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An Efficient Rotation and Translation Decoupled Initialization
from Large Field of View Depth Images

Renato Martins1,2, Eduardo Fernandez-Moral1 and Patrick Rives1

Abstract— Image and point cloud registration methods com-
pute the relative pose between two images. Commonly used
registration algorithms are iterative and rely on the assumption
that the motion between the images is small. In this work, we
propose a fast pose estimation technique to compute a rough
estimate of large motions between depth images, which can be
used as initialization to dense registration methods. The main
idea is to explore the properties given by planar surfaces with
co-visibility and their normals from two distinct viewpoints.
We present, in two decoupled stages, the rotation and then
the translation estimation, both based on the normal vectors
orientation and on the depth. These two stages are efficiently
computed by using low resolution depth images and without
any feature extraction/matching. We also analyze the limitations
and observabilty of this approach, and its relationship to ICP
point-to-plane. Notably, if the rotation is observable, at least
five degrees of freedom can be estimated in the worst case.
To demonstrate the effectiveness of the method, we evaluate
the initialization technique in a set of challenging scenarios,
comprising simulated spherical images from the Sponza Atrium
model benchmark and real spherical indoor sequences.

I. INTRODUCTION

Image and point cloud registration are important problems
in robotics and computer vision applications. The goal of
registration techniques is to compute the motion, i.e., the
relative pose from images. In special, mobile robotics ap-
plications require efficient registration algorithms, which are
often iterative and assume a good initial pose initialization
to converge (e.g., [1, 2, 3, 4, 5]). This paper describes a
fast pose estimation technique using the normals from low
resolution depth images. Surprisingly, except in [6, 7, 8],
the information gathered from normal vectors has been ex-
ploited mainly to outlier rejection in point cloud registration
algorithms as shown, for instance, in the ICP survey in
[1] or in [9]. Because of its efficiency and large domain
of convergence, this technique can be used as initialization
to dense registration methods. Moreover, to further increase
this convergence domain, we explore wide field of view
(FOV) depth images without any feature extraction/matching.
These images can be acquired in different ways such as, for
instance, from stereo using a rig of perspective (e.g., [10])
or ominidirectional cameras (e.g., [11]), 3D LIDARs or with
a rig of RGB-D sensors (e.g., [12]).

Our method estimates the rotation and translation sequen-
tially in a decoupled fashion. The only assumed hypothesis,
in the case of general scenes, is that the frames contains
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Fig. 1. Bird’s-eye view schematic of two spherical frames D∗ and D
observing a planar region Γ. See the text in section III for notation details.

piece-wise planar regions with co-visibility (overlapping). A
simplified geometric scheme is given in fig. 1. The rotation
explores the properties of the overlapped planar regions using
a projector decomposition of the normals. Subsequently, an
over-determined set of linear equations can be set for the
translation. We present a salience point selection to improve
the conditioning of this system, as well as the limitations and
observability conditions of the approach, showing that if the
rotation estimation is successful, the translation can be esti-
mated efficiently for at least two degrees of freedom (DOF).
Moreover, we also remark that a Matlab non-optimized
version of our algorithm runs at 20Hz (with Matlab 2012
in a laptop Intel Core i5-5300U CPU, 2.3 GHz and Ubuntu
14.04) and hence can be used on-line.

The rest of this paper is organized as follows. First, we
discuss some related works in section II. A review of the
spherical model and its elementary properties is given in
section III. Then, we introduce the rotation initialization in
section IV-A. The translation is subsequently described in
section IV-B. The limitations and observability conditions of
the approach are discussed in sections IV-A.1, IV-B.1 and
IV-C. Experimental results are presented in section V and
we conclude the paper in section VI.

II. MAIN RELATED WORKS

This work is directly related to the methods of [6, 7] for
point-cloud registration, [8] for rotation tracking in piece-
wise planar environments and [12] for automatic lidar/RGB-
D non-overlapping camera calibration. The approach in
[6] explored the 3D-NDT transform to describe the scene
using distributions of geometric features (corners, planes,
lines). [7] proposed a decoupled rotation and translation
estimation using the normals from two point clouds. The
rotation estimation tracks the peak of the normal distributions



using a decomposition similar to the one presented in this
work. However, the rotation estimation requires a dominant
mode to ensure the distribution mode tracking. Furthermore,
their translation estimation is only valid to Manhattan-World
scenes and small displacements. Similarly, [8] estimate the
rotation (no translation) from a set of dominant planes in
the scene. Their algorithm starts by extracting the principal
orientations of the normals of the environment. The associ-
ation, between the normals belonging to the modes in the
current and in the reference frames, is done by considering
the closest mode in a conical region, with the angle of the
cone being the maximum angle allowed for the rotation.
Once the association is performed, the rotation estimation
is based on the same formulation presented in [12]. In [12],
a rough guess of the relative rotation between the current
and reference frames is provided by the user for calibrating
non-overlapping RGB-D cameras. Once the association is
established, an elegant modified version of Arun’s algorithm
of ICP point-to-point [13] is derived to find the rotation
in a least square sense. It is also worth noting that both
[12, 8] assume a matching of the normal vectors in some
stage of their formulations. Here instead, we proceed with a
different strategy and formulation. First, we do not insert a
rough guess [12], not assume scenes with main directions or
infinitesimal/small changes in the rotation [8] (remind that a
rough relative motion is what we seek). Besides that, unlike
[7, 8], we also derive a closed form for the translation and
analyze the limitations and what is the expected performance
of the approach in a set of scene configurations. Some other
interesting works assume further hypothesis in the scene
geometry, as the Manhattan World assumption in [14] for
scene reconstruction and in [15] for depth registration using
principal component analysis of the normal vectors.

III. PRELIMINARIES AND SPHERICAL REPRESENTATION

The example of excellence of wide FOV images is the
spherical view (in the unit sphere), which is defined as those
images whose FOV comprises 360 degrees in the horizontal
plane. We adopt spherical depth images D ∈ Rm×n

+ , as a
basic representation, because most wide FOV images can
be represented in the unit sphere S2 through a calibration
procedure1. The mapping between 3D Cartesian coordinates
P ∈ R3 and frame pixel coordinates p ∈ P2 is given by
P(p) = D(p)Π−1

S (p), with the unit vector Π−1
S (p) ∈ S2

being the viewing direction of the 3D point P (see fig. 1 for
the geometry of two 3D points viewed from the X sensor
direction in two different frames). The relative pose between
the frames is represented in the angle/axis and in the matrix
form T = (R, t) ∈ SE(3) (rotation and translation). The
spherical normalization operator ‖ ‖S : R3

+ → S2 of a 3D
point is defined as

‖P‖S := P/‖P‖2 ∈ S2, for ‖P‖2 6= 0. (1)

We introduce now the two basic geometric concepts between
a rotation and two given unit vectors n1,n2 ∈ R3

+. The angle

1Under the assumption of central cameras, i.e., all the projection rays to
form the image are constrained to meet at a single point.

Θ and orthogonal axis nΘ (perpendicular to the plane formed
by the two vectors) is given by:

Θ = arccos(nT
1 n2) and nΘ = ‖S(n1)n2‖S (2)

where S(n1) represents the skew-symmetric matrix
of the vector n1, such as that the cross product
n1 × n2 = S(n1)n2. The rotation R thereby establishing
n1 = Rn2 is

R = exp(S(ΘnΘ)) (3)

which can be computed using the well known Rodrigues’
formula. For numerical stability of (2) and (3), R is the
identity matrix if ||Θ||1 < 0.001 degrees. By last, the
superscript ∗ designates variables in the reference frame D∗.

IV. DECOUPLED POSE INITIALIZATION FROM NORMALS

In this section, we present an efficient way of computing
not only the rotation but also the translation using normal
vectors. The complete pose initialization from normals (PIN)
comprises two main sequential stages: one for the rotation
and one for the translation. The unique assumed hypothesis
is that the scene contains co-visible planar regions. This
assumption is discussed in more detail in section IV-C.

A. Rotation Initialization for General Scenes

We start describing the rotation estimation for general
scenes, i.e., without the assumption of dominant directions in
the normals. In presence of planar surface regions with co-
visibility/overlapped (see fig. 1), the following holds: n(p) =
Rn∗(p). The hypothesis of overlapped planes is quite realis-
tic since most scenes have planar surfaces (the limitations of
this hypothesis will be discussed later in section IV-C). Given
the normals, the product arccos(n∗(p)Tn(p)) is the rotation
angle around the axis n∗(p)×n(p). Thus, a same overlapped
point have different possible rotations matrices, depending
on the axis of rotation. Furthermore, a vector is invariant
to a rotation around a parallel axis. Hence, an intermediary
representation is used, for instance a decomposition, to find
the overlapped regions.

Since any rotation can be decomposed as three instanta-
neous rotations around three orthogonal axes (from Euler’s
rotation theorem), we perform projections of all normals in
three subspaces to identify the planar overlapped regions,
which are rotated by the same angle in this intermediary
representation. For simplicity, we select the coordinate sys-
tem of the current frame D to define the projection operator
around each axis as

projx(n) = ‖(0 ey ez)
Tn‖S ; projy(n) = ‖(ex 0 ez)

Tn‖S
projz(n) = ‖(ex ey 0)Tn‖S (4)

with ex = (1 0 0)T , ey = (0 1 0)T , ez = (0 0 1)T

and 0 = (0 0 0)T . The corresponding instantaneous rotation
angle of each projection ωx, ωy, ωz ∈ [0, π) is given by the
scalar products:

ωx(p) = arccos(projx(n∗(p))T projx(n(p)))

ωy(p) = arccos(projy(n∗(p))T projy(n(p))) (5)

ωz(p) = arccos(projz(n∗(p))T projz(n(p)))
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Fig. 2. Rotation estimation example for two real frames with rotation ω = (21 175 0)T . The first column depicts the normal vectors (encoded by colors)
of the frames. For visualization of the motion between the frames, we included the labels A and B in corresponding regions of the frames. The distributions
of each projected angle are shown at right. Our formulation gives an estimated rotation of around ω̂ = (20 0 0)T degrees (the mode of each distribution).
This example depicts a successful estimation in X, but fails to estimate a rotation of 175 degrees in Y (the overlapping property is not fulfilled). See the
text of sections IV-C and V for details.

In the same way, the sign of each angle obeys the sign of
the projections cross product:

si = sign(eTi proji(n
∗(p))× proji(n(p))) (6)

for i = {x, y, z} as for the angles in eq. (5). Assuming
that the scene contains overlapping planar regions, a rotation
estimate can be obtained from the projection angles of all
pixels using (4), (5) and (6). These angles can be seen as
three distributions and the property we explore to extract
the points with co-visibility is that overlapped planes of
a same surface are rotated by the same projected angles.
For instance, this is performed by finding the sub-set of
pixels p+ belonging to the peaks of the three distributions
simultaneously (e.g., the peaks in the distributions of fig. 2).
With the sub-set of pixels p+ (inliers points), one can find
the median angle of each projection:

ω̂i = median(si(p
+)ωi(p

+)) (7)

with i = {x, y, z}. Then, the rotation, in the axis/angle
form, is given by ω = (ω̂x ω̂y ω̂z)T and the equivalent
rotation matrix is recovered by the exponential mapping
R̂ = exp(S(ω)). This algorithm is much more efficient
than an ICP point-to-plane and has similar accuracy and
convergence domain.

Rotation from Normals’ Mode Tracking: An interesting
particular scenario is of scenes with normals in a dominant
direction (e.g., scenes obeying the Manhattan World assump-
tion). In this case, we can track the modes of the normals,
similarly to [8, 7], by simply computing two distributions of
the projections in (4) at the reference and current frames:

ωi(p) = arccos(eTi proji(n(p)))

ω∗i (p) = arccos(eTi proji(n
∗(p))) (8)

And then, the three rotation angles, as in (7), are:

ω̂i = median(si(p
+)ωi(p

+))−median(s∗i (p+)ω∗i (p+))
(9)

with i = {x, y, z}. Considering spherical images and small
translations, this case allows estimating any rotation, even
for frames without surface overlapping.

1) Rotation Observability for the General Case: Let’s
suppose firstly that overlapped regions are given, i.e., starting
from a set of inlier pixels p+. We want to find the rotation
that minimizes the cost (for simplicity using the `2 norm):

min
ω

∑
p∈p+

1

2
||en(p,ω)||22 (10)

where en(p,ω) is the error between corresponding normal
vectors observed from two distinct frames (as discussed in
section IV-A),

en(p,ω) = n(p)− R̂(ω)n∗(p) (11)

and R̂(ω) is the rotation as in eq. (3). We can proceed
to a simplified local formulation for the observability, i.e.,
ên(p,ω) = n(p)−R̂R(ω)n∗(p). The first order optimality
condition of (10) depends of a linear approximation of the
error ên(p,ω) around R̂, i.e., from the Jacobian of (11):

J(0) = R̂∂(R(ω)n∗(p))
∂ω

∣∣∣∣∣
ω=0

= R̂S(n∗(p)) ∈ R(3×3).

(12)
Therefore, the rotation is locally observable if the Fisher
Information Matrix J(0)TJ(0) is invertible. We can verify
that given the normals at two points n∗(p1), n∗(p2) then
J(0)TJ(0) = −

(
S2(n∗(p1)) + S2(n∗(p2))

)
, which is of

full rank if n∗(p1), n∗(p2) are not parallel (co-directional).
This local condition, that there is at least two planes with
linearly independent normal vectors, is generally fulfilled in
indoor scenarios by having often the floor, ceiling and walls
not in the same direction. Furthermore, this local condition
is also global by developing the cost (10) as in [12, 8].
Therefore, supposing that overlapped regions are given, the
rotation is observable if the scene has, at least, two planes
in linearly independent directions.

B. Translation Initialization

We proceed to the translation estimation in this section.
After applying the rotation to the reference frame (also
known as “derotation” process [16]), the updated overlapped
surfaces for the translation is done by checking the angle
between the normals. At this time, the set of overlapped
pixels p+ are the pixels in both frames with similar normals
(n(p) ≈ n∗(p)), i.e.,

p ∈ p+ if || arccos(n∗T (p)n(p))||1 < ε1. (13)

where ε1 is the maximum allowed angle between the nor-
mals. Hence, the pixels considered to be overlapped follows
the same plane equation Γ. The plane equation for the 3D
point in the pixel p of the current image is given by

Γ : nT (p)P(p) + d = 0⇒ nT (p)
(
D(p)Π−1

S (p)
)

+ d = 0
(14)



with Π−1
S (p) the viewing direction in the unit sphere. De-

noting the residual rotation R(p) for each pixel such as
nT (p) = R(p)n∗T (p), the same plane viewed from the
reference depth image in the direction Π−1

S (p) (as depicted
in fig. 1) is therefore:

Γ : nT (p)
(
R(p)D∗(p)Π−1

S (p) + t
)

+ d = 0 (15)

Subtracting the left side of eq. (14) and (15), the relationship
between the normal vector, depth, viewing direction and the
translation (for a pixel p ∈ p+) is

nT (p)t = nT (p)
(
Π−1

S (p)D(p)−R(p)Π−1
S (p)D∗(p)

)
.

(16)
Note that eq. (16) cannot be simplified since the scalar
product nT t = nT (P−RP∗) has t = P−RP∗ only
when the translation is parallel to the normal of the plane Γ.
For efficiency, the residual rotation in (16) is calculated for
each pixel p using an approximation of eq. (3):

R(p) = I(3×3) + Θ(p)S (nΘ(p)) (17)

where the angle is Θ(p) = arccos(n∗T(p)n(p)) and the
axis nΘ(p) is the orthonormal vector to n∗(p) and n(p)
using eq. (2). In ideal conditions, i.e., depth and normals
without noise and perfect rotation estimate in section IV-A,
the residual per pixel rotation R(p) is the identity matrix.

Some remarks can be drawn from equation (16): i) points
with normals orthogonal to the motion do not contribute to
the estimation (nT t = 0 independently of ||t||2) and; ii) a
point with view direction orthogonal to the normal is ill-
conditioned, i.e., nT Π−1

S ≈ 0 and consequently ||D−D∗||1
is unbounded. Thus, for avoiding outliers in the system
(16), these points whose angle between the normal and view
direction is almost orthogonal, should not be considered. If
the system (16) is well-conditioned, it is efficiently solved
using a robust M-estimator with, for instance, the Huber’s
loss function [17]. The task of finding a conditioned system
is discussed in the next section.

1) Translation Observability and Conditioning: Con-
sider the left side of the system in eq. (16) for all pixels
belonging to the set p+ = {p1, . . . ,pn}. This system have a
unique solution if the matrix N = [n(p1) n(p2) ... n(pn)]

T

is of rank three, i.e., given at least three points from three
different planes with linear independent orientations. Of
course when noise is present in the normals, N has almost
surely rank three, but then the solution of eq. (16) is merely
an artifact produced by the noise.

Our goal is to reduce the conditioning of the matrix N,
i.e., the ratio of its maximum and minimum eigenvalues.
We proceed, in a first moment, following the works of
[10, 18] to select the 50% salient measurements of N that
best constraints each DOF of the system. This is done by
ordering the lines of N such that the conditioning of the
subset of equations is as close to one as possible. This
conditioning also gives a measure of the normals distribution
in the sphere. We use the measure of the conditioning of
the subset of salient lines Ns as an observability index.
If the conditioning of cond(Ns

TNs) > e2, the system

in (16) is said to have an “ill-conditioned geometry” and
we proceed to a dimension reduction. A Gaussian-Jordan
elimination with partial pivoting is then used to find the
column space of Ns and the translation estimation is done
using the robust M-estimator for the two remaining DOF that
are well conditioned.

C. Planar Overlapping Assumption

In this section, we discuss what are the conditions to obtain
a good pose initialization and the limits of our approach in
the case of general scenes. It is natural that the observability
of the initialization depends on the scene geometry, i.e., in the
size of the planes, their symmetry and their orientation. As
stated in section IV-A.1, the rotation observability condition,
that at least two planes have linearly independent normal vec-
tors, is generally fulfilled for most scenes. The observability
then remains mainly in how to extract the overlapped regions,
which depends directly on the scene symmetry. The property
we explore to extract the overlapped regions, presented in
section IV-A in the case of general scenes, is that planes with
co-visibility are rotated by the same angle. The angles are
then represented as distributions and we select the peak (the
mode) as being the one corresponding to the right overlapped
points. The distributions, however, can have many modes in
presence of geometry symmetry and the peak corresponding
to the real rotation can be under-represented. Some classical
examples are symmetric spaces, e.g., the sphere for any
rotation ||ω||2 > 0, the cylinder with ||ω||2 > 0 around the
cylinder axis or the cube with ||ω||2 > π/4. Other examples
are described in [18]. In these cases, the distribution becomes
multimodal, where one of the modes corresponds to the real
rotation. Hence, this states that the rotation is not observable
in general. For scenes with symmetry around a defined axis,
the maximum observable angle is half the period of the
symmetry. Our observability index concerning the rotation
will be then related to the number of “similar” modes in the
projected angle distributions.

V. INTIALIZATION RESULTS AND DISCUSSION

In this section, we evaluate the pose initialization (PIN)
in indoor simulated and real spherical sequences with chal-
lenging conditions, i.e., in environments with corridor-like
scenes, large rotations and translations. We start presenting
the parameters’ tuning used in all experiments and then the
accuracy and observability of the method. Finally, we show
some results of dense RGB-D registration experiments with
and without the initialization.

A. Implementation and Parameter Tuning

The normal vector in a point is computed using the central
gradient, i.e., taking the left, right, top and down point
neighbors. This normal computation is very efficient because
the point order is directly given in our framework, still other
normal vector algorithms could be explored, as for instance,
the ones presented in [19]. The initialization method also
admits low resolution depth images. The advantages of using
low resolution depth images are twofold. First, it maintains
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Fig. 3. Initialization results for the sequence Seq1 with a gap of 10 frames. The ground truth poses are the curves in red and the PIN curves are in
blue. The graphics in the first column correspond to the rotation and the second column to the translation. The first graphic at each column depicts the
observability index. The rotation index is one if the distribution is multimodal. The translation observability index is set to one, when the conditioning of
the linear system for the translation is bigger than ε2 = 10. See the text for details.

the efficiency of the algorithm, since a reduced number
of operations are performed. Second, the central gradient
is more robust to noise in the down-sampled depth. We
employed a Gaussian pyramid of depth four and used the
lowest resolution depth images in the experiments.

The sampling of the projected angle distributions (reso-
lution of the histograms) was of 5 degrees to define inlier
pixels. In the translation stage, points are considered to
be overlapped if the angle between the normals (13) is of
ε1 = 10 degrees. Finally, the ratio of salient pixels in IV-B.1
was set to 50% and the maximum accepted conditioning of
the system without dimension reduction was heuristically set
to ε2 = 10.

B. Pose Initialization Results

One example of the rotation initialization distributions, for
a real indoor scene, is displayed in fig. 2. The procedure
gives a fair estimate of the rotation of around 20 degrees
in X, as can be seen in the distributions at right. Each
distribution corresponds to the projected angle of rotation
ωx, ωy and ωz . However, this example also contains an
expected failure (predicted in section IV-C), where a rotation
of around 175 degrees avoids any plane overlapping around
the vertical axis. Only the floor and ceiling planes are
overlapped between the views.

We start using spherical depth images from the Sponza
Atrium dataset, which is composed of corridors and open

Fig. 4. Omnidirectional RGB-D acquisition device with 8 Asus Xtion
Pro Live (Asus XPL) sensors mounted vertically in a radial configuration
(left plot) and respective point cloud of one of the offices used in the real
sequence (right plot).

indoor areas. The inter-frame motion in these images are of
around 0.1 meters and rotation of up to 15 degrees/frame.
For checking the performance of the initialization with large
motions, we have sampled the sequences with different gaps:
3, 5, 10, 15 and 20 frames – e.g. a gap of 20 frames corre-
sponds to calculate the initialization between the image pairs
(1,21), (21,41), ..., (i, i + gap) which results in translations
of up to 2.1 meters and rotations of up to 70 degrees. The
relative pose errors (RPE) for all the experiments are shown
in table I as: the mean absolute error, the absolute standard
deviation and the median absolute error.

Spherical Simulated Sequence: Starting with the rotation,
the approach proved to be robust to translations in amount of
rotations of up to 2.1 meters in the sequence with gap of 20
frames. The rotation is fairly estimated in more than 99% of
the cases with a gap of 10 frames with a mean absolute error
of 0.8 degrees. We show the results for the gap of 10 images
in fig 3 for both rotation and translation. The method failed
in 10% (6/59) of cases for the experiment with a gap of 20
frames. These cases happened when the reference frame was
almost completely occluded in the current frame (e.g., 90
degrees corners) and because of the scene symmetry. These
failure cases were expected to happen as discussed in section
IV-C and were detected by the observability index, which is
displayed in the first plot of fig. 3. The translation estimation
is done after warping the reference depth image using the
rotation. As stated in section IV-B.1, the DOF for which
the FIM is ill-conditioned cannot be accurately estimated
using this formulation, some examples are depicted in fig.
3, where the tz component could not be estimated in the
frames acquired in corridors-like scenes. These cases were
also predicted in section IV-B.1 and the translation index
show the detected cases in the first plot of the right column.
Additionally, an ICP technique in these frames with “ill-
conditioned geometry” is also likely to fail to converge.

Spherical Indoor Real Sequences: We performed sim-
ilar experiments using real spherical images. These real
sequences were acquired in the hall and offices of the Inria
building using the indoor omnidirectional RGB-D acquisition
rig mounted on an holonomic mobile robot (see fig. 4).
The first real sequence (seq2) is composed of 430 spherical



TABLE I
ROTATION AND TRANSLATION PIN ERRORS FOR ALL SEQUENCES –

MEAN ABSOLUTE RELATIVE POSE ERROR (RPE), ABSOLUTE STANDARD

DEVIATION AND ABSOLUTE MEDIAN ERROR.

Rot RPE [deg] Trans RPE [m]
||ω|| std||ω|| med||ω|| ||t|| std||t|| med||t||

Seq1 gap 5 0.25 0.39 0.06 0.11 0.18 0.04
Seq1 gap 10 0.81 3.79 0.07 0.10 0.13 0.05
Seq1 gap 15 3.02 12.58 0.09 0.32 0.61 0.12
Seq1 gap 20 6.35 21.3 0.11 0.41 0.69 0.12
Seq2 gap 3 5.12 12.34 1.18 0.30 0.33 0.25
Seq3 gap 20 7.04 19.21 1.46 0.35 0.39 0.20

TABLE II
DENSE RGB-D REGISTRATION FAILURE RATE WITH AND WITHOUT PIN.

Seq1 gap 20 Seq2 gap 3

RGB-D 47/59 51/143
RGB-D+PIN 23/59 36/143

images with fast Y axis turns of up to 25 degrees between
consecutive frames and with translations of around 0.15 me-
ters. Conversely, the second real sequence (seq3) is acquired
with moderate rotations of up to 5 degrees around the Y
axis. To emulate large displacements, we selected a gap of
3 and 20 frames respectively. The rotation estimation was
successful in 90% of cases having motions of up to 70
degrees for seq2 and up to 50 degrees in seq3. Rotations
of up to 69 degrees between the real indoor frames were
successfully estimated. The translation estimate is however
three times more sensitive to the noise than in the simulated
experiments, as shown in table I.

Finally, we use the estimated initialization within a dense
RGB-D registration method. The formulation of [20] is
selected with a scaling factor between the ICP and RGB costs
as λ = median(I)/median(D), where I ∈ [0, 255]m×n

is the intensity image. The maximum number of iterations
per pyramid level is set to 20 and the method is considered
to achieve convergence if the error of the final pose for the
rotation and translation is smaller than 7 degrees and 0.1
meters respectively. The failure rate with (RGB-D+PIN) and
without the initialization for the most challenging simulated
sequence (seq1 with gap of 20 frames) and real sequence
seq2 are given in table II. As expected, the initialization
ensured the convergence specially in the image pairs with
large rotations (bigger than 25 degrees) for the real seq2 and
in the frame pairs of the simulated sequence (seq1) where the
large inter-frame translation of 2.1 meters could be observed.

VI. CONCLUSIONS

This paper described a non-iterative pose estimation tech-
nique using the surface normal vectors of wide FOV depth
images. The rotation and translation are computed in a
decoupled way by exploring the properties of the normals
of piece-wise planar scenes. First, the rotation is developed
using the overlapping property of the normal vectors between
two views. This is performed thanks to a decomposition of
the normals in a general orthogonal coordinate system. The
translation is then directly derived from the rotation as a

linear system of equations. We present some techniques to
improve the conditioning of this system and a discussion
about our assumptions and the limits of the method. Finally,
an experimental validation is performed with simulated and
real spherical sequences. It is worth noting that the method
does not assume Manhattan-World like scenes, small motions
or any feature extraction/matching. By last, we enforce the
efficiency of the initialization computation. The algorithm
runs, in a Matlab non-optimized code, with around 0.02
seconds for the rotation and 0.03 seconds for the translation
with Matlab 2012 in a laptop Intel Core i5-5300U CPU, 2.3
GHz and Ubuntu 14.04.

In our future research, we plan to study more appropriate
metrics than the mode to match the distributions and to
test our algorithm in outdoor scenes using 3D LIDAR
sequences. Another future research direction is to explore
other information sources, as intensity/color, if one is using
RGB-D sensors.
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