
HAL Id: hal-01576143
https://hal.inria.fr/hal-01576143

Submitted on 22 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Versioning and Annotation Support for Collaborative
Mapping Design

Johnty Wang, Joseph Malloch, Stéphane Huot, Fanny Chevalier, Marcelo
Wanderley

To cite this version:
Johnty Wang, Joseph Malloch, Stéphane Huot, Fanny Chevalier, Marcelo Wanderley. Versioning and
Annotation Support for Collaborative Mapping Design. Sound and Music Computing Conference,
Aalto University, Jul 2017, Espoo, Finland. pp.275-278. �hal-01576143�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132052546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01576143
https://hal.archives-ouvertes.fr


Versioning and Annotation Support for Collaborative Mapping Design

Johnty Wang
Input Devices and Music
Interaction Lab/CIRMMT

McGill University
Johnty.Wang@mcgill.ca

Joseph Malloch
Graphics and Experiential Media Lab

Dalhousie University
Joseph.Malloch@dal.ca

Stéphane Huot
Mjolnir Group

Inria Lille
Stephane.Huot@inria.fr

Fanny Chevalier
Mjolnir Group

Inria Lille
Fanny.Chevalier@inria.fr

Marcelo Wanderley
Input Devices and Music
Interaction Lab/CIRMMT

McGill University
Marcelo.Wanderley@mcgill.ca

ABSTRACT

This paper describes a versioning and annotation system
for supporting collaborative, iterative design of mapping
layers for digital musical instruments (DMIs). First we de-
scribe prior experiences and contexts of working on DMIs
that has motivated such features in a tool, describe the
current prototype implementation and then discuss future
work and features that are intended to improve the capabil-
ities of tools for new musical instrument building as well
as general interactive applications that involve the design
of mappings with a visual interface.

1. INTRODUCTION

A crucial component of the digital musical instrument (DMI)
[1] building process involves the mapping of sensor or ges-
ture input signals from the musician to relevant synthesis
parameters, and is described in detail by [2]. While there
are many different approaches to the design and implemen-
tation of DMI mapping, for many designers, a common
part of the process involves the use of graphical user in-
terfaces where the connection of signals can be observed
and manipulated visually. In this paper we use personal
experiences of building DMIs in a variety of contexts to
motivate two main features for a mapping tool: a deeply
integrated graphical versioning and comparison tool, and
rich annotation features that go beyond the text-based tag-
ging commonly employed by existing versioning systems.
While our focus here is to extend the capabilities of tools
for creative design of interactive systems [3], we acknowl-
edge the fact that a good tool is not the end-all solution
in itself, but something that can help in the process. In
this paper we first present background and related work,
followed by the motivations for and details on the imple-
mentation of our system, and finally a discussion on the
limitations of the current work and future steps.

Copyright: c© 2017 Johnty Wang et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

2. EXPERIMENTATION AND ITERATION

Over the years we have been involved in the conception,
design, use and evaluation of a large number of DMIs,
including some that have been actively performed for 10
years and have toured internationally. Throughout the de-
velopment of these instruments, iteration has proven to be
the most important aspect. Many designers take a holis-
tic approach their DMI concept: designing not just the
sensing system or sound synthesizer but also gesture vo-
cabularies, notation systems, and lighting or video systems
that complement their idea of performance with the instru-
ment. This approach is exciting, but also brings with it
difficult challenges, since the various aspects of the instru-
ment are interdependent - the physical instrument, sensing
system, gesture, and sound cannot be changed individually
without affecting the others. While the overall concept of
the instrument can inform process, the actual implementa-
tion often requires iteration. Usually, the most important
advances are due to a complex system surprising the de-
signer, inspiring them to modify their vision of the final
instrument.

It is important that our tools for supporting mapping de-
sign support iterative workflows, and also make it easy to
do “exploratory” development which might result in serendip-
itous discovery of new directions for the instrument.

2.1 Collaboration

If iteration is important in solo development, in collabo-
rative design contexts it is essential, especially in groups
where the roles of hardware designer, composer, and per-
former are played by different collaborators. In this case
it is no longer feasible for a single united vision of the
instrument (and its performance practice and repertoire)
to exist. The collaborators inevitably use different tools,
have different approaches, and in interdisciplinary projects
even different vocabularies for discussing interaction. Dur-
ing the course of several long-term projects [4], we started
building approaches and tools to try to support interdisci-
plinary collaborations based on a few principles:

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-275

mailto:Johnty.Wang@mcgill.ca
mailto:Joseph.Malloch@dal.ca
mailto:Stephane.Huot@inria.fr
mailto:Fanny.Chevalier@inria.fr
mailto:Marcelo.Wanderley@mcgill.ca
http://creativecommons.org/licenses/by/3.0/


• Don’t enforce representation standards: Encour-
aging each collaborator to represent their system com-
ponent in the strongest way possible helps maintain
the benefits of their specific domain-knowledge to
the project. It also helps with modularity!

• Make things freely connectable: If we encourage
strong but idiomatic representations of system com-
ponents, flexibility must come from the ability to
freely interconnect them. Our approach is for mod-
els to “live” only in devices rather than influencing
connection or communication protocols; representa-
tions on the wire should be low-level, allowing basic
compatibility between drastically different devices.

• Don’t dumb it down, but...: Musicians possess highly
technical knowledge, and are usually capable of learn-
ing surprising amounts of electrical engineering, dig-
ital signal processing, and software design in short
periods of time. This means that instrument design-
ers do not need to hide low-level technical proper-
ties of the system from the performer, however the
nature of the system representation should be ques-
tioned: is there a technical representation from the
performer’s perspective that might serve better?

The software library libmapper [4] and the surrounding
tools are the result of this design philosophy and have sup-
ported a large number of interdisciplinary research/creation
projects. These tools form a discoverable, distributed net-
work of mappable devices; they encourage (but do not en-
force) modular, strong representations of system compo-
nents; they glue together different programming languages
and environments; and they aid the process of rapid experi-
mentation and iteration by making every signal compatible
and allowing drag-and-drop style mapping design.

3. RELATED WORK

There are a fairly large number of existing tools for sup-
porting the task of mapping DMIs or similar interactive
systems. Some, like the Mapping Library for Pure Data [5]
and the Digital Orchestra Toolbox 1 try to provide build-
ing blocks for assembling mapping structures; others, like
MnM [6] and LoM [7] support specific multidimensional
mapping schemes, usually learned from examples. A va-
riety of platforms and environments are also used for de-
signing and implementing DMI mapping, including ICon
[8], junXion [9], and Jamoma [10]. Finally, some com-
mercial DMIs have dedicated instrument-specific mapping
systems, such as the Continuum Editor [11], 2PIM 2 , Kar-
lax Bridge 3 , and EigenD 4

3.1 Version Control Systems

The core features of this work is related to two particular
aspects of version control: first, the comparison between

1 http://idmil.org/software/dot
2 http://www.pucemuse.com/
3 http://www.dafact.com/
4 http://www.eigenlabs.com/

two different versions of a document [12] and second, the
management of previous versions. While the workflow of
most modern source control systems are centred around
these two issues, they mostly focus on text based data.
When the data has a graphical view, or is based on a trans-
lation of text data, a text-based “diff” tool is no longer suf-
ficient. Dragicevic et al. [13] describes the process of im-
plementing a comparison system via computing the visual
output and then rendering the transition between versions
using animations, which preserves the mental model of the
user better when there is a translation process is involved.

The environment implemented by Rekall [14], designed
to serve both as a “score” as well as documentation for a
theatrical work, contains features that are relevant to our
application since it contains a visual timeline as well as a
rich annotation interface, but is intended for a very differ-
ent purpose of documenting the timeline progression of a
piece of work, as opposed to being able to preview/revert
to prior states.

4. SUPPORTING EXPLORATION, BUILDING
COMPLEXITY

4.1 Problems Identified

Through the process of working with DMIs in a variety of
contexts as described earlier, we have identified the follow-
ing issues when it comes to the design of mappings:

• Fear of losing current state: By not keeping a con-
stant stack of actions and having to manually man-
age incremental versions, the fear of moving away
from a desirable configuration when experimenting
inhibits exploration.

• Difficulty indexing, saving, finding, restoring and
talking about previous mapping designs limits num-
ber of options that can be reasonably compared.

• Support for complexity: Without effective compar-
ison between mapping configurations, it is difficult
to create complex mappings by combining mapping
vignettes generated in workshop settings.

4.2 Proposed Solutions

Based on the issues identified above, we have proposed the
following solutions:

• Distributed Components: Using the software library
libmapper [4] enables simple composition of new
or existing system components, and its distributed
nature supports collaboration (For example, an arbi-
trary number of user interfaces can be actively view-
ing and editing the system at the same time, with
different visual representations of the system).

• Version tracking: Ability to store previous states as
to encourage experimentation while ensuring that no
valuable work is lost.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-276

http://idmil.org/software/dot
http://www.pucemuse.com/
http://www.dafact.com/
http://www.eigenlabs.com/


Figure 1. Screenshot showing working version (left), and a comparison of a previous version (right) when it is selected
from the interface showing. Note: the actual rendering of the preview overlay has been offset in the application to show up
better on a printed page in grayscale.

• Tagging: For identifying previous versions. Can be
basic text annotations, but also multimedia content
that may reflect the creative process, or even record-
ings of the output of the mapping.

• Graphical tools: To realize the above features of
tagging, looking at and searching through versioning
history, loading and previewing previous versions
and creating new ones.

The following section describes the first software appli-
cation we have implemented to realize the above.

5. IMPLEMENTATION

We have built a graphical tool for libmapper that man-
ages distributed mappings between signals. The C++ QT
Framework was chosen for its widespread usage, cross plat-
form support, user interface and data model libraries as
well as easy interface with the libmapper codebase that
was written in C/C++.

5.1 Software Features

The mapping tool has the following main features:

• A libmapper interface that allows querying of avail-
able devices and signals on the network, and inter-
actively modify the mapping configurations

• A user interface that displays the device signals and
allows the user to create and break mappings be-
tween output and input signals

• A user interface for displaying and previewing pre-
viously stored versions of the mapping, along with
annotations as well as saving new versions of the
mapping

Figure 1 shows screenshots of the application in use and
displays two states of operation. The left shows the current
“working version” of the mapping, and the right when a
previous version is being previewed. Since the libmapper
network is a distributed system, a third layer, showing the
actual status of the live network, can be overlaid on top
and synchronized with the working version (not currently
shown in the screenshot).

6. FUTURE WORK

In addition to continuous development in refining the im-
plementation described above, there are a few additional
features we are currently considering which would increase
the capabilities of the tool, and provide interesting possi-
bilities.

• Constant storage of state changes: In addition to
explicitly stored states, a stack of all user input could
be stored into the versioning system which essen-
tially creating an undo-redo loop that is always stored.
Versioning system backends such as .git 5 provides
efficient ways of handling this kind of incremental
changes in data.

• More featured tagging with data snippets, other
media: by recording segments of input signal streams
and associating them with particular versions, it would
be possible to “replay” the input at a given point
in time. This also allows alternative mappings to
be applied after the fact, which allows experimenta-
tion to occur without having direct access to live in-
puts, which may be a limited resource in collabora-
tive projects involving many individuals. Using me-
dia tags allow more expressive annotation options.

• Advanced Query features: by applying analysis
on the input stream and classifying/segmenting rel-
evant gestures and activities, a prior version could
be queried using gestural input. Also, queries using
recordings of the output can also be very useful in a
collaborative setting as it does not require in depth
technical knowledge of the mapping itself.

• Additional visualizations of the mapping: Using
different data visualization techniques to visually rep-
resent the connections between signals may provide
additional insights not seen by one particular view.
This also may include revealing changes in the pa-
rameter processing and transformation features of
libmapper, in addition to signal connections them-
selves.

5 http://www.git-scm.com/

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-277

http://www.git-scm.com/


7. CONCLUSION

We have discussed the motivation for integrating a version-
ing control and annotation system for visual mapping tools
for DMI design based on prior experience working in a va-
riety of contexts. Being able to effectively store, preview,
and reload previous configurations of a system addresses
some of the challenges of this creative process by reducing
risks, encouraging exploration, and improving the manage-
ment of configuration files. A newly developed mapping
tool for libmapper, a well used system for connecting sig-
nals employed for the design and implementation of DMIs,
is implemented with these features and described. These
solutions, while motivated by our own experience, also
correspond to the findings by others in the general case [3]
for “rethinking user interfaces” for general creativity sup-
port tools in general as well as which includes history keep-
ing, exploratory search, visualization, collaboration and
composition. Such views are also echoed when exploring
the development of tools to support computer music [15].

Acknowledgments

The primary author is supported by a NSERC-FRQNT In-
dustrial Innovation Scholarship with Infusion Systems, and
the Centre for Interdisciplinary Research in Music Media
and Technology.

8. REFERENCES

[1] E. R. Miranda and M. M. Wanderley, New digital mu-
sical instruments: control and interaction beyond the
keyboard. AR Editions, Inc., 2006, vol. 21.

[2] A. Hunt, M. M. Wanderley, and M. Paradis, “The im-
portance of parameter mapping in electronic instru-
ment design,” Journal of New Music Research, vol. 32,
no. 4, pp. 429–440, 2003.

[3] B. Shneiderman et al., “Creativity support tools: Re-
port from a U.S. national science foundation sponsored
workshop,” International Journal of Human-Computer
Interaction, vol. 20, no. 2, pp. 61–77, 2006.

[4] J. Malloch, S. Sinclair, and M. M. Wanderley, “Dis-
tributed tools for interactive design of heterogeneous
signal networks,” Multimedia Tools and Applications,
vol. 74, no. 15, pp. 5683–5707, 2014.

[5] H. C. Steiner, “Towards a catalog and software li-
brary of mapping methods,” in Proceedings of the 2006
conference on New interfaces for musical expression.
IRCAM—Centre Pompidou, 2006, pp. 106–109.

[6] F. Bevilacqua, R. Müller, and N. Schnell, “Mnm: a
max/msp mapping toolbox,” in Proceedings of the
2005 conference on New interfaces for musical expres-
sion, 2005, pp. 85–88.

[7] D. Van Nort and M. M. Wanderley, “The LoM map-
ping toolbox for Max/MSP/Jitter,” in Proceedings of
the International Computer Music Conference, New
Orleans, USA, 2006.

[8] P. Dragicevic and J.-D. Fekete, “The input configura-
tor toolkit: towards high input adaptability in interac-
tive applications,” in Proceedings of the working con-
ference on Advanced visual interfaces. ACM, 2004,
pp. 244–247.

[9] Steim Foundation, “junXion v4 manual,” Online,
2008, available:
http://www.steim.org/steim/support/manuals/jXv4 -
Manual.pdf. Accessed October 16, 2009.

[10] T. Place and T. Lossius, “Jamoma: A modular standard
for structuring patches in max,” in Proceedings of the
International Computer Music Conference, 2006, pp.
143–146.

[11] E. Eagen and L. Haken, EagenMatrix User Guide,
2013.

[12] J. W. Hunt and D. M. Mcllroy, “An algorithm for differ-
ential file comparison,” Bell Laboratories, Tech. Rep.,
1976.

[13] P. Dragicevic, S. Huot, and F. Chevalier, “Gliimpse:
Animating from markup code to rendered documents
and vice versa,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Tech-
nology, ser. UIST ’11. New York, NY, USA: ACM,
2011, pp. 257–262.

[14] C. Bardiot, “Rekall,” Performance Research, vol. 20,
no. 6, pp. 82–86, 2015.

[15] R. A. Fiebrink, D. Trueman, C. Britt, M. Nagai,
K. Kaczmarek, M. Early, A. Hege, and P. R. Cook,
“Toward understanding human-computer interaction in
composing the instrument,” in Proceedings of the In-
ternational Computer Music Conference, 2010, pp.
135–142.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-278


