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NUMERICAL ANALYSIS OF A FINITE VOLUME SCHEME FOR

A SEAWATER INTRUSION MODEL WITH CROSS-DIFFUSION

IN AN UNCONFINED AQUIFER

AHMED AIT HAMMOU OULHAJ

Abstract. We consider a degenerate parabolic system modeling the �ow of
fresh and saltwater in a porous medium in the context of seawater intrusion.
We propose and analyze a �nite volume scheme based on two-point �ux ap-
proximation with upwind mobilities. The scheme preserves at the discrete
level the main features of the continuous problem, namely the nonnegativity
of the solutions, the decay of the energy and the control of the entropy and
its dissipation. Based on these nonlinear stability results, we show that the
scheme converges towards a weak solution to the problem. Numerical results
are provided to illustrate the behavior of the model and of the scheme.

Keywords. Unsaturated porous media �ow, seawater intrusion, nonlinear discretization,

entropy stability, convergence analysis, cross-di�usion, uncon�ned aquifer

AMS subjects classi�cation. 65M12, 65M08, 76S05

1. Introduction

1.1. Presentation of the continuous problem. We are interested in the study
of seawater intrusion problem in coastal regions. If they are densely populated
areas, the intensive extraction of freshwater yields to local water table depression
and saltwater from the sea can enter the ground and replace the freshwater. This
causes sea intrusion problem. In these zones, the optimal exploitation of freshwa-
ter and the limitation of seawater intrusion are a challenge for the future. Since
freshwater and saltwater are miscible �uids, we have a transition zone separating
them caused by hydrodynamic dispersion. In the literature, there exists several
modelling approaches. The �rst approach is to assume that the �uids are immis-
cible and the domains occupied by each �uid are separated by an interface called
sharp interface. It is obtained by vertical integration based on the assumptions that
no mass transfer occurs between the fresh and the saltwater and by the so-called
Dupuit approximation. Physically, this approach is not totally correct but enables
to follow the saltwater front. We refer to [7, 8, 9, 38, 37, 3] for more details about
this �rst approach. The second approach consists in considering the existence of
a transition zone with variable concentrations of salt. It is di�cult to tackle this
approach from theorical and numerical points of view (see [13, 35, 36]). The third
approach is to assume that the �uids are miscible, and no interface between these
�uids. This modelling approach is physically correct, but it has the disadvantage
that it is impossible to follow explicitly the interface (see [14]). The fourth approach
is a mixed approach (sharp-di�use). Recently in [16] the authors derive this model
for seawater intrusion phenomena in uncon�ned aquifer. It combines the e�ciency
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2 A. AIT HAMMOU OULHAJ

of the sharp interface approach with the physical realism of the di�use interface
one. For mathematical analysis of sharp-di�use interfaces see [15].

In this paper, we consider the �rst approach, by focusing on the seawater in-
trusion model in an uncon�ned aquifer, obtained in [28] considering the formal as-
ymptotic limit as the aspect ratio between the thickness and the horizontal length
of the porous medium tends to zero. In our setting ξ is a nonnegative function ex-
pressing the height of the interface between the saltwater and the freshwater while
h ≥ ξ is the height of the interface separating the freshwater and the dry soil. We
assume that the bottom of the porous medium, which is located at b 6= 0, is imper-
meable, cf. Figure 1. Moreover we assume quasi-horizontal displacements (Dupuit
approximation), hence we get a 2D-vertically averaged model. This assumption is
reasonable since the thickness of the aquifer is small compared to the horizontal
length of the aquifer.

Figure 1. Description of an uncon�ned aquifer

The evolution of ξ and h is given by the following cross-di�usion system of a
degenerate parabolic equation

(1)

{
∂t(h− ξ)−∇.

(
(h− ξ)∇((1− ε0)h)

)
= 0 in Ω× (0, T ) =: ΩT

∂tξ −∇.
(
(ξ − b)∇((1− ε0)h+ ε0ξ)

)
= 0 in Ω× (0, T ),

with Ω ⊂ R2 is a polygonal open bounded subset, and T > 0 a �nite time horizon.
The parameter ε0 is given by

ε0 =
ρs − ρf
ρs

,

where ρs (resp. ρf ) is the mass density of the �uid saltwater (resp. freshwater)
(assumed to be constant with 0 < ρf < ρs). We set f = h− ξ, g = ξ − b and

(2) ν = 1− ε0 =
ρf
ρs
∈ (0, 1).

The system (1) then rewrites:

(3)

{
∂tf −∇.

(
νf∇(f + g + b)

)
= 0 in Ω× (0, T ),

∂tg −∇.
(
g∇(νf + g + b)

)
= 0 in Ω× (0, T ).

It is supplemented with no-�ux boundary conditions

(4) ∇f · n = ∇g · n = 0, on ∂Ω× (0, T ),
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where n is the unit normal to the boundary ∂Ω, and initial data

(5) f|t=0 = f0, g|t=0 = g0,

with f0, g0 ∈ L∞(Ω) and

(6) f0, g0 ≥ 0, a.e x ∈ Ω.

Before describing more precisely our results, let us mention that the problems
of kind (3), have been the object of several studies. In particular the Muskat
problem for thin �uid layers, which models (see [20]) the movement of two �uids
with densities and viscosities in a porous medium in one dimension. The authors
in [20, 21] studied the classical solutions of such problem. Moreover, weak solutions
are established under di�erent assumptions in [19, 29, 30].

We recall (see [19, 29, 30]) the de�nition of entropy functional:

H(f, g) =

∫
Ω

[
Γ(g) +

1

ν
Γ(f)

]
dx, where Γ(s) = s log s− s+ 1,

and of the energy functional:

E(f, g) =

∫
Ω

[ν
2

(f + g + b)2 +
1− ν

2
(g + b)2

]
dx.

Multiplying (formally) the �rst equation of (3) by
1

ν
log f and the second equa-

tion by log g, integrating over Ω and summing both equations, yields the classical
entropy/dissipation property:

(7)
d

dt
H(f, g) +

1− ν
2

∫
Ω

[
(∇f)2 + (∇g)2

]
dx ≤ 1

2(ν + 1)

∫
Ω

(∇b)2 dx.

Moreover multiplying (formally) the �rst equation of (3) by ν(f + g + b) and the
second equation by νf + g + b, integrating over Ω and summing both equations,
yields that the energy functional decreases along time:

(8)
d

dt
E(f, g) +

∫
Ω

[
ν2f(∇(f + g + b))2 + g(∇(νf + g + b))2

]
dx = 0.

Let us mention that the cross-di�usion systems are extensively presented in dif-
ferent domain as ecology, biology, chemistry, and others. In [26] the author propose
and analyze a �nite volume scheme for the Patlak-Keller-Segel (PKS) chemotaxis
model. In [10] the authors studie the PKS model with additional cross di�usion.
We refer to [5] for the analysis of a �nite volume method for a cross di�usion model
in population dynamics. See [34, 32] for the numerical analysis for a seawater in-
trusion problem in a uncon�ned aquifer with �nite element method approximation.
In [1] the authors propose a �nite element method and a �nite volume method,
and compare the results given by these two methods. In [17] the authors address
the question of global existence for the sharp interface approach. For an analysis
of a �nite volume scheme for two-phase immiscible �ow in porous media, used in
petroleum engineering, we can refer to these papers [33, 25].

In this work, we propose a �nite volume scheme for the problem (3). This scheme
is based on a two-point �ux approximation with upwind mobilities. It is designed in
order to preserve at the discrete level the main features of the continuous problem:
the nonnegativity of the solutions, the decay of the energy (8), and the control of
the entropy and its dissipation (7).
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1.2. The numerical scheme. In this section, we explicit the discretization of
the problem (3)-(4) we will study in this paper. The time discretization relies on
backward Euler scheme, while the space discretization relies on a �nite volume
approach (see e.g [23]), with two-point �ux approximation and upstream mobility.

Let Ω ⊂ R2 be an open, bounded, polygonal subset. An admissible mesh of Ω is
given by a family T of a control volumes (open and convex polygons), a family E
of edges, and a family of points (xK)K∈T which satisfy De�nition 9.1 in [23]. This
de�nition implies that the straight line between two neighboring centers of cells
(xK , xL) is orthogonal to the edge σ = K|L.

We distinguish the interior edges σ ∈ Eint and the boundary edges σ ∈ Eext. The
set of edges E equals the union Eint ∪ Eext. For a control volume K ∈ T , we denote
by EK the set of its edges, by EK,int the set of its interior edges, and by EK,ext the
set of edges of K included in ∂Ω.

Furthermore, we denote by d the distance in R2 and by m the Lebesgue measure
in R2 or R. We assume that the family of meshes satis�es the following regularity
requirement: there exists ζ > 0 such that for all K ∈ T and all σ ∈ Eint,K with
σ = K|L, it holds

(9) d(xK , σ) ≥ ζd(xK , xL)

For all σ ∈ Eint,K with σ = K|L, we de�ne dσ = d(xK , xL) , and the transmissi-
bility coe�cient

(10) τσ =
m(σ)

dσ
, σ ∈ E .

The size of the mesh is de�ned by

δ = max
K∈T

(diam(K)).

In order to avoid heavier notations, we restrict our study to the case of a uniform
time discretization of (0, T ). However, all the results presented in this paper can be
extended to general time discretizations without any technical di�culty. In what
follows, we assume that the spatial mesh is �xed and does not change with the time
step. Let T > 0 be some �nal time and MT the number of time steps. Then the

time step size and the time points are given by, respectively,

∆t =
T

MT
, tn = n∆t, 0 ≤ n ≤MT .

We denote by D an admissible space-time discretization of ΩT = Ω × (0, T ) com-
posed of an admissible mesh T of Ω and the values ∆t and MT . The size of this
space-time discretization D is de�ned by η = max(δ,∆t).

The initial conditions are discretized by

(11) f0
T =

∑
K∈T

f0
K1K , where f0

K =
1

m(K)

∫
K

f0(x) dx, ∀K ∈ T ,

(12) g0
T =

∑
K∈T

g0
K1K , where g0

K =
1

m(K)

∫
K

g0(x) dx, ∀K ∈ T ,

and 1K is the characteristic function onK. Denoting by fnK and gnK approximations
of the mean value of f(., tn) and g(., tn) on K, respectively. Taking for bK the value
of b in a �xed point of K (for instance, the center of gravity of K), where b is a
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regular function, and assume that bK ≥ 0 ∀K ∈ T . The discretization of problem
(3) is given by the following set of nonlinear equations:

m(K)
fn+1
K − fnK

∆t

+
∑

σ∈Eint,K

τσf
n+1
σ ν

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)

)
= 0,(13)

and

m(K)
gn+1
K − gnK

∆t

+
∑

σ∈Eint,K

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)
= 0,(14)

for K ∈ T and 0 ≤ n ≤MT − 1, where

(15) fn+1
σ =

{
(fn+1
K )+ if (fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL) ≥ 0,

(fn+1
L )+ if (fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL) < 0.

and

(16) gn+1
σ =

{
(gn+1
K )+ if ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL) ≥ 0,

(gn+1
L )+ if ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL) < 0,

where x+ = max(0, x). We next de�ne the numerical approximation (fD, gD) of
(f, g) by

fD(x, t) =
∑
K∈T

0≤n≤MT−1

fn+1
K 1K×(tn,tn+1](x, t), and

gD(x, t) =
∑
K∈T

0≤n≤MT−1

gn+1
K 1K×(tn,tn+1](x, t).

We also de�ne approximations of the gradients ∇DfD and ∇DgD of f and g, re-
spectively. To this end, we introduce that: for K ∈ T

• If σ = K|L ∈ Eint,K , DK,L is the cell ("diamond") whose vertices are given
by xK , xL, and the end points of the edge σ = K|L.
• DK,σ = DK,L ∩K is the cell ("triangle") whose vertices are given by xK
and the end points of the edge σ = K|L.

The approximate gradient ∇DSD (with S = f , or S = g) is a piecewise constant
function, de�ned in ΩT by

(17) ∇DSD(x, t) = − m(σ)

m(DK,L)
(Sn+1
K − Sn+1

L )νK,L, x ∈ DK,L, t ∈ (tn, tn+1],

where νK,L is the unit vector normal to σ and outward to K.

1.3. Main results and outline of the paper. The scheme (13)-(16) amounts
to a nonlinear system to be solved at each time step. The existence of a solution
to this system is therefore non trivial. The �rst result we highlight is thus the
existence of a nonnegative solution to the scheme (13)-(16), the stability in terms
of the discrete entropy, and the decay of the discrete energy.
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Theorem 1.1. There exists (at least) one solution
(
fn+1
K , gn+1

K

)
K∈T ,n∈{0,...,MT−1}

to the scheme (13)-(16). Moreover, fnK ≥ 0, gnK ≥ 0 for all K ∈ T and for all
n ∈ {0, . . . ,MT }, and there exists C depending only on Ω, f0, g0, ν and b such that

sup
n∈{0,...,MT−1}

Hn+1 +

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ

[
(fn+1
K − fn+1

L )2 + (gn+1
K − gn+1

L )2
]

≤ C(1 + T ),

and

sup
n∈{0,...,MT−1}

En+1

+

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ ν2

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
)2

+

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)2

≤ C.

Our second result concerns the convergence of the scheme to a weak solution of
(3)-(4). Let (Dm)m>0 be a family of admissible space-time discretization of ΩT . We
denote by (Tm)m>0 the corresponding meshes of Ω, with size(Tm) = δm −→ 0, as
m → 0. We de�ne (fm, gm) := (fDm , gDm) the sequence of approximate solutions
constructed on the discretization Dm. We set ∇m := ∇Dm .

Theorem 1.2. Let (Dm)m>0 be a sequence of admissible discretizations satisfying
(9) uniformly in m, and limm→+∞ ηm = 0. Let (fm, gm) be a sequence of �nite
volume solutions to (13)-(16). Then there exists (f, g) such that, up a subsequence,

fm −→ f in Lr(ΩT ),∀r < 4, and ∇mfm −→ ∇f weakly in L2(ΩT )2,

gm −→ g in Lr(ΩT ), ∀r < 4, and ∇mgm −→ ∇g weakly in L2(ΩT )2,

and (f, g) ∈ L2(0, T ;H1(Ω))2 is a weak solution to (3)-(4) in the following sense

(18)

∫ T

0

∫
Ω

(f∂tψ − νf∇(f + g + b) · ∇ψ) dx dt+

∫
Ω

f0ψ(., 0) dx = 0,

(19)

∫ T

0

∫
Ω

(g∂tψ − g∇(νf + g + b) · ∇ψ) dxdt+

∫
Ω

g0ψ(., 0) dx = 0,

for all test functions ψ ∈ C∞0 (Ω× [0, T )).

The paper is organized as follows. The existence of nonnegative solution is
shown in Section 2. Discrete counterparts of the entropy/entropy-dissipation (7)
and energy/energy-dissipation (8) relations are established in Section 3. Section 4
is devoted to the convergence proof of the scheme. This proof is based �rst on the
compactness of the sequence of approximate solutions and then on the identi�cation
of the limit. We �nally present numerical experiments in Section 5, to illustrate
the behaviour of the model and of the scheme.
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2. Existence of a nonnegative discrete solutions

First all, we prove the positivity of the discrete solutions. This estimate allows
to prove the existence of a solution to the nonlinear system (13)-(16).

Proposition 2.1. For all K ∈ T , n ≥ 0,

(20) fnK ≥ 0, gnK ≥ 0,

hence

(21)
∑
K∈T

m(K)fnK =
∑
K∈T

m(K)f0
K = ‖f0‖L1(Ω),

and

(22)
∑
K∈T

m(K)gnK =
∑
K∈T

m(K)g0
K = ‖g0‖L1(Ω).

Proof. The property (20) clearly holds for n = 0 thanks to (6). Assume now that
(20) holds at time step n, and assume that

fn+1
K < 0, for some K ∈ T .

In view of the de�nition (15) of fn+1
σ one has that

fn+1
K = − ν∆t

m(K)

∑
σ∈Eint,K

τσ

(
(fn+1
K )+︸ ︷︷ ︸
=0

[
(fn+1
K −fn+1

L )+(gn+1
K −gn+1

L )+(bK−bL)
]+

− (fn+1
L )+

[
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
]−)

+ fnK ≥ 0,

yielding a contradiction, ensuring that

fn+1
K ≥ 0, ∀K ∈ T ,∀n ≥ 0.

Proving that gnK ≥ 0 for all K ∈ T ,∀n ≥ 0, is similar. �

We will prove the existence of a solution, we follow the methodology proposed
in [22], using a topological degree argument [18, 31].

Proposition 2.2. Let D be an admissible discretization of Ω× (0, T ). There exists
(at least) one solution to the scheme (13)-(16).

Proof. Let µ ∈ [0, 1], and de�ne (fn+1
K,µ , g

n+1
K,µ )K as the solution of the scheme: ∀K ∈

T

m(K)
fn+1
K,µ − fnK

∆t

+ µ
∑

σ∈Eint,K

τσf
n+1
σ,µ ν

(
(fn+1
K,µ − f

n+1
L,µ ) + (gn+1

K,µ − g
n+1
L,µ ) + (bK − bL)

)
= 0,

m(K)
gn+1
K,µ − gnK

∆t

+ µ
∑

σ∈Eint,K

τσg
n+1
σ,µ

(
ν(fn+1

K,µ − f
n+1
L,µ ) + (gn+1

K,µ − g
n+1
L,µ ) + (bK − bL)

)
= 0.
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Reproducing the proof of Proposition 2.1, one can show that

fn+1
K,µ ≥ 0, and gn+1

K,µ ≥ 0 ∀µ ∈ [0, 1],

hence ∑
K∈T

m(K)fn+1
K,µ =

∑
K∈T

m(K)f0
K = ‖f0‖L1(Ω),

and ∑
K∈T

m(K)gn+1
K,µ =

∑
K∈T

m(K)g0
K = ‖g0‖L1(Ω).

Therefore, for all K ∈ T , one has

(23) 0 ≤ fn+1
K,µ ≤

‖f0‖L1(Ω)

m(K)
≤
‖f0‖L1(Ω)

min
K∈T

m(K)
:= mf ,

and

(24) 0 ≤ gn+1
K,µ ≤

‖g0‖L1(Ω)

m(K)
≤
‖g0‖L1(Ω)

min
K∈T

m(K)
:= mg.

De�ne the compact subset K = [−1,mf + 1]#T × [−1,mg + 1]#T of R#T × R#T ,
and de�ne the function H((fK , gK)K , µ) : R#T × R#T × [0, 1] → R#T × R#T by:
∀K ∈ T ,

H((fK , gK)K , µ) =

(
m(K)

fn+1
K,µ − fnK

∆t

+ µ
∑

σ∈Eint,K

τσf
n+1
σ,µ ν

(
(fn+1
K,µ − f

n+1
L,µ ) + (gn+1

K,µ − g
n+1
L,µ ) + (bK − bL)

)
,

m(K)
gn+1
K,µ − gnK

∆t
+µ

∑
σ∈Eint,K

τσg
n+1
σ,µ

(
ν(fn+1

K,µ −f
n+1
L,µ )+ (gn+1

K,µ −g
n+1
L,µ )+ (bK − bL)

))
.

The function H is uniformly continuous on K× [0, 1], and it follows from (23) that
for all µ ∈ [0, 1], the nonlinear system

(25) H((fK , gK)K , µ) = (0, 0),

cannot admit any solution on ∂K. Therefore, the corresponding topological degree
δ(H,K)(µ) is constant w.r.t µ. For µ = 0 the linear system H((fK , gK)K , 0) admits
a unique solution, and the topological degree is equal to 1. Hence, the nonlinear
system (25) admits at least one solution for µ = 1, ensuring the existence of a
solution to the scheme (13)-(16). �

3. Entropy and energy estimates

The goal of this section is to establish discrete counterparts to the entropy/entropy-
dissipation estimate (7) and energy/energy-dissipation estimate (8). In what fol-
lows, (fnK , g

n
K) denotes a solution to the scheme (13)-(16). The proof of Theorem 1.1

is based on suitable estimates, which are shown below. This section also contains
some results that will be useful in the convergence proof of Section 4.
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3.1. Discrete L2(0, T ;H1(Ω)) semi-norm. We �rst have to de�ne the space X (D)
the solution belongs to, and the discrete L2(0, T ;H1(Ω)) semi-norm.

De�nition 3.1. We denote by X (D) the functional space:

X (D) =

{
u ∈ L∞(ΩT )/u is constant on K × (tn, tn+1]

∀K ∈ T ,∀n ∈ {0, · · · ,MT − 1}

}
.

De�nition 3.2. ( Discrete L2(0, T ;H1(Ω)) semi-norm ) We de�ne the discrete
L2(0, T ;H1(Ω)) semi-norm on X (D) by:

|u|1,D =

(
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ(un+1
K − un+1

L )2

)1/2

.

Remark 3.3. Note that

(26) ‖∇Du‖L2(ΩT ) =
√

2|u|1,D.

3.2. Entropy estimate. We introduce a discrete version of entropy functional:

Hn := H(fnK , g
n
K) =

∑
K∈T

m(K)
(1

ν
Γ(fnK) + Γ(gnK)

)
.

Proposition 3.4. (Entropy stability) For all n ∈ {0, ...,MT − 1}, one has

Hn+1 − Hn +
1− ν

2
∆t

∑
σ∈Eint
σ=K|L

τσ

[
(fn+1
K − fn+1

L )2 + (gn+1
K − gn+1

L )2
]

≤ ∆t

2(ν + 1)

∑
σ∈Eint
σ=K|L

τσ(bK − bL)2.(27)

Proof. We multiply (13) by ∆t
log fn+1

K

ν
and summing over K ∈ T , and (14) by

∆t log gn+1
K and summing over K ∈ T , provides that:

A+B + C = 0,

where

A =
∑
K∈T

m(K)
[1

ν
(fn+1
K − fnK) log fn+1

K + (gn+1
K − gnK) log gn+1

K

]
,

B = ∆t
∑
K∈T

∑
σ∈Eint,K

τσf
n+1
σ

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
)

log fn+1
K ,

C = ∆t
∑
K∈T

∑
σ∈Eint,K

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)
log gn+1

K .

By the convexity of Γ, we �nd that

Hn+1 − Hn =
∑
K∈T

m(K)
[1

ν
(Γ(fn+1

K )− Γ(fnK)) + Γ(gn+1
K )− Γ(gnK)

]
≤ A.
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We can rewrite B and C as:

B = ∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
)
×

(log fn+1
K − log fn+1

L ),

C = ∆t
∑
σ∈Eint
σ=K|L

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)
×

(log gn+1
K − log gn+1

L ).

It follows from the convexity of exp that

a(log a− log b) ≥ a− b ≥ b(log a− log b) ∀a, b ∈ [0,+∞[,

where we have used the convention log(0) = −∞ and 0 log(0) = 0. Hence, in view
of the de�nition (15) and (16) of the upwind mobilities, one has

B ≥ ∆t
∑
σ∈Eint
σ=K|L

τσ

(
(fn+1
K − fn+1

L )2 + (gn+1
K − gn+1

L )(fn+1
K − fn+1

L )

+ (bK − bL)(fn+1
K − fn+1

K )
)
,

C ≥ ∆t
∑
σ∈Eint
σ=K|L

τσ

(
(gn+1
K − gn+1

L )2 + ν(gn+1
K − gn+1

L )(fn+1
K − fn+1

L )

+ (bK − bL)(gn+1
K − gn+1

L )
)
.

Combining these inequalities, one deduces that

Hn+1 − Hn + ∆t
∑
σ∈Eint
σ=K|L

τσ(fn+1
K − fn+1

L )2 + ∆t
∑
σ∈Eint
σ=K|L

τσ(gn+1
K − gn+1

L )2

+ (ν + 1)∆t
∑
σ∈Eint
σ=K|L

τσ(fn+1
K − fn+1

L )(gn+1
K − gn+1

L ) ≤ D,

where

D = −∆t
∑
σ∈Eint
σ=K|L

τσ(bK − bL)
[
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L )
]
.

Using the Young inequality, one has

D ≤ 1

2ε
∆t

∑
σ∈Eint
σ=K|L

τσ(bK − bL)2 +
ε

2
∆t

∑
σ∈Eint
σ=K|L

τσ

[
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L )
]2
,
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for all ε > 0. We choose ε = 1 + ν, we have

D ≤ 1

2(ν + 1)
∆t

∑
σ∈Eint
σ=K|L

τσ(bK − bL)2

+
ν + 1

2
∆t

∑
σ∈Eint
σ=K|L

τσ

[
(fn+1
K − fn+1

L )2 + (gn+1
K − gn+1

L )2
]

+ (ν + 1)∆t
∑
σ∈Eint
σ=K|L

τσ

[
(fn+1
K − fn+1

L )(gn+1
K − gn+1

L )
]
.

Finally, one has

Hn+1 − Hn +
1− ν

2
∆t

∑
σ∈Eint
σ=K|L

τσ(fn+1
K − fn+1

L )2

+
1− ν

2
∆t

∑
σ∈Eint
σ=K|L

τσ(gn+1
K − gn+1

L )2 ≤ 1

2(ν + 1)
∆t

∑
σ∈Eint
σ=K|L

τσ(bK − bL)2,

where 1− ν > 0 thanks to (2). �

Corollary 3.5. There exists C1 depending only on T,Ω, f0, g0, ν and b such that

(28) HMT +
1− ν

2

(
|fD|21,D + |gD|21,D

)
≤ C1.

Proof. Summing (27) over n = 0, ...,MT − 1 provides

HMT +
1− ν

2

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ

[
(fn+1
K − fn+1

L )2 + (gn+1
K − gn+1

L )2
]

≤ H0 +
1

2(ν + 1)

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ(bK − bL)2.

As a consequence of Jensen's inequality, one has

H0 =

∫
Ω

[1

ν
Γ(f0

K) + Γ(g0
K)
]

dx ≤
∫

Ω

[1

ν
Γ(f0) + Γ(g0)

]
dx < +∞,

and
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ(bK − bL)2 ≤ T |Ω|‖∇b‖2∞,

concluding the proof of Corollary 3.5. �

We obtain immediately thanks to (26), the following discrete L2(ΩT ) estimate
on the discrete gradients:

(29) ‖∇DfD‖2L2(ΩT ) + ‖∇DgD‖2L2(ΩT ) ≤ 2C1.
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3.3. Energy estimate. The current subsection is devoted to the proof of the dis-
crete energy estimate. We introduce a discrete version of energy functional:

En := E(fnK , g
n
K) =

∑
K∈T

m(K)
(ν

2
(fnK + gnK + bK)2 +

1− ν
2

(gnK + bK)2
)
.

Proposition 3.6. For all n ∈ {0, ...,MT − 1}, one has

(30) En+1 + ∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ ν2

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
)2

+ ∆t
∑
σ∈Eint
σ=K|L

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)2

≤ En.

Proof. We multiply (13) (resp. (14)) by ∆tν(fn+1
K +gn+1

K + bK) (resp. ∆t(νfn+1
K +

gn+1
K + bK)) and sum over K ∈ T . Summing both equalities and reorganizing the
sums, we get A+B = 0, where

A =
∑
K∈T

m(K)
[
ν(fn+1

K − fnK)(fn+1
K + gn+1

K + bK)
]

+
∑
K∈T

m(K)
[
(gn+1
K − gnK)(νfn+1

K + gn+1
K + bK)

]
,

B = ∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ ν2

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
)2

+ ∆t
∑
σ∈Eint
σ=K|L

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)2

.

One has

A =
∑
K∈T

m(K)
[
ν
(

(fn+1
K + gn+1

K + bK)− (fnK + gnK + bK)
)(
fn+1
K + gn+1

K + bK

)]
+
∑
K∈T

m(K)
[
(1− ν)

(
(gn+1
K + bK)− (gnK + bK)

)(
gn+1
K + bK

)]
.

We use the following inequality: (a− b)a ≥ 1

2
(a2 − b2), ∀a, b ∈ R, to get

A ≥
∑
K∈T

m(K)
[ν

2

(
(fn+1
K + gn+1

K + bK)2 − (fnK + gnK + bK)2
)]

+
∑
K∈T

m(K)
[1− ν

2

(
(gn+1
K + bK)2 − (gnK + bK)2

)]
= En+1 − En.

�

Remark 3.7. In the discrete counterpart (30) of (8), the equality is remplaced by an
inequality. But as well as in the continuous setting, the function E decreases along
time.
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Corollary 3.8. There exists C2 depending only on f0, g0, b, ν and Ω such that

‖fD‖L∞(0,T ;L2(Ω)) + ‖gD‖L∞(0,T ;L2(Ω)) ≤ C2.

Proof. Summing (30) over n = 0, ...,MT − 1, we obtain immediately thanks the
positivity of fn+1

σ and gn+1
σ that

En ≤ E0.

Using the Cauchy-Schwarz inequality, we obtain

E0 ≤
∑
K∈T

m(K)

(
ν + ν2

2
(f0
K)2 + 2(g0

K)2 + 2b2K

)
.

Moreover, for s = f, or g one has∑
K∈T

m(K)(s0
K)2 ≤ ‖s0‖2L2(Ω), and

∑
K∈T

m(K)b2K ≤ |Ω|‖b‖2∞.

Hence

E0 ≤ ‖f0‖2L2(Ω) + 2‖g0‖2L2(Ω) + 2|Ω|‖b‖2∞ < +∞.
On the other hand since bK , fK and gK are nonnegative for all K ∈ T , then we
have

En ≥
∑
K∈T

m(K)
ν

2

[
(fnK)2 + (gnK)2

]
.

We deduce that ∑
K∈T

m(K)
[
(fnK)2 + (gnK)2

]
≤ 2

ν
En ≤ 2

ν
E0,

concluding the proof of Corollary 3.8. �

Then we deduce from Proposition 3.6 that

Corollary 3.9. There exists C3 depending only on f0, g0, b, ν and Ω such that

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ ν2

(
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
)2

+

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσg
n+1
σ

(
ν(fn+1

K − fn+1
L ) + (gn+1

K − gn+1
L ) + (bK − bL)

)2

≤ C3.

4. Convergence analysis

This section is devoted to the compactness of the approximate solution. Our
goal is to show the strong compactness of the sequences (fm)m>0 and (gm)m>0 in
L2(ΩT ) and the weak compactness in L2(ΩT )2 of the approximate gradient of fm
and gm de�ned by (17). As a �rst step, we show in �4.1 the appropriate compactness
properties on the reconstructed discrete solutions. Then we identify in �4.2 the limit
value (whose existence is ensured thanks to the compactness properties) as the weak
solution to the problem (3).
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4.1. Compactness properties of discrete solutions. As it is classical for un-
steady problems, we need to prove some time-compactness for the approximate
solutions. We make use of the time-compactness result for degenerate parabolic
equations proposed in [6], as an alternative to the classical technique that consists
in estimating the time-translates (see [4] in the continuous setting and [23] in the
discrete setting).

Lemma 4.1. There exists C4 depending only on ζ, T, f0, g0, ν and b such that

(31)

MT−1∑
n=0

∑
K∈T

m(K)(fn+1
K − fnK)ϕ(xK , tn+1) ≤ C4‖∇ϕ‖L∞(ΩT ), ϕ ∈ C∞c (ΩT ).

(32)

MT−1∑
n=0

∑
K∈T

m(K)(gn+1
K − gnK)ϕ(xK , tn+1) ≤ C4‖∇ϕ‖L∞(ΩT ), ϕ ∈ C∞c (ΩT ).

Proof. For the sake of readability, we denote by ϕn+1
K = ϕ(xK , tn+1) for all K ∈ T

and all n ∈ {0, ...,MT − 1}. We multiply the scheme (13) by ∆tϕn+1
K and sum for

K ∈ T , for n ∈ {0, ...,MT − 1} . This yields:

A = B,

where

A =

N∑
n=0

∑
K∈T

m(K)(fn+1
K − fnK)ϕn+1

K ,

and

B = −ν
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ

[
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L )

+ (bK − bL)
]
(ϕn+1
K − ϕn+1

L ).

Using the Cauchy-Schwarz inequality, we get

|B|2 ≤
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ (ϕn+1

K − ϕn+1
L )2

×
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ ν2

[
(fn+1
K − fn+1

L ) + (gn+1
K − gn+1

L ) + (bK − bL)
]2
.

Moreover fn+1
σ ∈

[
min(fn+1

K , fn+1
L ),max(fn+1

K , fn+1
L )

]
, hence

(33) 0 ≤ fn+1
σ ≤ fn+1

K + fn+1
L , ∀σ ∈ E , ∀n ∈ {0, ...,MT − 1}.

Using Corollary 3.9 , we get

|B|2 ≤ C3

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ(fn+1
K + fn+1

L )d(xK , xL)2‖∇ϕ‖2L∞(ΩT ).



A SEAWATER INTRUSION PROBLEM IN A UNCONFINED AQUIFER 15

Observe that in two space dimensions,

(34)
∑
K∈T

∑
σ∈Eint,K

dσm(σ) ≤ 2
∑
K∈T

m(K).

By (10), (9) one has

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ(fn+1
K + fn+1

L )d(xK , xL)2

≤
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

m(σ)d(xK , xL)(fn+1
K + fn+1

L )

≤
MT−1∑
n=0

∆t
∑
K∈T

fn+1
K

∑
σ∈Eint,K

m(σ)d(xK , xL)

≤ 2T

ζ

∑
K∈T

m(K)fn+1
K ≤ 2T

ζ
‖f0‖L1(Ω),

thanks the mass conservation (21). Hence

(35)

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

m(σ)d(xK , xL)fn+1
σ ≤ 2T

ζ
‖f0‖L1(Ω).

This concludes the proof of (31). The proof of (32) is similar. �

We can apply the [6, Theorem 3.9], we conclude that

Proposition 4.2. Let (Dm)m≥1 be a family of admissible space-time discretization
of ΩT such that (9) holds. Let (fm)m and (gm)m be the corresponding sequence
of discrete solution to the scheme (13)-(16), then up to an unlabeled subsequence,
there exits f ∈ L2(0, T ;H1(Ω)) and g ∈ L2(0, T ;H1(Ω)) such that

fm −→
m→+∞

f, a.e in ΩT , and gm −→
m→+∞

g, a.e in ΩT .

(fm)m>0 and (gm)m>0 are uniformly bounded in L∞(0;T, L2(Ω)) thanks to
Corollary 3.8. By Corollary 3.5 and Sobolev embedding, (fm)m>0 and (gm)m>0 are
bounded in L2(0, T ;Lp(Ω)), with p < +∞. Then, thanks to Riez-Thorin theorem,
(fm)m>0 and (gm)m>0 are bounded in Lr(ΩT ) with 2 < r < 4. Hence (fm)m>0 and
(gm)m>0 are equi-integrable in L

r(ΩT ). Applying the Vitali's convergence theorem
we deduce that

Lemma 4.3. Keeping the assumption and notations of Proposition 4.2 , one has

fm −→
m→+∞

f, strongly in Lr(ΩT ), for all r < 4,

and

gm −→
m→+∞

g, strongly in Lr(ΩT ), for all r < 4.

We show now the weak compactness in L2(ΩT )2 of the approximate gradient of
fm and gm de�ned in (17):
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Proposition 4.4. Keeping the assumption and notations of Proposition 4.2 , one
has

∇mfm −→
m→+∞

∇f weakly in L2(ΩT )2, and ∇mgm −→
m→+∞

∇g weakly in L2(ΩT )2.

Proof. Thanks to (29) ∇DfD and ∇DgD are bounded in L2(ΩT )2, then there exists
a subsequence of ∇DfD and of ∇DgD (still labeled ∇DfD and ∇DgD) and two
function Θ,Ξ ∈ L2(ΩT )2 such that

∇mfm −→
m→+∞

Θ, weakly in L2(ΩT )2,

and

∇mgm −→
m→+∞

Ξ, weakly in L2(ΩT )2.

We refer to [12, 24] to prove that Θ = ∇f and Ξ = ∇g. �

4.2. Identi�cation as a weak solution.

Proposition 4.5. Let (f, g) be as in Proposition 4.2, then f and g are the weak
solution to (3)-(4) in the sense of (18) and (19).

Proof. Let ψ ∈ C∞0 (Ω × [0, T )) be a test function and ψn+1
K = ψ(xK , tn+1) for all

K ∈ T and n ∈ {0, ...,MT − 1}. We �rst establish (18) from (13), and to obtain
(19) from (14) is similar. In order to prove that f is a weak solution, we multiply
(13) by ∆tmψ

n
K and sum over n ∈ {0, ...,MT − 1} and K ∈ T , we obtain

Am +Bm = 0,

where

Am =

MT−1∑
n=0

∑
K∈T

m(K)(fn+1
K − fn+1

L )ψnK ,

Bm = ν

MT−1∑
n=0

∆tm
∑
K∈T

ψnK
∑

σ∈Eint,K

τσf
n+1
σ

[
(fn+1
K − fn+1

L )+(gn+1
K − gn+1

L )+(bK − bL)
]
.

Note that ψMT

K = 0 for all K ∈ T , then a discrete integration parts yields

Am =−
MT−1∑
n=0

∆tm
∑
K∈T

m(K)
ψn+1
K − ψnK

∆tm
fn+1
K −

∑
K∈T

m(K)f0
Kψ

0
K

=−
∫ T

0

∫
Ω

fm(δψ)m dx dt−
∫

Ω

f0
mψm(., 0) dx,

where the function δψm(xK , t) =
ψn+1
K − ψnK

∆tm
, if (xK , t) ∈ K × (tn, tn+1). Thanks

to the regularity of ψ, the function δψm converges uniformly towards ∂tψ on ΩT .
Moreover, we have

fm −→ f in L2(ΩT ) as m→∞.
Therefore

(36)

∫ T

0

∫
Ω

fm(δψ)m dxdt −→
∫ T

0

∫
Ω

f(x)∂tψ dx dt as m→∞.
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Moreover, f0
m converges strongly in L1(Ω) towards the initial data f0 and ψm(., 0)

converges uniformly towards ψ(., 0). Therefore, we get that

(37)

∫
Ω

f0
mψm(., 0) dx −→

∫
Ω

f0(x)ψ(., 0) dx m→∞.

We deduce from (36) and (37) that

Am −→ −
∫ T

0

∫
Ω

f(x)∂tψ dxdt−
∫

Ω

f0(x)ψ(., 0) dx m→∞.

We introduce the term

Em =

∫
ΩT

fDm
∇mum · ∇ψ dxdt,

where

fD(x, t) = fn+1
σ ∀(t, x) ∈ (tn, tn+1]×DK,L, and u = f + g + b.

We have fm −→
m→+∞

f, strongly in L2(ΩT ). Let us to prove that

fDm
:= fm −→

m→+∞
f, strongly in L2(ΩT ).

Since ‖fm−f‖L2(ΩT ) ≤ ‖fm−fm‖L2(ΩT ) +‖fm−f‖L2(ΩT ), it is su�cient to prove

that ‖fm − fm‖L2(ΩT ) −→ 0, as δm −→
m→+∞

0. One has

‖fm − fm‖2L2(ΩT ) =

MT−1∑
n=0

∆t
∑
K∈T

∑
σ∈Eint,K

m(DK,σ)(fn+1
K − fn+1

σ )2

≤
MT−1∑
n=0

∆t
∑
K∈T

∑
σ∈Eint,K

m(DK,σ)(fn+1
K − fn+1

L )2

≤
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

m(DK,L)(fn+1
K − fn+1

L )2

≤ 1

2

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσ(fn+1
K − fn+1

L )2d2
σ ≤

C1

2
δ2
m.

Since ∇mum converges weakly in L2(ΩT ) to ∇u, since fm converges strongly in
L2(ΩT ) to f , we have

Em −→
∫

ΩT

f∇u · ∇ψ dxdt as m→∞.

Let us to prove Em − Em tends to 0 as m→∞, where

Em =

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ (un+1

K − un+1
L )(ψnK − ψnL).
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Using the de�nition of discrete gradient (17), we have

Em =

MT−1∑
n=0

∑
σ∈Eint
σ=K|L

fn+1
σ

∫ tn+1

tn

∫
DK,L

m(σ)

m(DK,L)
(un+1
K − un+1

L )∇ψ · νL,K dxdt.

Therefore by the de�nition of τσ,

Em − Em =

MT−1∑
n=0

∑
σ∈Eint
σ=K|L

m(σ)fn+1
σ (un+1

K − un+1
L )

∫ tn+1

tn

(
ψK − ψL
d(xK , xL)

− 1

m(DK,L)

∫
DK,L

∇ψ · νL,K dx

)
dt.

On the one hand, since the straight line (xK , xL) is orthogonal to σ, we have
xK − xL = d(xK , xL)νL,K . It follows from the regularity of ψ that

ψnK − ψnL
d(xK , xL)

=∇ψ(tn, xL) · νL,K +O(δ)

=∇ψ(t, x) · νL,K +O(η), ∀(t, x) ∈ (tn, tn+1)×DK,L.

By taking the mean value over DK,L, there exists a constant C5 > 0, depending
only on ψ, such that∣∣∣∣∣

∫ tn+1

tn

(
ψnK − ψnL
d(xK , xL)

− 1

m(DK,L)

∫
DK,L

∇ψ · νL,K dx

)
dt

∣∣∣∣∣ ≤ C5∆tη.

On the other hand, one has m(σ) =
√
τσ
√
m(σ)d(xK , xL). Hence by Cauchy-

schwarz inequality, we have∣∣∣∣∣
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

m(σ)fn+1
σ (un+1

K − un+1
L )

∣∣∣∣∣
2

≤
MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

τσf
n+1
σ (un+1

K − un+1
L )2 ×

MT−1∑
n=0

∆t
∑
σ∈Eint
σ=K|L

m(σ)d(xK , xL)fn+1
σ .

Using Corollary 3.9 and (35) we conclude that

|Em − Em|2 ≤
2T

ζ
‖f0‖L1(Ω)C2C

2
5η

2 −→ 0, as η → 0.

This ensures that Bm converges towards ν
∫

ΩT
f∇u · ∇ψ dx dt, as m→ +∞. �

5. Numerical results

Let us provide some illustrations of the behavior of the numerical scheme (13)-
(16). The scheme leads to a nonlinear system that we solve thanks to the Newton-
Raphson method. In our test case, the domain is the unit square, i.e., Ω = (0, 1)2.
We consider an admissible triangular mesh made of 14336 triangles. An illustration
of a mesh type used here is given in Figure 2. The numerical analysis of the scheme
was carried out for a uniform time discretization of (0, T ) only in order to avoid
heavy notations. In order to increase the robustness of the algorithm and to ensure
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the convergence of the Newton-Raphson iterative procedure, we used an adaptive
time step procedure in the practical implementation. More precisely, we associate a
maximal time step ∆tmax = 0.00004 for the mesh . If the Newton-Raphson method
fails to converge after 30 iterations �we choose that the `∞ norm of the residual
has to be smaller than 10−10 as stopping criterion�, the time step is divided by
two. If the Newton-Raphson method converges, the time step is multiplied by two
and projected on [0,∆tmax]. The time step ∆t is equal to ∆tmax in the test case
presented below. We perform the numerical experiments with the following data

Figure 2. Mesh type used in the numerical test

b(x, y) = max

(
0,

1

2

(
1− 16(x− 1/2)2

)(
(cos(πy) + 2

))
, ν = 0.9.

As an initial condition we take

f0(x, y) =


1

2
if x ≤ 1

4
,

0 elsewhere,
g0(x, y) =

b
(1

2
, 0
)
− b(x, y)−

(
x− 1

2

)
if x ≤ 1

2
,

0 elsewhere.

Figure 3 shows the evolution of b, ξ = b + g and h = b + g + f at time t = 0, t =
0.2, t = 0.72, and t = 12. There is convergence towards an equilibrium state, with
horizontal interfaces as expected (see [19]).

Figure 4 shows the evolution of the energy along time

6. Conclusion

We proposed and analyzed a �nite volume scheme for solving the seawater in-
trusion model. It preserves at the discrete level the main features of the continuous
problem: the nonnegativity of the solutions, the decay of the energy, and the con-
trol of the entropy and its dissipation. Moreover, we were able to carry out a full
convergence analysis based on compactness arguments.

Let us mention that to derive the problem (3), the authors in [28] assume that,
for simpli�cation, the porous medium is isotropic. Moreover in our work the mesh
satis�es the so-called orthogonality condition (see, e.g., [23, De�nition 9.1] so that
the two-point �ux approximation is consistent. We know that the �nite volume
method with two-point �ux approximation, used here, does not allow to handle the
anisotropic case. Nevertheless in order to treat this case, we can use for instance a
Control Volume Finite Element scheme (CVFE) [27, 11, 2].
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Figure 3. Behaviour of the model at t = 0, t = 0.2, t = 0.72, t = 12

Figure 4. Evolution of the energy along time
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