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ABSTRACT   5 

In 2004, Murray et al. published a review of methodological developments in both the design 6 

and analysis of group-randomized trials (GRTs). Over the last 13 years, there have been many 7 

developments in both areas. The goal of the current paper is to review developments in analysis, 8 

with a companion paper to focus on developments in design.  As a pair, these papers update the 9 

2004 review.  This analysis paper includes developments in topics included in the earlier review, 10 

such as methods for parallel-arm GRTs, inference for conditional and marginal effects, and new 11 

topics including methods to account for multiple levels of clustering and alternative estimation 12 

methods such as augmented GEE, targeted maximum likelihood and quadratic inference 13 

functions.  We also examine developments in dealing with missing outcome data, including 14 

doubly robust approaches, software available for analysis, and analysis of alternative group 15 

designs (including stepped wedge GRTs, network-randomized trials, pseudo-cluster randomized 16 

trials and individually-randomized group treatment trials).  These alternative designs, like the 17 

parallel-arm GRT, require clustering to be accounted for in both their design and analysis. 18 

 19 

INTRODUCTION 20 

In a group-randomized trial (GRT), the unit of randomization is a group and outcome 21 

measurements are obtained on members of those groups.1 Also called a cluster-randomized trial 22 

or community trial,2-5 a GRT is the best comparative design available if the intervention operates 23 

at a group level, manipulates the physical or social environment, cannot be delivered to 24 

individual members of the group without substantial risk of contamination, or under other 25 

circumstances (e.g., a desire for herd immunity in studies of infectious disease).1-5 26 



 3 

In GRTs, outcomes on members of the same group are likely to be more similar to each other 27 

than to outcomes on members from other groups.1 Such clustering must be accounted for in the 28 

design to avoid an under-powered study and in the analysis to avoid under-estimated standard 29 

errors and inflated type I error for the intervention effect.1-5 For analysis, regression modeling 30 

approaches are generally preferred and most commonly used because of their ease of 31 

implementation.6 Several textbooks now address these and other issues.1-5 32 

In 2004, Murray et al.7 published a review of methodological developments in both the design 33 

and analysis of GRTs. In the 13 years since, there have been many developments in both areas. 34 

The goal of the current paper is to focus on developments in analytic methods, including those 35 

relevant to designs described in a companion paper that focuses on developments in GRT 36 

design.8 As a pair, these papers update the 2004 review. With both papers, we seek to provide a 37 

broad and comprehensive review to guide the reader to seek out appropriate materials for their 38 

own circumstances. 39 

 40 

DEVELOPMENTS IN THE ANALYSIS OF PARALLEL GROUP-41 

RANDOMIZED TRIALS 42 

Methods for Superiority, Equivalence, and Non-Inferiority  43 

In GRTs, superiority trials are more common than equivalence or non-inferiority trials:  a 44 

PubMed search by one of the authors (DMM) of studies published in 2015 identified 562 45 

superiority GRTs but only 1 equivalence GRT and 2 non-inferiority GRTs.  Similarly, 46 

developments in the methods literature have focused on superiority GRTs, with developments 47 

for equivalence and non-inferiority GRTs limited to small sections in two of the more recent 48 
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textbooks2,5 and a review paper on sample size methods.9 As a consequence, the current review 49 

paper focuses on superiority GRTs. 50 

Methods for Intention-To-Treat and Alternative Intervention Effects  51 

In GRTs, protocol violations can lead to non-compliance at either the group- or member-level.5 52 

In order to minimize bias, intention-to-treat (ITT) principles are recommended at both levels 53 

rather than “on-treatment” and “per-protocol” analyses.2,4,5 While group-level protocol violations 54 

are usually easy to identify, member-level compliance may be more difficult to ascertain in 55 

practice.2 Jo et al. demonstrate that analyses which ignore compliance information could be 56 

underpowered to detect an ITT effect and propose a multilevel model combined with a mixture 57 

model.10 Implications of group-level non-compliance can be considerable in GRTs, given the 58 

small number of groups that are randomized in many GRTs.  59 

Methods Based on the Randomization Scheme  60 

Matching or stratification in the design has been recommended for some time as a way to ensure 61 

baseline balance on important potential confounders,1 with constrained randomization more 62 

recently developed.11  Recent reports suggest that most GRTs follow this advice.12-15  Matching 63 

and stratification in the design can be ignored in the analysis of intervention effects, without 64 

harm to the type I error rate, and often the saved degrees of freedom will improve power.16,17  65 

Recently, Donner et al. reported that ignoring matching can adversely affect other analyses, such 66 

as analyses that examine the relationship between a risk factor and an outcome;18 for this reason, 67 

investigators considering pair-matching should consider small strata instead (e.g., strata of 4).  Li 68 

et al.19 compared model-based and permutation methods in the context of constrained 69 

randomization adjusting for group-level covariates. They found that both the adjusted F-test and 70 
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permutation test maintained the nominal size and had improved power under constrained 71 

randomization compared to simple randomization.  72 

Model-Based Methods  73 

Model-based methods can be broadly classified according to the interpretation of the model 74 

parameters. Conditional model parameters are typically estimated using mixed-effects regression 75 

via maximum likelihood estimation (MLE) and are referred to as cluster-specific effects (or as 76 

subject-specific effects in the longitudinal analysis literature).  Effects are conditional on the 77 

random effects used to account for clustering and on other covariates included in the analysis. 78 

Conditional models are often recommended for studies focused on change within members or on 79 

mediation analyses.7 Parameters of marginal models are usually estimated using generalized 80 

estimating equations (GEE).20,21 They define the marginal expectation of the dependent variable 81 

as a function of the independent variables and assume that the variance is a function of the mean; 82 

they separately specify a working correlation structure for observations made on members of the 83 

same group. Marginal models are often preferred for analyses of population-level effects because 84 

the intervention effect coefficient is interpreted as a population-averaged effect. In practice, 85 

marginal models are less frequently used than conditional models.6 86 

Marginal and conditional intervention effects are equal for identity and log links22 and the 87 

distinction between them is only important for link functions such as the logit for binary 88 

outcomes. Although some authors have advocated for the log instead of logit link for binary 89 

outcomes,23 this approach is not widely used, possibly because of model convergence problems 90 

for some data.24,25 Alternatively, a modified Poisson approach with log-link and robust standard 91 

errors could be used in the GEE framework,26 since it does not suffer from the same convergence 92 
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problems as the binomial model with log link,27 but it may be less common because of the 93 

familiarity of logistic regression among epidemiologists and biostatisticians.   94 

In practice, the question about which of conditional or marginal effects are desired depends on 95 

the research question. It is essential to understand the underlying assumptions of each method: 96 

conditional models rely on correct specification of untestable aspects of the data distribution, 97 

while marginal models rely on a correct definition of the population of interest, which can make 98 

it difficult to generalize results to other populations.28  We address each of the two approaches in 99 

more detail below. 100 

Conditional Approaches 101 

If the mixed effects model used to estimate conditional effects is misspecified, the estimates are 102 

difficult to interpret and, even if regression diagnostics can help,29 standard errors (SEs) are not 103 

robust. Fortunately, Murray et al.30 and Fu31 have shown that mixed models are robust to 104 

substantial violation of the normality assumptions for member- and group-level errors, so long as 105 

balance is maintained at the group level.  Parameter estimation by restricted maximum likelihood 106 

estimation (REML) is preferred to MLE when few groups are available.32-34 For binary 107 

outcomes, alternative methods for specifying the test degrees of freedom have been examined in 108 

small sample GRTs and the between-within method is recommended.32,35 109 

Multiple Levels of Clustering in Conditional Models. GRTs may involve multiple levels of 110 

clustering due to repeated measures on individuals or groups or additional hierarchical levels in 111 

the design. Murray1 distinguished between mixed-effects models based on the number of 112 

measurements included in the analysis and recommended mixed-effects analysis of variance 113 

(ANOVA) or covariance (ANCOVA), or mixed-effects repeated measures ANOVA/ANCOVA, 114 

for analyses involving 1 or 2 measurements per person or per group; those models can account 115 
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for all sources of random variation in such data if they are properly specified.36  However, that is 116 

not the case in analyses involving 3 or more measurements per person or per group, where the 117 

sources of random variation may be different; instead, such analyses require a random 118 

coefficients model in which random trends and intercepts are calculated for each member (in 119 

cohort GRT designs) and group (in cohort and cross-sectional GRT designs), average trends and 120 

intercepts are calculated for each study arm, and the intervention effect is the net difference in 121 

the average study-arm trends.36  Trends are often estimated as linear slopes, but can take another 122 

form.  123 

Variable Group Size in Conditional Models Johnson et al. focused on the analysis of Gaussian 124 

outcomes from GRTs with variable group size.37  They compared ten model-based approaches 125 

and found that a one-stage mixed model with Kenward-Roger32 degrees of freedom and 126 

unconstrained variance components performed well for GRTs with 14 or more groups per study 127 

arm.  A two-stage model weighted by the inverse of the estimated theoretical variance of the 128 

group means and with unconstrained variance components performed well for GRTs with 6 or 129 

more groups per study arm.  A number of other models resulted in an inflated type I error rate 130 

when there was substantial variability in group size. 131 

Marginal Approaches 132 

When the GEE approach is used to estimate marginal effects, unbiased intervention effects can 133 

be estimated even if the working correlation structure is incorrect (e.g. using robust SEs via the 134 

sandwich estimator), although precision is increased if the working matrix is correct. Where 135 

degrees of freedom are limited for the test of interest, as often happens in GRTs, SE estimation is 136 

often biased downward and no method corrects for it in all cases, although several have been 137 

proposed.38-44  138 
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Multiple Levels of Clustering in Marginal Models. While multilevel clustering is easy to account 139 

for in mixed-effects regression, there is less literature for the GEE approach. The alternating 140 

logistic regression approach45 for binary and ordinal outcomes can be used to account for 141 

correlation due to repeated measures on individuals within groups and can be implemented 142 

within a GEE framework in both R (the alr package) and SAS (PROC GEE).46  The second-143 

order GEE approach which, in contrast to regular GEE, models the working correlation structure 144 

as a function of covariates, can be implemented in R (geepack in R47).48 For more general 145 

working correlation matrices, the user typically needs to perform additional programming in 146 

order to provide the appropriate covariance matrix and convergence may not be achieved. In 147 

addition, although the intervention effect is unbiased when the marginal model is not correctly 148 

specified, the SEs estimated using GEE may be too small. To correct this, a robust sandwich 149 

estimator of the variance can be used but such an approach leads to loss of power.49  Because of 150 

this accuracy-power trade-off, mixed-effects models may be a better option to deal with GRTs 151 

involving more than two levels, although the effects estimated in such models are conditional 152 

rather than marginal effects. 153 

Variable Group Size in Marginal Models. Although GEE analysis can accommodate variable 154 

group size, informative group size can negatively impact efficiency. In this case, Williamson et 155 

al.50 showed that GEE weighted by group size can correct bias in the estimated intervention 156 

effect. This approach is equivalent and less computationally demanding than within-cluster 157 

resampling.51 158 

Advanced GEE Approaches to Improve Efficiency. For binary outcomes, GEE is more 159 

conservative (i.e. the intervention effect will be estimated closer to the null) than mixed-effects 160 

models.28,52 Moreover, the SE of the estimated intervention effect is also typically larger when 161 
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using GEE so that much recent effort has focused on efficient estimation. GEE is most efficient 162 

when the true correlation structure of the data is chosen as the working correlation structure. Hin 163 

et al. compared multiple selection criteria for the working correlation matrix.53 An alternative 164 

approach is augmented GEE (AU-GEE), a method developed for independent data using a causal 165 

inference framework,54 which has been extended to clustered data.55 AU-GEE uses covariate 166 

information to improve efficiency in a two-stage approach that specifies a model for the potential 167 

outcomes under the treatment not received. AU-GEE is unbiased and robust to misspecification 168 

of the potential outcome model, though correct specification improves efficiency. As for the 169 

analysis of all trials, only baseline covariates should be included in AU-GEE for the analysis of 170 

GRT data because adjustment for post-baseline covariates may lead to bias.56 Alternative 171 

methods are available to account for post-baseline, time-varying confounding.57-59  172 

Alternatives to GEE. The quadratic inference function (QIF) method is an alternative to GEE for 173 

the estimation of marginal effects. Song et al.60 demonstrate that QIF has advantages over GEE: 174 

it is more efficient and more robust to outliers; it has a goodness-of-fit test of the marginal mean 175 

model and permits straightforward extensions to model selection. In large samples, QIF is more 176 

efficient than GEE when the working correlation structure for the data is misspecified.61 177 

However, the SEs may be under-estimated for small and medium sample size or for variable 178 

group size.62 More recent work by Westgate63,64 provides improvements by using a bias-179 

corrected sandwich covariance estimate and by simultaneously selecting the QIF or GEE while 180 

selecting the best working correlation structure.65  Despite the many attractive properties of QIF, 181 

at this time there are few applications in public health.66-68  182 

A second alternative estimation method is targeted maximum likelihood estimation (tMLE).69 183 

tMLE is a maximum likelihood-based G-computation estimator that targets the fit of the data-184 
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generating distribution to reduce bias in the parameter of interest. It is based on a machine 185 

learning approach that fluctuates an initial estimate of the conditional mean outcome and 186 

minimizes a loss function to provide an estimate of the parameter of interest.70 The approach has 187 

been used in public health71,72 and shows much promise for GRTs73,74 because it can improve 188 

efficiency by simultaneously accounting for missing data and chance baseline covariate 189 

imbalance without committing to a specific functional form.75   190 

Permutation Methods 191 

Permutation analysis was introduced for GRTs by Gail et al. for the COMMIT trial.76 They 192 

found that the permutation test had nominal type I and II error rates across a variety of settings 193 

common to GRTs, when the member-level errors were Gaussian or binomial, even when very 194 

few heterogeneous groups were randomized to each study arm, and even when the ICC was 195 

large, so long as there was balance at the level of the group. Murray et al.30 extended this work, 196 

showing that unadjusted permutation tests offer no more protection against confounding than 197 

unadjusted model-based tests, while the adjusted versions of both tests perform similarly. The 198 

permutation test was more powerful than the model-based test when the data were binomial and 199 

the ICC>0.01.  Fu31 extended the work to heavy tailed and very skewed distributions and 200 

reported similar results. 201 

Li et al. compared model-based and permutation methods in the context of constrained 202 

randomization adjusting for group-level covariates. They found that both the adjusted F-test and 203 

permutation test maintained the nominal size and had similar power, but cautioned that the 204 

randomization distribution must be calculated within the constrained randomization space to 205 

prevent inflating the type I error rate.19   206 
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DEVELOPMENTS IN THE ANALYSIS OF ALTERNATIVES TO THE 207 

PARALLEL GRT  208 

Stepped Wedge GRT 209 

Both between- and within-group information is available to estimate the intervention effect from 210 

a stepped wedge group randomized trial (SW-GRT).77,78 However, because the control condition 211 

is typically observed earlier than the intervention condition, time is a potential confounder and 212 

should be accommodated in the analysis of SW-GRTs, typically by accounting for time as a 213 

predictor.79 As for parallel GRTs, clustering by group must be accounted for, and longitudinal 214 

measures on individuals can be accommodated within either the mixed-effects or GEE 215 

framework, though more easily using mixed-effects models (see both Multiple Levels of 216 

Clustering sections). Conditional approaches are more commonly used in practice and reported 217 

on in the methods literature.79,80 Several authors have highlighted other characteristics specific to 218 

SW-GRT including lagged intervention effects81 and fidelity loss over time.79  219 

Network-Randomized GRT 220 

Because the network properties of a network-randomized GRT are primarily used at the design 221 

stage,82 and because they differ from regular GRTs only in the novel way in which groups are 222 

defined, the theory on the analysis of parallel-arm GRTs can be applied to parallel-arm network-223 

randomized GRTs.83 For example, in a ring trial of an Ebola vaccine,83 in which a network was 224 

defined as all individuals who had regular physical contact with the incident (index) case of 225 

Ebola and in which all contacts received the vaccine (placebo or active), standard GRT methods 226 

were used. For network-randomized GRTs in which the intervention is not directly administered 227 

to all individuals and in which it is expected that the intervention spreads over the network (e.g. 228 

the snowball trials of a HIV prevention intervention for drug users84 or a microfinance 229 
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intervention85), methods86,87 are available to estimate both the direct and indirect effects of the 230 

intervention. When network information is available and the outcome of interest is known to be a 231 

disseminated process, adjusting for network features such as information on the location of each 232 

individual within the network (i.e. group) can improve both the efficiency and power of the 233 

analysis.88  234 

Pseudo-Cluster Randomized Trial 235 

Teerenstra et al.89 compared analytic methods for continuous outcomes in pseudo-cluster 236 

randomized trials (PCRT) and Campbell and Walters discussed principles in their recent 237 

textbook.5 Clustering by the unit of randomization at the first stage (e.g. provider) must be 238 

accounted for in both the design and analysis of PCRT. No explicit sample size or analytic 239 

methods are known to be available for non-continuous outcomes.   240 

Individually Randomized Group Treatment Trial 241 

Baldwin et al. compared four analytic models for IRGTs and three methods for calculating 242 

degrees of freedom.90  A multilevel model adapted to reflect clustering in only one study arm, 243 

combined with either Satterthwaite91 or Kenward-Roger32 degrees of freedom, provided better 244 

type I error control, better efficiency, and less bias, even with heteroscedasticity at the member 245 

level.  This finding is consistent with earlier reports by Pals et al.92 and Roberts et al.93 More 246 

recently, Roberts & Walwyn94 and Andridge et al.95 considered the circumstance in which 247 

members are associated with more than one small group or change agent.  Both found that 248 

ignoring membership in multiple groups further inflates the type I error rate.  Roberts & Walwyn 249 

reported that multiple member multilevel models maintained the nominal type I error rate; they 250 

also provide sample size and power formulae.94 251 

DEVELOPMENTS TO ADDRESS DATA CHALLENGES  252 
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Missing Outcome Data 253 

Two recent reviews6,96 indicate that missing outcome data is common in GRTs, though 254 

investigators frequently analyze only available data without accounting for the missing data 255 

pattern. When the covariate-dependent missingness (CDM) assumption is plausible, both mixed 256 

effects and GEE models provide unbiased estimates of the intervention effect when the CDM 257 

covariates are included in an analysis of all available data.97,98 AU-GEE also can provide 258 

unbiased effects by including all CDM covariates in the augmentation component55 and has the 259 

advantage that all estimates can still be interpreted as marginal effects. Other two-stage 260 

approaches such as multiple imputation (MI) or inverse probability weighting (IPW) can provide 261 

unbiased intervention effects under certain conditions for more general missing at random 262 

(MAR) patterns and may provide increased precision compared to covariate-adjusted conditional 263 

or marginal models for CDM.97,99 Although there is less literature on how to deal with missing 264 

not-at-random (MNAR) data,100 sensitivity analyses are recommended.101 A recent review 265 

showed that very few GRTs performed any sensitivity analyses for their missing data 266 

assumptions.6 267 

To avoid possible type I error, MI should account for the clustered data structure.102,103 Fixed 268 

group effects should not be used due to reduced power.104 For binary outcomes, Ma et al.105 and 269 

Caille et al.106 show that the preferred MI method depends on the number of groups and the 270 

design effect, and note that bias may arise for some approaches even for CDM missingness. 271 

Using group-specific mean imputation may be adequate for continuous outcomes.98,102 Hossain 272 

et al.98 show that if the missing data mechanism has an interaction between a covariate predictive 273 

of the outcome and study arm, the imputation strategy must account for this interaction to be 274 

unbiased. 275 
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Whereas MI requires specifying the distribution of the missing data conditional on covariates, 276 

IPW requires specifying the probability of being missing depending on covariates. Theoretically, 277 

both approaches can be used for any type of outcome and for both CDM and more general forms 278 

of MAR mechanisms.99 While IPW requires an additional assumption of positivity (all 279 

participants have a non-zero probability of being observed), it may be viewed as easier to define, 280 

particularly in the presence of non-intermittent missingness.107 Importantly, and as for MI, if the 281 

missing data mechanism has an interaction between a covariate predictive of the outcome and 282 

study arm, the weights must be generated by accounting for this interaction in order to be 283 

unbiased.108 Prague et al.109,110 developed a doubly robust estimator in the context of IPW, which 284 

provides an unbiased estimate if either the marginal mean model or the missing data model is 285 

correctly specified.  They demonstrated that a doubly-robust augmented GEE approach can 286 

simultaneously account for both CDM and baseline covariate imbalance in GRTs when the 287 

parameter of interest is a marginal effect. Combining MI and IPW is a promising new approach 288 

which may have superior performance to IPW or MI alone when there are missing covariates in 289 

addition to missing outcomes.111 290 

Baseline Imbalance of Covariates 291 

While design strategies such as restricted randomization8 can help to achieve baseline covariate 292 

balance, they may not be easy to implement (e.g. if group characteristics are unknown in 293 

advance) and chance imbalance may arise regardless. In this case, some form of model-based 294 

covariate adjustment could be used such as standard multivariate regression for conditional 295 

models or AU-GEE for marginal models.55 The advantage of AU-GEE in this case is that it is 296 

doubly robust in that the consistency of intervention effect estimate requires correct specification 297 

of either the marginal mean structure or the treatment model, and it separates covariate 298 
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adjustment from intervention effect estimation thereby reducing the risk of choosing the 299 

adjustment models to obtain the most significant results.  The standard multivariate regression 300 

adjustment approach does not enjoy either of these benefits. 301 

Alternatively, Hansen and Bowers112 proposed a balancing criterion and studied its 302 

randomization distribution in order to simultaneously test for balance of multiple covariates in 303 

both RCTs and GRTs. Leyrat et al.113 suggested to use the c-statistic of the propensity score 304 

model to measure covariate balance at the individual level. Leon et al.114 recommended 305 

propensity score matching to correct for baseline imbalance; in a simulation study, they report a 306 

median 90% reduction in bias. Nevertheless, the Consolidated Standards for Reporting of Trials 307 

(CONSORT)115 recommends that the adjustment covariates be specified a priori for primary 308 

analyses so that secondary analyses could test sensitivity of the primary findings to adjustment 309 

for covariates identified post hoc.  310 

Software 311 

Table 1 identifies three software programs that can be used to analyze data from GRTs.  The 312 

table is organized around topics considered in the current paper. While none of the three software 313 

programs can readily implement both QIF and tMLE for GRTs, the R program offers the most 314 

ready-to-use functionality given its broad applicability to the methods cited in the current paper.   315 

[TABLE 1 ABOUT HERE.] 316 

REPORTING OF RESULTS  317 

The CONSORT guidelines for individually randomized trials were extended to GRTs in 2004115  318 

and most journals now require authors to conform to these guidelines. Based on a review of 300 319 

GRTs published between 2000-2008, Ivers et al. reported that 60% and 70% accounted for 320 

clustering in the sample size calculation and in the analysis, respectively, 56% used restricted 321 
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randomization, and most (86%) allocated more than 4 groups per arm.14  A more recent review 322 

of 86 trials published in 2013-2014 showed that 77% and 78% accounted for clustering in the 323 

sample size calculation and in the analysis, respectively, and that 51% used some form of 324 

restricted randomization.15 325 

Given concerns about the ethical conduct of GRTs,116,117 recent reports on conduct and reporting 326 

have focused on the ethics of GRTs.  For example, Sim and Dawson discuss the challenges 327 

associated with obtaining informed consent in GRTs.118 The Ottawa Statement on the ethical 328 

design and conduct of GRTs was published in 2012119 with a reevaluation in 2015.120    329 

DISCUSSION 330 

In this review, we have summarized many of the most important advances in the analysis of 331 

GRTs during the 13 years since the publication of the earlier review by Murray et al.7 Many of 332 

these developments have focused on developments in marginal model parameter estimation (e.g. 333 

augmented GEE, QIF and tMLE) and missing data methods. Some topics that space limitations 334 

have prevented include review of recent developments in survival outcomes,2,121-125 measurement 335 

bias,126,127 validity,128,129 Bayesian methods,4,130-132 cost-effectiveness analyses4,133-136 and 336 

mediation analyses to uncover mechanisms of action.137-140 337 

Through this review, we have sought to ensure that the reader is reminded of the value of well-338 

thought out analysis of GRTs and of keeping up to date with the many recent developments in 339 

this area. Pairing this knowledge with our companion review of developments in the design of 340 

GRTs,8 we hope that our review leads to continued improvements in the design and analysis of 341 

GRTs. 342 

APPENDIX: GLOSSARY 343 
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Augmented GEE: “Augmenting the standard GEE with a function of baseline covariates.”55 344 

These methods adapt semiparametric theory developed by Robins141 and Robins, Rotnitzky, and 345 

Zhao142 for observational studies with time-varying exposures and missing data problems, 346 

respectively. They consist of leveraging the estimating equation by a predictor function for 347 

counterfactual outcomes under the intervention not received by the group/cluster considered 348 

missing. 55 349 

Baseline covariate balance: The group-level and individual-level covariate distributions are 350 

similar in all study arms.11  351 

Choice of balancing criterion: Li et al. describe several balancing criteria to assess how well a 352 

GRT is balanced across covariates.  These include the “best balance” (BB) metric of de Hoop et 353 

al.,143 the balance criterion (B) of Raab and Butcher,11 and the total balance score introduced by 354 

Li et al.19 355 

Coefficient of variation: A measure of between-group variation, defined in Table 1 of our 356 

companion paper.8 357 

Cohort GRT design:  A cohort of individuals is enrolled at baseline and those same individuals 358 

are followed up over time. 359 

Constrained randomization:  Refers “to those designs that go beyond the basic design 360 

constraints to specify classes of randomization outcomes that satisfy certain balancing criteria, 361 

while retaining validity of the design.”144 362 

Cross-sectional GRT design: A different set of individuals is obtained at each time point. 363 

Designed balance at the group level: When there are equal numbers of groups randomized to 364 

each study arm. 365 
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Intraclass correlation:  A measure of between-group variation, defined in Table 1 of our 366 

companion paper.8 367 

Covariate-dependent missingness (CDM) assumption: The assumption that “missingness in 368 

outcomes depends on covariates measured at baseline, but not on the outcome itself.”98 369 

Doubly-robust augmented GEE approach:  Combining augmented GEE and IPW, a doubly-370 

robust estimator is obtained, which provides an unbiased estimate if either the marginal mean 371 

model or the missing data model is correctly specified.109,110 372 

Equivalence:  Assessing whether the new intervention is equivalent to the comparison 373 

intervention. 374 

G-computation estimator: A computational method to estimate causal effect in structural 375 

nested models. These models are designed to deal with confounding by variables affected by 376 

intervention.145  377 

Individually Randomized Group Treatment Trials: “Studies that randomize individuals to 378 

study arms but deliver treatments in small groups or through a common change agent.”8,92 379 

Informative cluster size: When the outcome measured is related to the size of the cluster.50 380 

Missing at Random (MAR) assumption:  Rubin’s (1976) definition is that “data are missing at 381 

random if for each possible value of the parameter φ [the parameter of the conditional 382 

distribution of the missing data indicator given the data], the conditional probability of the 383 

observed pattern of missing data, given the missing data and the value of the observed data, is 384 

the same for all possible values of the missing data.”146 385 

Network-Randomized GRT: “The network-randomized GRT is a novel design that uses 386 

network information to address the challenge of potential contamination in GRTs of infectious 387 

diseases.”8,82,84,147 388 
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Non-inferiority:  When a trial is designed to show that the new intervention is not worse than 389 

the comparison intervention. 390 

On treatment analyses:  When groups are analyzed “according to the intervention they actually 391 

received.”2 392 

Per protocol analyses:  When groups “not receiving the correct intervention are excluded.”2 393 

Pseudo-cluster randomized trial: Intervention is allocated to individuals in a two-stage 394 

process.  “In the first stage, providers are randomized to a patient allocation-mix….  In the 395 

second stage, patients recruited to the PCRT are individually randomized to intervention or 396 

control according to the allocation probability of their provider.”8  397 

Stepped Wedge GRT: “A one-directional crossover GRT in which time is divided into intervals 398 

and in which all groups eventually receive the intervention.”8,78 399 

Superiority: When a trial is designed to establish whether a new intervention is superior to the 400 

comparison intervention (e.g., another drug, a placebo, enhanced usual care).  However, the 401 

statistical test is still two-sided, allowing for the possibility that the new intervention is actually 402 

worse than the comparison. 403 

Within-cluster resampling: Randomly sample one observation from each cluster, with 404 

replacement.  Then analyze this resampled dataset.  Repeat this process a large number of times.  405 

“The within-cluster resampling estimator is constructed as the average” of all of the resample-406 

based estimates (see Hoffman et al.51 pp. 1122-3). 407 
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Table 1. Summary of known functions and procedures to analyze GRTs using methods 744 
described in the current review. 745 

 Software 
Method SAS Stata R 

Outcomes analysis of all available data 
Mixed-effects models  PROC MIXED 

PROC NLMIXED 
PROC GLIMMIX 

mixed 
melogit 

mepoisson 

lme4 
nlme 

Generalized estimating equations 
(GEE) 

PROC GENMOD1 xtgee geeglm/geeM 

Targeted maximum likelihood 
(tMLE) 

N/A N/A N/A2 

Quadratic inference function (QIF) %qif N/A qif3 

Permutation tests %ptest N/A N/A 

Accounting for missing outcomes 
Multiple imputation for clustered data %mmi_impute4 

%mmi_analyze 
REALCOM Impute 

mi impute4 
pan 

jomo5 

Inverse probability weighting (IPW) PROC GENMOD6 N/A7 CRTgeeDR 
    

Causal-inference based methods8 

Augmented GEE (AU-GEE) N/A N/A CRTgeeDR 
Doubly robust AU-GEE N/A N/A CRTgeeDR 

    
 
Footnotes: 1. PROC GEE is another option, but is in experimental phase and has limited usefulness for GRTs over and above 
PROC GENMOD.  2. In R, tmle is available for tMLE, but at the time of writing, does not allow for clustering. 3. As of the 
writing, the authors have been unable to load the package and it only allows equal cluster size, but Westgate has modified the 
code for GRTs with variable cluster size in the appendix of his paper63 4. Only useful for continuous outcomes. 5. In R, mice is 
available for multiple imputation but at the time of writing, does not account for clustering. 6.  Cannot account for imprecision 
in the weights. 7. xtgee cannot accommodate individual-level weights but only group-specific weights. 8. Both of the listed 
methods are related: AU-GEE accounts for baseline covariate imbalance and doubly robust AU-GEE, an extension of AU-GEE, 
accounts for both baseline covariate imbalance and missing data. N/A: not available at the time of writing. 
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