
HAL Id: hal-01574212
https://hal.inria.fr/hal-01574212

Submitted on 11 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerance of Self Organizing Maps
Cesar Torres-Huitzil, Oleksandr Popovych, Bernard Girau

To cite this version:
Cesar Torres-Huitzil, Oleksandr Popovych, Bernard Girau. Fault Tolerance of Self Organizing Maps
. WSOM+17 - 12th International Workshop on Self-Organizing Maps and Learning Vector Quanti-
zation, Clustering and Data Visualization, Jun 2017, Nancy, France. �hal-01574212�

https://hal.inria.fr/hal-01574212
https://hal.archives-ouvertes.fr


Fault Tolerance of Self Organizing Maps

Cesar Torres-Huitzil
Cinvestav Tamaulipas

Mexico
Email: ctorres@tamps.cinvestav.mx

Oleksandr Popovych
Igor Sikorsky KPI - Ukraine

Université de Lorraine / LORIA - France
Email: oleksandr.popovych@inria.fr

Bernard Girau
Université de Lorraine / LORIA

France
Email: bernard.girau@loria.fr

Abstract—As the quest for performance confronts resource
constraints, major breakthroughs in computing efficiency are
expected to benefit from unconventional approaches and new
models of computation such as brain-inspired computing. Beyond
energy, the growing number of defects in physical substrates
is becoming another major constraint that affects the design
of computing devices and systems. Neural computing principles
remain elusive, yet they are considered as the source of a
promising paradigm to achieve fault-tolerant computation. Since
the quest for fault tolerance can be translated into scalable
and reliable computing systems, hardware design itself and
the potential use of faulty circuits have motivated further the
investigation on neural networks, which are potentially capable
of absorbing some degrees of vulnerability based on their natural
properties. In this paper, the fault tolerance properties of Self
Organizing Maps (SOMs) are investigated. To asses the intrinsic
fault tolerance and considering a general fully parallel digital
implementations of SOM, we use the bit-flip fault model to
inject faults in registers holding SOM weights. The distortion
measure is used to evaluate performance on synthetic datasets
and under different fault ratios. Additionally, we evaluate three
passive techniques intended to enhance fault tolerance of SOM
during training/learning under different scenarios.

I. INTRODUCTION

Artificial neural networks are computational models that
have attracted intensive research interest and enjoyed signifi-
cant renewed growth in artificial intelligence related applica-
tions. In neural networks research, one of the main problems
is the architecture optimization, which aims at appropriately
choosing the neural architecture and its parameters for high
generalization/performance at solving a given task. However,
the fact that performance maximization is of primary concern
does not necessarily imply that it is the only goal that has
been or should be pursued [1]. Artificial neural networks are
generally assumed to acquire some other desirable features of
biological systems such as their tolerance against imprecision,
uncertainty and faults, which make them even harder to study
or design. Fault tolerance is the attribute of a system that allows
it to preserve its expected behavior after faults have manifested
themselves within the system [2]. More precisely, a fault-
tolerant system might be defined as one that has provisions to
avoid failure after faults have caused errors within the system.
When a statement about neural networks fault tolerance is
made, it should be implicitly assumed a failure condition or
criterion related to its intended computational task. That is,
the threshold below which it cannot longer perform its function
according to the specification. As such, fault tolerance in neural
networks depends on the definition of the acceptable degree
of performance and its intended application [3].

According to neurobiological studies, the human brain is
able to tolerate a small amount of synapse or neuron faults
or even use noise as a source of computation [4]. Nervous
systems are complex, highly parallel information processing
architectures made of seemingly imperfect and slow, but excep-
tionally adaptive and power-efficient components that carry out
information processing functions [5]. Moreover, brains have
the capability to relearn by growth of new neurons and/or
neural connections and/or retraining of the existing neural
architecture. Derived from these observations, it is commonly
claimed that the majority of neural network models, abstracted
from biological ones, have built-in or intrinsic fault tolerance
properties due to their parallel and distributed structure, and
the fact that they contain more neurons or processing elements
than the necessary to solve a given problem, i.e., some natural
redundancy due to overprovisioning. Claiming an equivalent
fault tolerance only on the basis of rough architectural sim-
ilarities therefore cannot hold true in general, especially for
small size neural networks [6]. Studies have shown that an
artificial neural network has a very limited fault tolerance
capability and, as a matter of fact, most neural networks
cannot be considered intrinsically fault tolerant, without a
proper design. Obtaining truly fault tolerant neural networks is
still a very attractive and important issue both for i) artificial
intelligence based solutions, where, for instance, pervasive
embedded systems will require smart objects fully merged
with the environment in which they are deployed to cope
with unforeseeable conditions [7], and ii) as a source for
reliable computing systems built from unreliable components,
as suggested in [8]. Rooted on neural computing, a new
paradigm is needed to take advantage of new emerging devices
at nanoscale dimensions and deal with both manufacturing
defects and transient faults. This trend might lead to even
consider faults/errors as an essential/intrinsic part of a system
design. In this last direction, the robustness and the potential
fault-tolerant properties of neural models call for attention
as permanent and transient faults, device variation, thermal
issues, and aging will force designers to abandon current
assumptions that transistors, wires, and other circuit elements
will function perfectly over the entire lifetime of a computing
system, relying mainly on digital integrated circuits [9].

In the literature, several experimental and less analytic
works have been carried out to study issues related to neural
networks fault tolerance, including the analysis of the effect of
noise on the output sensitivity [10], the weight error sensitivity
[11], and the relationship among fault tolerance, generalization
and model complexity [1], [6], [12]. Such works have been
carried out at different levels of abstraction, from very specific
low level physical implementations, but mostly, to the high



level intrinsic fault masking capacity of neural paradigms. It
is worth to point out that most works have been focused on
feedforward neural networks and few attempts have been made
to study and improve fault tolerance of other neural models,
such as self-organizing maps (SOMs). Yet, we consider that
the principle of self-organization itself might have an influence
onto the fault tolerance of computing systems. Therefore in
this paper, we are not only interested in the way pre-learned
SOMs react to faults, but also in the way fault tolerance evolves
during the self-organization of the neural population. This is
why we chose to study SOMs because they stand as one of
the most well-recognized models of self-organizing computing
systems. In this effort, the aim of this work is twofold: i)
to study the intrinsic fault tolerance capabilities of SOMs
under bit-flip faults on weights by analyzing their performance
degradation with variable fault ratios using synthetic datasets,
and 2) to apply/adapt some reported techniques for enhancing
fault tolerance during training/learning in neural networks to
SOMs and compare their performance under different testing
scenarios. We are interested in faults in weights, since when
a SOM is intended to be implemented onto a digital hardware
substrate, the value of each weight vector can be disturbed
by various causes such as electromagnetic field or radiation,
which can be modeled by a bit-flip fault model.

The paper is organized as follows. Section II presents some
relevant related work on fault tolerance in SOMs. Section III
presents the fundamentals of the Kohonen SOM model, and
the on-line learning mechanism for self-organization. Section
IV first describes the general approach for fault tolerance
assessment in neural networks, and then the specificities for
SOMs when targeted to a fully parallel digital hardware imple-
mentation are presented. Section V presents three techniques
that have been used to improve the intrinsic fault tolerance of
SOMs, which involves a modification of the learning/training
mechanism. Section VI describes the datasets used for testing
and the obtained experimental results for different scenarios.

II. RELATED WORK

Despite of their importance, the studies and results on fault
tolerance reported in the literature are mostly concerned with
feedforward neural networks. However, such results are diffi-
cult to generalize across different neural models. Among other
neural models, the Kohonen SOM is a neural network which
main property is to perform data quantization while preserving
some topological relations among the set of learned prototypes.
This model is a recognized tool for data visualization, and
it has also been used for many practical applications such
as pattern classification, image processing, and robotics [13].
The SOM model is inspired by the organizational structure of
feature maps in the brain. In a SOM, each neuron iteratively
learns to extract a feature vector from the input data. Simulta-
neously this learning maintains neighborhood relations (close
neurons learn close prototypes). This learning, property of
effectively creating spatially organized internal representations,
is performed autonomously in the SOM and is considered as a
self-organization process. Such networks self-organize, learn
through associations, and scale well to very large systems
due to their regularity and modularity, potentially leading to
easy hardware implementation in existing technologies: either
dedicated very large scale integrated (VLSI) chips or field
programmable gate array (FPGA) structures.

However, the self-organizing behavior of SOMs in the pres-
ence of faults and its fault-tolerant capability have not yet been
fully explored, in contrast to the more in-depth existing studies
for feedforward networks. As some previous works have
shown, SOMs are expected to tolerate defective neuron weights
thanks to their self-organizing mechanisms. For instance, in
[14] authors studied the fault tolerance capability of SOM in
the presence of defective neurons undergoing stuck-at faults.
In this study, it was shown that defective SOMs can eventually
re-organize themselves, by relearning, if the defective neuron
stuck-output is larger than a critical value. Only a linear array
was analyzed and discussed, where defective neurons were
concentrated in one place in the array, forming what they called
a defective-neuron cluster. In the experiments, 100 neurons,
including six defective ones, were tested to show that the SOM
can learn in spite of some faulty neurons. In [15], authors
addressed fault tolerance improvement in SOMs by using a
technique called fault immunization of the synaptic connec-
tions. Stuck-at-a faults, a is a real value, were considered.
Only one neuron was faulty at any time, but no restriction
on the number of faulty links of the neuron was assumed.
Weights are immunized by adding a constant value that is
increased or decreased as much as possible without creating
any misclassification. Fault immunization was formulated as an
optimization problem on finding the corresponding constant
value for each neuron. The application of this study was
oriented to enhancing the reliability of the lossless image
compression by a SOM. Other related works are related to
modifications of the Kohonen SOM on-line learning algorithm
so as to improve the fault tolerance of the learned SOM.
Section V describes more precisely these works.

III. SELF ORGANIZING MAPS

A. Fundamentals

Self-organizing maps (SOMs), as proposed by Kohonen
[13], consist of neighboring neurons commonly organized
on one- or two- dimensional arrays that project patterns of
arbitrary dimensionality onto a lower dimensional array of
neurons. All neurons receive the same input pattern and an
iterative mechanism updates the neuron’s weights so as to
learn to quantize the input space in an unsupervised way. This
mechanism first selects the neuron whose weights best fit the
given input pattern, and then brings the weights of this neuron
and of its neighbors closer to the current input pattern.

More precisely, each neuron in a SOM is represented
by a d-dimensional weight vector, m 2 Rd, also known as
prototype vector, m = [m1, ...,md

], where d is the dimension
of the input vectors, x. Neurons are connected to adjacent
ones by a neighborhood relationship, which define the structure
of the map. The mechanism for selecting the winning neuron
requires a centralized entity, so that the Kohonen SOM is not
a fully distributed model as the cortex organization [16]. After
learning, or self-organization, two vectors that are close in the
input space will be represented by prototypes of the same or
of neighboring neurons on the neural map. Thus, the learned
prototypes become ordered by the structure of the map, since
neighboring neurons have similar weight vectors.

In the literature, two main types of SOM can be distin-
guished, considering the number of neurons in the map with



respect to the number of expected clusters: SOMs in which the
number of neurons is roughly equal to the number of expected
clusters to be found in the input, and SOMs with a large
number of neurons (thousands or tens of thousands), which
are used to allow the emergence of intrinsic structural features
of the data space; these SOMs are referred to as Emergent
Self-Organizing Maps (ESOMs) [17].

B. On-line mode training

The basic version of SOM learning is an on-line stochastic
process which has been inspired by neurobiological learning
paradigms. Several other extensions of the algorithm have
been proposed [18]. In the SOM on-line mode algorithm, the
learning phase starts with an appropriate (usually random)
initialization of the weight vectors, m

i

. The input vectors are
presented to the neural map in multiple iterations. For each
iteration, i.e. for each input vector x, the distance from x to all
the weight vectors is calculated using some distance measure.
The neuron whose weight vector gives the smallest distance
to the input vector x is usually called the best matching unit
(BMU), denoted by c, and determined according to:

kx�m

c

k = min

i

kx�m

i

k (1)

where k·k is the distance measure, typically the Euclidean
distance, x is the input vector and m

i

is the weight vector
of neuron i. The winner c and its neighboring neurons i 2 N

w

update their weights according to the SOM rule:

m

i

(t+ 1) = m

i

(t) + ↵(t)h

ci

(t)[x(t)�m

i

(t)] (2)

where t denotes the time, x(t) is an input vector randomly
drawn from the input data set at time t, ↵(t) the learning rate
at time t, and h

ci

(t) is the neighborhood kernel around c. The
learning rate ↵(t) defines the strength of the adaptation, which
is application-dependent. Commonly ↵(t) < 1 is constant or
a decreasing scalar function of t.

The neighboring kernel h
ci

(t), which is a function of the
distance between the winner neuron c and neuron i, can be
computed using a Gaussian function:

h

ci

(t) = exp(�kr
c

� r

i

k2

2�

2
(t)

) (3)

The term kr
c

� r

i

k is the distance between neuron i and the
winner neuron c. The precise value of �(t) does not really
matter, as long as it is fairly large in the beginning of the
process, for instance in the order of 20% of the longer side of
the SOM array, after which it is gradually reduced to a small
fraction of it, e.g. 5% of the shorter side of the array [13].

A batch version of SOM learning exists. It is also iterative,
but instead of using a single input vector at a time, the whole
dataset (batch) is presented to the map before updating any
weight [19]. In each training step, the dataset is partitioned
according to the Voronoi regions of the map weight vectors,
i.e., each data vector belongs to the dataset of the closest map
unit. This algorithm is deterministic, and one of its advantages
is that the limit states of the prototypes depend only on the
initial choices. However, in this paper, we are interested in the
way fault tolerance evolves with SOM learning. The on-line
mode training provides us with a more detailed evolution to
observe. Moreover, we not only consider the standard Kohonen

SOM learning algorithm, but also some variants among which
several ones cannot be applied in batch mode. Therefore, we
will only focus on on-line mode training.

IV. FAULT TOLERANCE IN NEURAL MODELS

At a high level of abstraction, neural networks fault toler-
ance can be analyzed by the effects of errors in the main oper-
ators, rather independent from their intended physical imple-
mentation. In a more comprehensive approach [20], after this
initial step, physical faults affecting a specific implementation
can be mapped onto such errors to estimate fault tolerance of
a given neural model, and by identifying critical components,
complementary and ad-hoc fault tolerance policies can be
further applied to enhance the properties of the neural model
implementation. In order to study fault tolerance, researchers
develop models of them to examine the variety of faults that
need to be tolerated during the operation of a given system.

A. Faults and fault models

The following fault models have been widely used as ab-
stractions of physical defect mechanisms in digital electronics
devices/systems [21], and also applied to neural networks:

• Stuck-at, a data or control line appears to be held
exclusively high (stuck-at-1) or low (stuck-at-0).

• Random bit flips, a data or memory element has some
incorrect, but random value.

The stuck-at fault model is very popular since many defects
at the transistor and interconnection structures can be modeled,
as permanent faults, at the logic level with reasonable accuracy.
This model is a binary model that does not capture the
indeterminate states that faults may induce while occurring.
It is applied to model faults on communication channels and
arithmetic-logic operators. The random bit-flip model models
transient faults that usually happen at registers or memory
elements due to external perturbations, for instance, a single
event upset. Under this model, damage/corruption is done only
to the data and not to the physical circuit itself. Conceptually,
it consists of a register bit that is switched randomly, resulting
in a memory element that holds a wrong logic value.

B. Fault injection

A fault injection method is required for gaining insights of
the behavior of a system [22]. Faults are probabilistically intro-
duced into a neural model and the degree of failure, impact on
the performed task, is evaluated according to some measures,
which basically measure the performance distance (closeness)
in performing a task by a fault-free neural network and the
derived faulty networks. The measure of fault tolerance from
many experiments is evaluated against the number of faults
injected into the neural model. The limit of the network fault
tolerance is problem-dependent and determined by operating
scenarios of multiple faults leading to a violation of the per-
formance constraints. Exhaustive testing of all possible single
faults is prohibitive, not to mention that even multiple faults
might occur concurrently. Hence, the strategy of randomly
testing a small fraction of the total number of possible faults
in a network has been adopted for tractability. It yields partial
fault tolerance estimates that are statistically very close to those
obtained by exhaustive testing.



m

abs

+ - m

abs

+ - m

abs

+ -

m

abs

+ - m

abs

+ - m

abs

+ -

m

abs

+ - m

abs

+ - m

abs

+ -

Adder tree Adder tree Adder tree

Best matching unit (BMU)

x1

x2

xn

Number of neurons
N

um
be

r o
f i

np
ut

s
Neuron1 NeuronN

d1 d2 dN

Fig. 1: Block diagram of an abstract digital hardware imple-
mentation for a two-dimensional SOM.

< m
ux

m
ux

d1
d2

(x1,y1)

(x2,y2)

< m
ux

m
ux

d3
d4

(x3,y3)

(x4,y4)

< m
ux

m
ux

dn-1
dn

(xn-1,yn-1)

(xn,yn)

< m
ux

m
ux

< m
ux

m
ux

Winner

Fig. 2: BMU block diagram for a two-dimensional SOM.

C. SOM implementation choice

In this paper, we analyze SOM fault tolerance when a map
is targeted to a fully parallel digital hardware implementation.
We consider a parallel implementation for the SOM recall
phase following a general architecture as shown in figure 1. A
b-bit fixed-point representation for the internal computations
and storage is used, as most SOMs hardware implementations
use this number system so as to optimize hardware resources.
A neuron essentially consists of registers (to store weights),
adders and absolute computation modules that as a whole
computes the Manhattan distance. The original SOM uses
the Euclidean distance to measure the distance between input
patterns and weight vectors, but it requires hardware-greedy
multiplications and square roots, thus the Manhattan distance is
a preferable choice so that even the distance between the inputs
x and the vector prototypes m can be computed concurrently
at every clock cycle. The BMU can be implemented as a
comparator binary tree and a set of multiplexers, which receive
the Manhattan distances and spatial coordinates from all neu-
rons, as shown in figure 2. The BMU’s outputs are the spatial
coordinates (x, y) of the winner neuron. The neighborhood
function plays a key role in SOM learning, but the direct
implementation of the exponential function is not practical due
to its complexity, instead look-up tables to store precomputed

values can be used for resource saving. However, herein we
only consider the on-chip implementation of the recall phase
and an off-chip implementation for the learning phase.

D. SOM fault tolerance assessment

For SOM fault tolerance assessment, we consider that faults
occur only in weight registers in the hardware architecture
shown in figure 1. This choice considers plausible hardware
faults and not only the unprecise notion of faulty neuron, yet
all possible hardware faults are not considered this way (see
IV-A). More precisely, we assume that each bit in defective
neuron weights, which are stored in b-bit registers, is flipped
with some probability and remains the same during the SOM
processing. The fault rate u is defined as the percentage of
flipped bits (b

flips

such bits) in neuron weights with respect
to the total number of bits in the SOM map. It is used so as to
evaluate fault tolerance in SOMs. Considering a w ⇥w SOM
map, with N inputs and b-bit wordlength for weights, yields:

u =

b

flips

w

2 ⇥N ⇥ b

(4)

It must be pointed out that the number of faulty bits and the
rate of faulty neurons increase very rapidly with the above-
defined fault rate: to give an example, if b = 16, N = 4,
and u = 0.05, 5120 faulty bits appear (out of 102 400) in a
40⇥40 SOM (more precisely, for this case, an ESOM), and
96 % of all neurons contain at least one faulty weight. For
space consideration, we have focused on such fault rates as
they represent a more devastating effect on the SOM behavior
than single, double or triple faults, which can be well masked
in SOM as it has been reported in related works [14][15],
and confirmed by our experiments. Moreover, this fault model
takes into account the fact that all the introduced faults are not
equivalent: faults on least significant bits do not have the same
effect as faults on most significant bits.

The severity of faults in the SOM when performing a
task can be characterized with respect to the fault rate u: it
consists in considering the artificially introduced faults at a
given fault rate as the independent variable, and a selected
performance measure of the SOM as the dependent variable.
As SOM performance criteria for fault tolerance, the average
quantization error (AQE) and distortion measure are used,
which have been proposed as a way to trust the result of the
SOM convergence on a given dataset [23][24][25]. The AQE
measures the representation fidelity of the training data, and it
is computed as the average distance between each data vector
and the prototype of its BMU that should be very close:

AQE =

1

n

nX

1

���x
i

�m

c(xi)
���
2

(5)

where n is the number of input vectors, x
i

is an input, mc(xi)

is the weight of the BMU in the map for x
i

. The less the AQE,
the better the fidelity of the representation of input data.

The distortion measure considers both vector quantization
and structure preservation of the SOM [26] and it is suitable
for comparing maps of the same size [24]. Let’s consider a
SOM represented by prototypes m

j , the distortion measure is
defined as the average over all input patterns (a set of n input
data vectors x

i

) of the weighted sums of the squared distances



between the pattern and all neuron prototypes, with weights
that depend on the neighborhood function between each neuron
and the winner neuron for the given pattern. According to
[27], the original distortion measure would be biased towards
the 2D SOM. If the input’s distortion is redefined to be the
average distortion over its BMU’s neighborhood, the results
will not be affected by the different topologies of the grid and
the distortion measure becomes:

⇠ =

1

n

nX

i=1

P
m

j=1 hc(xi)j

��
x

i

�m

j

��2
P

m

j=1 hc(xi)j
(6)

where c(x

i

) is the BMU of x
i

, and h

c(xi)j is the neighborhood
function of neurons c(x

i

) and j.

V. ENHANCING FAULT TOLERANCE IN SOM

This section briefly introduces three techniques for SOM
that have been proposed to improve its fault tolerance: weights
restriction, fault insertion, and noise injection during training.

A. Restricting weights during training

The basic idea of this technique is that critical synapses
have high magnitude weights [28][29]. Restricting the weight
magnitudes to be low during training potentially makes the
SOM more fault-tolerant. For instance, by i) penalizing
high magnitude weights in the learning rule; m

j

i

(t + 1) 2
[m

min

,m

max

], the lower and upper bound of the weight
vectors components, respectively, or ii) weight balancing to
distribute the weight values more uniformly, e.g., to distribute
the absolute weight values around the average absolute value.
Here, a weight is updated only if its absolute value, computed
by the learning rule, does not exceed the following threshold:

✓(t) =

1

nw

2

X

m

j

nX

i=1

���mj

i

(t)

���

B. Inserting faults during training

This technique randomly inserts faults during training [30]
so as to improve fault tolerance. In each training iteration, a
fixed number of weights (neurons) are randomly chosen, then
faults (bit-flip) are injected according to these steps:

1) Randomly choose a predefined number of weights
and insert faults in them

2) Apply the learning rule of on-line (batch) training for
a pattern (all patterns) in the training set

3) Restore faulty weights to their unfaulty state and
repeat the process until a stop criterion is reached

In our tests, only one faulty bit is introduced (and then
restored) for each learning iteration.

C. Noise and weight perturbations

During training, in each iteration, a small number of
inputs/weights are selected randomly to be perturbed by adding
some type of noise [15][31]. The basic idea is to add noise to
the inputs or weights of each neuron. Two main options exist,
multiplicative and additive noise; additive noise being the most
used. We consider such an additive noise in our tests.

VI. EXPERIMENTAL RESULTS

This section presents the experiments that have been carried
out to assess SOM fault tolerance. We have focused on
studying the performance of 2D maps on artificial datasets, for
different bit-flips fault rates in weight registers. We have de-
veloped a software environment for fault tolerance evaluation,
which handles computations using fixed-point representations
(even during learning) as in the proposed hardware implemen-
tation. Experiments are limited here to 40 ⇥ 40 2D SOMs,
i.e, ESOMs, whose weights are initialized to random values,
evenly distributed between [0, 1] and then scaled to a fixed-
point representation Q6.10. As SOM performance depends on
many other factors, to reduce the scope of the analysis, all
SOMs use the same learning rate, update radius and Gaussian
neighborhood function, during 150 epochs with 100 iterations
each. Different map initializations are tested, but all learning
techniques apply to the same initialized maps and use the same
randomly chosen input pattern for each iteration.

A. Datasets

Two simple datasets, called D1 and D2, with 2D points,
were used in the experiments. D1 contains uniform observa-
tions in [0, 1]⇥ [0, 1] and D2 observations drawn from a mix-
ture of gaussians: three clusters with a Gaussian distribution,
which have equal variance and some overlap. The standard
deviation is 1 in each dimension. and the clusters centers are:
(0.35, 0.35), (0.65, 0.35), and (0.5, 0.65). An example of the
distributions in D1 and D2 are shown in figure 3 a), and b),
respectively. It is important to point out that new points for D1
and D2 are generated at each learning iteration according to
the chosen distribution, instead of pre-generating a fixed-size
dataset. Thus, no cross validation technique is required.

B. Results

The AQE and distortion measure profiles during learning
are shown in figure 3. The presented results are averaged over
several randomly initialized maps, but all learning techniques
and all maps use the same learning patterns, randomly gener-
ated at each epoch. It explains why the different curves have
similar irregular profiles. Nevertheless, experiments performed
with other random patterns provide the same kind of results.
Both measures decrease during training for all SOMs, but
for D2 the convergence is faster and the measures show
less variance for different random initializations. This can be
explained by the usual problems known for Kohonen SOMs
that unfold themselves in a D1-like input space: some maps
spread well while some others remain partially twisted.

Figures 4(a) and 4(d) shows the performance metrics
profiles for the SOM learning algorithms with noise injection
and thresholding. SOM trained with thresholding yields larger
AQE and distortion than the others, and a slower convergence
rate. These results tend to show that this technique does not
well extend to the kind of fault model we study here. This is
even more noticeable for the fault injection based technique:
its results are not even included, for readability, in the figure
since this method performs worst among the implemented
algorithms. This is directly linked to the number representation
system that we use herein, where faulty bits can be injected
in the 6-bit integer part and induce excessively large weights



x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Uniform distribution (D1)

Epochs
0 50 100 150

A
ve

ra
g
e
 q

u
a
n
tiz

a
tio

n
 m

e
a
su

re

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12
Standard SOM - Several intialized maps

Epochs
0 50 100 150

A
ve

ra
g
e
 d

is
to

rt
io

n
 m

e
a
su

re

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Standard SOM - Several intialized maps

(a) Uniform distribution of 2D samples (D1)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normal distribution (D2)

Epochs
0 50 100 150

A
ve

ra
g
e
 q

u
a
n
tiz

a
tio

n
 m

e
a
su

re

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055
Standard SOM - Several intialized maps

Epochs
0 50 100 150

A
ve

ra
g
e
 d

is
to

rt
io

n
 m

e
a
su

re

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024
Standard SOM - Several intialized maps

(b) Normal distribution of 2D samples (D2)

Fig. 3: Quantization error and distortion for SOM stochastic on-line learning for different initialized maps on D1 and D2.

even after bit restoration (e.g. 000000 becomes 100000 with a
faulty bit, then 011111 with learning, and recovering the initial
value of the faulty bit is useless here). Using different integer
part sizes induces more or less bad results for this method.

Figures 4(b) and 4(e) shows the AQE and distortion mea-
sures for D1 and D2 versus the bit-flip percentage introduced
into SOMs. Recall that a 1 % fault rate already corresponds
to 512 faulty bits in the kind of SOM we consider herein. As
the same results are not expected for different faulty SOMs,
even on the same dataset, for each fault rate many faulty
versions of the trained SOMs were generated and averaged
in the presented results. Distortion rapidly increases even with
a small percentage of faults, and a criterion (threshold value)
should be defined below which the SOM might be considered
performing properly. The AQE also increases with the fault
percentage, but in a more attenuated way for small percentages.
The SOM trained with noise injection slightly outperforms the
threshold method, the map is less affected when the number
of inserted faults in weights increases. It can also be observed
for dataset D1 that the AQE increases slowly at fault rates
below 10%, suggesting that faults in weights can be masked
in the SOM when it performs quantization, the global internal
representation being distributed enough to cover the input
space even with faults. However, when an error measure that
considers the local behavior of the map is used, results clearly
show that the structure preservation is affected even at small
fault rate percentages, as the distortion measure indicates.

Nevertheless, all these results confirm that SOMs may
stand as quite fault-tolerant models, since any abrupt degra-
dation of their behavior with faults is observed. Figures 4(c)
and 4(f) show in more detail how fault tolerance evolves

through learning for different fault rates for stochastic online
learning. The level of fault tolerance is estimated as the
ratio between the average (over 100 faulty versions of each
map) performance obtained for the given fault rate and the
performance without faults. Thus the “optimal” or “reference”
value is 1, and a ratio increase means a degradation of fault
tolerance. After an immediate decrease of this ratio from the
initialization to epoch 1, we see that it increases quite slowly
for the AQE measure, and even stabilizes from epoch 100
at a value that depends on the fault rate for D1. For the
distortion measure, there is an abrupt increase of the fault
tolerance ratio up to very large values, after it stabilizes or
even slightly decreases after 50 epochs. Such increase is a
direct consequence of the introduction of faulty bits in the
integer parts of the weights, as it was the case to explain
the bad performance of the fault injection learning technique.
The order of magnitude of the ratio goes up to 102

10�2 with
such faults, since the distortion measure takes into account
the weights of all neurons, whereas the AQE measure only
considers the winner neuron. Again, it is tightly linked to the
size of the integer part, e.g. a Q4.12 instead of Q6.10 fixed
point representation would induce approximately 16 times
lower values for the maximum distortions. This negative effect
on distortion is observed even when introducing only a few
faulty bits in our other experiments, whereas the quantization-
based fault tolerance remains optimal for such scarce faults.

To summarize, these results tend to show that:

- Pre-trained SOMs are quite tolerant to faults for vector quan-
tization since their performance gradually degrades with the
fault rate. But the specific properties of structure preservation
degrade more drastically with faulty bits.



Epochs
0 50 100 150

A
ve

ra
g

e
 d

is
to

rt
io

n
 m

e
a

su
re

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
SOM Average quantization error

Standard
Noise injection
Threshold

Epochs
0 50 100 150

A
ve

ra
g

e
 d

is
to

rt
io

n
 m

e
a

su
re

0

0.2

0.4

0.6

0.8

1

1.2
SOM distortion

Standard
Noise injection
Threshold

(a) AQE and DM profile during learning (D1)

Fault rate
0 5 10 15 20 25 30

A
ve

ra
g

e
 q

u
a

n
tiz

a
tio

n
 e

rr
o

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SOM distortion - Fault rate

Standard
Noise injection
Threshold

Fault rate
0 5 10 15 20 25 30

A
ve

ra
g

e
 d

is
to

rt
io

n
 m

e
a

su
re

0

200

400

600

800

1000

1200
SOM distortion - Fault rate

Standard
Noise injection
Threshold

(b) AQE and DM vs fault percentage (D1)

Epochs
0 50 100 150

AQ
E

ra
tio

0.5

1

1.5

2

2.5

3

3.5
Standard SOM

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8
Fault rate 9
Fault rate 10
Fault rate 11
Fault rate 12
Fault rate 13
Fault rate 14

Epochs
0 50 100 150

D
is

to
rti

on
m

ea
su

re
ra

tio

×104

0

0.5

1

1.5

2

2.5

3
Standard SOM

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8
Fault rate 9
Fault rate 10
Fault rate 11
Fault rate 12
Fault rate 13
Fault rate 14

(c) Fault tolerance along learning (D1)

Epochs
0 50 100 150

A
ve

ra
g

e
 d

is
to

rt
io

n
 m

e
a

su
re

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
SOM Average quantization error

Standard
Noise injection
Threshold

Epochs
0 50 100 150

A
ve

ra
g

e
 d

is
to

rt
io

n
 m

e
a

su
re

0

0.2

0.4

0.6

0.8

1

1.2
SOM distortion

Standard
Noise injection
Threshold

(d) AQE and DM profile during learning (D2)

Fault rate
0 5 10 15 20 25 30

A
ve

ra
g

e
 q

u
a

n
tiz

a
tio

n
 e

rr
o

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SOM distortion - Fault rate

Standard
Noise injection
Threshold

Fault rate
0 5 10 15 20 25 30

A
ve

ra
g

e
 d

is
to

rt
io

n
 m

e
a

su
re

0

200

400

600

800

1000

1200
SOM distortion - Fault rate

Standard
Noise injection
Threshold

(e) AQE and DM vs fault percentage (D2)

Epochs
0 50 100 150

AQ
E

ra
tio

0.5

1

1.5

2

2.5

3

3.5
Standard SOM

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8
Fault rate 9
Fault rate 10
Fault rate 11
Fault rate 12
Fault rate 13
Fault rate 14

Epochs
0 50 100 150

D
is

to
rti

on
m

ea
su

re
ra

tio

×104

0

1

2

3

4

5

6

7
Standard SOM

Fault rate 0
Fault rate 1
Fault rate 2
Fault rate 3
Fault rate 4
Fault rate 5
Fault rate 6
Fault rate 7
Fault rate 8
Fault rate 9
Fault rate 10
Fault rate 11
Fault rate 12
Fault rate 13
Fault rate 14

(f) Fault tolerance along learning (D2)

Fig. 4: Experimental results for SOM fault tolerance assessment. Figures 4(a) and 4(d) shows the AQE and distortion profiles
for SOMs with noise injection and thresholding during learning. Figures 4(b) and 4(e) shows the AQE and distortion measures
for D1 and D2 versus the percentage of bit-flips introduced into SOMs. Figures 4(c) and 4(f) show in more detail how fault
tolerance evolves through learning for different fault rates when stochastic online learning is used.

- Among the different learning modifications that have been
proposed to increase SOM fault tolerance, only the noise

injection technique appears to be robust to the kind of fault
model considered here (figures 4(b) and 4(e)).



- When observing the evolution of fault tolerance during learn-
ing, self-organization induces an improvement with respect
to the AQE criterion only during the first learning iterations
(initial unfolding of the map). If the distortion criterion is used,
even the initial self-organization phenomenon is not able to
induce more fault tolerance (figures 4(c) and 4(f)).

VII. CONCLUSION

This paper presents a study of fault tolerance of SOMs.
We compare the performances of SOMs obtained with three
variants of the on-line training algorithm: weight restriction,
fault injection and noise injection. We also study how fault
tolerance evolves during learning. The obtained results show
that training by inserting noise injection provides slightly better
results than the other techniques but it is far from producing
highly fault tolerant SOMs. Nevertheless, SOM fault tolerance
is globally confirmed since the quantization quality degrades
gradually with increasing fault rates. SOM fault tolerance with
respect to structure preservation has been studied using the
distortion measure, and results from this initial study show
that this particular property of SOMs is not necessarily capable
of supporting a large number of faults. To address this limit,
we consider that a more collective behavior of neurons is
required: instead of considering the weights of each neuron
separately, a more fault tolerant behavior is expected from
a population-coded approach of the prototypes, where single
highly faulty weights would not directly affect the global
performance. To this end, we currently study how a soft-
winner-takes-all approach by means of gaussian filtering of
prototypes may increase the fault tolerance of SOMs. Then in
order to decentralize the process and reduce its dependence
to new possibly faulty registers, we intend to replace gaussian
filtering by the emergence of bubbles of activity in dynamic
neural fields coupled to the SOMs.

ACKNOWLEDGMENT

The authors would like to thank the partial support received
through the Conacyt grant program to conduct research abroad.
This work is also partially supported by Erasmus+ 2016-2017
and by the French embassy of Ukraine.

REFERENCES

[1] C. Alippi, “Selecting accurate, robust, and minimal feedforward neural
networks,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 49, no. 12, pp. 1799–1810, Dec 2002.

[2] A. Avižienis, “Framework for a taxonomy of fault-tolerance attributes
in computer systems,” SIGARCH Comput. Archit. News, vol. 11, no. 3,
pp. 16–21, Jun. 1983.

[3] P. W. Protzel, D. L. Palumbo, and M. K. Arras, “Performance and fault-
tolerance of neural networks for optimization,” IEEE Transactions on
Neural Networks, vol. 4, no. 4, pp. 600–614, Jul 1993.

[4] W. Maass, “Noise as a resource for computation and learning in
networks of spiking neurons,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 860–880, May 2014.

[5] T. Sejnowksi and T. Delbruck, “The language of the brain,” Scientific
American, vol. 307, pp. 54–59, Oct 2012.

[6] S. S. Venkatesh, “Robustness in neural computation: random graphs and
sparsity,” IEEE Transactions on Information Theory, vol. 38, no. 3, pp.
1114–1119, May 1992.

[7] Z. Wang, K. H. Lee, and N. Verma, “Overcoming computational errors
in sensing platforms through embedded machine-learning kernels,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 8, pp. 1459–1470, Aug 2015.

[8] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, pp. 43–98,
1956.

[9] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in
nanometer cmos integrated systems: A survey of techniques from
circuits to software,” Proceedings of the IEEE, vol. 104, no. 7, pp.
1410–1448, July 2016.

[10] N. C. Hammadi and H. Ito, “Improving the performance of feedforward
neural networks by noise injection into hidden neurons,” Journal of
Intelligent and Robotic Systems, vol. 21, no. 2, pp. 103–115, 1998.

[11] X. Zeng and D. S. Yeung, “Sensitivity analysis of multilayer perceptron
to input and weight perturbations,” IEEE Transactions on Neural
Networks, vol. 12, no. 6, pp. 1358–1366, Nov 2001.

[12] E. B. Tchernev, R. G. Mulvaney, and D. S. Phatak, “Investigating the
fault tolerance of neural networks,” Neural Computation, vol. 17, no. 7,
pp. 1646–1664, 2016/06/01 2005.

[13] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, Sep 1990.

[14] M. Yasunaga, I. Hachiya, K. Moki, and J. H. Kim, “Fault-tolerant
self-organizing map implemented by wafer-scale integration,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6,
no. 2, pp. 257–265, June 1998.

[15] R. Talumassawatdi and C. Lursinsap, “Fault immunization concept
for self-organizing mapping neural networks,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 09, no. 06,
pp. 781–790, 2001.

[16] N. Rougier and Y. Boniface, “Dynamic self-organising map,” Neuro-
computing, vol. 74, no. 11, pp. 1840 – 1847, 2011.

[17] A. Ultsch, “Data mining and knowledge discovery with emergent self-
organizing feature maps for multivariate time series,” in Kohonen Maps,
S. K. E. Oja, Ed., June 24–27 1999, pp. 33–46.

[18] M. Cottrell, M. Olteanu, F. Rossi, and N. Villa-Vialaneix, Theoretical
and Applied Aspects of the Self-Organizing Maps, 2016, pp. 3–26.

[19] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no.
13, pp. 1 – 6, 1998.

[20] V. Piuri, “Analysis of fault tolerance in artificial neural networks,”
Journal of Parallel and Distributed Computing, vol. 61, no. 1, pp. 18
– 48, 2001.

[21] J. A. Abraham and W. K. Fuchs, “Fault and error models for vlsi,”
Proceedings of the IEEE, vol. 74, no. 5, pp. 639–654, May 1986.

[22] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, Apr 1997.

[23] E. de Bodt, M. Cottrell, and M. Verleysen, “Statistical tools to assess
the reliability of self-organizing maps,” Neural Networks, vol. 15, no.
89, pp. 967 – 978, 2002.

[24] G. Pölzlbauer, “Survey and comparison of quality measures for self-
organizing maps,” in Proceedings of the Fifth Workshop on Data
Analysis (WDA’04), June 24–27 2004, pp. 67–82.

[25] D. Beaton, I. Valova, and D. MacLean, “Cqoco: A measure for
comparative quality of coverage and organization for self-organizing
maps,” Neurocomputing, vol. 73, no. 1012, pp. 2147 – 2159, 2010.

[26] J. Rynkiewicz, “Self-organizing map algorithm and distortion measure,”
Neural Networks, vol. 19, no. 67, pp. 830 – 837, 2006.

[27] Y. Wu and M. Takatsuka, “Spherical self-organizing map using efficient
indexed geodesic data structure,” Neural Networks, vol. 19, no. 67, pp.
900 – 910, 2006, advances in Self Organising Maps - WSOM’05.

[28] C.-T. Chin, K. Mehrotra, C. K. Mohan, and S. Rankat, “Training
techniques to obtain fault-tolerant neural networks,” in Fault-Tolerant
Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth Interna-
tional Symposium on, June 1994, pp. 360–369.

[29] S. Cavalieri and O. Mirabella, “A novel learning algorithm which
improves the partial fault tolerance of multilayer neural networks,”
Neural Networks, vol. 12, no. 1, pp. 91 – 106, 1999.

[30] C. H. Sequin and R. D. Clay, “Fault tolerance in artificial neural
networks,” in Neural Networks, 1990., 1990 IJCNN International Joint
Conference on, June 1990, pp. 703–708 vol.1.

[31] H. Allende, S. Moreno, C. Rogel, and R. Salas, Robust Self-organizing
Maps. Springer Berlin Heidelberg, 2004, pp. 179–186.


