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Abstract—In this paper, we introduce the ASTRES∗ toolbox
which offers a set of Matlab functions for non-stationary multi-
component signal processing. The main purposes of this proposal
is to offer efficient tools for analysis, synthesis and transformation
of any signal made of physically meaningful components (e.g.
sinusoid, trend or noise). The proposed techniques contain some
recent and new contributions, which are now unified and theoret-
ically strengthened. They can provide efficient time-frequency or
time-scale representations and they allow elementary components
extraction. Usage and description of each method are then
detailed and numerically illustrated.

I. INTRODUCTION

Real world signals are often non-stationary and made of

several components. They require advanced techniques to be

efficiently processed. Unfortunately, the Short-Time Fourier

Transform (STFT) and the Continuous Wavelet Transform

(CWT) which belong among the most usual approaches, are

limited due to a poor energy localization in the time-frequency

plane [1].

Two solutions, the reassignment and the synchrosqueez-

ing methods [2], [3], [4], can improve the readability of a

time-frequency representation (TFR). More particularly, the

synchrosqueezing can provide sharpened and invertible TFRs

allowing many applications like noise removal and signal

decomposition into modes [3], [5], [6]. In addition, the

Empirical Mode Decomposition (EMD) [7] and the Singular

Spectrum Analysis (SSA) [8], which belong to data-driven

methods, allow unsupervised signal decomposition into a sum

of physically meaningful components (e.g. periodic functions,

trend or noise). Several recent developments were proposed to

enhance these techniques [9] and to enable a fully automatic

version of SSA, in the same flavor as EMD.

This paper proposes a collection of Matlab functions related

to the new methods developed in the “Analysis, Synthesis,

Transformation by Reassignment, EMD and Synchrosqueez-

ing” (ASTRES) research project∗. This new toolbox (cf. Fig. 1),

designed for automatic signal mode extraction, can be viewed

as an extension of the previously proposed Time-Frequency

ToolBox (TFTB)1 . It contains implementations of some recent

contributions related to reassignment, synchrosqueezing [10],

[11], [6], [12], EMD [13], [14], and SSA [9] methods. This

paper is organized as follows. In Section II, proper definitions

∗This research was supported by the French ANR ASTRES project (ANR-
13-BS03-0002-01).

1http://tftb.nongnu.org, 2https://github.com/dfourer/ASTRES toolbox

TFRs

STFT CWT S−transform

reassignment synchrosqueezing

ridge detection

Data−driven methods 

EMD SSA

Mode extraction

Fig. 1. ASTRES toolbox content description freely available online2.

of the considered transforms and their TFRs are presented. In

Section III, reassigned and synchrosqueezed versions of each

transform are described with two ridge detection methods. Sec-

tion IV describes data-driven methods, EMD and SSA, with

their corresponding new developments. Finally, the proposed

methods are illustrated by numerical experiments on real world

signal in Section V, before concluding the paper in Section VI.

II. TIME-FREQUENCY REPRESENTATIONS

A. Short-time Fourier transform (STFT)

Let Fhx (t, ω) denote the STFT of signal x, using a differen-

tiable analysis window h, defined as

Fhx (t, ω) =

∫

R

x(u)h(t− u)∗ e−jωu du, (1)

z∗ being the complex conjugate of z. Thus, the spectrogram

can be computed by |Fhx (t, ω)|2 (cf. tfrstft, tfrgab). Eq.

(1) admits the following synthesis formula when h(t0) 6= 0,

allowing to recover signal x with a delay t0 ≥ 0 (cf.

rectfrgab)

x(t− t0) =
1

h(t0)

∫ +∞

−∞
Fhx (t, ω) e

jω(t−t0) dω

2π
. (2)

An efficient recursive implementation (suitable for real-time

computation), is proposed in [10], [12]. It uses a specific

causal (one-sided) analysis window which can be expressed

as hk(t)=
tk−1

Tk(k−1)!
e
−t/T U(t), with k ≥ 1, where U(t) is the

Heaviside step function and T a time spread parameter (cf.

recursive_stft and stft_rec).

B. Continuous wavelet transform (CWT)

The CWT of a signal x is defined for an admissible mother

wavelet function Ψ as [1]

WΨ
x (t, s) =

1
√

|s|

∫ +∞

−∞
x(τ)Ψ

(

τ − t

s

)∗
dτ (3)



If we define the scale as s = ω0

ω , ω0 being an arbitrary

frequency, Eq. (3) can now be expressed as a time-frequency

transform as

CWx(t, ω) =

√

|ω|
ω0

∫ +∞

−∞
x(τ)Ψ

(

ω

ω0
(τ − t)

)∗
dτ. (4)

The scalogram can be computed by |Wx(t, s)|2 or

|CWx(t, ω)|2. If we use the Morlet wavelet [1], expressed as

Ψ(t) = π−1/4
√
T

e
−t2

2T2 e
jω0t, we finally obtain MWx(t, ω) =

√

|ω|
ω0T

√
π

∫ +∞

−∞
x(τ) e

−ω2(t−τ)2

2(ω0T )2 e
−jω(τ−t) dτ (5)

(cf. tfrscalo and MW). The synthesis formula of Eq. (3) is

given by (cf. recMW)

x(t) =
1

Cψ

∫

R

WΨ
x (t, s)|s|−3/2ds , with Cψ=

∫

R

FΨ(ω)
∗ dω

ω
(6)

where FΨ(ω) denotes the Fourier transform of Ψ(t).

C. Stockwell transform (S-transform)

The S-transform [15] can be defined for a given zero-mean

signal x as (cf. tfrst)

STx(t, ω) =
|ω|√
2πω0T

∫ +∞

−∞
x(τ) e

−ω2(t−τ)2

2(ω0T )2 e
−jωτ dτ (7)

where T is the width of the Gaussian analysis window when

ω = ω0. The corresponding TFR, called Stockwellogram, is

provided by |STx(t, ω)|2.The S-transform can be viewed as a

STFT using a frequency-varying window width,

SThx(t, ω) =
|ω|
ω0

∫ +∞

−∞
x(τ)h

(

ω

ω0
(t− τ)

)

e
−jωτ dτ (8)

where h is a Gaussian window defined as h(t) = 1√
2πT

e
− t2

2T2 .

The S-transform can also be related to the Morlet wavelet

transform by

STx(t, ω) =

√

|ω|
2
√
πω0T

e
−jωt MWx(t, ω), (9)

which shows that the S-transform can be viewed as a normal-

ized phase-shifted Morlet wavelet transform. Thus, substitut-

ing MWx in Eq. (6) leads to the S-transform synthesis formula

(cf. rectfrst2) [16]

x(t) =
1

Ch(ω0T )

∫

R

STx(t, ω) e
jωt dω

|ω| , (10)

where Ch(ω0T ) is a proportionality factor defined by

Ch(ω0T ) =

∫

R

Fh(ξ − ω0)
dξ

|ξ| . (11)

III. REASSIGNMENT AND SYNCHROSQUEEZING

Reassignment and synchrosqueezing are sharpening tech-

niques designed to improve TFRs. The main difference be-

tween these methods is the reconstruction capability of syn-

chrosqueezing and a quite poorer time-frequency localization

compared to the reassignment, which is not invertible.

A. Reassignment

For each transform, the TFR values are moved according

to the map (t, ω) 7→ (t̂(t,ω), ω̂(t,ω)), where t̂(t,ω) = Re
(

t̃(t,ω)

)

and ω̂(t,ω) = Im (ω̃(t,ω)) (resp. ŝ(t,ω) = Im(s̃(t,ω))), are the

reassignment operators.

1) STFT: Reassignment operators can be computed as [2]

t̃(t,ω) = t− F T h
x (t,ω)

Fhx (t,ω)
, ω̃(t,ω) = jω +

FDh
x (t,ω)

Fhx (t,ω)
, (12)

with T h(t) = th(t) and Dh(t) = dh
dt (t). Thus, the reas-

signed spectrogram can be computed as (cf. tfrrsp and

recursive_rsp) RFx(t, ω) =
∫∫

R2

|Fhx (τ,Ω)|2δ
(

t− t̂(τ,Ω)
)

δ (ω − ω̂(τ,Ω)) dτdΩ. (13)

A recent extension of the reassignment process, based on the

Levenberg-Marquardt algorithm, allows to adjust the energy

localization in the time-frequency plane through a damping

parameter µ [17]. The new reassignment operators can be

computed as
(

t̂µ(t, ω)
ω̂µ(t, ω)

)

=

(

t

ω

)

−
(

∇tRhx(t, ω) + µI2
)−1

Rhx(t, ω) (14)

with Rhx(t,ω)=

(

t− t̂(t,ω)

ω − ω̂(t,ω)

)

,∇tRhx(t,ω)=
(

∂Rh
x

∂t (t,ω)
∂Rh

x

∂ω (t,ω)

)

where I2 is the 2 × 2 identity matrix. As a result, the

Levenberg-Marquardt reassigned spectrogram can be obtained

by replacing (t̂, ω̂) by (t̂µ, ω̂µ) in Eq. (13) (cf. tfrlmrgab

and recursive_lmrsp).

2) CWT: Since, ∂
∂tW

Ψ
x (t, s) = − 1

sW
DΨ
x (t, s), the CWT

reassignment operators can be expressed by [2], [1], [18]

t̃(t, s) = t+ s
W T Ψ
x (t, s)

WΨ
x (t, s)

, (15)

s̃(t, s) =
ω0

ω̃(t, s)
= −sω0W

Ψ
x (t, s)

WDΨ
x (t, s)

. (16)

Then, the reassigned scalogram can be computed as (cf. rMW)

RWx(t, s) =
∫∫

R2

|WΨ
x (τ, s′)|2δ

(

t− t̂(τ,s′)
)

δ (s− ŝ(τ,s′))
s′2

ŝ(τ,s′)2
dτds′.

(17)

3) S-transform: Reassignment operators can be computed

as for the STFT (cf. proofs in §8, [16]). Thus, both classical

and Levenberg-Marquardt reassigned Stockwellograms are ob-

tained through Eqs. (12) and (13), by replacing Fhx (t, ω) by

SThx(t, ω), F
T h
x by STT h

x and FDh
x by STDh

x (cf. tfrrst.m

and tfrlmrst). Thus we have RSTx(t, ω) =
∫∫

R2

|STx(τ,Ω)|2 δ
(

t− t̂(τ,Ω)
)

δ (ω − ω̂(τ,Ω)) dτ dΩ (18)

B. Synchrosqueezing

Each synchrosqueezed transform can be deduced from the

simplified synthesis formula given by Eqs (2), (6) and (10),

respectively for the STFT, the CWT and the S-transform.



1) STFT: The synchrosqueezed STFT can be defined

for any t0 ≥ 0 such that h(t0) 6= 0 (cf. tfrsgab,

recursive_sstft)

SFhx(t,ω) =

∫

R

Fhx (t, ω
′) ejω

′(t−t0)δ(ω − ω̂(t,ω′)) dω′, (19)

Its squared modulus provides a sharpened TFR, and it can be

inverted by

x̂(t− t0) =
1

h(t0)∗

∫

R

SFhx(t, ω)
dω

2π
, (20)

Replacing ω̂ by ω̂µ computed by Eq. (14) allows to make

synchrosqueezing adjustable as for the Levenberg-Marquardt

reassignment (cf. tfrlmsgab, recursive_lmsstft).

2) CWT: The synchrosqueezed CWT can be defined as [3]

(cf. sMW)

SWx(t, s) =

∫

R

Wx(t, s
′)|s′|−3/2δ(s− ŝ(t,s′)) ds′, (21)

and can be inverted by (cf. recsMW)

x̂(t) =
1

CΨ

∫

R

SWx(t, s) ds, (22)

3) S-transform: The synchrosqueezed S-transform can be

defined as [16] (cf. tfrsst, tfrlmsst)

SSTx(t, ω)= |ω|
∫

R

STx(t, ω
′) ejω

′tδ (ω − ω̂(t, ω′))
dω′

|ω′| , (23)

and can be inverted by (cf. rectfrsst)

x̂(t) =
1

Ch(ω0T )

∫

R

SSTx(t, ω)
dω

|ω| , (24)

C. Second-order synchrosqueezing

Second-order synchrosqueezing was first proposed by Ober-

lin et al. in [11] to improve TFRs of strongly modulated chirps

signal. Assuming a signal model expressed as

x(t) = a(t) ejΦ(t), with Φ(t) = ϕx + ωxt+ αx
t2

2
, (25)

where a(t) and Φ(t) stand for the time-varying amplitude

and phase. Second-order synchrosqueezing proposes to use

local modulation estimation to improve the resulting TFR.

Oblique synchrosqueezing (only proposed for the STFT) (cf.

tfrosgab) can be viewed as a time-frequency reassignment

with a phase correction term [11],

OSFx(t, ω) =

∫∫

R2

Fhx (τ, ω
′) ej(ω−

α̂x
2 (t−τ))(t−τ)

δ(t− t̂(τ, ω′))δ(ω − ω̂(τ, ω′)) dτdω′. (26)

Vertical synchrosqueezing uses an improved estimation of

the instantaneous frequency (instead of the classical reassign-

ment operator), thanks to the chirp rate estimation α̂x(t,ω) =
Im(q̃x(t,ω)) (see [12] for a further investigation). The improved

frequency estimator can be computed as

ω̂(2)(t, ω) =

{

ω̂(t,ω) + α̂x(t,ω)(t− t̂(t,ω)) if |α̂x(t,ω)|<∞
ω̂(t, ω) otherwise,

(27)

For amplitude modulated signals, it is shown in [12] that

(27) is biased, and can be improved using a slightly different

estimator expressed as (when |q̃x(t,ω)|<∞)

ω̂(3)(t, ω) = Im
(

ω̃(t,ω) + q̃x(t,ω)(t− t̃(t,ω))
)

. (28)

An estimation of q̃x(t, ω) can be computed for each transform

as follows:
1) STFT: In [12], we proposed several local modulation

estimators, valid for any differentiable analysis window, ∀n ≥
2, which can be used in Eq. (27) or in (28) to obtain

a vertical synchrosqueezed STFT transform (cf. tfrvsgab,

recursive_vstft)

α̂Knx (t,ω) =
Re

(

FDnh
x (t, ω)FDn−1h

x (t, ω)∗
)

Im
(

F T Dn−1h
x (t, ω)FDn−1h

x (t, ω)∗
) , (29)

q̃(tn)x (t,ω) =
FDnh
x (t,ω)Fhx (t,ω) − FDn−1h

x (t,ω)FDh
x (t,ω)

FDn−1h
x (t,ω)F T h

x (t,ω) − F T Dn−1h
x (t,ω)Fhx (t,ω)

,

(30)

q̃(ωn)x (t,ω) =
(F T n−1Dh
x + (n−1)F T n−2h

x )Fhx − F T n−1h
x FDh

x

F T n−1h
x F T h

x − F T nh
x Fhx

,

(31)

where (t,ω) was omitted in Eq. (31) for the sake of clarity.

In [12], these estimators were implemented and compared in

terms of accuracy for n = 2.
2) CWT: Using the local modulation estimator q̃x(t, s) =

∂ω̃
∂t (t,s)
∂t̃
∂t (t,s)

proposed for the CWT [18], we obtain (cf. vsMW)

q̃x(t, s) =

1
s2

(

WD2Ψ
x (t,s)WΨ

x (t,s) −WDΨ
x (t,s)

2
)

WDΨ
x (t,s)W T Ψ

x (t,s) −W T DΨ
x (t,s)WΨ

x (t,s)
. (32)

3) S-transform: A new local modulation estimator can

also be derived to compute the vertical synchrosqueezed S-

transform [16] (cf. tfrvsst),

q̃x(t, ω) =
STD2h

x (t,ω)STx(t,ω) − STDh
x (t,ω)

2

STDh
x (t,ω)STT h

x (t,ω) − STT Dh
x (t,ω)STx(t,ω)

. (33)

D. Ridge detection for mode extraction

Let us consider a multicomponent signal denoted by x(t) =
∑I
i=1 xi(t). Then, each mode xi(t) = ai(t) e

jφi(t) can be

extracted from its synchrosqueezed transform, by restricting

the integration area to the vicinity of the ridge, denoted Ωi(t),
in each reconstruction formula given by Eqs. (20), (22) and

(24). The ridge Ωi(t) can be directly estimated from a TFR

using a ridge detector as:
1) Brevdo et al. method: This technique [19] aims at

finding the best frequency curve Ω(t) in the TFR Sx,

which maximizes the energy with a smoothness constraint

through a total variation penalization term expressed as (cf.

ridge_detect_brvmask)

Ω̂=argmax
Ω

∫

R

|Sx(t,Ω(t))|2 dt− λ

∫

R

∣

∣

∣

∣

dΩ

dt
(t)

∣

∣

∣

∣

2

dt, (34)

where λ controls the importance of the smoothness constraint.

For multi-component extraction (i.e. I > 1), this method can

be iterated after setting Sx to zero in the vicinity of the

previously detected ridge.



2) Delaunay triangulation method: Frandrin proposes in

[6] a new way to disentangle the different components in

the time-frequency plane through a simplified representation

provided by the Delaunay triangulation attached to the spec-

trogram zeros. For a particular Gaussian analysis window

g(t) = π−1/4
e
− t2

2 , the zeros zn = ωn + jtn can be

determined from the STFT , through Bargmann transform as:

F gx (t, ω) = e
− |z|2

4 Fx(z),with Fx(z) =
∫

R

A(z, τ)x(τ)dτ,

and A(z, τ) = π−1/4
e
− τ2

2 −jτz+ z2

4 . (35)

It admits a Weierstrass-Hadamard factorization such as [6]:

Fx(z) ∝
∞
∏

n=1

(

1− z

zn

)

e
z
zn

+ 1
2 (

z
zn
)
2

. (36)

Then, the Delaunay triangulation is performed over zeros zn
and the domains attached to signal components are related to

outlier edges (cf. spz_delaunay_dom4a).

IV. DATA-DRIVEN METHODS

The ASTRES toolbox also includes several implementations

of the well known EMD method [7], which was reformulated

and extended for two dimensional signals [13], [14]. Due

to paper size limitation, we chose to focus on more recent

developments allowing an unsupervised usage of SSA.

A. Singular spectrum analysis

SSA [8] can expand a signal in a sum of periodic com-

ponents, trends and noise. It considers a finite length time

series (e.g. a sampled signal) s = {sn, n = 1 . . . N} and a

user parameter L. Its algorithm (cf. ssa) is described by:

1) Construction from x of the trajectory Hankel matrix X

of size L×K, with K = N − L+ 1.

2) Singular Value Decomposition (SVD) of X , to obtain

X = UΣV
T =

R
∑

i=1

Xi, with Xi = σiuivi
T , (37)

σi being the singular values of X and ui (resp. vi) the

column vectors of U (resp. V ).

3) Elementary components reconstruction from each Xi by

anti-diagonal averaging through

x(i)
n =











































1
n

n
∑

m=1

(Xi)m,n−m+1 for 1 ≤ n<L

1
L

L
∑

m=1

(Xi)m,n−m+1 for L ≤ n≤K

1
N−n+1

L
∑

m=n−K+1

(Xi)m,n−m+1 for K + 1 ≤n≤N.

4) Unsupervised mode extraction through elementary com-

ponents grouping, based on Hierarchical Clustering (HC)

[9] (cf. ssa_decomp). The main idea of this algorithm

[20] is to look for the two nearest classes and to merge

them to build a new class. This operation is iterated

until the desired number of classes (i.e. I) is reached.

To compare two classes Ci and Cj containing several

time series, the dissimilarity is defined as the minimal

distance between two distinct time series of each class

D(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y), d(x, y) = 1− |<x, y>|
||x|| ||y|| ,

Thus, each extracted mode is obtained by summing the ele-

mentary components included into the resulting classes Ci.

V. NUMERICAL SIMULATIONS

A. Time-frequency representations

Fig. 2 compares the TFRs of the gravitational wave signal

GW150914 [21], resulting from a binary black hole collision.

These TFRs are computed using respectively, the Gabor trans-

form (STFT using a Gaussian analysis window), the Morlet

Wavelet transform and the S-transform, with their respec-

tive first- and second-order synchrosqueezed versions. The

Reconstruction Quality Factor (RQF) given by RQF(x, x̂) =

10 ln10

(

||x||2
||x−x̂||2

)

is indicated above each invertible TFR.

B. Empirical mode decomposition

For this experiment (cf. Fig. 3), we consider a real-world

multi-component audio signal recorded from a cello. This

signal is analyzed using the synchrosqueezed STFT combined

with the Brevdo et al. method described in Section III-D1,

the EMD method and the proposed SSA method [9]. Syn-

chrosqueezing leads to better separation results compared to

other methods which are more likely to create interference.

VI. CONCLUSION AND FUTURE WORKS

The ASTRES toolbox was introduced as a collection of

Matlab functions for processing non-stationary and multicom-

ponent signals. This toolbox which is freely available online,

unifies into the same framework several recent techniques

developed into the ASTRES project. Some capabilities of

these methods designed for efficient TFRs computation and

mode extraction, were also illustrated by application examples

on real world signals. Future works consist in theoretically

strengthening these tools, and in proposing new applications.
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Fig. 2. Comparison between the Gabor STFT, Morlet CWT and the Stockell transform applied on the Livingston GW150914 signal [21].
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Fig. 3. Comparison of the extracted modes resulting from a real-world audio signal, using synchrosqueezed STFT, EMD and the proposed SSA method.
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