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SUMMARY

Vessel occlusion is a perturbation of blood flow inside a blood vessel because of the fibrin clot formation.

As a result, blood circulation in the vessel can be slowed down or even stopped provoking the risk of

cardiovascular events. In order to explore this phenomenon, we suggest a mathematical model of blood

clotting. We describe the concentrations of blood factors with reaction-diffusion system of equations, blood

flow is modelled with the Navier-Stokes equations with clot considered as a porous medium. We identify the

conditions of partial or complete occlusion in a small vessel depending on various physical and physiological

parameters. The obtained results are then compared with the analytical conditions on the arterial occlusion

for the simplified mathematical model. We observe different regimes of vessel occlusion depending on the

model parameters both for numerical simulations and in theoretical study. Copyright c© 2015 John Wiley &

Sons, Ltd.

Received . . .

KEY WORDS: blood coagulation; vascular occlusion; Navier-Stokes equations; reaction-diffusion

system

Copyright c© 2015 John Wiley & Sons, Ltd.

Prepared using cnmauth.cls [Version: 2010/03/27 v2.00]



2 A. BOUCHNITA ET AL.

1. INTRODUCTION

1.1. Blood coagulation and vascular occlusion

Clot formation is initiated by the damage of the endothelial tissue at the internal surface of blood

vessel walls. As the result, tissue factor (TF) that is normally isolated from blood plasma, is bared

and forms a complex with factor VII. This complex activates factors IX and X that initiate the

coagulation cascade. The key stage of this process is formation of thrombin that accelerates the

reaction of conversion of fibrinogen into fibrin. The latter forms fibrin polymer which together with

platelets constitutes the clot. Once initiated by activated factors IX and X, thrombin production is

self-sustained through the positive feedback loops of the coagulation cascade.

Two main physiological mechanisms control the thrombin production preventing spontaneous

clotting: thrombin plasma inhibitors and activated protein C pathway. One of the most important

thrombin inhibitors is antithrombin that binds thrombin molecules. Activation of protein C takes

place due to its reaction with thrombin-thrombomodulin complex that is formed at the surface of

the endothelial tissue. The active form of protein C (APC) then inhibits the amplification phase of

thrombin generation [1]. One more significant factor determining the dynamics of clot formation

is the role of blood flow. From one side the flow removes the substances participating in thrombin

production from the clot. From the other side, it also transports the activated protein C generated

in proximity of intact tissues to the region of the wound. The balance between the physiological

mechanisms of thrombin production and clot growth regulation determines different regimes of

vessel occlusion under normal conditions as well as in pathological situations (thrombosis or

hemophilia). In the current study we will determine the conditions of different regimes of blood

coagulation and clot growth on the basis of mathematical modelling.

∗Correspondence to: Anass Bouchnita, Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622

Villeurbanne, France.
†E-mail: anass.bouchnita@univ-lyon1.fr
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CONDITIONS OF VESSEL OCCLUSION 3

1.2. Mathematical modelling of blood coagulation

Various approaches are employed to study clot growth. Equations of chemical kinetics are used

to describe reactions between the coagulation factors [2, 3], platelet activation and formation of

platelets plug [4]. Reaction-diffusion equations for the concentrations of blood factors take into

account their spatial distribution [5, 6]. These distributions are influenced by hemodynamics. Blood

flow can be modelled with partial differential equations or with particle methods. Navier-Stokes

equations are used if blood is considered as a Newtonian fluid [7, 8], and various viscoelastic models

if non-Newtonian properties of blood are taken into account [9, 7].

Clot growth can be modelled as a free boundary problem where the interface separates blood

flow from the clot region [10]. Another approach considers blood flow and clot as a continuous

medium where clot is described as a high viscosity or a non-Newtonian fluid [11, 7]. Clot can

also be described as a porous medium with an additional term in the Navier-Stokes equations [12]

describing fluid velocity deceleration inside the clot.

Most of these works consider only the case of prescribed flow velocity at the inlet of the vessel

and do not consider the case of pressure driven flow. Below we demonstrate that these two cases are

essentially different because complete vessel occlusion can occur only in case of pressure driven

blood flow model.

In order to model platelets, both particle and continuous methods were used. Among the particle

methods, the immersed boundary method was used in [13], cellular Potts model [14], dissipative

particle dynamics in [9, 15, 16, 17]. Advection-diffusion-reaction were also used to model platelet

concentration (in their active and non-active forms) [4]. In hybrid models, particle methods are used

to describe blood flow and blood cells and PDEs to describe concentrations of blood factors [16, 18].

It is also possible to model blood flow with the Navier-Stokes equations and the coagulation process

with cellular automata [14].

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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4 A. BOUCHNITA ET AL.

1.3. Objectives of the paper

In the current work we study the conditions of complete or partial occlusion in small vessels (arterial

or venous thrombosis). We develop a computational model describing blood coagulation and clot

growth (Section 2). The model consists of the reaction-diffusion system of equations for blood

factor concentrations coupled with the Navier-Stokes equations modelling blood flow. Platelets are

not included in the model and will be studied in a future work. We also consider a simplified model

that admits an analytical investigation (Section 4). This model is a simplified approximation of the

first one. It consists of a scalar 1D reaction- diffusion equation.

v
H

Thrombus

Damaged area

Vessel wall

Pressure driven

blood flow

Figure 1. Schematic representation of the computational domain. It corresponds to a section of a blood

vessel. A part of the lower boundary (damaged wall) initiates clot growth.

We use both complete and simplified model to show the existence of different conditions of

vessel occlusion. Furthermore, we explain the underlying mechanisms related to the initiation,

amplification, propagation and inhibition of blood clotting in quiescent plasma and in blood flow.

We pay particular attention to the role of blood flow in the dynamics of clot formation. We analyze

the evolution of the clot growth under the flow conditions and the influence of the clot on the blood

flow in the numerical simulations (Section 3). We also investigate the influence of the different

parameters such as sheer rate, lumen diameter and wound area length on the blood flow velocity

and clot growth. The possible explanations of the observed dependencies are proposed on the basis

of the simplified model.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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CONDITIONS OF VESSEL OCCLUSION 5

2. MATHEMATICAL MODELLING OF CLOT DEVELOPMENT IN BLOOD FLOW

In this section we formulate the model of blood coagulation and clot growth in a 2D rectangular

domain. We use reaction-diffusion equations with convection terms to describe blood factor

concentration dynamics in plasma. Navier-Stokes equations are used to simulate blood flow. Clot is

considered as a porous medium where flow velocity is described with the Navier-Stokes equations

with additional terms depending on the clot porosity. This approach allows us to describe blood flow

and clot growth by the same model without tracking the clot geometry.

2.1. Blood factors concentrations

We consider a two-dimensional rectangular domain that corresponds to a section of blood vessel

(Figure 1). Blood flow crosses it along the axial direction. A part of the vessel boundary exposes

tissue factor (damaged wall) and initiates blood coagulation. We consider a reaction-diffusion

system of equations [19] for the concentrations of prothrombin P , thrombin T , antithrombin A,

factors IX and X with their total concentration denoted by B and their active form Ba, protein C

denoted by C and its active form Ca, fibrinogen Fg, fibrin F and fibrin polymer Fp:

∂P

∂t
+∇.(vP ) = D∆P − F (T,Ba, Ca)P, (1)

∂T

∂t
+∇.(vT ) = D∆T + F (T,Ba, Ca)P − kaAT, (2)

∂A

∂t
+∇.(vT ) = D∆A− kaAT, (3)

∂B

∂t
+∇.(vB) = D∆B − kbB,

∂Ba
∂t

+∇.(vBa) = D∆Ba − kbBa, (4)

∂C

∂t
+∇.(vC) = D∆C − kcC,

∂Ca
∂t

+∇.(vCa) = D∆Ca − kcCa, (5)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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6 A. BOUCHNITA ET AL.

∂Fg
∂t

+∇.(vFg) = D∆Fg − k1TFg, (6)

∂F

∂t
+∇.(vF ) = D∆F + k1TFg − k2F, (7)

∂Fp
∂t

= k2F. (8)

Here v is the flow velocity,D is the diffusion coefficient taken the same for all concentrations except

for fibrin polymer. Fibrin polymer forms a solid clot, and thus does not diffuse and is not transported

by the flow. The rate of thrombin production in equations (1), (2) is given by the following function

(see [19], supplementary materials):

F (T,Ba, Ca) = k3Ba +
k4T

3

1 + k5Ca
.

In this expression, the first term in the right-hand side corresponds to the initiation phase. The second

term represents the propagation phase where thrombin generation depends on its own concentration.

Activated protein C decreases the reaction rate. More complete kinetics of thrombin production

includes other reactions and blood factors. It can be reduced to a one-step reaction under the

approximation of detailed equilibrium (fast reactions).

2.2. Boundary conditions

We describe the initiation of coagulation cascade as the reaction of activation of factors IX and X

(B) by the complex of TF and factor VII formed on the damaged surface (T ∗F ). The inactive forms of

factors IX and X are present in the bulk solution, their activation takes place through the formation

of complex with TF* ([T ∗FB]). The concentration of this surface complex satisfies the following

equation:

∂[T ∗FB]

∂n
= k+

7 B(T ∗F − [T ∗FB])− k−7 [T ∗FB],

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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CONDITIONS OF VESSEL OCCLUSION 7

where the first term in the right-hand side of this equation describes the flux of B to the surface, the

second term describes the flux from the surface. Assuming that this reaction is fast, we can use the

detailed equilibrium

k+
7 B(T ∗F − [T ∗FB]) = k−7 [T ∗FB].

Then

[T ∗FB] =
k7BT

∗
F

1 + k7B
, (9)

where k7 = k+
7 /k

−
7 .

The boundary conditions for the variables B and Ba at the damaged surface are:

∂B

∂n
= −k+

7 B(T ∗F − [T ∗FB]),
∂Ba
∂n

= k−7 [T ∗FB],

We prescribe the zero flux condition at the intact surface.

In order to simplify the boundary conditions, let us introduce the variable z = B +Ba. From

equations (10) and the boundary conditions for B and Ba we get:

∂z

∂t
+∇.(vz) = D∆z − kbz,

∂z

∂n
= 0. (10)

Assuming that initially B +Ba = B0, where B0 is the initial concentration of factors IX and X,

we conclude that the solution of problem (10) is identically constant, B +Ba = B0. Hence we can

exclude the variable B from the equations and from the boundary condition:

∂Ba
∂n

∣∣
Γd

=
k6(B0 −Ba)

1 + k7(B0 −Ba)
, (11)

where k6 = k−7 k7T
∗
F .

Protein C is activated by the complex of thrombin-thrombomodulin.The fluxes of protein C at the

surface in its active and inactive forms are given by the following boundary conditions:

∂C

∂n
= −k+

8 C((TTm)− (CTTm)),
∂Ca
∂n

= k−8 (CTTm).

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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8 A. BOUCHNITA ET AL.

Here Tm is the concentration of thrombomodulin present at the undamaged surface. Protein C arrives

next to thrombin and thrombomodulin and forms the complex (CTTm). Next, k+
8 is the reaction rate

constant of protein C activation by the complex of thrombin thrombomodulin, k−8 is the rate of the

inverse reaction. Again using the detailed equilibrium, we obtain the condition of APC production

on undamaged walls:

∂Ca
∂n

∣∣
Γu

=
k8(C0 − C)[TTm]

1 + k9(C0 − Ca)
, (12)

[TTm] =
kTTTm

1 + kTTTm
, (13)

where [TTm] is the complex thrombin-thrombomodulin that activates protein C present in blood

plasma. We consider the no-flux boundary conditions for these concentrations at the other parts

of the boundary and also for other concentrations. In the case of nonzero flow velocity, the

concentrations of prothrombin, fibrinogen and antithrombin at the entrance of the domain (x = 0)

are kept constant.

2.3. Blood flow model

We use the Navier-Stokes equations to describe the blood flow. Non-Newtonian properties of blood

are not taken into account. We model clot as a porous medium with the porosity depending on the

concentration of fibrin polymer [20]. The flow through the clot is modelled by the Navier-Stokes

equations with additional terms which describe the fluid deceleration by the porous medium. The

advantage of this approach is that we use the same model in the whole computational domain. We

do not need to determine the clot geometry and to solve Navier-Stokes equations in the outer (with

respect to the clot) domain. We have the following equations for the incompressible fluid flow:

∂~u

∂t
+ ~u∇~u = −∇p+

1

Re
∆~u− 1

Kf (~x)
~u, (14)

∇~u = 0,

where ~u = (ux, uy) is the velocity vector, p is the pressure, Re = ||u||H
ν is the Reynolds number

determined by the velocity norm ||u|| =
√
u2
x + u2

y, the kinematic viscosity ν and the height of the

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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CONDITIONS OF VESSEL OCCLUSION 9

vessel H . In this work we consider laminar flows with Re = 300. Kf is the hydraulic permeability

of fibrin polymer [20]:

1

Kf (~x)
= α216Fp(~x)1.5(1 + 56Fp(~x)3). (15)

Here α is the fiber radius.

We prescribe the no-slip boundary conditions for velocity at the upper and lower walls, and

periodic boundary conditions in the axial direction. Blood flow is driven by the pressure difference.

Therefore, we use periodic boundary conditions for velocity coupled with constant pressure

difference condition:

pin = pout + ∆p, (16)

where pin is the pressure at the inlet, pout is the outlet pressure and ∆p is the pressure difference

which is considered as an imposed constant. Contrary to the condition of fixed inlet velocity, this

imposed pressure difference condition allows the clot to completely occlude the vessel and obstruct

the flow. This condition is verified in experimental settings [21] as well as in some areas of the

circulatory system such as capillary networks.

2.4. Numerical implementation

Reaction-diffusion system of equation is solved numerically with a finite difference method and

an upwinding method in discretizing convective terms in order to avoid numerical instabilities in

the convection dominated cases. A regular 2000× 400 mesh is used in the numerical simulations.

Accuracy of the results was controlled by decreasing the time and space steps.

Numerical implementation of the Navier-Stokes equations is carried out with the projection

method [22], and Successive Over Relaxation (SOR) method is used to solve the pressure Poisson

problem. We present the details of the numerical implementation in the appendix.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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10 A. BOUCHNITA ET AL.

3. NUMERICAL SIMULATIONS OF VESSEL OCCLUSION

3.1. Blood coagulation in quiescent plasma

We can determine three main regimes of the clot growth in quiescent plasma [19]. The first

one corresponds to the initiation of coagulation cascade with rather fable stimuli leading to the

production of small amount of thrombin yet not sufficient to launch the propagation phase and

thus quickly suppressed by the action of plasma inhibitors. As the result, only a small amount

of fibrin polymer is produced near the injury. The second regime is characterized by self-sustained

production of thrombin. The propagation of thrombin concentration is arrested through the activated

protein C pathway that prevents the unlimited clot growth. The resulting clot height reaches some

limit that is less than the vessel diameter. In the third regime inhibition by APC is not sufficient to

stop clot growth and in case of bounded vessel, clot fills the whole cross section and cause complete

vessel occlusion. In terms of mathematical problem on the half plane, this case corresponds to the

unlimited propagation of the reaction-diffusion wave.

The regime of thrombus development depends on a number of physical and physiological

parameters such as the damaged area width, tissue factor and thrombomodulin concentrations as

well as on the concentration of antithrombin. We used our model to analyze how the final clot

height depends on the widths of the wound area in case coagulation takes place in quiescent plasma

(Figure 2, a) and blood flow. In case of quiescent plasma the complete occlusion of the vessel is

observed when the size of the damaged area exceeds 6 µm (H = 50 µm). Otherwise, a smaller clot

of bounded size (H < 50 m) is formed near the vessel wall.

Thus, in our model a complete vessel occlusion by the clot occurs only if the damaged area is

sufficiently wide. This result can be explained by the details of APC distribution in plasma. Protein

C is activated at the surface outside the wounded area and then it diffuses towards the injury site,

where the coagulation reactions take place and suppresses the thrombin production. If the wounded

area is wide enough, then APC diffusion will not be sufficient to cover the whole region of thrombin

production.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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Figure 2. The final height of the clot for different damaged area widths: a) in quiescent plasma, b) in blood

flow (b). In both cases there is a sharp transition from the partial occlusion regime to the complete occlusion

as the clot width exceeds some critical value. This critical value is much larger for blood coagulation in flow.

3.2. Blood coagulation in flow

Blood flow influences clot growth in multiple ways. It brings fibrinogen and inactivated blood

factors to the growing clot accelerating chemical reactions. At the same time blood flow removes

thrombin and thus prevents thrombin accumulation due to the positive feedback loops of the

coagulation cascade and thus slows down clot growth. Finally, blood flow transports APC generated

at the intact surface to the wound region thus contributing to the downregulation of the thrombin

production.

At the same time, growing clot modifies the blood flow dynamics. In our computational model

this influence depends significantly on the conditions imposed on the flow velocity at the boundaries

of the considered domain. Let us consider first the case where the fluid velocity at the entrance of the

computational domain is time independent. Since fluid velocity decreases inside clot, then due to

the mass conservation law the velocity would increase in the part of the cross section of the vessel

without clot. The resulting high fluid velocity prevents clot growth removing thrombin and other

blood factors participating in coagulation reactions. If we consider the limiting case where the clot

has zero porosity and the fluid velocity inside the clot is zero, then complete vessel occlusion is not

possible since fluid should leave the computational domain.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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12 A. BOUCHNITA ET AL.

The situation is different in the case of a pressure driven flow where the fluid velocity at the

entrance is not fixed and the total flow rate can decrease due to the hydrodynamic resistance exerted

by the clot. For a given pressure difference, the fluid velocity can decrease and the total vessel

occlusion becomes possible. In this case there are two competing factors determining the blood

flow dynamics. Flow velocity increases in the narrow part of the vessel, and the total flow rate

decreases because of the clot resistance. It appears that the first factor is more important in the case

where the width of the clot is small, while the second one becomes more important in case of large

clot.

Fibrin polymer concentration Velocity magnitude ( m/s)a. b.
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Figure 3. Snapshots of simulations with complete occlusion. Blood flow is not sufficient to stop clot growth

(initial velocity is v = 200 µm/s). APC does not allow clot growth width but it still grows across the flow.

a) Fibrin polymer concentrations are shown at two consecutive moments of time. b) The corresponding flow

velocity fields are shown with the velocity value (color scale) and streamlines (white curves).

The described interplay between the dynamics of the clot growth and the distribution of the

blood flow velocity is also observed in our computational model. Here we consider the case when

the thrombomodulin concentration is large enough to generate a sufficient amount of APC that

suppresses clot expansion in the axial direction. If we take the blood flow velocity rather low, then

the thrombin wave still propagates to the top despite the inhibition by APC. As the result, the clot

occludes the vessel and completely obstructs blood flow (Figure 3, a). It is important to note that the

fast development of the clot can lead to the emergence of vortices (Figure 3, b).

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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Figure 4. Two snapshots of the simulation with partial occlusion. The initial flow velocity at the entrance of

the vessel is v = 400 µm/s. a) Fibrin polymer concentrations, b) Blood flow velocity magnitude is shown

with a color scale and streamlines as white curves.

If the initial blood flow velocity is sufficiently high, then it stops clot growth (Figure 4). Blood

flow transports APC to the wounded area already at the very beginning of the clot formation and

thus slows down thrombin production, especially at the part of the damaged area closer to the

coming flow (left part of the injury in our computational domain, Figure 4, a). After some time

the accumulated concentration of thrombin is sufficient to accelerate its self-sustained production

and clot development. Clot growth is stopped by blood flow when clot height approaches to the half

of the vessel diameter (Figure 4, b). The observed regime corresponds to the partial vessel occlusion.

The main parameters that determine the final clot size are the width of damaged area and the

initial flow velocity. The dependence of the final clot size on the damaged area width for the model

with the flow (Figure 2, b) is qualitatively similar to the case of quiescent plasma (Figure 2, a). If

the damaged area width is large enough, then the clot continue growing till it reaches the upper

vessel wall thus causing a complete vessel occlusion. If the width is sufficiently small, the final clot

size remains less than the vessel diameter. These two regimes are separated with a narrow transition

zone. Let us note that this transition occurs for 40− 50 µm of the wound width in the case of model

with the flow while for the model without flow the threshold damaged area width is only about 5− 6

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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14 A. BOUCHNITA ET AL.

µm. Hence we can conclude that blood flow provides an important additional (with respect to APC)

mechanism that can stop clot growth.

A0 = 0.35
A0 = 0.375
A0 = 0.4 analytical formula

numerical solution
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Figure 5. The final height of the clot in case of different values of the initial blood flow velocity. a): numerical

simulations for three different values of antithrombin concentration in plasma (A0). b): numerical (solid line)

and analytical (dashed line) solutions of the simplified model for A0 = 0.4. For the complete and simplified

models we observe complete occlusion for low flow velocities and partial occlusion for high velocities with

a sharp transition between these two regimes.

The dependence of the final clot size on the initial flow velocity is shown in Figure 5, a. The

complete vessel occlusion occurs only if the flow velocity is small enough. If the flow velocity is

sufficiently large, then the size of the clot remains bounded (partial occlusion). We again observe a

sharp transition between these two regimes for our model.

Thus, the observed three regimes of clot growth: initiation without propagation, initiation

with limited propagation (partial occlusion), and initiation with unlimited propagation (complete

occlusion) are qualitatively similar for the clot growth in quiescent plasma and in the blood flow. In

the next section we will determine the conditions of the existence of each of these three regimes on

the basis of the simplified theoretical model.
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4. SIMPLIFIED ANALYTICAL MODEL OF VESSEL OCCLUSION

4.1. Thrombin distribution and initiation of clot growth

Let us consider the 1D model describing the thrombin distribution in the vertical cross section of

the 2D model:

∂T

∂t
= D

∂2T

∂y2
+ Φ(T, y), (17)

where

Φ(T, y) = (k1Ba(y) + k2T
3)(T 0 − T )− σ(y)T,

D is the diffusion coefficient, T 0 is the prothrombin concentration initially present in blood flow, k1

and k2 are kinetic coefficients. The function Ba(y) expresses the initiation of thrombin generation

by factors IXa and Xa. It corresponds to a stationary solution of the equation (10), Ba(y) = λe−y/σ.

The coefficient σ represents inhibition of thrombin production by antithrombin and blood flow.

We set σ = α1A0 + α2v(y), whereA is the antithrombin concentration supposed to be constant, and

v(y) is blood flow velocity in the horizontal direction. Inhibition by APC can be taken into account

in the nonlinear reaction term. For simplicity, we do not consider it here.

This equation is obtained as an approximation of the model presented in Section 2 where

equations (1)-(5) are replaced by the single equation for the thrombin concentration under the

assumption of detailed equilibrium (fast reactions). Equations (6)-(8) are decoupled, and the

corresponding concentrations do not directly influence thrombin production. The flow velocity is

replaced by an approximate solution of the Navier-Stokes equations specified below.

If k1 = α2 = 0, then the function Φ does not depend on y, and (17) is an autonomous reaction-

diffusion equation. It has a travelling wave solution T (y, t) = W (y − ct), where c is the speed of

wave propagation [23]. This function satisfies the equation

W ′′ + cW ′ + Φ(W ) = 0
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16 A. BOUCHNITA ET AL.

(dependence of the function Φ on y is omitted here) considered on the whole axis with the limits at

infinity W (−∞) = T ∗,W (∞) = 0, where T ∗ is the maximal solution of the equation Φ(T ) = 0.

Solution of equation (17) converges to the travelling wave solution if the initial condition is

sufficiently large. The speed of the wave is positive if and only if the following condition is satisfied

[24]:

∫ T∗

0

Φ(T, y)dT > 0. (18)

Only positive velocity of thrombin wave propagation corresponds to the regime clot growth.

Condition (18) also implies that thrombin production exceeds its loss due to its inhibition by

antithrombin and blood flow.

Let us then consider the case of nonzero coefficients k1 and k2 and function Φ depending on y. If

we assume that this dependence is weak, that is the derivative ∂Φ/∂y is sufficiently small, we can

use inequality (18) for each fixed value of y. Let us take the value of y equal to zero that corresponds

to the coordinate of the cell wall and then increase it considering the thrombin concentration on some

positive distance from the wall. At some moment the inequality (18) will be no more satisfied and

the critical value of y will give an approximation of the maximal clot height.

Let us precise the conditions of the thrombin wave propagation (18) for the exact expression of

function Φ . At y = 0, we have Ba(0) = λ and v(0) = 0, hence from (18) we get:

A0 <
1

α1

(
2k1λ

T 0

T ∗
− k1λ+ k2

(T ∗)2T 0

2
− 2k2

(T ∗)3

5

)
. (19)

If this condition is satisfied, then the initial quantity of thrombin produced near the vessel wall is

sufficiently large to initiate clot growth. Otherwise clot will not form. From the pathophysiological

point of view this situation corresponds to bleeding, and it can occur for example in case of

hemophilia or treatments with anticoagulant drugs.
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L

h

lH

Figure 6. Schematic representation of a clot inside a blood vessel. The clot is shown in grey, possible blood

flow profiles are described by dashed lines, geometrical parameters are shown.

4.2. Flow velocity and clot growth

Let us consider the simplified analytical model describing the interaction of the blood flow and

growing clot. We consider the same computational domain as before and approximate the clot with

a rectangle of length l and height h (Figure 6). To describe analytically the velocity profile, we

consider blood flow as a simplified Poiseuille flow with the velocity ~v = (v(y), 0) determined by

the equation:

d2v

dy2
=

1

µ

dp

dx
, (20)

where is the kinematic viscosity and dp
dx is the pressure gradient. Under the assumption that the

clot permeability is low, the flow velocity at the clot-flow interface is described by the slip-flow

boundary condition [25]. The solution of this equation is given by the truncated parabolic flow:

v1(y) '


ay(H − y) if y > h

0 if y ≤ h
, (21)

where H is the diameter of the vessel. We also consider Poiseuille flow in the part of the vessel

without clot, v2(y) = by(H − y). From the law of mass conservation, we get the equality:

∫ H

0

v1(y)dy =

∫ H

0

v2(y)dy.

Taking the integrals, we obtain:

a

(
(H − h)3

6
+
h

2
(H − h)2

)
= b

H3

6
.
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Figure 7. Numerical simulations of blood flow in the case of rectangular clots of different widths. a) 2D

velocity profiles are shown with streamlines, b) Comparison between the initial parabolic profile (solid line)

and the velocity profile at the vertical cross section in the middle of the clot (dashed line).

The total pressure drop equals the pressure difference at the narrow part of the channel (clot) and

wide part of the channel (without clot):

al + b(L− l) = β,

where β = dp
dxL/(2µ). Together with the previous relation it allows us to determine a:

a =
β

l + (L− l)(1− h
H )2(1 + 2 h

H )
. (22)

This coefficient depends on the clot width l and its height h. In the limiting case l = 0, a is an

increasing function of h which tends to infinity as h→ H . For positive l the function a remains

bounded with a parabolic type dependence (Figure 8, left) and the velocity decreases with increasing

values of the clot width l. For small values of l the maximum of a is large enough to provide a high

flow speed sufficient to stop clot grow that cannot be obtained for large l.

We can determine the final clot size integrating the condition (18):
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v1(y) <
1

α2

(
2k1Ba(y)

T 0

T ∗
− k1Ba(y) + k2

(T ∗)2T 0

2
− 2k2

(T ∗)3

5
− α1A0

)
, (23)

where v1(y) is given by (21), (22). If this condition is satisfied, then the clot continues growing

and it stops if the clot height y is large enough to change the sign of the inequality. Hence we can

determine conditions of partial or complete occlusion and the final clot size.

Let us recall that the maximal flow velocity vm at the entrance of the channel equals bH2/4. The

dependence of the final clot size on this parameter is given in Figure 5, b. The two curves show

the numerical solution of Equation (17) and the analytical approximation presented above. These

curves are close to each other and their behavior is qualitatively similar to the dependence shown

in Figure 5, a for the numerical solution of the complete problem. In both complete and simplified

model we observe the complete vessel occlusion if the flow velocity is small enough and partial

occlusion if the flow velocity is sufficiently large. These two regimes are separated with a sharp

transition corresponding to the threshold values of the mean flow velocity.
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Figure 8. Left: maximal flow velocity in the analytical approximation (21) as a function of h. Right: clot

growth velocity for different flow velocities in numerical simulations of the 2D problem.
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5. DISCUSSION

The main objective of the current study was to determine the conditions on the different regimes

of vessel occlusion on the basis of mathematical models. In order to simulate chemical reactions of

the coagulation cascade together with the blood flow dynamics we developed a mathematical model

based on reaction-diffusion for the concentrations of blood factors and Navier-Stokes equations for

the flow velocity. This model allowed us to identify the regimes of both partial and complete vessel

occlusion and the conditions on the parameter values corresponding to these regimes. To understand

the mechanisms underlying the observed phenomena we analyzed a simplified 1D model consisting

of one reaction-diffusion equation for thrombin concentration.

We paid particular attention to the role of the blood flow in the inhibition of the clot growth. We

used a pressure driven blood flow to model complete occlusion regimes and analyzed the change of

the flow velocity profile for different sizes of the clot.

Clot growth speed in blood flow. The regimes of vessel occlusion identified in this work are also

observed experimentally. Some of these experiments [26, 27] show that clot size depends on lumen

diameter and blood flow. The effect of blood flow on propagation speed is studied in [28]. It is

shown that the increase of blood flow velocity does not necessarily lead to a decrease of clot growth

rate. In particular, three regimes can be identified: for low velocities, clot growth is stimulated by

blood flow and the growth rate increases; for the intermediate flow velocities the rate of clot growth

decreases until reaches a constant value; finally, for large flow velocities the rate of clot growth

decays again.

In order to model this effect, we estimate the speed of clot growth in 2D numerical simulations

using the relation:

C =
D10

t20 − t10
, (24)

where t20 and t10 are two time moments of time when the clot reaches the heights 20 µm and 10

µm, respectively, and D10 = 10 µm. These two times are chosen in order to reduce the influence
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of the initiation phase and of APC inhibition. We represent the clot growth rate for different flow

velocities in Figure 8 (right). Numerical simulations are in a good qualitative agreement with the

experiments [28]. Quantitative difference with the experimental results can be related to the absence

of platelets in the model studied in this work. Platelet aggregate slows down the flow at the injury

site, and coagulation reactions can occur in this case for larger flow velocities than without platelets

[16].

Limitations of the model. In this work we consider a rather complete but still a simplified model

of clot growth in order to identify the main regimes of this process. We do not take into account

platelets and some details of coagulation cascade. The preliminary simulations show that these

factors can influence the quantitative conditions but the main regimes of clot growth remain the

same. We will introduce them in the model in the forthcoming works together with the elasticity of

vessel walls and pulsations of flow velocity.

APPENDIX A: NUMERICAL METHODS AND COMPUTER IMPLEMENTATION

The computational domain was discretized into a regular 2000× 400 mesh. We used the finite

difference method to implement the advection-diffusion-reaction equations and the projection

method was used to solve the Navier-Stokes equation. These methods are briefly presented below.

5.1. Advection-diffusion-reaction equations implementation

Reaction-diffusion equations (e.g., Equation (2)) are discretized as follows:

Tn+1
i,j − Tni,j

dt
+ vnx i,j(T

n
i,j)

+
x + vny i,j(T

n
i,j)

+
y = D

Tni+1,j + Tni,j+1 − 4Tn+1 + Tni−1,j + Tni,j−1

h2

+

(
(k3B

n
a i,j) +

k4(Tni,j)
3

1 + k5Cna i,j

)
Pni,j − kaAni,jTni,j .

(25)

Here dt the time step, h is the space step as, i and j are point numbers, n is the time step number. The

terms (Tni,j)
+
x and (Tni,j)

+
y refers to an upwind scheme if the velocity is positive and to a downwind
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scheme otherwise. This scheme is conventionally introduced in order to treat numerical instabilities

related to convection dominated problems. We have:

(Tni,j)
+
x =


Tn
i,j−T

n
i−1,j

h if vnx i,j ≥ 0

Tn
i+1,j−T

n
i,j

h if vnx i,j < 0

.

The term (Tni,j)
+
y is treated in a similar way.

5.2. Navier-Stokes equation implementation

We solve the Navier-Stokes equations for the incompressible fluid

∂ux
∂t

+ ux∇
∂ux
∂x

+ uy∇
∂ux
∂y

= −∂p
∂x

+
1

Re
(
∂2ux
∂x2

+
∂2uy
∂x2

)− 1

Kf
ux,

∂uy
∂t

+ ux∇
∂uy
∂x

+ uy∇
∂uy
∂y

= −∂p
∂y

+
1

Re
(
∂2ux
∂y2

+
∂2uy
∂y2

)− 1

Kf
uy,

∇~u = 0,

using the Chorin projection method presented in [22]. The general approach is described in [29]

(section 6.7). We proceed in three steps:

(i) Treat nonlinear terms: We look for an intermediate velocity (u∗x, u
∗
y) verifying the equations:

u∗x − unx
dt

= −unx(unx)+
x − uny (unx)+

y −
1

Kf
unx ,

u∗y − uny
dt

= −unx(uny )+
x − uny (uny )+

y −
1

Kf
uny .

(26)

As above we use an upwind method to discretize the terms (unx)+
x , (uny )+

x , (unx)+
y , (uny )+

y to

avoid convection dominated problems.

(ii) Implicit viscosity: The viscosity terms are treated implicitly. We calculate a second

intermediate velocity (u∗∗x , u
∗∗
y ) by solving the equations:

u∗∗x − u∗x
dt

=
1

Re
((u∗∗x )xx + (u∗∗y )xx),

u∗∗y − u∗y
dt

=
1

Re
((u∗∗x )yy + (u∗∗y )yy). (27)
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(iii) Pressure correction: We correct the second intermediate velocity by the implicit pressure

gradient (∂p
n+1

∂x , ∂p
n+1

∂y ):

un+1
x − u∗∗x

dt
= −∂p

n+1

∂x
,

un+1
y − u∗∗y

dt
= −∂p

n+1

∂y
. (28)

The pressure gradient (∂p
n+1

∂x , ∂p
n+1

∂y ) is only given implicitly since it is obtained by solving a

linear system. In order to compute it, we solve the Poisson equation:

−∆pn+1 = − 1

dt
∇.un.

To solve the last equation, we use the successive over-relaxation method (SOR). It is an iterative

method that converges faster than the Jacobi and Gauss-Seidel methods. In this method, we repeat

the following iteration until the convergence of the solution:

pk+1
i,j = (1− ω)pki,j +

ω

4
(pki+1,j + pki,j+1 + pki−1,j + pki,j−1)− h2

2hdt
(uni+1,j−

uni−1,j + uni,j+1 − uni,j−1),

where the constant ω is the relaxation factor. Let us denote the number of points in the computational

mesh by Nx ×Ny. To ensure the fast convergence of the SOR algorithm, we set

ω = 2

(
1 +

√
1− (cos(π/Nx) + cos(π/Ny)2

2

)−1

APPENDIX B: THE VALUES OF PARAMETERS

The values of parameters used in numerical simulations for the 1D and 2D models are given in Table

(I) and Table (II), respectively. Most of the reaction kinetics parameters are taken from [30, 31].

Concentrations are adimensionalized. Some parameters such as β used in 1D model are estimated

to fit the results of the 2D model. We consider the space unit µm = 10−6 m and the time unit

t = 10−2 s.
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Simulation Numerical value Description

dx 0.2 spatial step

dt 0.02 time step

H 50 diameter of the vessel

D 0.5 diffusion coefficient for all proteins

Reactions coefficients Numerical value Description

k1 1 generation of thrombin in the initiation phase

k2 22.5 generation of thrombin in the propagation phase

α1 0.63 thrombin-antithrombin binding reaction rate

α2 0.658 thrombin removal rate by blood flow

Physiological values Numerical value Description

A0 0.4 antihtrombin concentration in blood plasma

T0 0.8 prothrombin concentration in blood plasma

Table I. The values of the parameters used in numerical simulations of the 1D model.
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Simulation Numerical value Description

dx 0.25 spatial step

dt 0.005 time step

H 50 diameter of the vessel

L 250 length of the vessel

D 0.5 diffusion coefficient for all proteins

Reactions coefficients Numerical value Description

k1 0.1 conversion of fibrinogen into fibrin

k2 1 generation of fibrin polymer from fibrin

k3 2500 activation of prothrombin during the initiation phase

k4 22.5 activation of prothrombin during the amplification phase

k5 3122.2 inactivation of V by APC

kb 0.05 IXa and Xa inactivation

kc 0.05 APC inactivation

k7 40 TF − V IIa binding with IXa and Xa

k8 9400 k8 = k−9 k9

k9 9400 APC activation by thrombin-thrombomodulin

ka 0.68 Inactivation of thrombin by antithrombin

kT 10000 thrombin binding with thrombomodulin

Physiological values Numerical value Description

V IIa 0.5 factor VIIa concentration on the damaged tissue

P0 0.8 prothrombin concentration in blood plasma

A0 variable antihtrombin concentration in blood plasma

B0 1 initial concenetrations of factors IX and X

C0 1 initial concentration of APC

Fg0 1 fibrinogen concentration in blood

Table II. The values of the parameters used in numerical simulations of the 2D model.
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