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Abstract—There are numerous many-objective real-world
problems in various application domains for which it is difficult or
time-consuming to derive Pareto optimal solutions. In an evolu-
tionary algorithm, variation operators such as recombination and
mutation are extremely important to obtain an effective solution
search. In this paper, we study a machine learning-enhanced
recombination that incorporates an intelligent variable selection
method. The method is based on the importance of variables
with respect to convergence to the Pareto front. We verify the
performance of the enhanced recombination on benchmark test
problems with three or more objectives using the many-objective
evolutionary algorithm AϵSϵH as a baseline algorithm. Results
show that variable importance can enhance the performance of
many-objective evolutionary algorithms.

I. Introduction

Multi-objective optimization evolutionary algorithms
(MOEAs), such as NSGA-II [1], SPEA2 [2] and NCGA [3],
can derive a good approximation of the set of Pareto optimal
solutions (POS) on two or three objective optimization
problems. However it is difficult for MOEAs to derive
an approximation of the set of POS on many-objective
optimization problems (MaOPs). Recently, several many-
objective optimization evolutionary algorithms (MaOEAs)
have been developed, such as MOEA/D [4], NSGA-III [5]
and AϵSϵH [6]. MaOEAs have shown better convergence of
the approximation of the set of POS on many-objective test
problems. Thus, it is expected that MaOEAs will contribute
to solve real world problems with four and more objectives.
It can be made the case that in industrial applications not
all objectives have the same priority. Sometimes it is critical
to find good compromises (in terms of Pareto efficiency)
between a specific subset of all possible objectives. In those
situation, the decision maker will be interested in speeding
up the convergence towards those objectives.

In this work, our aim is to improve further the solution
search ability of MaOEAs. In an evolutionary algorithm,
variation operators such as recombination and mutation are
extremely important for effective solution search in order to
solve complex optimization problems. In ordinary MOEAs,
variables that undergo recombination or mutation are usually
selected randomly with respect to some user-defined probabil-
ity. Thus, variables are not explicitly selected based on their
contribution to improve the rank of solutions.

In [7], a machine learning-enhanced method to select
variables for recombination and applied it to two-objectives
problems is proposed. This method uses random forest to
derive variable importance (VI) according to the Pareto rank
of solutions. During recombination, the values of VI are used
to select the variables that should be recombined, aiming to
find better solutions in the direction that improves their ranking
towards the Pareto optimal front. The idea of learning about the
problem while optimising it, in order to improve the solution
search, is not specific to multi-objective optimisation. Instead,
it belongs to the more general conceptual framework of “in-
telligent optimisation”. Potentially, the proposed method could
be fruitful in any evolutionary scenario where solutions can
be ranked according to a score, from which important search
directions can be derived. Thus, we expect that MaOEAs that
adopt such intelligent optimization methods could be applied
to MaOPs with increased effectiveness to find solutions with
good convergence.

In this work, we apply the machine learning-enhanced
method proposed in [7] to optimization problems with up
to six objectives optimization problems. This method uses
Pareto ranking to score solutions. In many-objective problems
it is well known that the number of non-dominated solutions
increase exponentially with the number of objectives. Thus,
in these problems it is expected a low variety of rankings in
the population, which could affect the estimation of variable
importance. We are interested on assessing the scalability of
Pareto ranking as a score to derive variable importance on
many-objective problems, and verify whether we can improve
the performance of MaOEAs. We use the multi- and many-
objective optimizer AϵSϵH as baseline algorithm. We include
the proposed method into AϵSϵH and compare its performance
with the baseline algorithm and an ideal algorithm, which
knows in advance the variables related to convergence and
select from them for recombination.

In the reminder, we describe variable importance in Section
II, we introduce the considered algorithms in Section III, we
give our experimental setup in Section IV, we report our
experimental analysis in Section V, and we conclude in Section
VI.

II. Method

We identify variables that affect Pareto improvement based
on the value of variable importance. Random forest, a machine



learning method, can calculate the relative importance of
variables in predicting the score of solutions. In this work,
we use the Pareto ranking induced by non-dominated sorting
[8] as the score. Then, we apply crossover to variables which
are identified to affect Pareto improvements.

A. Extraction of Variable Importance

In this work, to extract variable importance, we use the
random forest [9] [10] implementation in R [11]. Let us define
the number of trees as nt and an index of a tree as t, (t =
1, 2, · · · , nt). Also, let us define the combined population of
parents and offspring at a given generation as the original data
P. To grow each tree of the forest and compute the variable
importance in the tree we apply the following procedure.

1) Split randomly the original data P into learning (70%)
and testing (30%) data. Determine the training data set
for growing a tree randomly sampling from the learning
data allowing duplication until picking a set with the same
size as original data P.

2) Grow the tree by splitting the nodes. The most discrim-
inative variable among m randomly selected candidate
variables is used to split a node.

3) Calculate the accuracy of the estimation using the testing
data. We submit the variable values (input value) of the
solutions in the testing data set to the tree and obtain
the predicted class (Pareto rank). The learning error of
the tree, denoted as LEt, is calculated by finding the
mean squared error (MSE) between the predicted class
and original class in the testing data set.

4) Calculate the prediction error. For each variable xi, (i =
1, 2, · · · , n), we permute the value of xi among solutions
in the testing data set, while keeping the other variables
x j, (i . j) fixed. The solutions with the permuted values
of xi are submitted to the tree to get their predicted class.
Then, we measure the MSE between the predicted class
and the original class in the testing data set. Let us define
the MSE as EEt

xi
.

5) Compute variable importance in the tree. Variable impor-
tance for each variable VIt

xi
of a tree is calculated by the

difference between learning error and prediction error of
each variable.

VIt
xi
= (EEt

xi
− LEt). (1)

To get the overall variable importance on the forest for
each variable VIxi , we calculate the average of the variable
importance for each variable on all trees [10] [12].

VIxi = (
1
nt

nt∑
t=1

VIt
xi

). (2)

This is called mean decrease in accuracy (MDA) or permuta-
tion importance.

B. How to Guide Recombination

In general, a recombination operator selects at random
some variables to recombine two parent individuals based on a
probability set in advance. In this work, we select variables for
recombination based on importance towards Pareto improve-
ment. Using the result of deriving variable importance from
random forest, we bias the probability to apply recombination

of the variables that have larger variable importance. We
consider two ways of variable selection for recombination,
probabilistic and deterministic. The deterministic approach
sorts the variables in the order of importance and selects
the Pcv × n most important ones. On the other hand, the
probabilistic approach selects variables based on a probability
that depends on the value of variable importance given by

P(i)
cv = Pcv

VIi∑i
j=1 VI j

, (3)

where P(i)
cv is the crossover probability of the i-th variable, Pcv

is the overall crossover probability per variable, VIi is the
estimated importance of the i-th variable, and n is the total
number of variables. In this work, we adopt the deterministic
approach.

III. Algorithms

The concept described in the previous section could be
adopted to any EMO algorithm. In this work, we compare the
performance of three algorithms as follows.

A. Baseline Algorithm (orig)

We use the Adaptive ϵ−Sampling and ϵ−Hood (AϵSϵH)
[6] [13] as a baseline EMO algorithm. AϵSϵH is a population-
based multi- and many-objective elitist evolutionary algorithm.
It has two important features, ϵ−Hood method used to select
parents for recombination and ϵ− Sampling method used for
survival selection. We use SBX [14] crossover as recombi-
nation operator applied with a rate pc per individual and pcv
per variable. The performance of AϵSϵH is similar or better
than NSGA-II on different MOPs [13], and it shows good
performance for many-objective optimization [6].

B. Recombination applied to Convergence-Related Variables
(ideal)

Let us assume that the algorithm knows which variables
are related to convergence. We modify the baseline algorithm
in order to take advantage of this information, and apply
recombination to the variables that determine the distance to
the Pareto front. This corresponds to a cheating algorithm
having a perfect knowledge of the variables that are important
to get closer to the Pareto front. This algorithm is expected to
show the best search ability in terms of convergence. This
approach, denoted ideal, will allow us to appreciate the
convergence that can be achieved with a given recombination
operator that perfectly learns variable importance.

Let n be the number of variables of the problem under
consideration, nd the number of distance-related variables, np
the number of position-related variables, and Pcv the prob-
ability of crossover per variable. If Pcv × n ≤ nd, Pcv × n
variables are selected randomly from the subset of distance-
related variables. On the other hands, if Pcv × n > nd, all
distance-related variables are selected for crossover and the
remaining Pcv × n− nd are selected at random from the subset
of np position-related variables.



C. Recombination based on Variable Importance (VI)

We include the method that guides recombination into the
baseline algorithm AϵSϵH. As described in section II-B, we
obtain the estimated variable importance for Pareto improve-
ment from the random forest statistical model and we select
the variables which have high importance for recombination.

IV. Experimental Setting

We use the DTLZ2 and DTLZ3 test problems [15]. Ob-
jective functions in DTLZ3 are separable and multi-modal,
whereas those of DTLZ2 are separable and uni-modal. Both
have a concave geometry on the optimal Pareto front. DTLZ
problems have M−1 position-related variables and n− (M−1)
distance-related variables. We set the number of objectives
to M = 3, 4, 5, 6 and the total number of variables to n =
(M − 1) + 9. The combination of the number of position-
related variables np and distance-related variables nd are set
to (np, nd) = (M − 1, 9).

The DTLZ2 problem can be described as follows.

minimize f1 (x) = (1 + g (xM)) cos (x1π/2) · · · cos (xM−1π/2)
minimize f2 (x) = (1 + g (xM)) cos (x1π/2) · · · sin (xM−1π/2)

...
...

minimize fM (x) = (1 + g (xM)) sin (x1π/2) (4)
0 ≤ xi ≤ 1, fori = 1, 2, · · · , n

where g (xM) =
∑

xi∈xM

(xi − 0.5)2

In DTLZ2 it is not difficult to find solutions with good
convergence because of its g function. In this problem, even
random solutions are very close to the true POS. In this work,
in addition to the conventional DTLZ2, we use a modified
version of by modifying function g as follows

g′ (xM) = 1000 ×
∑

xi∈xM

(xi − 0.5)2 . (5)

We denote this problem as Modified-DTLZ2. In this prob-
lem non-optimal solutions are further apart in objective space
than in the original DTLZ2. The problem, however, remains
separable and uni-modal.

The number of generations in the algorithms is set to
2000, and the population size is set to 100 individuals. The
distribution exponents are set to ηc = 15 for SBX and ηm = 20
for polynomial mutation operator. The crossover probability
per individual is set to Pc = 1.0 and the crossover probability
for each variable is Pcv = 0.5. The mutation probability is set
to Pm = 1/n. We report results collected from 30 independent
runs.

In the random forest procedure, we set some parameters
based on the recommended value [10]. The number of trees
to grow is set to 500 and the number of variables randomly
sampled as candidates at each split is set to n/3. We calculate
the raw value of mean decrease in accuracy for variable
importance.

To evaluate the search ability of the algorithms we use
an an archive that keeps all non-dominated solutions found
through the generations. We calculate Generational Distance
(GD) [16] to evaluate convergence of the population and In-
verted Generational Distance (IGD) [17] to evaluate diversity
of the population. For IGD, we use a reference set of 100,000
solutions in each problem.

V. Simulation Results

We applied the three algorithms described in Section III
to DTLZ3, DTLZ2 and Modified-DTLZ2 using 3, 4, 5 and 6
objective functions. Figure 1 shows GD (on top) and IGD (at
the bottom) values obtained by the three algorithms on DTLZ3.
In the top of the graphs we indicate the number of objectives,
number of variables, and the combination of position- and
distance-related variables described above. The algorithms are
shown in red, green and blue lines and are labeled ideal,
orig and VI, respectively. Looking at Figure 1, it can be seen
that ideal achieves the best GD-values through generations
in all objectives. This is expected because ideal represents
an algorithm with a perfect model for variables related to
convergence. We can see that the method VI, which learns
online what variables are important to improve convergence
and emphasizes their recombination, has better GD-values than
the baseline algorithm orig after 500 generations. At the 2000
generation, VI obtains significantly better GD than the orig
algorithm. It also can be seen that orig has slightly better or
nearly equal IGD-values than VI in all objectives.

Figure 2 shows boxplots of VI-values of the variables by
VI at various generations. Results are shown for 5-objectives
DTLZ3 problem. We pick snapshots after 10, 100, 500, 1000,
15000, 2000 generations. The number of generations is shown
on the top of each boxplot graph. From generations 10 and 100,
note that no clear difference can be seen on the values of VI be-
tween distance-related variables x4 ∼ x13 and position-related
variables x1 ∼ x4 at the beginning of the search. However after
500 generations, distance-related variables have larger variable
importance than position-related variables. This shows that the
regression model in random forest is able to correctly distin-
guish between distance- and position-related variables. In the
evolution process of VI algorithm, the variables with a larger
VI-values get a higher chance to recombine. Therefore, we can
find solutions which have better convergence in objective space
by giving high recombination opportunity to distance-related
variables.

Figure 3 shows the size of the first front and the number
of fronts in the combined population of parents and offspring.
This combined population is the one submitted to random
forest and used for estimation of variable importance. From
these figures note that the size of the first front in VI and
ideal are similar and smaller than orig after 500 generations.
Likewise, the number of fronts in VI and ideal are similar
and larger than orig. So VI has at least 7 fronts after 500
generation in all cases.

Figure 4 shows the GD- and IGD-values obtained by the
three algorithms on DTLZ2. We can see that VI has worse
or same GD- and IGD-values than orig, but ideal obtained
significantly better GD-values. Figure 5 shows boxplots of VI-
values for each variable by VI. Note that there is no difference
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Fig. 1: GD(top) and IGD(bottom) on DTLZ3.
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Fig. 2: VI on DTLZ3, 5 objectives.
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Fig. 3: Size of Front 1 (top) and number of fronts (bottom) on
DTLZ3.

in VI-values between position- and distance-variables through
all generations. This means that VI could not be learned in
this problem and therefore we could not increase the chance to
apply recombination to distance-variables. Looking at Figure
6, we can see that the size of the first front by VI is above 150
and greater than orig since early generations. Likewise, the
number of fronts in the combined population is around 5 in

three objectives and around 2 in 6 objectives, similar or smaller
than orig. On the other hand, the size of front 1 in ideal is
just above 100 and the number of fronts is significantly larger.
We can see that the population submitted to random forest
has few fronts and therefore the different ranks were too few
to accurately estimate variable importance towards the Pareto
optimal front.

We applied the same algorithms to Modified-DTLZ2 de-
scribed in Section IV. Figure 7 shows the GD- and IGD-
values obtained by the three algorithms. We can see that
VI has better GD-values than orig after 500 generations on
all number of objectives and approaches ideal as evolution
advances on 3-, 4- and 5-objectives problems. On 6-objectives,
GD-values by VI are better than orig but do not approach
ideal.

Figure 8 shows boxplots of VI-value for each variable
by VI on 5-objectives Modified-DTLZ2 problem. Note that
after 500 generations VI of distance-related variables x5 ∼ x13
is higher than position-related variables x1 ∼ x4. Therefore,
similar to DTLZ3, in this problem distance-related variables
get the chance to recombine more often and convergence
improves.

Figure 9 shows the size of the first front and the number
of fronts in the combined population. Looking at Figure 9,
we can see that the size of front 1 by VI is around 120 and
similar to ideal. Note also that the number of fronts by VI
on Modified-DTLZ2 is larger than in DTLZ2.

In Modified-DTLZ2 there is a more clear separation be-
tween local fronts than in DTLZ2 and the population contains
solutions with a larger variety of rankings. In this case, random
forest could estimate properly VI and identify distance related
variables for recombination.

VI. Conclusions

In this work, we investigated the ability of a machine
learning-enhanced method to learn variables that favor Pareto
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Fig. 4: GD(top) and IGD(bottom) on DTLZ2.
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Fig. 5: VI on DTLZ2, 5 objectives.
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Fig. 6: Size of Front 1 (top) and number of fronts (bottom) on
DTLZ2.

improvements on many-objective optimization problems. This
method uses random forest to perform a regression of the
Pareto ranking over decision variables in order to estimate
variable importance at each iteration. We compared the con-
vergence ability of a baseline algorithm AϵSϵH, a version
enhanced with the method that estimates variable importance,
as well as an ideal version with a perfect knowledge of the

variables that are important for convergence on 3, 4, 5 and 6
objective DTLZ2 and DTLZ3 test problems. In addition to
DTLZ2, we also use Modified-DTLZ2 to show clearly the
ability of the method. We showed that the machine learning-
enhanced algorithm achieves a significantly better conver-
gence using GD and IGD metric on DTLZ3 and modified-
DTLZ2. We verified that the regression model is able to
distinguish correctly between distance- and position-related
variables throughout the generations based on the estimated
variable importance on many-objective problems, except in the
problem where it is easy to converge towards the Pareto front.
Ours results revealed that, in order to correctly distinguish
between distance- and position-related variables, we should
pay attention to the population that is submitted to random
forest. If the number of ranks in the population is too small,
the importance of the variable for the rank cannot be predicted
accurately.

In the future, we plan to apply the machine learning-
enhanced algorithm to problems with many variables, and
extend the guiding method for convergence in order to guide
mutation in addition to recombination. The proposed method
is based on Pareto ranking. We would like also to look into
alternative ways to rank the population. Moreover we need to
apply the method to other algorithm because this method can
be applied easily to any evolutionary algorithm.
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Fig. 8: VI on modified DTLZ2, 5 objectives.

3obj_11var(p2−d9) 4obj_12var(p3−d9) 5obj_13var(p4−d9) 6obj_14var(p5−d9)

F
ro

n
t1

 S
iz

e
N

u
m

b
e

r o
f F

ro
n

ts

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

40

80

120

160

5

10

15

20

Generation

va
lu

e

method ideal orig VI

Fig. 9: Size of Front 1 (top) and number of fronts (bottom) on
modified DTLZ2.

[3] S. Watanabe, T. Hiroyasu, and M. Miki, “NCGA: Neighborhood culti-
vation genetic algorithm for multi-objective optimization problems.” in
GECCO Late Breaking Papers. AAAI, 2002, pp. 458–465.

[4] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition.” IEEE Trans. Evolutionary Computation,
vol. 11, no. 6, pp. 712–731, 2007.

[5] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
i: Solving problems with box constraints.” IEEE Trans. Evolutionary
Computation, vol. 18, no. 4, pp. 577–601, 2014.

[6] H. Aguirre, A. Oyama, and K. Tanaka, “Adaptive ε-sampling and ε-
hood for evolutionary many-objective optimization,” in Evolutionary
Multi-Criterion Optimization, ser. Lecture Notes in Computer Science,
vol. 7811, 2013, pp. 322–336.

[7] M. Sagawa, H. Aguirre, F. Daolio, A. Liefooghey, B. Derbely, S. Verelz,
and K. Tanaka, “Learning variable importance to guide recombination,”
in IEEE SSCI, 2016.

[8] S. Huband, P. Hingston, L. Barone, and R. While, “A review of multi-
objective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–
506, 2007.

[9] L. Breiman, J. Friedman, C.Stone, and R.Olshen, Classification and
regression trees. CRC press, 1984.

[10] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[11] A. Liaw and M. Wiener, “Classification and regression by
randomforest,” R News, vol. 2, no. 3, pp. 18–22, 2002. [Online].
Available: http://CRAN.R-project.org/doc/Rnews/

[12] L. Breiman, “Manual on setting up, using, and understanding random
forests v3. 1,” Statistics Department University of California Berkeley,
CA, USA, 2002.

[13] H. Aguirre, Y. Yazawa, A. Oyama, and K. Tanaka, “Extending AεEεH
from many-objective to multi-objective optimization,” in Conference
on Simulated Evolution and Learning, ser. Lecture Notes in Computer
Science, vol. 8886, 2014, pp. 239–250.

[14] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, pp. 115–148, 1995.

[15] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems
for evolutionary multi-objective optimization,” Evolutionary Multiobjec-
tive Optimization, pp. 105–145, 2005.

[16] V. V. D.A., “Multiobjective evolutionary algorithms: Classifications,
analyses, and new innovations.” Proceedings of the 1999 ACM sym-
posium on Applied computing, pp. 351–357, 1999.

[17] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.
da Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary Computation,
vol. 7, pp. 117–132, 2003.


