
HAL Id: hal-01537777
https://hal.archives-ouvertes.fr/hal-01537777

Submitted on 23 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed path planning for controlling a fleet of
UAVs : application to a team of quadrotors

Adel Belkadi, Hernan Abaunza, Laurent Ciarletta, Pedro Castillo Garcia,
Didier Theilliol

To cite this version:
Adel Belkadi, Hernan Abaunza, Laurent Ciarletta, Pedro Castillo Garcia, Didier Theilliol. Distributed
path planning for controlling a fleet of UAVs : application to a team of quadrotors. 20th Interna-
tional Federation of Automatic Control World Congress (IFAC WC 2017), Jul 2017, Toulouse, France.
pp.15983-15988. �hal-01537777�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132059977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01537777
https://hal.archives-ouvertes.fr


Distributed Path Planning for Controlling
a Fleet of UAVs : Application to a Team of

Quadrotors ⋆

A. Belkadi ∗,∗∗ H. Abaunza ∗∗∗ L. Ciarletta ∗∗ P. Castillo ∗∗∗

D. Theilliol ∗

∗ Universite de Lorraine, CRAN, CNRS, UMR 7039, BP 70239, 54506
Vandoeuvre Cedex, France (e-mail: adel.belkadi@univ-lorraine.fr)

(e-mail: didier.theilliol@univ-lorraine.fr).
∗∗ Mines Nancy, Universite de Lorraine, Loria, UMR 7503, France

(e-mail: laurent.ciarletta@loria.fr)
∗∗∗ Sorbonne Universites, Universit de Technologie de Compigne,

CNRS UMR 7253, Compiegne, France (e-mail:
(castillo,habaunza)@hds.utc.fr).

Abstract: In this paper, a distributed trajectory generation strategy is proposed to control
a group of Unmanned Aerial Vehicles (UAVs). The issue, treated as an online optimization
problem, is solved using a Particle Swarm Optimization (PSO) algorithm. The proposed PSO is
implemented independently in each vehicle in order to determine, by minimizing a cost function,
the best paths that ensure the fleet formation control, target tracking and collision and obstacle
avoidance. The method illustrated in this paper offers solutions to several questions related to
the control of a group of UAVs and could be applied to solve problems such as covering large
search areas for surveillance, inspection and rescue. Firstly, experiments on one quadrotor are
implemented to illustrate the effectiveness of the proposed algorithm. Large disturbances and
obstacles are considered to illustrate the robustness of the presented approach. The method is
tested in a real environment with a group of three quadrotors.
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1. INTRODUCTION

In recent years, the control of multiple vehicles has at-
tracted increasing attention from scholars around the
world, owing to its potential applications whether in the
military or civilian fields and by the fact that many ben-
efits can be obtained when a single complicated vehicle is
equivalently replaced by multiple yet simpler vehicles. To
tackle this issue, two approaches are commonly adopted
in literature, the first denoted centralized approach [1][2]
which is a direct extension of the traditional single-vehicle
control is based on the assumption that a central sta-
tion controls a whole group of vehicles. The second ap-
proach, called a distributed approach, which is the one
considered in this paper does not require a central station
for control and allows for a better adaptation to many
physical constraints such as limited resources, short chains
of wireless communication and autonomy problems [3][4].
The recent results in this area are categorized into several
directions, such as consensus (synchronization [5][6], ren-
dezvous [7][8][9]), formation control and flocking [10]−[13],
optimization [14][15], and task assignment[16][17].
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In the operation of Unmanned Aerial Vehicles (UAVs), the
ability to coordinate their trajectories in a multiple vehicle
system is vital to carry out different type of missions. In
this paper, the issue of trajectory planning is addressed for
UAVs operating in a hostile environment. Specifically, the
objective is to get a set of UAVs to fly on a 2D plane while
converging to a predefined spatial configuration around a
target point while ensuring collision and obstacle avoid-
ance between team members. The approach is formu-
lated as a distributed optimization problem. Each UAV
is equipped with an independent optimization algorithm
which, by minimizing a cost function for each UAV allows
the fleet to reach the defined objectives. This distributed
planning path was introduced in previous works [18][19].
In order to assume an on-line approach, it is necessary
to consider an efficient optimization algorithm in terms
of resource or time consuming for an embedded system.
One of the best performing algorithms in this area is the
Particle Swarm Optimization algorithm (PSO)[20].
The PSO has demonstrated optimal performance by min-
imum search term with a minimum calculation time and
a relatively easy implementation. In [21] authors reported
that PSO algorithm could yield significant improvement
in solving Trajectory Planning Problem (TPP) and in [22]
authors introduced Quantum-PSO (QPSO) to design a
collision-free trajectory for planar redundant manipulator.
In [23] four variants of Particle Swarm Optimization are



proposed to solve the obstacle avoidance control problem
of redundant robots.

The rest of paper is organized as follows. The details of the
problem formulation are discussed in Section 2. In Section
3, we present the proposed distributed path planning so-
lution. Then, Section 4 illustrates the performance of the
method based on various experiments. Finally, a conclu-
sion and perspectives are presented in the last section.

2. PRELIMINARIES AND PROBLEM STATEMENT

In general, an agent refers to a dynamic system. In this pa-
per, the term ’agent’ is interchangeable with ”quadrotor”,
which corresponding non-linear dynamics. Each agent is
described in the state space as follows:

Ẋi(t) = f(Xi, Ui) (1)

where Xi(t) ∈ Rm and Ui(t) ∈ Rk : m, k ∈ N
A fleet consists of a set of agents N = 1, ..., n where n is
the number of quadrotors. Information exchange among
agents is modeled by an undirected graphs. Let describe
system by a weighted graph G(N, ϵ(t), A(t)) where N =
1, ..., n and ϵ(t) ∈ N ×N are the set of nodes and the set
of arcs respectively of the graph G and A(t) a matrix of
Mn(R) of elements in R as aij(t) > 0 if : (j, i) ∈ ϵ(t). At
each sample, i is an incoming neighbor of j and j is an
outgoing neighbor of i.
G is assumed to be an undirected graph such as : ∀(i, j) ∈
ϵ(t) ⇒ (j, i) ∈ ϵ(t). In this case, matrix A(t) is symmetrical
with aij(t) = aji(t).

First of all, let us define for each i node a set of neighbors
Ξi(t) such that:

Ξi(t) = {j ∈ N : ∥xj(t)− xi(t)∥ ≤ l} (2)

where l defines the scope of the neighborhood and Ξi(t) is
called the metrical neighborhood of the agent i.

Influence between agents is represented by aij(t) elements
of the matrix A(t) such that:

aij(t) = 1 + exp

(
c− dij(t)

σ

)
(3)

The value of the aij(t) function depends on the difference
between dij(t) the distance between two agents i and j
with the safety distance c (where c > l), and it is all the
greater when aij(t) < c and converges to the value 1 when
dij(t) >> c.
The sets of elements dij(t) representing the distances be-
tween agents forms the matrix ∂(t) at time t, and ddij the
desired distances between agents forms the matrix ∂d. It
is also assumed that each agent can detect an obstacle at
a distance l′.

The control objective is then:

(1) To bring the fleet from an initial geometrical configu-
ration ∂(t0) to a desired geometrical configuration ∂d
around a target point

lim
t→+∞

∂(t) = ∂d (4)

(2) Collisions between interaction agents are avoided

∀i, j ∈ N, i ̸= j : ∥xi(t)− xj(t)∥ > c (5)

(3) Ensuring the obstacle avoidance

The issue is formulated as an online optimization problem
where by minimizing a certain cost function it can control
a fleet of UAVs. A distributed planning path strategy
based on Particle Swarm Optimization (PSO) algorithm is
implemented to achieve this goal and was introduced in our
previous work [18][19]. In this paper, experimental tests
are carried out to consolidate the theoretical part and at
the same time adjustments are added to the optimization
block. This includes the main contribution of this paper
with obstacle avoidance part included in the control of the
fleet.

3. CONTROLLERS DESIGN

3.1 Definition of the cost function

In order to define in deep the developed method, let us
consider a fleet of n UAVs (of the quadrotor type) operat-
ing in the R2 space. This multiple rotary wing UAV has
four motors arranged in the form of a cross of equal sizes.
Its structure offers it the advantage of vertical take off and
landing, and the possibility of stationary flights.

At first, let us define a cost function Λi(t) for each UAVi

such that:

Λi(t) = ρ
(
∥Pd − [xi(t) + h]∥ − ddip

)
+

q∑
j=1

aij(t)
(
∥xj(t)− [xi(t) + h]∥ − ddij)

)
+

m∑
k=1

Obsik(t)

(6)

with i ̸= j, q = card(Ξ(t)), h ∈ R2, and ρ >> 1, ddip
representing the desired distance between UAVi and target
point with m the number of obstacles detected by the ith
UAV.

The main goal is to find the best vector h for each agent i
minimizing the cost function Λi(t) such that:

∀i ∈ N : lim
t→∞

Λi(t) = 0 ⇒ lim
t→∞

∂(t) = ∂d (7)

The reference trajectory at time t+ τ for the agent i will
then be:

Yid(t+ τ) = Yi(t) + h (8)

The ρ coefficient in the cost function should be larger than
1. This choice is due to the fact that we favor each agent
i position that tends to be in the direction of the target
point Pd.
During the evolution of the agents in R2 space, non-
collision of the agents should be ensured. This constraint
is introduced in the cost function Λi(t) through function
aij(t) which is all the greater when dij(t) < c and con-
verges to the value 1 when aij(t) >> c. So, each agent
i is more likely to favor the values of h which avoids the
need for the distances dij(t) < c and minimizes the cost
function Λi(t), thanks to the PSO algorithm.



To take into account obstacle avoidance in the fleet control
strategy, an additional term is introduced into the cost
function such that:

Obsik(t) = exp

c−
(
∥xkobs(t)− [xi(t) + h]∥)

)
σ

 (9)

The value of the Obsik(t) function also depends on the dif-
ference between the distance between agent i and obstacle
k with the safety distance c, and it converges to zero when
the distance is much greater than the safety distance. It is
assumed that the obstacle positions are unknown and are
detected at a distance dobs.

The algorithm 1 shows, in more detail, the most important
steps considered in the proposed strategy to manage the
fleet of UAVs.

Algorithm 1 Trajectory generation

. Initialize parameters

. Define the desired configuration for the UAVs with the
matrix ∂d
repeat {at each step time}
. Calculate the matrix ∂(t)
if

(
(∃dij(t) < c)or(t%τ == 0)

)
then

. Find all topological neighbors for quadrotor i by
set Ξi(t)
. Detect obstacles for quadrotor i
. Minimization of the cost function Λi(t) by PSO
Algorithm
. Chose the vector h[hx, hy] that minimizes the cost
function Λi(t)
. Calculate the next position xid and yid at time
t+ τ :
xid(t+ τ) = xi(t) + hx

yid(t+ τ) = yi(t) + hy

end if
until End of experimentation

3.2 Definition of the control law

In order to validate the proposed PSO algorithm in real
UAVs, an appropriate position control law needs to be
selected such that the Yid (8) is correctly followed.

The selected scheme is a quaternion-based control, which
separates the rotation and translation dynamics. Consider
the vehicle’s dynamic model as

d

dt

 p
ṗ
q
ω

 =


ṗ

q ⊗ bFth

m
⊗ q∗ + g

1

2
q ⊗ ω

J−1 (τ − ω × J ω)

 (10)

where p ∈ R3 and ṗ ∈ R3 are the vehicle’s position
and velocity vectors, Fth defines the thrust generated by
the quadrotor motors and b = [ 0 0 1 ]T its direction, m
and g represent the vehicle’s mass and gravity vector,
respectively, q describes the vehicle’s orientation as a
quaternion, ω denotes is the angular velocity, J introduces

the inertia matrix with respect to the body-fixed frame and
τ is the torque vector caused by the action of the motors.

A position law which stabilizes (10) to a desired reference
is then defined as

upos = −Kpos (xpos − xposd), (11)

where xpos = [ p ṗ ]T is the vehicle’s translational state
vector, Kpos ∈ R3 denotes a diagonal gain matrix with all

positive entries, and xposd = [Yd(t) Ẏd(t) ]
T is the desired

reference vector, in which Yd(t) is the PSO trajectory

computed from equation [8], and its derivate Ẏd(t) = 0
is neglected.

The translational control law is then incorporated using a
quaternion attitude trajectory qd as

q′ = (b · upos + ||upos||) + b× upos

qd =
q′

||q′||
Fth = ||up||

, (12)

Then, an attitude control law is defined as:

u = −Katt (xatt − xattd) (13)

where Katt ∈ R3 denotes the control gains, xatt =[
(2 ln q)

T
ωT

]T
, and the attitude reference is given by

xattd =

[
(2 ln qd)

T

(
d

dt
2 ln qd

)T ]T
For more details, please refer [24].

4. PRACTICAL RESULTS

Our proposed algorithm was first introduced on a single
quadrotor to validate its feasibility and performance using
real time experiments, afterwards, three quadrotor were
considered in a simulated environment to corroborate the
algorithm’s behavior on a fleet.

Firstly, the PSO technique is used by one quadrotor to plan
its path required to converge to a desired position. Next,
unknown disturbances are added. The PSO algorithm
re-computes the required trajectory to recover from the
perturbations. Then, obstacles are added such that the
quadrotor changes its path to avoid collisions, the location
of the obstacles is considered to be known.

finally, three quadrotor are introduced, each one computes
its own trajectory such that a uniform fleet is formed
around a given target while avoiding collisions amongst
each other. This last scenario was validated in a simulated
environment.

The simulation parameters considered in this paper are
illustrated in Table 1.

ρ σ c dobs
5 0.4 0.8m 3m

hxi, hxi τ ddij dd
∈ [−0.4m, 0.4m] 0.1s 1.732 0

Table 1. PSO considered parameters



The quadrotor used in all the experiments is a Parrot
ARDrone2, which firmware was modified to be capable
of running our custom code. The framework used in this
drone is part of the platforms created by the team of the
Heudiasyc Laboratory at the Universit de Technologie de
Compigne.

4.1 One agent, no obstacles, no disturbances

In this first experiment, three consecutive targets are given
to the quadrotor using a ground station. The optimization
algorithm computes the desired position taking into ac-
count the dynamic constraints of the UAV, since the po-
sition is calculated in each iteration, it forms a trajectory
which makes the UAV reach the desired point in a smooth
manner.

Figure 1 illustrates the desired target points, the computed
trajectory, and the real position of the UAV in a 2D space.
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Fig. 1. 2D targets, trajectory and drone’s position for the
first experiment.

The trajectory generation and tracking is represented in
Figure 2, note that, even if when the target’s position
changes abruptly, the PSO trajectory converges smoothly
to the desired reference.
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Fig. 2. Target reference, trajectory, and UAV’s position for
each axis.

The simulations and experiments can be watched at the
following link:

https://www.youtube.com/watch?v=QLRl0Js72L0

4.2 One agent with disturbances

To assess the robustness of the trajectory generator, the
quadrotor was subjected to external disturbances. Instead
of only compensating the increased error, the PSO al-
gorithm re-computes the trajectory to recover from the
perturbation.

a) The first experiment considers the same scenario as in
section 4.1, but now, a disturbance is added while the UAV
is following the trajectory, see Figure 3.

Fig. 3. One of the members of our team pushing the UAV
to generate a disturbance in flight experiments.

Figures 4 and 5 illustrate the adaptation of the generated
path, taking into account the target’s position and cor-
recting the disturbance.
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Fig. 4. 2D representation of the given targets, the com-
puted trajectory, and the UAV’s real position.
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Fig. 5. Target reference, trajectory, and quadrotor’s po-
sition for each axis, note the disturbances and the
trajectory adjustments.

b) A second experiment was then introduced in which large
perturbations are induced to the vehicle while it stays in
hover mode (i.e. steady over a fixed target point).

Fig. 6. A member of our team inducing large perturbations
on the quadrotor.
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Fig. 7. Performance of the PSO trajectory generator to
recover from large perturbations.

Figure 6 illustrates a member of our team displacing the
drone to a position far from the desired reference (which
was set to [0,0]) with one hand.

Observe on figure 7 that the PSO algorithm computes a
trajectory to return to the reference target, but since it
stays close to the UAV’s position, the recovery from the
disturbance is smooth.

4.3 One agent in the presence of obstacles

In the next experiment, a barrier is considered to be across
the path of the quadrotor. When the vehicle approaches
near the obstacle, the PSO algorithm adapts the trajectory
to avoid a collision, see Figure 8.
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Fig. 8. Vehicle’s trajectory correction to avoid collision
with an obstacle.

Figure 9 illustrates the generation of the trajectory for
both x and y axes in the previous scenario, note the
corrections made to the trajectory mainly in the y axis
to avoid the obstacle.
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Fig. 9. Target reference, trajectory generation, and vehi-
cle’s position for obstacle avoidance experiments.

4.4 Fleet of three quadrotors

Finally, the PSO algorithm was applied in a fleet of UAVs
consisting of three quadrotors in a simulated environment,
see Figure 10.



In this simulation, the target point’s position Pd and the
desired configuration for the UAVs from the matrix ∂d are
fixed. The elements dij(t) are defines such that the desired
distance between UAVs is homogeneous, thus arriving to
a triangle configuration around the target point.

Fig. 10. Simulated environment for fleet of three drones

The simulated experiment consisted on a set of four
reference points, given to each quadrotor using a ground
station. Each quadrotor then computes independently its
trajectory taking into account the position of the other
agents.

A first simulation consisted in initializing the quadrotors
in random position, then a sequence of four target points
are given at different times. The UAVs then form a fleet
around the reference ensuring a safety distance between
each other. Figure 11 represents this behavior.
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flight simulations

A second simulation was then performed to illustrate the
trajectory followed by each agent to arrive to the formation
of the fleet. Figure 12 illustrates the path followed by each
UAV.

Note the triangular formation of the fleet when the target
is reached, and the agents reaction when they come close
to each other.
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Fig. 12. A second simulation shows the trajectory followed
by each UAV to converge to the desired formation

An important issue that needs to be addressed in the
fleet formation problem is convergence of the distance
between agents to a desired value. In this case, an uniform
triangular formation is expected with a desired distance
of 1m towards the target, thus implying using simple
geometry that the distance between agents is dagents =
2(1m) cos(π/6) = 1.732m

Fig. 13. Desired distance between agents in a simulated
experiment

Figure 13 illustrates the convergence of all the distances
between agents to the desired value, thus ensuring the
fleet formation around the target. It should be noticed
that the safety distance of the neighborhood is respected
throughout the simulation.

5. CONCLUSION

This paper has presented a distributed path planning
approach for the control of a fleet of Unmanned Aerial
Vehicles. The control objective has been formulated as an
optimization problem based on a Particle Swarm Opti-
mization algorithm (PSO). The minimization of a cost
function allowed to generate in a distributed way the
trajectories of the UAVs which guarantee the control of
the fleet. The main advantage of the proposed approach is



that it is only dependent on the trajectory generation part
and it is independent from the model or from the control
law of the UAVs, which makes it easier to use.

Simulation and experiment results have clearly shown
that the proposed method is effective for the surface
coverage and have also shown a robust approach against
the collisions and obstacle avoidance. From those first
results, we intend to develop this algorithm more in terms
of formalization and implement it soon on control of fleet of
real quadrotors in a 3D space. Another perspective would
be to adapt the algorithm parameters to consider the case
of a moving target.
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