound-
ing the values of Delta_Speed, High_Bound(N) and Low_Bound(N). Then, Z3 is
used to prove the distribution of addition over multiplication that is required

14

to prove Invariant(N+1) from Invariant(N), using a value N_BV which is the
conversion of N into a modular type. As modular types are converted into bitvec-
tors for Z3, the assertion mixing integers and floats can be interpreted fully in
bitvectors by Z3, which allows to prove it. Then, CodePeer is used to prove
equivalent assertions on signed integers. CodePeer is also used to prove that the
conversion of integer 1 into float is 1.0, using an expression function T returning
its input, which prevents the analyzer frontend from simplifying this assertion
to True. Then, CVC4 is used to prove that adding 1 to N can be done with the
same result in integers and in floats, using the previously proved assertion and
the axiom of_int_add_exact presented in Section 3.5. Finally, a combination
of CVC4 and Z3 is used to prove bounds on the value of New_Speed. With these
assertions, the postcondition of Compute_Speed is proved by CVC4.

5 Conclusions and Perspectives

Our approach for automated verification of floating-point programs relies on a
generic theory, written in Why3’s specification language, to model FP arithmetic.
This theory is faithful to the IEEE standard. Its genericity allows to map it both
to the Flocq library of Coq and to the FP theory of SMT-LIB. This theory is
used to encode FP computations in the VC generation process performed by
Why3. The resulting VCs can be dispatched either to the CodePeer analyzer
that performs interval analysis, or to SMT solvers, with or without a native
support for FP theory. The versatility of the different targets for discharging
VCs permit a high degree of automation of the verification process.

Related Work. Since the mid 1990s, FP arithmetic has been formalized in
interactive deductive verification systems: in PVS [9], in ACL2 [34], in HOL-
light [22], and in Coq [15]. These formalizations allowed one to represent ab-
straction of hardware components or algorithms, and prove soundness properties.
Representative case studies were the formal verification of FP multiplication, di-
vision and square root instructions of the AMD-K7 microprocessor in ACL2 [34],
and the development of certified algorithms for computing elementary functions
in HOL-light [22,21]. See also [23] for a survey of these approaches.

In 2007, Boldo and Filliâtre proposed an approach for proving properties
related to FP computations in concrete C, using the Caduceus tool and Coq
for the proofs [5]. The support for FP in Caduceus was somehow ported to the
Frama-C environment [13] and its Jessie plug-in, aiming at using automated
solvers instead of Coq, for a higher degree of automation [1]. Several case stud-
ies using Frama-C/Jessie, with various degree of complexity were designed by
different authors [6,4,20,27]. In these various case studies, proofs using Coq or
PVS were still needed to discharge the most complex VCs. Yet, a significant
improvement in the degree of automation was obtain thanks to the use of the
automated solver Gappa dedicated to reasoning on FP rounding [14].

Regarding the use of abstract interpretation to verifying FP programs, this
indeed obtained very good successes in industrial contexts. In 2004, Miné used

15

relational abstract domains to detect FP run-time errors [30], an approach that
was implemented in the Astrée tool and successfully applied to the verification
of absence of run-time errors in the control-command software of the Airbus
A380. Another tool based on abstract interpretation is Fluctuat [16], which is
not limited to the verification of absence of runtime errors, but is also able to
compare between executions of the same code in finite precision and in infinite
precision, giving some bounds on the difference between the two.

Previous support for floats in GNATprove translated every FP value in
SPARK into a real value in Why3 and relied on the support for real arith-
metic in provers, plus explicit use of rounding after each arithmetic operation. A
limitation (documented in previous versions of SPARK) was that the mapping
from FP values to the real line, even when excluding infinities and NaN, is not
injective: both FP values +0 and −0 are translated into the real number zero.
Thus, the translation was not sound when programs in the input language may
distinguish values −0 and +0, as the representation in real numbers cannot dis-
tinguish them anymore. Contrary to the axiomatization presented in Section 3,
the previous axiomatization of rounding was not realized. Consistency and con-
formance of the set of axioms was ensured by review only.

In our own approach, we combine different techniques from abstract inter-
pretation (interval analysis) and theorem proving (recent support of FP in SMT
solvers), to achieve verification not only of runtime errors but also functional
properties given by the user, with a high degree of automation. Our approach
indeed follows the same path we followed for improving the support for bit-level
computations [18], where in that case we tried to exploit native support for
bitvectors in SMT solvers.

Future Work. The new combined approach we designed is successful on the
typical examples with FP computations coming from current industrial use of
SPARK. Yet, we noticed that this new technique is not as good as the former one
used in Frama-C and Why3 [6] for proving very advanced functional behaviors
of programs, relating the concrete computations with some purely mathematical
computations on real numbers [6,4,27]. A short term perspective is to better
unify the two approaches. Notice that the authors of the CVC4 SMT solver are
currently working on a native support for FP arithmetic, it will be worth to
experiment our approach with this new prover when it is available. As shown by
our case study, handling conversion between integers and FP numbers remains
quite challenging, a better support by back-end provers is desirable.

These future work, together with further improvements in the prototype
back-end experimental solvers COLIBRI and AE_fpa we mentioned quickly
in the experimental results of Section 4.2, are central in the on-going project
SOPRANO.

Acknowledgements. We would like to thank Guillaume Melquiond for his help
with the design of the new Why3 theory for FP arithmetic and with the real-
ization in Coq using Flocq. We also thank Florian Schanda for providing the

16

case study used in this article, Mohamed Iguernlala and Bruno Marre for fruit-
ful exchanges on the use of AE_fpa and COLIBRI as well as the anonymous
reviewers for their comments.

References

1. Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In: Int.
Joint Conference on Automated Reasoning. LNAI, vol. 6173, pp. 127–141 (2010)

2. Baird, S., Charlet, A., Moy, Y., Taft, T.S.: CodePeer – beyond bug-finding with
static analysis. In: Static Analysis of Software: the Abstract Interpretation. Wiley
(2013)

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
Int. Journal on Software Tools for Technology Transfer (STTT) 17(6), 709–727
(2015), see also http://toccata.lri.fr/gallery/fm2012comp.en.html

4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
Journal of Automated Reasoning 50(4), 423–456 (2013)

5. Boldo, S., Filliâtre, J.C.: Formal Verification of Floating-Point Programs. In: IEEE
Int. Symp. on Computer Arithmetic. pp. 187–194 (2007)

6. Boldo, S., Marché, C.: Formal verification of numerical programs: from C anno-
tated programs to mechanical proofs. Mathematics in Computer Science 5, 377–393
(2011)

7. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point algo-
rithms in Coq. In: 20th IEEE Symposium on Computer Arithmetic. pp. 243–252
(2011)

8. Brain, M., D’silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods in System
Design 45(2), 213–245 (2014)

9. Carreño, V., Miner, P.S.: Specification of the IEEE-854 floating-point standard in
HOL and PVS. In: Int. Workshop on Higher-Order Logic Theorem Proving and
Its Applications (1995)

10. Chapman, R., Schanda, F.: Are we there yet? 20 years of industrial theorem proving
with SPARK. In: Interactive Theorem Proving. LNCS, vol. 8558, pp. 17–26 (2014)

11. Chihani, Z., Marre, B., Bobot, F., Bardin, S.: Sharpening constraint programming
approaches for bit-vector theory. In: CPAIOR (2017)

12. Conchon, S., Iguernlala, M., Ji, K., Melquiond, G., Fumex, C.: A three-tier strategy
for reasoning about floating-point numbers in SMT. In: Computer Aided Verifica-
tion (2017)

13. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A software analysis perspective. In: Int. Conf. on Software Engineering
and Formal Methods. pp. 233–247. No. 7504 in LNCS (2012)

14. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. Transactions on Mathematical Software 37(1), 1–20 (2010)

15. Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers and
its application to exact computing. In: Theorem Proving in Higher Order Logics.
pp. 169–184 (2001)

16. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of FLUCTUAT on safety-critical avionics software. In: FMICS.
LNCS, vol. 5825, pp. 53–69 (2009)

17

http://toccata.lri.fr/gallery/fm2012comp.en.html

17. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Computer Aided Verification. LNCS, vol. 4590, pp. 173–
177 (2007)

18. Fumex, C., Dross, C., Gerlach, J., Marché, C.: Specification and proof of high-
level functional properties of bit-level programs. In: 8th NASA Formal Methods
Symposium. LNCS, vol. 9690 (2016)

19. Fumex, C., Marché, C., Moy, Y.: Automated verification of floating-point compu-
tations in Ada programs. Research Report RR-9060, Inria (2017)

20. Goodloe, A., Muñoz, C.A., Kirchner, F., Correnson, L.: Verification of numeri-
cal programs: From real numbers to floating point numbers. In: NASA Formal
Methods. LNCS, vol. 7871, pp. 441–446 (2013)

21. Harrison, J.: Floating point verification in HOL Light: The exponential function.
Formal Methods in System Design 16(3), 271–305 (2000)

22. Harrison, J.: Formal verification of floating point trigonometric functions. In: For-
mal Methods in Computer-Aided Design. LNCS, vol. 1954, pp. 217–233 (2000)

23. Harrison, J.: Floating-point verification. In: Int. Symp. of Formal Methods Europe.
pp. 529–532 (2005)

24. IEEE standard for floating-point arithmetic (2008), https://dx.doi.org/10.
1109/IEEESTD.2008.4610935

25. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In: Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation. pp. 461–478. LNCS (2016)

26. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification
Workshop (2010)

27. Marché, C.: Verification of the functional behavior of a floating-point program: an
industrial case study. Science of Computer Programming 96(3), 279–296 (2014)

28. Marre, B., Michel, C.: Improving the floating point addition and subtraction con-
straints. In: Principles and Practice of Constraint Programming. pp. 360–367
(2010)

29. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press (2015)

30. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: European Symposium on Programming. LNCS, vol. 2986, pp. 3–17
(2004)

31. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans-
actions on Programming Languages and Systems 30(3), 12 (2008)

32. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems. LNCS, vol. 4963, pp. 337–340 (2008)

33. Rümmer, P., Wahl, T.: An SMT-LIB theory of binary floating-point arithmetic.
In: Int. Workshop on Satisfiability Modulo Theories (2010)

34. Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the floating
point multiplication, division and square root algorithms of the AMD-K7 processor.
LMS Journal of Computation and Mathematics 1, 148–200 (1998)

18

https://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://dx.doi.org/10.1109/IEEESTD.2008.4610935

	Automating the Verification of Floating-Point Programs

