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Abstract. The topologies of vascular trees embedded inside soft tissues
carry important information which can be successfully exploited in the
context of the computer-assisted planning and navigation. For example,
topological matching of complete and/or partial hepatic trees provides
important source of correspondences that can be employed straightfor-
wardly by image registration algorithms. Therefore, robust and reliable
extraction of vascular topologies from both pre- and intra-operative med-
ical images is an important task performed in the context of surgical
planning and navigation. In this paper, we propose an extension of an ex-
isting graph-based method where the vascular topology is constructed by
computation of shortest paths in a minimum-cost spanning tree obtained
from binary mask of the vascularization. We suppose that the binary
mask is extracted from a 3D CT image using automatic segmentation
and thus suffers from important artefacts and noise. When compared to
the original algorithm, the proposed method (i) employs a new weight-
ing measure which results in smoothing of extracted topology and (ii)
introduces a set of tests based on various geometric criteria which are
executed in order to detect and remove spurious branches. The method is
evaluated on vascular trees extracted from abdominal contrast-enhanced
CT scans and MR images. The method is quantitatively compared to
the original version of the algorithm showing the importance of proposed
modifications. Since the branch testing depends on parameters, the para-
metric study of the proposed method is presented in order to identify the
optimal parametrization.

Keywords: skeletonization, segmentation, computer-aided surgery, hepatic vas-
cular structures

1 Introduction

Liver cancer is the 7th most common cause of cancer death in Europe with around
62,200 deaths in 2012 [1]. In order to improve the success rate of interventional
liver cancer treatment, several computer-aided approaches have been proposed
for both intervention planning and navigation.



The common factor of methods proposed to facilitate hepatic interventions
remains the necessity of reliable and robust extraction and analysis of the hepatic
vascular structures. The liver vascularization plays an important role in many
aspects: the volume that is removed during the hepatectomy depends directly on
the topology of the vascular network [2]. Similarly, the registration methods often
rely on vascular landmarks [3]. Furthermore, accurate biomechanical models that
are to be used in the augmented-reality applications must take into account the
mechanical properties of the vascular trees [4,5].

While extremely important, the automatic robust analysis of liver vasculariza-
tion remains a challenging problem. First, the liver displays a high inter-patient
anatomic variability. Further, the acquisitions following the injection of a contrast
agent, necessary for the pre-operative identification of vascular trees, often suffer
from noise due to the respiratory motion which in turn deteriorates the quality
of segmentation that is necessary for the extraction of the topological structure
in the process known as skeletonization.

Several methods of skeletonization of vascular structures have been proposed
in the literature. In [6], the thinning is applied to the binary mask to obtain the
skeleton. Since the thinned structure remains a binary image, additional analysis
is needed to extract the topological information. A skeletonization method is also
proposed in [7], however, since the method works with surface meshes, it requires
the extraction of such a mesh from the binary mask. In [8], another method
based on Dijkstra minimum-cost spanning tree and which takes as input a binary
mask is presented. In their paper, the authors test the method on phantom and
clinical data acquired in neurosurgery. The same method is further extended and
tested for airways tree skeletonization in [9].

In this paper, we focus on the skeletonization of vascular trees extracted from
medical patient-specific data. We suppose that the skeletonization is performed
on binary maps obtained by the automatic segmentation [10]. In this case, the
resulting binary map typically suffers from artefacts, such as important surface
bumps (see Fig. 1), making the skeletonization process very challenging. Therefore,
we propose an extension of a graph-based method presented in [8] and [9]: first,
we modify the algorithm to make is less sensitive w. r. t. the quality of the input
data. Second, we propose a set of tests allowing for automatic removal of spurious
or false branches relying on geometric criteria. The proposed skeletonization
method is evaluated on 3 porcine and 32 human vascular trees and the results are
compared to the original version of the algorithm. Moreover, a parametrization
study is presented, showing the influence of method parameters on the quality of
constructed skeleton.

2 Methods

2.1 Minimum-cost spanning tree

The method based on the minimum-cost spanning tree [8] is applied directly
to the binary map of the vascular structure which is converted into a weighted



Fig. 1. Illustration of the automatically segmented binary map of hepatic vasculariza-
tion.

3D graph where each voxel belonging to the segmented volume is represented
by a weighted node. The method constructs the skeleton in two steps: First,
the spanning tree is constructed iteratively starting from the root voxel. In the
actual version of the algorithm, the root voxel is selected interactively in the
area close to the root of the vascular tree. This is the only step of the method
which currently requires manual intervention. Then, the edges between voxels
are constructed recursively using a sorted heap: in each step, the head of the
heap having the minimal weight is marked and all its unmarked neighbors are
inserted into the heap. In [8], the sorting weight w(v) of a voxel v is defined
as 1

rb(v)
, where rb(v) is the shortest distance of the voxel v from the boundary

of the segmented vessel. We employ a modified definition the sorting weight

w(v) = w(u) + d(u,v)
rb(v)k

where u is the voxel preceding v in the minimum-cost

spanning tree, and d(u, v) is the Euclidean distance between the voxels u and v.
The metric rb(v) is pre-computed for each voxel of the input binary map. The
modified definition of the heap-sorting weight makes the skeletonization process
less sensitive to the bumps of the segmented vascular tree illustrated in Fig. 1.
For each visited voxel, its distance from the tree root dr is stored.

In the second phase of the method, the centerlines are extracted recursively
from the spanning tree as in [8]:

– The 0-order path P0 is constructed as the shortest path connecting the root
and the voxel with the highest dr in the graph, that is the voxel which is at
the farest outlet from the root.

– Any n-order path Pn for n > 0 is extracted in three steps. First, an expansion
step is performed so that for each voxel r of the path Pn−1, a set Vr of
all voxels accessible throught the minimum-cost spanning tree from r is
constructed. Vr is the set of all voxels that are linked to r and not belonging
to Pn−1. Second, a voxel t ∈ Vv having the maximum value dr is found.
Finally, the new path is constructed as the shortest path from r to t, denoted
as (r, t).



2.2 Typical artefacts of graph-based skeletonization

(a) (b) (c) (d)

Fig. 2. Different scenarios occurring during skeletonization of automatically segmented
vessels. T-shape scenarios: (a) false path due to the surface bump, (b) correct branch.
V-shape scenarios: (c) false path due to the vessel thickening, (d) correct branch: the
background voxels shown in red.

The algorithm of the centerline extraction performs well on the synthetic data
as well as real data where the vascular structures are represented by smooth and
well-formed pipes. However, when applied to real data obtained using automatic
segmentation of hepatic veins, artefacts appear resulting in false branches, i. e.,
redundant bifurcations.

First, directly during the construction of a path (r, t), it is verified that none
of the voxels except r is already included in a path constructed before, i. e. there
is no collision between the new path and any previously constructed path. While
such situation should not happen due to the properties of the spanning tree,
exceptions might occur, i. e.when holes or plate-shaped structures are present in
the input binary mask.

The second type of artefacts is introduced by scenarios depicted in Fig. 2: for
the sake of reference, we divide the scenarios in T-shapes (Fig. 2a,b) and V-shapes
(Fig. 2c,d). In the case of T-shapes, the bumps (a) created by the automatic
segmentation are difficult to distinguish from real branches (b). In the case of
V-shapes, the problematic scenarios occur when a redundant centerline appears
in the graph due to the vessel thickening (c). While from the anatomical point of
view, such phenomenon is improbable, it is not rare in binary masks produced
by the automatic segmentation.

2.3 Filtering of spurious branches

In order to prevent the extraction of false branches, we propose to filter the
branches directly during the extraction of paths based on several criteria. First,
let us denote R the geometrical position in Cartesian coordinates of the branch
candidate root voxel r, T the position of its tip voxel t and finally C the position
of voxel c on the parent branch which has the lowest Euclidean distance from T .
In the following description of the algorithm, we always refer to Fig. 2.



# path # accepted # rejected
candidates all T-shape(b) V-shape(d) all collision T-shape(a) V-shape(c)

Flank Hepatic 5797 259 62 197 5538 530 5006 2
Flank Portal 2064 57 12 45 2007 90 1916 1
Supine Hepatic 4027 144 95 49 3883 249 3632 2

Table 1. Evaluation of the graph-based algorithm on the swine hepatic tree.

1. If |TR| < Lthrdb(r), the branch candidate is rejected. Here, the db(r) is
distance from boundary of the root voxel r and Lthr is a parameter, length
threshold. This parameter is a unitless quantity which determines the relative
ratio between a child branch having an acceptable length and the thickness
of the parent branch. The goal of this step is to eliminate the short false
branches produced either inside the tube of the parent branch or due to the
bumps (a).

2. In the next step, the correct V-shapes are identified (d). In this case, there
exist voxels on the line CT (connecting the voxels c and t) located outside of
the binary mask. Such background voxels guarantee that path is located in a
child branch which is correctly detached from the parent branch. Therefore,
in this step, the path candidate for which such voxels exist is directly accepted
as a new path and the algorithm proceeds with extraction of another path.

3. The branch candidate that made it to this step is sufficiently long but has
no background voxel. Therefore, it corresponds either to valid T-shape (b) or
invalid V-Shape (c) . In order to distinguish the two cases, we introduce the
second parameter, angle threshold Athr. The path candidate is accepted if
the angle 6 CRT > Athr, otherwise, it is rejected.

The algorithm stops when no new branches are added in the actual order.

3 Results

In all the tests, the skeletonization was always stopped after the extraction of
paths of order 5, as the segmentations used for validation contained no reliable
branches of a higher order.

3.1 Data

The porcine data sets were acquired from abdominal CT volumes of a female
pig scanned in flank and supine positions with voxel resolution of 0.5× 0.5× 0.5
mm3. While both portal and venous phases were obtained for the flank position,
only the venous phase was available for the supine configuration, thus resulting
in three data sets. The human data sets were acquired from abdominal CT and
MR volume with voxel resolution of 0.68× 0.68× 2.0 mm3 and 1.0× 1.0× 2.5
mm3, respectively. A retrospective cohort of fifteen patients (4 women, 11 men)
that received a bi-phasic magnetic resonance angiography (MRA) and computed



tomography angiography (CTA) on the same day were included in this study.
The MRA images were acquired on the Achieva 3T scanner (Philips Healthcare,
Best, The Netherlands) using a 3D mDIXON sequence and on the Discovery
MR450 scanner (GE medical Systems, Milwaukee,WI,USA) using the 3D LAVA
sequence. CTA images were acquired using the helical mode on the Brillance
64 scanner (Philips Healthcare, Best, The Netherlands) and the BrightSpeed
system (GE Medical Systems, Milwaukee, WI, USA). Vascular structures were
segmented in each data set using an automatic method [10].

3.2 Evaluation of the skeletonization

The graph-based skeletonization is evaluated in Tab. 1 for each vascular tree.
First, a large number of path candidates is extracted from the spanning tree. The
most significant reduction of candidates happens due to the insufficient length of
the candidate branch: more than 85% of candidates are false child branches, i. e.
too short when compared to the thickness of the parent branch. Less than 10%
of candidates are removed because of crossing with other branches (potential
cycles). Finally, less then 5% of candidates are accepted as new paths: majority
of them are accepted as V-shape vessels.

3.3 Method parametrization
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Fig. 3. Number of accepted branches w. r. t. the length threshold.

As introduced in section 2.3, the graph-based skeletonization method requires
two parameters: the length threshold Lthr and the parent–child angle threshold
Athr. As for the latter, very low sensitivity was observed w. r. t. this parameter:
only from 1 to 2 false V-shape candidates appeared during the extraction and
were eliminated by setting the threshold to 20◦. This observation confirms that
the construction of the spanning tree already prevents the formation false V-shape
paths.

In contrast, the value of Lthr influences the filtering significantly. Intuitively,
a logical choice for this parameter is 1; it should be sufficient to filter all the
candidates having the length shorter that the thickness of the parent branch.
However, this assumption is not valid when bumps are present in the input data
(Fig. 2). The size of the bumps can make it difficult to distinguish them from
short real branches; see Fig. 1 showing a sample of the real data used for testing.



In order to study the influence of Lthr on the skeletonization of the vascular
trees, we have performed a scaling of the parameter starting from 1.0 to 2.0;
the result is presented in Fig. 3. The plot shows that the number of accepted
branches decreases rapidly from 1.0 to 1.4; then, the decreasing slope becomes
less steep. Although it is not possible to specify the cut-off value which would
allow for reliable filtering of the false branches while keeping the real ones, we
propose using the value 1.4 as the threshold. The values in Tab. 1 have been
obtained with this parameter.

3.4 Original vs. Modified Skeletonization Method

Fig. 4. Comparison of the number of accepted branches; cN stands for the case N.
The results given by our method are displayed in blue and green. The color gradient
corresponds to increased values of k from k = 1 (blue) to k = 7 (green). The results
of Verscheure’s algorithm are displayed in yellow. The red horizontal line depicts the
number of real branches for each case.

In order to assess the method, we have compared the proposed approach
to the method presented in [8]. We used 32 segmentations performed using
the ITK-Snap semi-automatic segmentation algorithm based on active contour
(Snakes, [11]) on computed tomography and magnetic resonance images. The
segmentations corresponds either to human hepatic and splenic arteries or to the
human hepatic portal vascular system.

The best accuracy computed as the number of accepted branches, i. e. the
value for which the error in the branch number is minimal, is obtained for both
algorithms with Lthr = 2.5 regardless the values of the other parameters. Thus,
this value was used for the comparison of the two methods. With higher values
true branches are rejected as outliers. Fig. 4 shows the number of accepted
branches by the two algorithms versus the real number of branches determined
manually by an expert. The consistency of the branches were checked manually
for all datasets. The evaluation shows that the number of branches extracted



with the original algorithm proposed by Verscheure is slightly superior when
compared to the values obtained by our algorithm. Most of the time, a false branch
detected by Verscheure’s algorithm runs in parallel to another branch (see Fig.
5). Interestingly, even without an angle threshold, our modified method produces
on average 3 times less parallel branches when compared to the original method.
The failing cases are encountered for very noisy segmentation maps for which
the bumps are too large for the false branches to be filtered out by the length
threshold. Another important source of differences between the two algorithms is
given by false loops which occur when distance between distinct branches remains
under the resolution of the segmented image, leading to topological errors.

(a) (b)

Fig. 5. False branches running parrallel to another branch. Results obtained by Ver-
scheure’s algorithm.

The shape of the extracted centerlines depend also on the exponent k employed

in the defition of the heap-sorting weight w(v) = w(u) + d(u,v)
rb(v)k

: For k ≤ 3, the

centerlines tend to be rather straight and do not follow the shape of the vessel
properly. This is particularly obvious for tortuous vessels such as the splenic
arteries. Therefore, we recommend to use k > 3.

Fig. 6. Complete skeleton of the hepatic tree in porcine liver.



4 Conclusions

In this paper, we have presented a method of automatic skeletonization of vascular
trees. The algorithm was assessed on binary masks automatically segmented from
abdominal CT scans of a porcine liver. It was shown that it is possible to select
parametrization to suppress the false branches introduced by the noise in the
input data. In the actual case, we have further smoothed the extracted skeleton
using cubic splines. The illustration of the complete tree is shown in Fig. 6.

In the future work, we plan to integrate the algorithm to an automatic pipeline
employed in an augmented-reality framework for the intra-operative navigation
in hepatic surgery.
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