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Abstract

We define a pattern structure whose objects are elements of a sup-
porting ontology. In this framework, descriptions constitute trees, made
of triples subject-predicate-object, and for which we provide a meaningful
similarity operator. The specificity of the descriptions depends on a hy-
perparameter corresponding to their depth. This formalism is compatible
with ontologies formulated in the language of RDF and RDFS and aims to
set up a framework based on pattern structures for knowledge discovery
in the web of data.

1 Introduction

The recent developpement of the web of data made available an increasing
amount of ontological knowledge in various fields of interest. This knowledge
is mainly expressed as set out in the specifications of the Resource Description
Framework (RDF) 1 and RDF Schema (RDFS) 2.

This preliminary study aims to provide a knowledge discovery framework
that produces an ordered structure summarizing and describing objects from a
given ontology. The definition of ontology that we use can be seen as an abstrac-
tion of the data model defined by RDF and RDFS standards. In this paper, by
an ontology we mean a structure that combines two types of knowledge about a
set of objects. The first type is subsumptional knowledge: it corresponds to the
ordering of objects in terms of their specificity, which is given by a subsumption
relation (also sometimes referred to as IS A relation). The second type is predi-
cate knowledge, thought of as a set of relations that occur between objects. The
latter kind of knowledge can be naturally represented by an oriented labelled
multigraph where nodes are objects and where the labels of arcs indicate the
kind of relation that occurs between the origin and the target objects of the arc.

Our approach is rooted in Formal Concept Analysis (FCA) [7] and pattern
structures [6], which are two frameworks for knowledge discovery that allow the
comparison and the classification of objects with respect to their descriptions.
In this article we propose a framework to integrate knowledge lying in ontolo-
gies into the knowledge discovery process. More precisely, we define a pattern

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-schema/
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structure in which objects are described according to the information available
in the ontology. This work follows recent propositions made in [1, 10], with
the goal of extracting knowledge from the ontology with as much accuracy as
possible.

In Section 2 we survey basic background on order theory and introduce the
basic structures that constitute ontology in our framework. In Section 3 we
recall basic notions and terminology of FCA and pattern structures. In Section
4 we define a pattern structure in which knowledge from the ontology is used to
build the descriptions of objects. The potential of this framework in knowledge
discovery is then briefly discussed in Section 5.

2 Preliminaries

2.1 Subsumption Relations and Posets

In this paper we will make use of several order relations on differents sets, that
we think of as subsumption relations. In other words, they order objects from
the most specific to the most general. With no danger of ambiguity, they all will
be denoted by the same symbol v. For a set X endowed with v and a, b ∈ X,
the fact that a is subsumed by b will be denoted by a v b, with the meaning
that a is more specific than b or, equivalently, that b is more general than a.

The subsumption relations considered hereinafter have the property that any
two elements from a given set have a unique least common subsumer, in other
words, they constitute semilattice orders. This enables us to define a similarity
(or meet) operator u by, for a, b ∈ X, a u b is the least common subsumer of a
and b. Note that

a v b ⇔ a u b = b. (1)

Note that since we only consider finite sets, X necessarily has a most general
element. As for subsumption relations, we will denote all similarity operators
by the same symbol u when there is no danger of ambiguity.

Also, for A ⊆ X, we will denote by mins(A) the subset of minimal values of
A, i.e.,

mins(A) = {c ∈ A |6 ∃c′ ∈ A : c′ v c and c 6= c′}.

In this paper, we will use the term partially ordered set (or simply poset) for
any set X of elements ordered by a subsumption relation v.

2.2 Ontological Knowledge

In this section we aim to define an ontology that combines information of two
kinds, namely subsumptional knowledge and predicate knowledge as explained
below.

Throughout this paper we will consider two disjoint sets, a set V of objects
and a set P of predicates. We will also consider a subsumption order on each
of these sets, such that (P,v) and (V,v) are posets with most general elements
denoted by >P and >V , respectively.

Now let G = (V,E) be an oriented multigraph with labelled arcs, where V
is a set of vertices and E ⊆ V × P × V is a set of triples such that (s, p, o) ∈ E
if s is connected to o by an arc labelled by p. Note that an element s ∈ V can
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be connected to o ∈ V by several arcs with different labels, however there can
be at most one arc with a label p connecting s to o.

In our framework, (P,v) and (V,v) provide the subsumptional knowledge of
the ontology while the graph G provides its predicate knowledge.

Example 1. The following example illustrates the kind of knowledge that can
be captured by such structures. Abbreviated namings of objects and predicates
are given between parentheses. Let

V ={beef, dessert, dish, egg, ice-cream(i-c.), onion tortilla(o. tortilla),

menu1(m1), menu2(m2), onion, potato, steak and chips(s&c),

strawberry i-c., tortilla, vanillai-c.,>V},
P ={has component(hcomp), has ingredient(hing),>P}.

>V

dish dessert

ice-cream (i-c.)

strawberry i-c.vanilla i-c.

steak and chips

(s&c)tortilla

onion tortilla

(o. tortilla)

Figure 1: The poset of objects given by (V,v). Dashed arrows represent sub-
sumption relations from their origin to their target. All elements of V that do
not appear in the figure are subsumed by >V . This poset indicates for example
that tortilla v dish, and that tortilla u s&c = dish.

>P

has component (hcomp) has ingredient (hing)

Figure 2: The poset of predicates given by (P,v). Dashed arrows represent a
subsumption relation between their target and origin.

Figures 1, 2 and 3 represent respectively the posets of objects, the poset
of predicates and the graph G describing relations between objects through
predicates.

The pair of subsumptional and predicate knowledge is commonly used to
describe objects within the same field of interest (e.g., class diagrams in object
oriented programming). Ontologies using RDF and RDFS formats also describe
these types of knowledge, but with a clear separation made between classes and
instances. Indeed, RDF and RDFS specifications constitute a framework for
describing resources, which are divided into three categories: classes, instances
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menu 1 (m1) menu 2 (m2)

vanilla

ice-cream
strawberry

ice-cream
steak and chips

onion

tortilla

potato

egg

onionbeef

tortilla

hcomp hcomp hcomp hcomp

hing
hing

hing

hing

hing

Figure 3: The relation graph G . Vertices are elements of V , while arcs are
labelled with predicates of P . Arcs provide information about the relations
between vertices. This graph represents, for instance, the facts that tortilla is
made of eggs and potatoes, and that menu 1 contains vanilla ice-cream. Iso-
lated vertices (i.e. objects that share no arcs with any other object) are not
represented in the graph.

and properties. Instances can be related to each other via properties, while
classes and properties are organized into so-called hierarchies. Hierarchies, as
well as relation between instances, are expressed through a set of triples of
the form resource-property-resource. Class and properties hierarchies are built
using the properties rdfs:subClassOf and rdfs:subProperty, respectively.
Instances are affected to classes using the rdf:type property.

A natural correspondence between RDFS and our formalism is then the
following. The graph G represents the set of RDF triples (except those triples
describing hierarchical relations), the set V represents the set of all classes and
instances in the ontology, and the subsumption relation on V summerizes the
information given by rdfs:subClassOf and rdf:type properties. Moreover,
(P,v) corresponds to the RDFS property hierarchy that is expressed through
rdfs:subPropertyOf.

Remark 1. RDFS hierarchies are not necessarily semilattices, since two ele-
ments do not necessarily have a unique least common subsumer. However, it is
always possible to embed a poset into a lattice of subsets (see, e.g., [3, 4]).

In the following section we briefly recall the basics of FCA and pattern
structures, which can be used to explore ontological knowledge.

3 FCA and Pattern Structures

Formal Concept Analysis (FCA) is a mathematical framework used in classifi-
cation and knowledge discovery. The basic framework considers a set of objects,
a set of attributes, and an incidence relation between the two. More precisely a
formal context is a triple (G,M, I) where G is the set of objects, M is the set
of attributes and I ⊆ G ×M is an incidence relation between G and M . Here
(g,m) ∈ I is interpreted as the object g has the attribute m. In this setting two
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derivation operators .′ : 2G → 2M and .′ : 2M → 2G are usually defined by

A′ = {m ∈M | ∀g ∈ A : (g,m) ∈ I},
B′ = {g ∈ G | ∀m ∈ B : (g,m) ∈ I},

for every A ⊆ G and B ⊆M . A formal concept is then a pair (A,B) such that
A = B′ and B = A′. In other words, A is the set of all objects that possess all
attributes in B and, dually, B is set of all attributes common to all objects in
A. The concept lattice associated to the formal context is then the set of all
formal concepts ordered by

(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 or, equivalently, B2 ⊆ B1.

FCA is fully detailed in [7].
FCA only deals with binary attribute values, i.e. objects are described by

binary |M |-sequences where each 0/1 component expresses the presence/absence
of the corresponding attribute in the object. In the pattern structure framework,
these descriptions become richer, the so-called patterns, and they may take
values other than 0/1.

In this framework, the set of patterns is usually denoted by D and endowed
with a similarity operator u that defines a semilattice D = (D,u). Note that
with this similarity operator can define a subsumption relation v given by (1).
In this sense we say that a decription d is more general than a description d′ if
d′ v d. Descriptions of objects g ∈ G are given by a mapping δ : G → D. The
corresponding pattern structure is then (G,D, δ).

As in FCA, two derivation operators are considered, namely, .� : 2G → D
and .� : D → 2G, and defined by

A� =
l

g∈A
δ(g) and d� = {g ∈ G | d v δ(g)},

for every A ⊆ G and every d ∈ D. A pattern concept is then a pair (A, d) such
that A = d� and d = A�. The set A is the set of objects whose descriptions are
more general than d, and d is the similarity of descriptions of objects in A.

Note that a pattern structure can be translated into the FCA formalism [6].
A representation context of a pattern structure (G,D, δ) is a formal context
(G,M, I) where the set of attributes M is a subset of the set of patterns D, and
the incidence relation I is defined by: (g,m) ∈ I if m v δ(g). A representation
context can be seen as a formal context where patterns are translated in terms
of binary attributes values.

4 A Pattern Structure for Objects in an Ontol-
ogy

In this section we discuss the construction of a pattern structure whose objects
are the vertices of G , that is, where G ⊆ V (see Section 2).

4.1 Simple Descriptions

The description of an object g ∈ G is an element of the set of patterns that
represents the characteristics of g. To give a meaningful description to g, we
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make use of the two types of knowledge present in the ontology, described in
Section 2, namely, subsumptional knowledge which is given by the position of g
in the poset, and the predicate knowledge which is provided by the multigraph
G .

Example 2. Consider the two structures given in Example 1. From the poset
of objects we know that “onion tortilla” is a tortilla, a dish, and a thing (>V ).
From G we know that an onion tortilla is made of onion and, since it is a kind
of tortilla, of potatoes and eggs. We know that “steak and chips” is a dish and
a thing, and that it is made of beef and potatoes. We can extract common
characteristics about “onion tortilla” and “steak and chips”: both are dishes
made of potatoes.

It should be noticed in this example that the predicate knowledge about
a subsumer of g also applies to g. We can represent the predicate knowledge
about a g by the set

{(p, o) | ∃s : (s, p, o) ∈ E and g v s}.

Each couple in this set corresponds to a knowledge unit about g, thought of
as one of its characteristics. Some of these characteristics can be more specific
than others. For instance, if we have “menu 1 is composed of strawberry ice-
cream”, then we also have that “menu 1 is composed of ice-cream”, while the
converse is not true. Thus we say that (hcomp, strawberry i-c.) is a more
specific characteristic than (hcomp,i-c.). This intuition is formalized by the
subsumption relation on P × V given by

(p1, o1) v (p2, o2) if p1 v p2 and o1 v o2, (2)

for p1, p2 ∈ P and o1, o2 ∈ V . With this definition, (p1, o1) v (p2, o2) expresses
the fact that (p1, o1) gives a more specific information than (p2, o2). Moreover,
for A ⊆ P × V , mins(A) is the smallest set (w.r.t the subsumption relation on
P × V ) that describes the same characteristics as A.

We are now able to provide a description function for elements of G, based
on both subsumptional and predicate knowledge. The description function δ1 :
G→ D(1), where D(1) = V × 2P×V , is defined by

δ1(g) =< g,mins({(p, o) | ∃s : (s, p, o) ∈ E and g v s}) >,

where mins is defined in terms of the order v over P×V given by (2). Note that
D(1) is now used as the set of patterns. The similarity between two descriptions
d1 =< s1, e1 > and d2 =< s2, e2 > belonging to D(1) is given by

d1 ud2 =< s1 u s2,mins({(p1 u p2, o1 u o2) | (p1, o2) ∈ e1 and (p2, o2) ∈ e2}) > .

The description d1 u d2 represents the characteristics that are common to both
d1 and d2. We can see that the first component of the similarity is given by
s1 u s2, namely the least common subsumer of s1 and s2 in (V,v). For the
second component, we have all possible overlappings between couples from e1
and e2.

This similarity operator endows D(1) with a semilattice structure whose most
general element is < >V , {} >. Therefore P1 = (G, (D(1),u), δ1) is a pattern
structure.
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Example 3. To illustrate, let us compute the descriptions of menu 1 (m1) and
menu 2 (m2).

δ1(m1) =< m1,{(hcomp, vanilla i-c.), (hcomp, s&c)} >,
δ1(m2) =< m2,{(hcomp, strawberry i-c.), (hcomp, salad)} >,

The similarity between both menus is

δ1(m1) u δ1(m2) =< >V , {(hcomp, i-c.), (hcomp, dish)} > .

From this similarity we obtain that menu 1 and menu 2 are two things (>V )
that are composed of an ice-cream and a dish.

It could be argued that the pattern structure described in this subsection is
not fully satisfying since the description function δ1 may fail to capture some
characteristics that appear “deeper” in the graph G . This problem is already
illustrated in Example 3, where we see that the fact that both menus contain
a dish made of potatoes is not taken into account. This is due to the fact that
the description of each menu expresses “composed of a dish that is steak and
chips” or “composed of a dish that is onion tortilla”, but not “composed of a
dish that has potato as ingredient”. To arrive at such level of specificity, in
the next section we will examine deeper connections in the graph G through
multi-level descriptions.

4.2 Multi-Level Descriptions

The principle of multi-level descriptions is to nest the descriptions of neighbors
of g into the description of g. For instance, the multi-level description of a menu
should contain the descriptions of the dishes that compose it. We define k-level

description functions δk : G→ D(k) where D(k) = V × 2P×D
(k−1)

and k > 1 is
the maximal number of nestings that are allowed in the description, by:

δk(g) =< g,mins({(p, δk−1(o)) | ∃s : (s, p, o) ∈ E and g v s}) > .

Note that δk−1(o) is the description of level (k − 1) of the neighbors of g in G .
The similarity between two descriptions d1 =< s1, e1 > and d2 =< s2, e2 > is
given by

d1ud2 =< s1us2,mins({(p1up2, d′1ud′2) | (p1, d′2) ∈ e1 and (p2, d
′
2) ∈ e2}) > .

Again, this similarity operator endows D(k) with a semilattice structure whose
most general element is < >V , {} >. Therefore Pk = (G, (D(k),u), δk) is a
pattern structure.

Example 4. Continuing from Example 3, the 2-level descriptions of menu 1
(m1) and menu 2 (m2) are

δ2(m1) =< m1, {(hcomp, < vanilla i-c., {} >),

(hcomp, < s&c, {(hing, potato), (hing, beef)} >)} >,
δ2(m2) =< m1, {(hcomp, < strawberry i-c., {} >),

(hcomp, < o.tortilla, {(hing, potato), (hing, egg), (hing, onion)} >)} >,

7



(a) Menu m1

menu 1

vanilla

ice-cream
steak and chips

potatobeef

hcomp hcomp

hing hing

(b) Menu m2

menu 2

strawberry

icecream

onion

tortilla

potatoeggonion

hcomphcomp

hing
hing

hing

(c) Similarity between the descriptions of m1 and m2.

>V

ice-cream dish

potato

hcomp hcomp

hing

Figure 4: Trees representing the 2-level descriptions of m1 (4a) and m2 (4b), and
the similarity of their descriptions (4c).

and the 2-level similarity between these descriptions is

δ2(m1)uδ2(m2) =< >V , {(hcomp, i-c.), (hcomp, < dish, {(hing, potato)} >)} > .

The similarity between the 2-level descriptions of m1 and m2 expresses the fact
that both are things composed of ice-cream and of a dish in which potato is an
ingredient.

Interestingly, due to the recursive nature of k-level descriptions, they can be
represented as trees of depth at most k. The tree corresponding to a description
d =< s, e >∈ D(k) can be drawn through the following steps:

1. The root of the tree has value s.

2. For all (p, d′) ∈ e, create a branch labelled by p, leading to a child that is
the subtree given by d′.

Example 5. The trees corresponding to δ2(m1), δ
2(m2) and the similarity be-

tween these descriptions are given in Figure 4.

This pattern structure Pk is based on a similarity operation that the extrac-
tion of common characteristics of descriptions in a meaningful manner. More-
over the parameter k can be chosen by the user to control the deepness of
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descriptions. As we have seen, deeper descriptions allow a more complete de-
tection of common characteristics.

Even though the number of levels considered can be as high as desired, the
size of descriptions could grow rapidly with the number of levels. This could
constitute a drawback as such pattern structures could deemed to be unusable
in practice. However, it is reasonable to assume that most relevant information
about an object can be found in its vicinity, that is for small values of k.

5 Discussion and Perspectives

In this paper we proposed a method for building a pattern structure that ex-
ploits ontological knowledge in object descriptions, and that opens new perspec-
tives in the classification of complex and structured data. Indeed, since pattern
structures identify common characteristics of subsets of objects (through the
similarity operation), they can be used to learn intentional definitions of target
classes (see [2]). Since we are mainly interested in the classification of instances,
the relational graph is only used as a source of information from which we build
descriptions of the instances, that are represented as trees. This makes our
approach different from those of [5, 11], that are based on FCA and pattern
structures, but where the comparisons are made between graphs.

Also, in [8, 9] the authors propose a setting for ordinal classification, based
on the theory of rough sets, and that makes use of ontological knowledge. This
approach considers a generality/specificity relation between objects for aiding
the preference prediction. However, this approach has two main limitations:
it implicitly forces a correspondence between the preference and the generality
relations, and it does not take into account all kinds of predicates available in
the ontology. Our framework brings an alternative to this rough set approach
that can even be used in situations where objects are relational structures such
as trees, ordered structures or even graphs. For instance, when dealing with
menus (seen as trees), the classification task could be that of classifying menus
into preference classes, or with respect to suitable diets. Future work will also
focus on application and empirical aspects, in order to evaluate the efficiency of
this formalism in knowledge discovery and classification tasks.
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