
HAL Id: hal-01555711
https://hal.inria.fr/hal-01555711

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JMake: Dependable Compilation for Kernel Janitors
Julia Lawall, Gilles Muller

To cite this version:
Julia Lawall, Gilles Muller. JMake: Dependable Compilation for Kernel Janitors. The 47th
IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE/IFIP, Jun 2017,
Denver,Colorado, United States. �10.1109/DSN.2017.62�. �hal-01555711�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132057745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01555711
https://hal.archives-ouvertes.fr

JMake: Dependable Compilation for Kernel Janitors
Julia Lawall

Sorbonne Universités/Inria/UPMC/LIP6
Email: Julia.Lawall@lip6.fr

Gilles Muller
Sorbonne Universités/Inria/UPMC/LIP6

Email: Gilles.Muller@lip6.fr

Abstract—The Linux kernel is highly configurable, and thus,
in principle, any line of code can be included or excluded
from the compiled kernel based on configuration operations.
Configurability complicates the task of a kernel janitor, who
cleans up faults across the code base. A janitor may not be
familiar with the configuration options that trigger compilation
of a particular code line, leading him to believe that a fix has
been compile-checked when this is not the case. We propose
JMake, a mutation-based tool for signaling changed lines that
are not subjected to the compiler. JMake shows that for most
of the 12,000 file-modifying commits between Linux v4.3 and
v4.4 the configuration chosen by the kernel allyesconfig option is
sufficient, once the janitor chooses the correct architecture. For
most commits, this check requires only 30 seconds or less. We
then characterize the situations in which changed code is not
subjected to compilation in practice.

I. INTRODUCTION

A janitor is a software developer who focuses on finding
and fixing faults, coding style violations, and out-of-date code
across a code base. A janitor works breadth-first, addressing
issues wherever they occur, in contrast to a maintainer, who
works depth-first on the issues affecting in a single subsystem.
While a maintainer may have deep technical knowledge about
the functioning of a particular system service or device, this is
not the goal of a janitor, who instead contributes an awareness
of the latest APIs, common pitfalls, and the latest coding style
improvements.

Janitors play an important role in the development of the
Linux kernel. The Linux kernel is a very large open-source
system, currently amounting to over 13 million lines of C code,
and having hundreds of active developers, with varying levels
of expertise. It is widely used, in environments ranging from
embedded systems, to servers, to supercomputers, making its
dependability critical. Given the large size of the Linux kernel
and the wide range of expertise of its developers, faults,
coding-style violations, and out-of-date code seem inevitable,
as has been substantiated by various studies [1], [2]. It is thus
essential to support the detection and cleanup of these issues,
and thus the work that Linux kernel janitors do.

A challenge for a janitor in working on the Linux kernel is
how to check the correctness of his changes. Indeed, much of
the Linux kernel targets specialized services, such as devices
and file systems, that a janitor may not have locally available.
It has been estimated that only 1.6 million lines of Linux
kernel code are actually executed on a typical Linux-based
laptop.1 Furthermore, even for locally available services, many

1Greg Kroah Hartman, informal communication.

lines of code handle rare conditions. Thus, achieving high test
coverage is difficult for a developer who is not an expert in
the specific code. Accordingly, evidence in patch submissions
suggests that janitors often only check that the file containing
their proposed changes successfully compiles.

Even checking that all of the lines affected by a pro-
posed change to the Linux kernel have been subjected to the
compiler is challenging, because the Linux kernel is highly
configurable. For example, the Linux kernel v4.4, released in
January 2016, defines around 15,000 configuration variables,
that work together to control what parts of the kernel source
code are compiled for inclusion in a kernel image. Files
may fail to compile for standard configurations when they
rely on properties of the compile-time environment such as
include paths that are only correctly put in place for specific
configurations; the resulting compiler errors can discourage
the janitor, as they include no information about how to solve
the problem. Even worse, some lines within a file may be
included only by specific configurations, giving the janitor a
false sense of security when the file compiles but some of the
changed lines have not actually been subjected to the compiler.
While Intel has put in place a “0-day build testing service” [3]
that compiles all patches for a number of randomly selected
configurations and reports back to the patch submitter on any
issue, these tests are also not exhaustive [4] and the timing of
the feedback is not under the control of the patch submitter.

In this paper, we propose an approach to help the janitor find
an appropriate configuration for compiling the file in which
he has made changes, and to provide immediate feedback
to the janitor on whether this configuration actually causes
the changed lines to be compiled. Our approach is based
on a combination of mutations of the lines affected by a
given patch, heuristics for identifying the architecture targeted
by a particular file, and testing of compilations for these
different architectures. We have implemented this approach
in a prototype tool JMake that provides a practical tool for a
janitor to identify parts of his changes that are not subjected
to the compiler. JMake also provides a means of assessing the
overall degree of difficulty introduced by the configurability of
the Linux kernel, by identifying the prevalence of patches that
are not thoroughly compile-tested by standard configurations
in the Linux kernel as a whole.

The contributions of this paper are as follows:
• We provide an approach that certifies to the janitor that

a successful compilation implies successful compilation
of all of the changed lines.

This paper appeared in 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pages 357-366.

• We identify the problem of changed lines that are not
subjected to the compiler in the compile testing of highly
configurable systems.

• We propose an approach to selecting promising configu-
rations and detecting changed lines that are not subjected
to compilation by a given compiler invocation.

• We provide a prototype of JMake based on the design of
our approach.

• Using JMake and the complete set of patches applied to
the Linux kernel between versions v4.3 (11.2015) and
v4.4 (01.2016), we confirm the possibility of changed
lines in Linux kernel patches that are not subjected to
the compiler when using standard comprehensive config-
urations.

• We propose a characterization of a janitor in the context
of Linux kernel development, and study how the problem
of changed lines that are not subjected to the compiler
affects Linux kernel janitor patches.

The rest of this paper is organized as follows. Section II
gives background about Linux kernel configuration and about
the Linux kernel development process. Section III presents
JMake. Section IV presents our proposed characterization of
a janitor. Section V presents the design and results of our
evaluation. Section VI presents related work and Section VII
concludes.

II. BACKGROUND

We begin with some background, on the Linux kernel, on
the Linux kernel configuration mechanism, and on the notion
of a patch.

A. The Linux kernel

The Linux kernel is an open source operating system kernel
that has been in active development since 1994. A new release
of the Linux kernel appears roughly every 3 months. We take
as our reference version Linux v4.4, released in January 2016.

The Linux kernel code base is organized as a number of
subdirectories containing code for various kinds of services.
Among these is arch, containing subdirectories for each
supported architecture. As of Linux 4.4, the arch directory
contains 32 subdirectories, some of which support multiple
architecture variants.

In this paper, we are primarily concerned with the process of
compiling the Linux kernel source code. A number of Linux
kernel files, even those outside the arch subdirectory, are
specific to one or more architectures, due to dependencies on
architecture-specific libraries and header (.h) files. Compiling
files targeting architectures other than that of the host machine
requires cross-compilation tools. The script make.cross2

provides a transparent interface to many of the tools available.
This script currently supports 34 architectures, however, we

2https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-
tests.git/plain/sbin/make.cross

were only able to make compilation work for 24 of them.3

The Linux kernel Makefile provides a variety of targets
that make it possible to compile the entire kernel (make)
or to compile a single file (make file.o). Another option
provided is to apply the preprocessor to a single file (make
file.i). JMake primarily relies on the latter two options.

B. Linux kernel configuration

The Linux kernel build system is based on Kbuild, which
provides a highly sophisticated means of defining config-
uration variables and managing their values. The details
of Kbuild are presented elsewhere [5] and are not central
to this paper. The Linux kernel provides the make target
allyesconfig that attempts to set as many configuration
variables as possible, as long as doing so does not conflict with
the chosen architecture or any of the other chosen options.
An alternative is allmodconfig, which compiles as many
subsystems as dynamically loaded kernel modules as possible.
The Linux kernel networking documentation, for example,
explicitly suggests that all submitted changes should be first
tested with the allyesconfig and allmodconfig con-
figurations.4 JMake currently focuses on allyesconfig.
The various architectures supported by the Linux kernel also
provide a selection of sample configurations in the configs
subdirectory of the architecture support code. JMake also takes
advantage of these configurations.

C. Patches

In the context of Linux kernel development, changes are
typically reasoned about in terms of patches. A patch consists
of a sequence of extracts of the source code, in which some
lines are annotated with - indicating that they are to be
removed, some lines are annotated with + indicating that they
are to be added, and, optionally, some lines are unannotated,
to provide some extra information about the context in which
the change should occur.

A patch can be produced using the Unix tool diff, and
applied to a copy of the original source code using the Unix
tool patch. Version control systems, such as git used by the
Linux kernel, typically provide support for visualizing changes
in the form of a patch. When using git, for a particular commit
identifier id, the command git show id produces a patch
describing the changes made in that commit. JMake identifies
changed lines by analyzing patches, and produces patches to
mutate the source code.

III. APPROACH

The basic idea of our approach is to mutate the source
code by inserting unique tokens into the code at the change
sites, then to compile the code, and finally to check that all of
the unique tokens are found in the compiled image. To carry

3The architectures i386, x86 64, alpha, arm, avr32, blackfin, cris, ia64,
m32r, m68k, microblaze, mips, mn10300, openrisc, parisc, powerpc, s390, sh,
sparc, sparc64, tile, tilegx, um, and xtensa worked. The architectures arm64,
c6x, frv, h8300, hexagon, score, sh64, sparc32, tilepro, and unicore32 failed
for various reasons.

4Documentation/networking/netdev-FAQ.txt

1 // .c file, from line 49
2 #define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & 0xf) << 4)
3 #define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)
4 #define DAS16CS_AI_MUX_SINGLE_CHAN(x) \
5 (DAS16CS_AI_MUX_HI_CHAN(x) | \
6 DAS16CS_AI_MUX_LO_CHAN(x))
7 ...
8 static int das16cs_ai_rinsn
9 (struct comedi_device *dev, // line 107

10 struct comedi_subdevice *s,
11 struct comedi_insn *insn, unsigned int *data)
12 {
13 struct das16cs_private *devpriv = dev->private;
14 int chan = CR_CHAN(insn->chanspec);
15 int range = CR_RANGE(insn->chanspec);
16 int aref = CR_AREF(insn->chanspec);
17 int ret;
18 int i;
19
20 outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),
21 dev->iobase + DAS16CS_AI_MUX_REG);
22 ...
23 }
24
25 // .i file
26 # 43 "drivers/staging/comedi/drivers/cb_das16_cs.c" 2
27 # 58 "drivers/staging/comedi/drivers/cb_das16_cs.c"
28 ...
29 static int das16cs_ai_rinsn(struct comedi_device *dev,
30 struct comedi_subdevice *s,
31 struct comedi_insn *insn, unsigned int *data)
32 {
33 struct das16cs_private *devpriv = dev->private;
34 int chan = ((insn->chanspec)&0xffff);
35 int range = (((insn->chanspec)>>16)&0xff);
36 int aref = (((insn->chanspec)>>24)&0x03);
37 int ret;
38 int i;
39
40 outw(((((chan) & 0xf) << 4) | (((chan) & 0xf) << 0)),
41 dev->iobase + 0x02);
42 ...
43 }

Fig. 1. Extract of drivers/staging/comedi/drivers/cb_-
das16_cs.c after applying Linux kernel commit 95ea3e760ef8

out this approach, we must address a number of issues, as
described below.

A. Choosing relevant artifacts

Our goal is to determine which lines of the source code
are subjected to the compiler. For simplicity and portability,
we want to avoid changing the compiler. Accordingly, we are
limited to modifying its input and extracting information from
its output. For the input, we can either simply note the line
number and contents of the lines that we want to track, or
modify these lines in some way. For the output, we can analyze
any messages generated during the compilation process as well
as the contents of the various possible generated files: .i files
containing the results of preprocessing, .s files containing the
corresponding assembly language code, .lst files containing
the assembly language code interspersed with the correspond-
ing C code, and .o files containing the object code. We show
small extracts of a .c files and its corresponding .i file in
Figure 1. Note how the macros defined in the first 5 lines of
the .c file extract (lines 2-6) are absent in the .i file extract
(line 26-27), but they are inlined into their usage sites in the
subsequent .i code (line 40).

The strategy we take is primarily determined by the need
to track the compilation of code found in macro definitions.
Indeed, lines within a macro definition are processed by the
compiler at the place where the macro is used, and not where
it is defined, and the original line numbers of macros are not
preserved in the .i, .s, and .lst files. Our approach is to
mutate the source code with some unique string that can be
recognized in the generated files wherever it occurs. If the
mutation results in invalid source code, such as an undefined
variable, then we may be able to observe the effects of the
mutation in the compiler error messages. The reliability of this
approach, however, depends on the compiler’s error reporting
policy. For example, we have found when using gcc 4.8.4
that an unbound variable in a macro definition will trigger an
error message that mentions the macro definition itself, but
an invalid character in the macro definition only triggers an
error message on the place where the macro is used, which
is not sufficient to determine which line of source code has
been compiled. Reliably choosing a variable that is considered
to be unbound at any given point in the kernel is difficult,
particularly given that included files can define macros that
construct new identifiers. Therefore, we choose to include
an invalid character in our mutations, and give up on the
inherently unreliable idea of using compiler error messages
to detect the compilation of mutated lines of code.

Our reliance on mutations that contain at least one invalid
character implies that JMake will not be able to produce a
.s, .lst, or .o file from a mutated file, as all of these
are only generated for files that pass all the verifications of
the compiler front end. We turn instead to the .i file, which
is produced by only interpreting the preprocessor directives.
The .i file has the advantage of showing the code that will
be subjected to the compiler, without starting the compilation
process. Mutations involving invalid characters are reproduced
as is in a .i file when the mutation is outside of a macro
definition, and are propagated unchanged into the macro usage
sites otherwise. Producing a .i file for a given configura-
tion, however, does not imply that the configuration enables
successful compilation. We thus use the .i file to determine
whether each changed line is subjected to the compiler, and
then try to produce a .o file from the original, unmutated
code to ensure that it is possible to compile the file containing
those changed lines.

Concretely, our approach mutates the code by inserting
strings of the form ¤"type:file:line"¤ at the change
sites. The invalid ¤ characters ensure that the mutation is dif-
ferent from any valid C code. The type gives some information
about the kind of code change involved. The file and line
indicate the position of the changed line in the source code.
Finally, we put these pieces within a string to protect them
from modification by the preprocessor.

B. Positioning of mutations

We next consider where mutations should be placed in the
code. Our goal is to place the mutations such that the presence
of all of the mutations in the .i file indicates that all of the

changed lines are subjected to the compiler. At the same time,
we try to minimize the number of mutations, to minimize the
amount of code that has to be studied when JMake reports that
some changed lines are not compiled. We distinguish three
types of changed lines: 1) lines within a comment, 2) lines
within a macro definition, and 3) other lines. Lines within a
comment are never processed by the compiler, and are thus
not relevant to JMake. We thus focus on the other two cases.

For changes in a macro, we assume that the macro does not
contain any conditional compilation directives and thus that
it is sufficient to insert one mutation in any changed macro
definition. If the first change within a macro definition is on
the #define line, the mutation is placed at the end of the
line so that it is considered to be part of the macro definition.
If the #define line ends with a continuation character \, the
mutation is placed just before the continuation character. On
the other hand, if the first changed line in a macro definition
is on some line other than the first one, then a new line with
only a mutation and a continuation character is added before
the first modified one. Figure 2 shows some macro definitions
with their associated mutations.

For code that is not within a macro definition, we only
need one mutation since the beginning of the file, or since
the most recent conditional compilation directive, i.e., any
line beginning with #if (including #ifdef and #ifndef),
#else, or #elif. Normally, the mutation is added to a new
line before the changed one. If, however, the changed line
begins in the middle of a comment that ends in the current
line, then the mutation is placed after the end of the comment.
Figure 3 shows some non-macro code with the associated
mutations.

Mutations and all other processing are only performed on
the code generated by the patch. A patch may add or remove
code as well as change it. In the case of a hunk that only adds
code, the changed lines are considered to be the added lines.
In the case of a hunk that only removes code, the changed line
is considered to be the first line remaining after the removed
code, or the end of the file.

C. Selection of possible architectures

We assume that a file found in a subdirectory of arch
can be compiled by the cross-compiler for that architecture.
For other files, we guess the possible architectures using a
collection of heuristics. The first guess is a simple make, with
no cross compilation. Indeed, the Linux kernel provides the
option CONFIG_COMPILE_TEST, introduced in Linux 3.11,
that has the goal of allowing compilation of device drivers even
when the device driver cannot be run on the current hardware.

Other hints are provided by the configuration variables
associated with the compilation of a given file in the associated
Makefile. If such a configuration variable is also mentioned
somewhere in a subdirectory of arch, then the file may be
compilable for the corresponding architecture. In this case, we
try the allyesconfig make target for the given architecture
to create an appropriate configuration. Configuration variables

are taken from Makefile lines that mention the .o file corre-
sponding to the C file to compile, recursively from the lines
containing labels that are initialized to contain such a .o file,
or, if the previous heuristics do not select any configuration
variables, then any configuration variable mentioned in the
Makefile. If such a configuration variable appears in one or
more files in the configs subdirectory of a subdirectory of
arch, then JMake additionally uses one such configuration
file chosen at random.

D. Processing of .c files

Processing of a .c file involves 1) applying the mutation
patch to the .c file, 2) compiling the mutated .c file into the
corresponding .i file, 3) searching for the various mutations
in the .i file, and 4) if all are present, compiling the original,
unmutated .c file into the corresponding .o (object) file. This
process is repeated for each of the selected architectures, until
all of the mutations have been subjected to the compiler for
at least one configuration where compilation succeeds or all
of the selected architectures have been tested. In the former
case, representing success, JMake reports on the architectures
for which compilation was successful and that reduced the
number of lines remaining to be subjected to the compiler. In
case of failure, JMake returns the list of mutations that were
not found, or an indication of the other possible errors, such
as no Makefile found, an unsupported architecture required,
or a failure in making the .i or .o file.

The Linux kernel compilation environment is complex, and
thus, for example, the Linux kernel v4.4 Makefile performs
many tens of set up operations (e.g., over 80 for x86 and
over 60 for arm) when first called on a new configuration,
before processing the targeted files. The Makefile furthermore
performs a small number of extra checks on each subsequent
invocation for the same configuration. Thus, we can reduce
the overall running time by running make on multiple files
at once. Typically, a patch will affect multiple .c files, and
thus for each selected architecture, JMake compiles together
all of the .c files from a given patch that are relevant for that
architecture, in groups limited to a size that the user expects
will avoid overflowing the space resources of the machine.

A given patch may modify both .c files and .h files, and
the .h file changes may be designed to support the code in the
patched .c files. Thus, while processing the .c files we also
mutate the .h files and keep track of the .h file mutations
that show up in the .i files. If all of the mutations in a .h file
appear in the .i files of the changed .c files, for successfully
compiled configurations, then the processing of the .h file is
also considered a success, and the .h file is not subjected to
the further processing described in the next section.

E. Processing of .h files

While our treatment of .c files can detect some mutants in
.h files, some changes in .h files may not be relevant to the
.c files in the patch, and some patches may contain no .c
files. In this case, because it is not possible to compile a .h
file directly, we need to select .c files that may reference the

#define DAS16CS_AI_MUX_HI_CHAN(x) (((x) & 0xf) << 4)¤"define:drivers/staging/comedi/drivers/cb_das16_cs.c:49"¤
#define DAS16CS_AI_MUX_LO_CHAN(x) (((x) & 0xf) << 0)¤"define:drivers/staging/comedi/drivers/cb_das16_cs.c:50"¤
#define DAS16CS_AI_MUX_SINGLE_CHAN(x) (DAS16CS_AI_MUX_HI_CHAN(x) | ¤"define:drivers/staging/comedi/drivers/cb_das16_cs.c:51"¤\

DAS16CS_AI_MUX_LO_CHAN(x))

Fig. 2. Mutations in macros of drivers/staging/comedi/drivers/cb_das16_cs.c

static int das16cs_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)

{
struct das16cs_private *devpriv = dev->private;
int chan = CR_CHAN(insn->chanspec);
int range = CR_RANGE(insn->chanspec);
int aref = CR_AREF(insn->chanspec);
int ret;
int i;

¤"noncomment:.../staging/comedi/drivers/cb_das16_cs.c:118"¤
outw(DAS16CS_AI_MUX_SINGLE_CHAN(chan),

dev->iobase + DAS16CS_AI_MUX_REG);
...

}

Fig. 3. Mutation in non-macro code of drivers/staging/comedi/-
drivers/cb_das16_cs.c

changed elements. One likely set of files is those that include
the given .h file directly. But one header file may include
another, and detection of the complete set of files included
by a .c file would require an expensive recursive analysis.
Instead, as header files are commonly used to define macros,
we extend the mutation process to collect the set of names of
macros that are affected by changes. We then use these macro
names as hints, taking also all .c files that refer to these
names.5 Finally, if a .h file is in a subdirectory of arch, it
is expected to only be relevant to .c files in the same arch
subdirectory or to non-arch files. Our approach orders the
resulting .c files such that those that both include the .h
file and contain all the hints have highest priority, those that
contain all the hints have the next highest priority, and all other
files have the lowest priority.

Once the .c files have been selected and ordered, they are
processed as described in Section III-D, as though they all
occurred in the same patch but without mutations. To reduce
costs for header files that are used in a very large number
of .c files, if more than 100 .c files are selected, we use
only the configuration generated by allyesconfig, rather
than considering any relevant configurations in configs
directories. This approach incurs a small risk of false positives,
i.e., changed lines reported as not compiled when JMake could
have compiled them with a more specialized configuration.
Thus, the threshold is user-configurable. In our experiments,
we encounter such false positives for 23 file instances, out
of 21012 file instances considered. Success for a .h file is
achieved when all of the .h file mutations have been found
in at least one .c file that can be successfully compiled for
at least one architecture. Note that the .c files found in the
patch can also be included in the set of .c files selected

5Other things could be taken as hints, such as the name of modified type
definitions or functions. We have not yet explored these options.

for compiling the .h files and thus processed a second time.
This situation may result in unnecessary overhead in some
cases, but allowing the possible duplication simplifies the
implementation.

IV. JANITORS

A goal of our approach is to ease the task of kernel janitors
by providing feedback on the reliability of the process of
compile-testing their changes. In order to assess whether we
are able to meet that goal in practice, we need to identify
patches made by janitors and these patches’ compilation
properties. Currently, we are not aware of any formal definition
of what a janitor is. Indeed, a single person can move in and
out of a janitor role over time or combine janitor work with
his work on a subsystem for which he is primarily responsible.

We consider that the main characteristic of a janitor is that
such a developer works on the code base in a breadth-first way,
touching many files and many subsystems, and doing about
the same small amount of work on each one. The number of
files and number of changes on each file are straightforward
to collect. More complex is the notion of subsystem. Evidence
such as the directory structure has not evolved in a uniform
way, and does not take into account, e.g., the possibility
that relevant header files may be in the top-level include
subdirectory and relevant architecture-specific support files
may be in the arch subdirectory. We turn instead to the Linux
kernel file MAINTAINERS that lists the maintainers associated
with various collections of files, and consider that an entry in
that file may represent a subsystem. MAINTAINERS entries,
however, may be overlapping and the boundaries between
them may correspond to individual maintainer interests rather
than a precise definition of subsystem. As a somewhat more
coarse-grained measure, we also consider the mailing lists
that are designated to receive patches on various files; often
multiple related entries in the MAINTAINERS file will refer
to the same mailing lists.

Because of the approximativeness of our definition of sub-
system, our preliminary proposal uses the subsystem informa-
tion in a coarse-grained way. Namely, we first select a set
of developers who over a period of time have contributed
a minimum number of patches, to a minimum number of
subsystems, and relevant to a minimum number of mailing
lists. We also allow a limited amount of maintainer activity,
but do not consider patches for which the developer is a
maintainer in our further analysis. The thresholds that we
use in our experiments, in which we try to identify janitors
based on contributions between Linux v3.0, released in July
2011, and Linux v4.4, our reference version, are shown in
Table I; the starting date is arbitrary, but was chosen to
include activity over a number of years. Then, we rank the

TABLE I
THRESHOLDS ON JANITOR ACTIVITY BETWEEN LINUX V3.0 AND V4.4

patches ≥ 10
subsystems ≥ 20
lists ≥ 3
maintainer patches ≤ 5%

TABLE II
JANITORS IDENTIFIED USING OUR CRITERIA

patches subsystems lists maintainer file cv
Javier Martinez Canillas 118 61 30 0% 0.25
Luis de Bethencourt 104 56 31 0% 0.41
Dan Carpenter (T) 1554 400 146 0% 0.43
Julia Lawall (T) 653 255 93 0% 0.67
Shraddha Barke (I) 160 21 14 0% 0.72
Joe Perches (T) 1078 530 158 2% 0.81
Axel Lin 1044 142 49 0% 0.92
Daniel Borkmann 121 25 15 0% 1.29
Fabio Estevam 790 95 42 0% 1.29
Jarkko Nikula 173 30 14 0% 1.35

developers satisfying the thresholds according to the coefficient
of variation (cv) of the number of patches contributed by the
developer that touch each file that is ever touched by the
developer. The cv is computed as the standard deviation of
a set of numbers divided by their mean. This value gives
information analogous to the standard deviation, but abstracts
away from the number of patches involved, represented by the
mean. The goal of this ranking is to highlight developers who
have contributed roughly the same number of changes to each
file, rather than concentrating on only a few files, on which
they may become aware of configurability pitfalls.

For the purpose of our experiments, we need a sufficiently
large set of janitor patches among the patches that we consider.
Thus, we furthermore consider only developers who have
contributed at least 20 patches between Linux v4.3 and Linux
v4.4, the period that we study in our evaluation. We arbitrarily
take the top 10 developers indicated by the ranking. These
developers and their characterization in terms of the above
metrics are shown in Table II. We note that three of the
developers, indicated by “(T)”, are developers of static analysis
tools, who use the developed tools in their work on the
Linux kernel. One of the developers, indicated by “(I)”, was
an applicant for an internship program designed to bring
new developers into kernel development during part of the
considered time period. In the three months between Linux
v4.3 and v4.4, the 10 developers have contributed 591 patches.

V. EVALUATION

Our evaluation considers the patches accepted into the Linux
kernel between version v4.3, released in November 2015, and
v4.4, released in January 2016, covering a period of roughly
3 months. We first describe our experimental settings, then
assess the benefits of JMake, then measure JMake’s run time
performance, and finally consider a minor limitation.

A. Experimental settings

We use git log with the options -w --diff-
filter=M --no-merges to obtain the patches associated

TABLE III
CHARACTERISTICS OF ALL PATCHES AND OF JANITOR PATCHES

All patches Janitor patches
.c files only 7614 (70%) 514 (87%)
.h files only 631 (5%) 16 (2%)
both .c and .h files 2602 (23%) 60 (10%)

with all of the commits from Linux v4.3 to v4.4. These options
ignore changes in whitespace (-w), only take commits that
modify files (--diff-filter=M), and ignore commits that
perform only merges. This gives 12,946 patches. In these
patches, we only consider changes that affect .c and .h
files. We furthermore ignore files in the Documentation,
scripts, and tools directories, as these are typically not
intended to run at the kernel level. 2099 of the 12,946 patches
are completely ignored for these reasons.

We process the remaining 11,057 patches iteratively using
25 parallel processes on a 48-core AMD Opteron 6172, having
2.1 GHz CPUs, 12 512KB L2 caches, and 251G RAM. 25
copies of the Linux kernel git tree6 were stored in a 126GB
in-memory file system, to avoid disk access bottlenecks. All
compilation steps, including the generation of any temporary
files, takes place in this in-memory file system. We chose to
use only 25 processes to avoid running out of space in this
filesystem during the experiments. Note that this amount of
computing power is only needed for large-scale experiments.
A developer would typically check at most a few patches at
once, affecting a few files, which could be done easily on a
standard laptop. The processing of each patch first cleans the
git repository, using git clean -dfx, and then uses git
reset --hard to check out the snapshot of the source
code resulting from applying the patch that is to be processed.
Then, the mutation engine and compile checker are used, as
described in Section III. Compilations are limited to at most
50 .c files at a time to avoid generating files that exceed the
size of the in-memory file system.

Our evaluation considers both the complete set of patches
and the subset of patches contributed by the developers
identified as janitors in Section IV. The former shows the
conditions that can potentially affect these janitors, while the
latter shows the conditions that have affected them, or would
affect them when using JMake. The patches involved in the
two cases are characterized in Table III. We observe that the
percentage of patches affecting .h files is much lower for the
janitors, suggesting a difference between the kinds of changes
performed by janitors and the complete set of patches.

In this section, we refer to a file instance as an instance of
a file at the time of a given commit.

B. Benefits of JMake

The two main features provided by JMake are the choice of
target architecture for the compilation and the use of mutation
to detect lines that are subjected to compilation. We now assess
the benefits of these features.

6https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux

Choice of architecture: JMake provides automatic iden-
tification of architectures that are relevant to the files affected
by a patch. Ideally, all files not in the arch directory would
compile for the x86 64 architecture (x86, 64-bit), which
typically found on the machines used by developers today, and
thus there would be no question about what make command
to use. For the complete set of patches, however, we found
that 365 non-arch .c file instances do not compile for the
x86 64 architecture, but do compile successfully for at least
one other architecture, which in turn subjects at least part
of the changes to compilation. Likewise, 75 non-arch .h
file instances do not benefit from compilation for the x86 64
architecture, but do benefit from compilation for at least one
other architecture. For the subset of janitor patches, 38 non-
arch .c file instances do not compile for x86 64 but do
benefit from compilation for some other architecture. On the
other hand, compilation for x86 64 is beneficial for all of the
.h files for which JMake is able to cause any of the changed
lines to be subjected to compilation.

The frequency of usefulness of compilation for various
architectures in our experiments is as follows. 96% of the
complete set of file instances for which some lines are
subjected to compilation benefit from compilation for the
x86 64 architecture, which is the architecture of our host
machine and thus the first architecture tried by JMake. This
number is 95% for the janitor file instances. In both cases,
when more architectures need to be considered, the next most
frequently beneficial architecture is arm. 17 other architectures
were found to be beneficial for some file instance in our
experiments. Note, however, that this result depends on the
order in which the architectures are considered, because some
changes may be compileable equally well for multiple archi-
tectures. In our experiments, the janitor patches only benefited
from compilation for four other architectures: powerpc, mips,
blackfin, and parisc.

Finally, we consider the choice between allyesconfig
and a more specific prepared configuration from a configs
directory. We can compile all changed lines successfully for
9158 (84%) of patches when always using the configura-
tion generated by allyesconfig, for various architectures,
while we succeed for 9259 (85%) when also taking the
configs configurations into account.

Properties of mutations: JMake uses mutations to check
whether all changed lines are subjected to compilation. JMake
tries to limit the number of mutations, to reduce the number of
sites that the user must check manually when some lines are
reported to be not subjected to compilation. For .c files, 82%
of file instances require only one mutation and 95% require
three or fewer. There may arise a large number of mutations
when there are many changes in macro definitions. One .c file
instance, drivers/clk/bcm/clk-bcm2835.c in commit 41691b8,
requires over 200 mutations. For .h files, 75% of file instances
require only one mutation, and 92% require three or fewer.
Typically, Linux kernel .h files define more macros and
contain more ifdefs than .c files, both of which may induce
the need for mutations.

TABLE IV
REASONS WHY SOME CHANGED LINES ARE NOT SUBJECTED TO THE

COMPILER

affected
file instances

change under #ifdef variable not set by allyescon-
fig

5

change under #ifdef variable never set in the
kernel

5

change under #ifdef MODULE 3
change under #ifndef or #else 2
change under both #ifdef and #else 1
change under #if 0 1
change in unused macro 5

For janitor patches, for .c files, 91% of file instances
require only one mutation and 98% require three or fewer. For
.h files, 84% of file instances require only one mutation, and
93% require three or fewer. These numbers are greater than
the overall numbers, implying smaller numbers of mutations
required, again suggesting a difference in the kinds of changes
performed by janitors. For janitor file instances, for both .c
and .h files, at most 15 mutations are sufficient.

Benefits of mutations for .c files: JMake’s mutations
provide a benefit when they enable JMake to detect the
insidious case when compilation succeeds, but the compiler
has not actually considered all of the changed lines. In the
overall patch set, for 14,097 (88%) .c file instances, JMake
confirms that this situation does not arise; all changed lines are
subjected to the compiler in the first compilation that produces
no error messages. For 415 (3%) of the .c file instances,
when only attempting allyesconfig, a first compilation
produces no error message, but does not subject all of the
changed lines to compilation. For 54 of these file instances, by
considering multiple architectures, JMake is able to subject all
of the changed lines to compilation, involving between 1 and
10 extra compilation steps. For the janitor patches, when only
attempting allyesconfig, 21 .c file instances compile for
some architecture without errors, but not all changed lines are
subjected to compilation. For all of these file instances, none
of the configurations tried by JMake leads to compilation of
all of the changed lines.

For the above 21 janitor file instances, we have studied
the code to determine why some lines are not subjected to
compilation. The reasons for these failures are summarized in
Table IV (one file instance exhibits multiple issues). Several
cases involve an ifdef on MODULE, determining whether the
code should be compiled as a kernel module. JMake could
cause these lines to be compiled by additionally using make
allmodconfig, at the cost of nearly doubling the set of
configurations considered. For 6 of the file instances, the
reason why some lines are not subjected to the compiler could
be detected from the context lines in the patch code, while
for the others a more thorough study of the affected file was
required. These issues affect patches contributed by 5 of our
10 identified janitors.

Benefits of mutations for .h files: The situation for .h
files is somewhat different, because they cannot be compiled

directly. In the ideal case, compiling the .c files modified by a
patch causes all of the lines changed in the .h files modified
by the patch to be subjected to compilation, and no further
work is required. This is the case for 2888 (66%) of the .h
file instances in the overall set of patches, and for 67 (76%)
of the .h file instances among the janitor patches.

For the remaining patches that affect .h files, we need to
find .c files that will cause their changed code to be compiled.
The effect of this process depends greatly on the set of .c files
chosen and the order in which they are considered. To abstract
away from this issue, we consider the ideal case, where the
only compilations attempted are the ones that actually subject
at least one .h file changed line to compilation. In the overall
set of patches, 1431 (33%) .h file instances need the selection
and compilation of at least one additional .c file. For 730
(16%) .h files, JMake ultimately causes all of the changed
lines to be subjected to compilation, using between 1 and
11 .c file compilations. For the 117 (2%) .h files where
some changed lines are never subjected to compilation, JMake
performed between 1 and 12 .c file compilations. Similar
percentages are obtained for the janitor file instances, but at
most 3 compilations per file instance are required.

Summary: Ultimately, JMake causes all changed lines
to be subjected to compilation for 85% (9259) of the overall
set of patches, and 88% (523) of the janitor patches.

C. Performance

The running time of JMake is dominated by the time to
create a new configuration (make allyesconfig, etc.), the
time to generate the .i files, and the time to generate a .o
file when a mutant is detected in a .i file. Figure 4 shows
the amount of time per invocation for each of the operations
for the complete set of patches between Linux v4.3 and v4.4
as a cumulative distribution function (CDF); for each amount
of time t, shown on the x-axis, the y-axis value indicates the
percentage of invocations that complete in time less than or
equal to t.

The time per invocation for creating a new configuration
(Figure 4a) is 5 seconds or less for all of the invocations.

The time per invocation for generating the .i files (Figure
4b) is 15 seconds or less for 98% of the invocations, but other
invocations are longer, up to 22 seconds. The variability is due
to the number and contents of the files being processed. While
typically a large part of the cost of a kernel make invocation
is the set up time, some kernel files may be very large, which
may also contribute to the variation in execution time.

The time per invocation for generating the .o files (Figure
4c) is 7 seconds or less for 97% of the invocations, with
a maximum time of 15 seconds for almost all files. Unlike
the .i files where we group the processing of up to 50
files, the .o files are generated individually, only when a
mutant is detected in a .i file, leading to more uniform times.
The largest times, of over 6000 seconds (1.6 hours), are for
the file arch/powerpc/kernel/prom_init.c, which
is modified by three of our considered patches. Compilation

of this single file triggers compilation of the entire kernel,
whether or not JMake is used.

The impact of these running times is determined by the
number of invocations performed per patch. The latter are
determined by the number of architectures that are considered,
and by the number of .c files considered. 87% of the patches
require only one choice of configuration, but others require up
to 92; note that we may consider each configuration twice, first
for the .c files and then for the .h files. Similarly, 85% of
the patches require only one make invocation to generate .i
files, but the largest number required is 299, which can occur
when a patch touches a .h file that is referenced by many .c
files. The numbers for .o files are similar, with 72% of patches
requiring to generate only one .o file, and 88% requiring 5 or
fewer. The worst case involves generating 202 .o files. Figure
5 shows the resulting overall running time of JMake. 82% of
the patches require 30 seconds or less, while 95% require at
most one minute.

Considering the patches contributed by our 10 identified
janitors only, Figure 6 shows the overall running time of
JMake. The curve has the same shape as in Figure 5 for
the complete set of patches, but does not contain the highest
values, suggesting that the patches contributed by janitors
require fewer iterations of JMake to cause all of the changed
lines to be subjected to the compiler. Indeed, the longest
running time for the janitor patches is 1080 seconds (around
18 minutes), while it is over 6000 seconds for the complete
set of patches. As over 90% of patches again require less than
a minute, we believe that JMake has acceptable performance
for janitor use.

D. Limitations

Our approach relies on first mutating the files changed by
a patch and then creating .i files to determine whether the
changed lines will be subjected to compilation. Unfortunately,
the kernel Makefile itself compiles some code from the kernel
source tree in order to carry out any compilation task, in-
cluding generation of .i files. It is thus impossible to mutate
the files involved in this preliminary compilation step. Among
the complete set of patches between Linux v4.3 and v4.4, 317
patches, amounting to 2% of the total number of patches, affect
a total of 411 file instances that are suspected of being involved
in this compilation setup process and thus cannot be treated
by JMake. For the janitor patches, this issue affects only one
file in one patch. It could be interesting to see if some of the
preliminary compilation performed by the kernel Makefile is
actually not necessary for producing .i files, which could at
least enable providing partial information in these cases, even
if it is not possible to produce the corresponding .o files to
fully validate the compilation process.

VI. RELATED WORK

A number of recent works have focused on the problems
arising from the use of conditional compilation in the Linux
kernel. The Undertaker [6] analyzes the interdependencies
between configuration variables and identifies inconsistencies

0 1 2 3 4 5

sec

0

20

40

60

80

100
%

0 5 10 15 20

sec

0

20

40

60

80

100

%

1 10 100 1000

sec (log)

0

20

40

60

80

100

%

a) allyesconfig b) make .i b) make .o

Fig. 4. CDFs of the running times of the main steps of JMake

1 10 100 1000

sec (log scale)

0

20

40

60

80

100

%

Fig. 5. CDF of the overall running time of JMake

1 10 100 1000

sec (log scale)

0

20

40

60

80

100

%

Fig. 6. CDF of the overall running time of JMake on janitor patches

in their usage, such as blocks of code that are undead or dead,
i.e., that depend on a composition of values of configuration
variables that represents a tautology or a contradiction, respec-
tively. Nadi et al. [7] explore what kinds of code changes cause
these faults to be introduced, and how they are fixed. Abal et
al. [8] study bugs in Linux kernel code that manifest only
in a subset of the possible configurations. We focus instead
on understanding the degree to which conditional compilation
affects the compilation of changes made in practice, when us-
ing standard configurations. We also propose a tool that gives
feedback to the developer about whether a given configuration
causes the compiler to overlook some of his changed code.

JMake relies on the ability to obtain configuration files that
provide high statement coverage. The Linux kernel provides
the allyesconfig make target for generating such a con-
figuration. The resulting configuration, however, is forced to
make some choices and thus does not include all lines of code.
Vampyr [5] and Troll [4], provide strategies to construct a set
of configurations that will maximize the coverage of a static
analysis tool, such as a compiler, on a changed file. Sampling

strategies have also been used for this purpose; Medeiros et
al. [9] review 10 such strategies and compare their efficiency
in fault finding. These approaches could be used in extending
the JMake approach to software for which configurations with
high statement coverage are not easily available.

Other more general work on issues related to software
configurability includes studies of how the C preprocessor is
used in open source and industrial software [10], studies of
how the Linux configuration model evolves [11], [12] and the
development of tools for processing code that contains ifdefs
[13], [14].

On the practical side, the Linux kernel 0-day build testing
service [3] devotes a large amount of computing resources
to regularly run a large number of checks on all commits to
the Linux kernel, including compiling the kernel with random
configurations. These checks make it likely that any problem
that the developer overlooks due to insufficient compile testing
will be detected after the change is submitted. Still, relying on
this service introduces a delay into the development process
and receiving an error message from such a service can be
discouraging. JMake, on the other hand, requires only standard
computing resources, allowing it to be run by the developer
himself, and gives immediate feedback on any changes that
are not checked by the compiler in the chosen configuration.

Mutation testing has a long history in the context of fault
injection tools [15]. Mutations typically target the source code,
while other fault injection techniques target the compiler [16].
The developers of the Devil device driver interface definition
language used mutations in the device driver interface to show
that their language checker was able to detect erroneous spec-
ifications before they were deployed into an operating system
kernel [17]. In our case, we use mutations not to generate and
detect errors in the source code, but to unambiguously track
source code as it passes through the C preprocessor into the
set of code lines that will be checked by the compiler.

VII. CONCLUSION AND FUTURE WORK

A major stumbling block in contributing to the Linux kernel
is to know whether a change is correct, or indeed if it even
compiles. In this paper, we have presented a tool to help
answer the latter question. Using heuristics, JMake takes care
of the drudgery of identifying the architecture(s) for which
the code can be compiled, and then uses mutations to check

whether a set of successful compilations actually subjects all
of the changed lines to the compiler. We have shown that
JMake is able to certify that 85% of the full set of patches
between Linux v4.3 and v4.4 satisfy the property that every
changed line has been subjected to at least one invocation
of the compiler, and that this is the case for 88% of the
patches from our identified set of janitors. For the remaining
patches, JMake provides feedback on which lines have not
been subjected to the compiler for the tested configurations,
and thus require further attention. The conclusion for the
janitor is both encouraging and cautioning. Indeed, most of
the time, i.e. for 79% of the overall set of patches, a single
successful compilation is sufficient to ensure that the changed
lines are subjected to the compiler. Still, our results show that
this is not always the case, and JMake can help protect against
any errors that may creep into the affected code, even from
the most careful janitor.

While JMake runs in 30 seconds or less in our experiments
on many patches, on others it requires hundreds of seconds or
more, which may not be acceptable to kernel janitors. JMake
typically has its longest running times when processing .h
files that are included in many .c files. JMake uses some
heuristics based on the names of changed macros to prioritize
.c files that are more likely to trigger compilation of the
changed lines, but it could be beneficial to investigate other
heuristics to take into account.

Currently, JMake never succeeds for a file containing a
change that comprises changes under both an ifdef and the
corresponding else, unless the tested configuration variable is
architecture dependent, and often fails on code under ifndef,
because make allyesconfig tries to set configuration
variables to “yes” rather than “no”. JMake could be com-
plemented with more sophisticated configuration generation
techniques, as presented in Section VI, to obtain better results
in such cases. JMake would still provide the added value
of feedback about changed lines. Alternatively, JMake could
simply detect the issue and ask for user assistance, which could
save running time by avoiding the exploration of unpromising
cases.

JMake has been primarily designed with the needs of Linux
kernel developers in mind. nevertheless, there are many other
highly configurable systems. The main Linux-specific aspects
of our approach are the availability of the allyesconfig
make target and the focus on the arch subdirectory for iden-
tifying alternate configurations relevant to particular file. As
noted in Section VI, software-project independent approaches
have been developed for generating interesting configurations.
Integrating these approaches into JMake could enable extend-
ing our approach to other software systems.

Finally, our current characterization of janitors involves
thresholds that have been chosen arbitrarily. In the future, we
would like to explore other means of characterizing janitors,

to get a better understanding of the specific properties of
the work the perform and the challenges they face. This
understanding may then motivate new tools to better address
their needs. Better tool support can free up more janitor time
for fixing bugs and faults in the code, and can encourage more
developers to address janitorial issues.

Availability

JMake is available under the licence GPLv2 at
http://jmake-release.gforge.inria.fr.

Acknowledgments

This work was supported in part by OSADL as part of the
SIL2LinuxMP project.

REFERENCES

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical
study of operating system errors,” in SOSP, 2001, pp. 73–88.

[2] N. Palix, G. Thomas, S. Saha, C. Calvès, G. Muller, and J. Lawall,
“Faults in Linux 2.6,” ACM Trans. Comput. Syst., vol. 32, no. 2, pp.
4:1–4:40, 2014.

[3] M. Kerrisk, “Ks2012: Kernel build/boot testing,” 2012,
https://lwn.net/Articles/514278/.

[4] V. Rothberg, C. Dietrich, A. Ziegler, and D. Lohmann, “Towards scalable
configuration testing in variable software,” in GPCE, 2016, pp. 156–167.

[5] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static analysis of variability in system software: The
90,000 #ifdefs issue,” in USENIX Annual Technical Conference, 2014,
pp. 421–432.

[6] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann, “Revealing and repairing configuration inconsistencies in
large-scale system software,” International Journal on Software Tools
for Technology Transfer, vol. 14, no. 5, pp. 531–551, 2012.

[7] S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and D. Lohmann, “Linux
variability anomalies: what causes them and how do they get fixed?” in
MSR, 2013, pp. 111–120.

[8] I. Abal and A. W. Claus Brabrand and, “42 variability bugs in the Linux
kernel: a qualitative analysis,” in ASE, 2014, pp. 421–432.

[9] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,” in
ICSE, Austin, Texas, 2016, pp. 643–654.

[10] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker,
and S. Apel, “Preprocessor-based variability in open-source and in-
dustrial software systems: An empirical study,” Empirical Software
Engineering, vol. 21, no. 2, pp. 449–482, 2016.

[11] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution
of the Linux kernel variability model,” in International Software Product
Line Conference, 2010, pp. 136–150.

[12] L. Teixeira Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wasowski,
and P. Borba, “Coevolution of variability models and related artifacts:
a case study from the Linux kernel,” in International Software Product
Line Conference, 2013, pp. 91–100.

[13] P. Gazzillo and R. Grimm, “SuperC: Parsing all of C by taming the
preprocessor,” in PLDI, Beijing, China, 2012, pp. 323–334.

[14] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in OOPSLA, 2011, pp. 805–824.

[15] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Comput. Surv., vol. 48,
no. 3, pp. 44:1–44:55, Feb. 2016.

[16] G. Li, Q. Lu, and K. Pattabiraman, “Fine-grained characterization of
faults causing long latency crashes in programs,” in DSN, 2015, pp.
450–461.

[17] L. Réveillère and G. Muller, “Improving driver robustness: An evaluation
of the Devil approach,” in DSN, 2001.

