
HAL Id: hal-01583322
https://hal.inria.fr/hal-01583322

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Towards Verification of the Pastry Protocol Using
TLA +

Tianxiang Lu, Stephan Merz, Christoph Weidenbach

To cite this version:
Tianxiang Lu, Stephan Merz, Christoph Weidenbach. Towards Verification of the Pastry Protocol
Using TLA + . 13th Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS) / 31th International Conference on FORmal TEchniques for Networked and Distributed
Systems (FORTE), Jun 2011, Reykjavik, Iceland. pp.244-258, �10.1007/978-3-642-21461-5_16�. �hal-
01583322�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132047574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01583322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards Verification
of the Pastry Protocol using TLA+

Tianxiang Lu1,2, Stephan Merz2, and Christoph Weidenbach1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{tianlu,weidenbach}@mpi-inf.mpg.de

2 INRIA Nancy & LORIA, Nancy, France
Stephan.Merz@loria.fr

Abstract. Pastry is an algorithm that provides a scalable distributed
hash table over an underlying P2P network. Several implementations of
Pastry are available and have been applied in practice, but no attempt
has so far been made to formally describe the algorithm or to verify
its properties. Since Pastry combines rather complex data structures,
asynchronous communication, concurrency, resilience to churn and fault
tolerance, it makes an interesting target for verification. We have mod-
eled Pastry’s core routing algorithms and communication protocol in
the specification language TLA+. In order to validate the model and to
search for bugs we employed the TLA+ model checker tlc to analyze
several qualitative properties. We obtained non-trivial insights in the
behavior of Pastry through the model checking analysis. Furthermore,
we started to verify Pastry using the very same model and the interac-
tive theorem prover tlaps for TLA+. A first result is the reduction of
global Pastry correctness properties to invariants of the underlying data
structures.

Keywords: formal specification, model checking, verification methods, network
protocols

1 Introduction

Pastry [9, 3, 5] is an overlay network protocol that implements a distributed
hash table. The network nodes are assigned logical identifiers from an Id space
of naturals in the interval [0, 2M − 1] for some M . The Id space is considered as
a ring, i.e., 2M − 1 is the neighbor of 0. The Ids serve two purposes. First, they
are the logical network addresses of nodes. Second, they are the keys of the hash
table. An active node is in particular responsible for keys that are numerically
close to its network Id, i.e., it provides the primary storage for the hash table
entries associated with these keys. Key responsibility is divided equally according
to the distance between two neighbor nodes. If a node is responsible for a key
we say it covers the key.

The most important sub-protocols of Pastry are join and lookup. The join
protocol eventually adds a new node with an unused network Id to the ring.

2 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

The lookup protocol delivers the hash table entry for a given key. An important
correctness property of Pastry is Correct Key Delivery, requiring that there is
always at most one node responsible for a given key. This property is non-trivial
to obtain in the presence of spontaneous arrival and departure of nodes. Nodes
may simply drop off, and Pastry is meant to be robust against such changes,
i.e., churn. For this reason, every node holds two leaf sets of size l containing
its closest neighbors to either side (l nodes to the left and l to the right). A
node also holds the hash table content of its leaf set neighbors. If a node detects,
e.g. by a ping, that one of its direct neighbor nodes dropped off, the node takes
actions to recover from this state. So the value of l is relevant for the amount of
“drop off” and fault tolerance of the protocol.

A lookup request must be routed to the node responsible for the key. Routing
using the leaf sets of nodes is possible in principle, but results in a linear number
of steps before the responsible node receives the message. Therefore, on top of
the leaf sets of a node a routing table is implemented that enables routing in a
logarithmic number of steps in the size of the ring.

Fig. 1. Pastry Routing Example

Pastry routes a message by forwarding it to nodes that match progressively
longer prefixes with the destination key. In the example of Fig. 1, node 18 re-
ceived a lookup message for key 95. The key is outside node 18’s coverage and
furthermore, it doesn’t lie between the leftmost node and the rightmost node of
its leaf sets. Querying its routing table, node 18 finds node 58, whose identifier
matches the longest prefix with the destination key and then forwards the mes-
sage to that node. Node 58 repeats the process and finally, the lookup message
is answered by node 65, which is the closest node to the key 95, i.e., it covers

Towards Verification of the Pastry Protocol using TLA+ 3

key 95. In this case, we say that node 65 delivers the lookup request for key 95
(see also Fig. 4).

The first challenge in modeling Pastry was to determine an appropriate level
of abstraction. As a guiding principle, we focused the model towards supporting
detailed proofs of the correctness properties. We abstracted from an explicit no-
tion of time because it does not contribute to the verification of correctness prop-
erties. For example, time-triggered periodic maintenance messages exchanged
between neighbors are modelled by non-deterministic sending of such messages.
In contrast, we developed a detailed model for the address ring, the routing ta-
bles, the leaf sets, as well as the messages and actions of the protocol because
these parts are central to the correctness of Pastry.

The second challenge was to fill in needed details for the formal model that
are not contained in the published descriptions of Pastry. Model checking was
very helpful for justifying our decisions. For instance, it was not explicitly stated
what it means for a leaf set to be “complete”, i.e., when a node starts taking over
coverage and becoming an active member on the ring. It was not stated whether
an overlap between the right and left leaf set is permitted or whether the sets
should always be disjoint. We made explicit assumptions on how such corner
cases should be handled, sometimes based on an exploration of the source code
of the FreePastry implementation [8]. Thus, we implemented an overlap in our
model only if there are at most 2l nodes present on the entire network, where l
is the size of each leaf set. A complete leaf set only contains less than l nodes, if
there are less than l nodes on the overall ring.

A further challenge was to formulate the correctness property; in fact, it
is not stated explicitly in the literature [9, 3, 5]. The main property that we
are interested in is that the lookup message for a particular key is answered
by at most one “ready” node covering the key. We introduced a more fine-
grained status notion for nodes, where only “ready” nodes answer lookup and
join requests. The additional status of a node being “ok” was added in the refined
model described in Section 4 to support several nodes joining simultaneously
between two consecutive “ready” nodes.

The paper is organized as follows. In Section 2 we explain the basic mech-
anisms behind the join protocol of Pastry. This protocol is the most important
part of Pastry for correctness. Key aspects of our formal model are introduced
in Section 3. To the best of our knowledge, we present the first formal model
covering the full Pastry algorithm. A number of important properties are model
checked, subsections 3.3–3.4 and subsections 4.2–4.3, and the results are used to
refine our model in case the model checker found undesired behavior. In addi-
tion to model checking our model, we have also been able to prove an important
reduction property of Pastry. Basically, the correctness of the protocol can be
reduced to the consistency of leaf sets, as we show in Section 5, Theorem 6. The
paper ends with a summary of our results, related work, and future directions of
research in Section 6. Further details and all proofs can be found in a technical
report [7].

4 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

2 The Join Protocol

The most sophisticated part of Pastry is the protocol for a node to join the ring.
In its simplest form, a single node joins between two “ready” nodes on the ring.
The new node receives its leaf sets from the “ready” nodes, negotiates with both
the new leaf sets and then goes to status “ready”.

The join protocol is complicated because any node may drop off at any time,
in particular while it handles a join request. Moreover, several nodes may join the
ring concurrently between two adjacent “ready” nodes. Still, all “ready” nodes
must agree on key coverage.

Figure 2 presents a first version of the join protocol in more detail, according
to our understanding from [9] and [3]. We will refine this protocol in Sect. 4
according to the description in [5].

Fig. 2. Overview of the join protocol.

Node j announces its interest in joining the ring by performing a Join action.
At this point, its status is “wait”. Its join request will be routed to the closest
“ready” node i just like routing a lookup message, treating j as the key. Node
i replies to j by performing a join reply, JReply action, transmitting its current
leaf sets to enable node j to construct its own leaf sets. Then the node j probes
all nodes in its leaf sets in order to confirm their presence on the ring. A probe
reply, action PReply, signals j that the respective leaf set node received the
probe message from j and updated its local leaf set with j . The reply contains
the updated leaf set. Each time the node j receives a probe reply message, it
updates the local information based on the received message and checks if there

Towards Verification of the Pastry Protocol using TLA+ 5

are outstanding probes. If no outstanding probe exists anymore or a timeout
occurs, it checks whether its leaf set is complete. If it is, it finishes the join phase
and goes to status “ready”. Otherwise, any fault case is summarized in Fig. 2
by Repair. For example, if a probe eventually fails, the probed node needs to
be removed from the leaf set. Then the node j probes the most distant nodes
(leftmost and rightmost) in its leaf sets to get more nodes, retrying to complete
its leaf set.

3 A First Formal Model of Pastry

We modeled Pastry as a (potentially infinite-state) transition system in TLA+ [6].
Although there are of course alternative logics and respective theorem provers
for modelling Pastry, TLA+ fits protocol verification quite nicely, because its
concept of actions matches the rule/message based definition of protocols. Our
model is available on the Web3. We explain those parts of the model that are
used later on for model checking and for proving the reduction theorem.

3.1 Static Model

Several parameters define the size of the ring and of the fundamental data struc-
tures. In particular, M ∈ N defines the space I = [0, 2M − 1] of node and key
identifiers, and l ∈ N indicates the size of each leaf set. The following definition
introduces different notions of distances between nodes or keys that will be used
in the model.

Definition 1 (Distances). Given x, y ∈ I :

Dist(x , y)
∆
=

x − y + 2M−1 if x − y < −2M−1

x − y − 2M−1 if x − y > 2M−1

x − y , else

AbsDist(x , y)
∆
= |Dist(x , y)|

CwDist(x , y)
∆
=

{
AbsDist(x , y) if Dist(x , y) < 0

2M −AbsDist(x , y) else

The sign of Dist(x , y) is positive if there are fewer identifiers on the counter-
clockwise path from x to y than on the clockwise path; it is negative otherwise.
The absolute value AbsDist(x , y) gives the length of the shortest path along the
ring from x to y . Finally, the clockwise distance CwDist(x , y) returns the length
of the clockwise path from x to y .

The leaf set data structure ls of a node is modeled as a record with three
components ls.node, ls.left and ls.right . The first component contains the iden-
tifier of the node maintaining the leaf set, the other two components are the two
leaf sets to either side of the node. The following operations access leaf sets.

3 http://www.mpi-inf.mpg.de/~tianlu/software/PastryModelChecking.zip

6 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

Definition 2 (Operations on Leaf Sets).

GetLSetContent(ls)
∆
= ls.left ∪ ls.right ∪ {ls.node}

LeftNeighbor(ls)
∆
=

ls.node if ls.left = {}

n ∈ ls.left : ∀p ∈ ls.left :

CwDist(p, ls.node)

≥ CwDist(n, ls.node) else

RightNeighbor(ls)
∆
=

ls.node if ls.right = {}

n ∈ ls.right : ∀q ∈ ls.right :

CwDist(ls.node, q)

≥ CwDist(ls.node,n) else

LeftCover(ls)
∆
= (ls.node + CwDist(LeftNeighbor(ls), ls.node)÷ 2)%2M

RightCover(ls)
∆
= (RightNeighbor(ls) +

CwDist(ls.node,RightNeighbor(ls))÷ 2 + 1)%2M

Covers(ls, k)
∆
= CwDist(LeftCover(ls), k)

≤ CwDist(LeftCover(ls),RightCover(ls))

In these definitions, ÷ and % stand for division and modulo on the natural
numbers, respectively. Note that they are in fact only applied in the above defi-
nitions to natural numbers. We also define the operation AddToLSet(A, ls) that
updates the leaf set data structure with a set A of nodes. More precisely, both
leaf sets in the resulting data structure ls ′ contain the l nodes closest to ls.node
among those contained in ls and the nodes in A, according to the clockwise or
counter-clockwise distance.

3.2 Dynamic Model

Fig. 3 shows the high-level outline of the transition model specification in TLA+.
The overall system specification Spec is defined as Init∧�[Next]vars , which is the
standard form of TLA+ system specifications. It requires that all runs start with
a state that satisfies the initial condition Init , and that every transition either
does not change vars (defined as the tuple of all state variables) or corresponds to
a system transition as defined by formula Next . This form of system specification
is sufficient for proving safety properties. If we were interested in proving liveness
properties of our model, we should add fairness hypotheses asserting that certain
actions eventually occur.

The variable receivedMsgs holds the set of messages in transit. Our model
assumes that messages are never modified. However, message loss is implicitly
covered because no action is ever required to execute. The other variables hold

Towards Verification of the Pastry Protocol using TLA+ 7

vars
∆
= 〈receivedMsgs, status, lset , probing , failed , rtable〉

Init
∆
= ∧ receivedMsgs = {}

∧ status = [i ∈ I 7→ if i ∈ A then “ready” else “dead”]

∧ lset = [i ∈ I 7→ if i ∈ A

then AddToLSet(A, [node 7→ i , left 7→ {}, right 7→ {}])

else [node 7→ i , left 7→ {}, right 7→ {}]]

∧ probing = [i ∈ I 7→ {}]

∧ failed = [i ∈ I 7→ {}]

∧ rtable = . . .

Next
∆
= ∃i , j ∈ I : ∨ Deliver(i , j)

∨ Join(i , j)

∨ JReply(i , j)

∨ Probe(i , j)

∨ PReply(i , j)

∨ . . .

Spec
∆
= Init ∧�[Next]vars

Fig. 3. Overall Structure of the TLA+ Specification of Pastry.

arrays that assign to every node i ∈ I its status, leaf set, the set of nodes it is
currently probing, the set of nodes it has determined to have dropped off the
ring, and its routing table. The predicate Init is defined as a conjunction that
initializes all variables; in particular, the model takes a parameter A indicating
the set of nodes that are initially “ready”.

The next-state relation Next is a disjunction of all possible system actions, for
all pairs of identifiers i , j ∈ I . Each action is defined as a TLA+ action formula,
which is a first-order formula containing unprimed as well as primed occurrences
of the state variables, which refer respectively to the values of these variables at
the states before and after the action. As an example, Fig. 4 shows the defini-
tion of action Deliver(i , k) in TLA+. The action is executable if the node i is
“ready”, if there exists an unhandled message of type “lookup” addressed to i ,
and if k , the ID of the requested key, falls within the coverage of node i (cf.
Definition 2). Its effect is here simply defined as removing the message m from

Deliver(i , k)
∆
=

∧ status[i] = “ready”

∧ ∃m ∈ receivedMsgs : ∧ m.mreq .type = “lookup”

∧ m.destination = i

∧ m.mreq .node = k

∧ Covers(lset [i], k)

∧ receivedMsgs ′ = receivedMsgs \ {m}
∧ unchanged 〈status, rtable, lset , probing , failed , lease〉

Fig. 4. TLA+ specification of action Deliver .

8 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

the network, because we are only interested in the execution of the action, not
in the answer message that it generates. The other variables are unchanged (in
TLA+, unchanged e is a shorthand for the formula e ′ = e).

3.3 Validation By Model Checking

We used tlc [11], the TLA+ model checker, to validate and debug our model.
It is all too easy to introduce errors into a model that prevent the system from
ever performing any useful transition, so we want to make sure that nodes can
successfully perform Deliver actions or execute the join protocol described in
Section 2. We used the model checker by asserting their impossibility, using the
following formulas.

Property 3 (NeverDeliver and NeverJoin)

NeverDeliver
∆
= ∀i , j ∈ I : �[¬Deliver(i , j)]vars

NeverJoin
∆
= ∀j ∈ I \A : �(status[j] 6= “ready”)

The first formula asserts that the Deliver action can never be executed, for
any i , j ∈ I . Similarly, the second formula asserts that the only nodes that may
ever become “ready” are those in the set A of nodes initialized to be “ready”.
Running the model checker on our model, it quickly produced counter-examples
to these claims, which we examined to ensure that the runs look as expected.
(Section 4.3 summarizes the results for the model checking runs that we per-
formed.)

We validated the model by checking several similar properties. For example,
we defined formulas ConcurrentJoin and CcJoinDeliver whose violation yielded
counter-examples that show how two nodes may join concurrently in close prox-
imity to the same existing node, and how they may subsequently execute Deliver
actions for keys for which they acquired responsibility.

3.4 Correct Key Delivery

As the main correctness property of Pastry, we want to show that at any time
there can be only one node responsible for any key. This is formally expressed
as follows.

Property 4 (Correct Key Delivery)

CorrectDeliver
∆
= ∀i , k ∈ I :

enabled Deliver(i , k)

⇒ ∧ ∀n ∈ I : status[n] = “ready”⇒ AbsDist(i , k) ≤ AbsDist(n, k)

∧ ∀j ∈ I \ {i} : ¬enabled Deliver(j , k)

For an action formula A, the state formula enabled A is obtained by existential
quantification over all primed state variables occurring in A; it is true at a state s

Towards Verification of the Pastry Protocol using TLA+ 9

whenever there exists some successor state t such that A is true for the pair
(s, t), that is, when A can execute at state s. Thus, CorrectDeliver asserts that
whenever node i can execute the Deliver action for key k then (a) node i has
minimal absolute distance from k among all the “ready” nodes and (b) i is the
only node that may execute Deliver for key k .4

Fig. 5. Counter-example leading to a violation of CorrectDeliver .

When we attempted to verify Property 4, the model checker produced a
counter-example, which we illustrate in Fig. 5. The run starts in a state with
just two “ready” nodes c and d that contain each other in their respective leaf
sets (the actual size of the leaf sets being 1). Two nodes a and b concurrently
join between nodes c and d . According to their location on the ring, a’s join
request is handled by node c, and b’s request by d . Both nodes learn about the
presence of c and d , and add them to their leaf sets, then send probe requests
to both c and d in order to update the leaf sets. Now, suppose that node d is
the first to handle a’s probe message, and that node c first handles b’s probe.
Learning that a new node has joined, which is closer than the previous entry in
the respective leaf set, c and d update their leaf sets with b and a, respectively
(cf. Fig. 5), and send these updated leaf sets to b and a. Based on the reply
from d , node a will not update its leaf set because its closest left-hand neighbor
is still found to be c, while it learns no new information about the neighborhood
to the right. Similarly, node b maintains its leaf sets containing c and d . Now,

4 Observe that there can be two nodes with minimal distance from k , to either side of
the key. The asymmetry in the definition of LeftCover and RightCover is designed
to break the tie and ensure that only one node is allowed to deliver.

10 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

the other probe messages are handled. Consider node c receiving a’s probe: it
learns of the existence of a new node to its right closer to the one currently in
its leaf set (b) and updates its leaf set accordingly, then replies to a. However,
node a still does not learn about node b from this reply and maintains its leaf
sets containing c and d . Symmetrically, node d updates its leaf set to contain b
instead of a, but b does not learn about the presence of a. At the end, the leaf
sets of the old nodes c and d are correct, but a and b do not know about each
other and have incorrect leaf set entries.

Finally, a lookup message arrives for key k , which lies between a and b, but
closer to a. This lookup message may be routed to node b, which incorrectly
believes that it covers key k (since k is closer to b than to c, which b believes to
be its left-hand neighbor), and delivers the key.

The counter-example shows that our model of the join protocol may lead to
inconsistent views of “ready” nodes about their neighborhoods on the ring, and is
therefore insufficient. Indeed, after the initial publication of Pastry, Haeberlen et
al. [5] presented a refined description of Pastry’s join protocol, without providing
an explicit motivation. We believe that the above counter example explains the
refinement of [5], which we model and analyze in the sequel.

4 Refining the Join Protocol

In contrast to the join protocol described in Section 2, the refined join protocol
requires an explicit transfer of coverage from the “ready” neighbor nodes before
a joining node can become “ready” and answer lookup requests. In the case
of the counter-example shown in Fig. 5, node a would request grants from the
nodes c and d , which it believes to be its neighbors. Node d would refuse this
request and instead inform node a of the presence of node b, enabling it to
rebuild its leaf sets. Similarly, node b would learn about the presence of node a.
Finally, the two nodes grant each other a lease for the nodes they cover. We
now describe the extended protocol as we have understood and modelled it, and
our further verification efforts. In fact, our formal model is also inspired by the
implementation in FreePastry [8], where nodes periodically exchange their leaf
sets to spread information about nodes dropping off and arriving.

4.1 Lease Granting Protocol

Figure 6 depicts the extension to the join protocol as described in Section 2 (cf.
Fig. 2). After node i has built complete leaf sets, it reaches status “ok”. It sends
messages to its neighbors ln and rn (the two closest nodes in its current leaf
sets), requesting a lease for the keys it covers. A node receiving a lease request
from a node that it considers to be its neighbor grants the lease, otherwise it
returns its own leaf sets to the requesting node. The receiving node will update
its own leaf sets accordingly and request a lease from the new neighbor(s). Only
when both neighbors grant the lease will node i become “ready”.

Towards Verification of the Pastry Protocol using TLA+ 11

Fig. 6. Extending the Join Protocol by Lease Granting.

Moreover, any node that is “ok” or “ready” may non-deterministically re-
run the lease granting protocol at any time. In the actual implementation, this
happens periodically, as well as when a node suspects its neighbor to have left
the ring.

We amended our TLA+ model to reflect this extended join protocol and
reran tlc on the extended model. Whereas the results for the properties used
to validate the model (cf. Section 3.3) were unchanged, the model checker no
longer produced a counter-example to Property 4. However, we were unable to
complete the model checking run and killed tlc after it had been running for
more than a month.

4.2 Symmetry of Leaf Sets

Based on the counter-example shown in Section 3.4, one may be tempted to
assert that leaf set membership of nodes should be symmetrical in the sense
that for any two “ready” nodes i , j it holds that i appears in the leaf sets of j if
and only if j appears in the leaf sets of i .

Property 5 (Symmetry of leaf set membership)

Symmetry
∆
=

∀i , j ∈ I : status[i] = “ready” ∧ status[j] = “ready”

⇒ (i ∈ GetLSetContent(lset [j])⇔ j ∈ GetLSetContent(lset [i]))

However, the above property is violated during the execution of the join
protocol and tlc yields the following counter-example: a node k joins between

12 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

Examples Time Depth # states Counter Example

NeverDeliver 1” 5 101 yes

NeverJoin 1” 9 19 yes

ConcurrentJoin 3’53” 21 212719 yes

CcJoinLookup 23’16” 23 1141123 yes

Symmetry 17” 17 19828 yes

Neighbor 5’35” 16 278904 yes

NeighborProp > 1 month 31 1331364126 no

CorrectDeliver > 1 month 21 1952882411 no

Table 1. tlc result with four nodes, leaf set length l = 1

i and j . It finishes its communication with i getting its coverage set from i , but
its communication with j is not yet finished. Hence, i and j are “ready” whereas
k is not. Furthermore, i may have removed j from its leaf set, so the symmetry
is broken.

4.3 Validation

Table 1 summarizes the model checking experiments we have described so far,
over the extended model. tlc was run with two worker threads (on two CPUs)
on a 32 Bit Linux machine with Xeon(R) X5460 CPUs running at 3.16GHz with
about 4 GB of memory per CPU. For each run, we report the running time, the
number of states generated until tlc found a counter-example (or, in the case
of Property 4, until we killed the process), and the largest depth of these states.
Since the verification of Property 4 did not produce a counter-example, we ran
the model checker in breadth-first search mode. We can therefore assert that if
the model contains a counter-example to this property, it must be of depth at
least 21.

All properties except Neighbor and NeighborProp were introduced in previous
sections. The property Neighbor is inspired by the counter-example described in
Section 3.4. It is actually the NeighborClosest property relaxed to “ok” and
“ready” nodes. It asserts that whenever i , j are nodes that are “ok” or “ready”,
then the left and right neighbors of node i according to its leaf set contents
must be at least as close to i than is node j . This property does not hold, as the
counter-example of Section 3.4 shows, but it does if node i is in fact “ready”,
which corresponds the NeighborClosest property. The NeighborProp property is
the conjunction HalfNeighbor ∧NeighborClosest , see the next section.

5 Theorem Proving

Having gained confidence in our model, we now turn to formally proving the main
correctness Property 4, using the interactive TLA+ proof system (tlaps) [4].

Towards Verification of the Pastry Protocol using TLA+ 13

Our full proofs are available on the Web5. The intuition gained from the counter-
example of Section 3.4 tells us that the key to establishing Property 4 is that the
leaf sets of all nodes participating in the protocol contain the expected elements.
We start by defining a number of auxiliary formulas.

Ready
∆
= {i ∈ I : status[i] = “ready”}

ReadyOK
∆
= {i ∈ I : status[i] ∈ {“ready”, “ok”}}

HalfNeighbor
∆
=

∨ ∀i ∈ ReadyOK : RightNeighbor(lset [i]) 6= i ∧ LeftNeighbor(lset [i]) 6= i

∨ ∧ Cardinality(ReadyOK) ≤ 1

∧ ∀i ∈ ReadyOK : LeftNeighbor(lset [i]) = i ∧ RightNeighbor(lset [i]) = i

NeighborClosest
∆
= ∀i , j ∈ Ready :

i 6= j ⇒ ∧ CwDist(LeftNeighbor(lset [i]), i) ≤ CwDist(j , i)

∧ CwDist(i ,RightNeighbor(lset [i])) ≤ CwDist(i , j)

Sets Ready and ReadyOK contain the nodes that are “ready”, resp. “ready”
or “ok”. Formula HalfNeighbor asserts that whenever there is more than one
“ready” or “ok” node i , then the left and right neighbors of every such node i
are different from i . In particular, it follows by Definition 2 that no leaf set
of i can be empty. The formula NeighborClosest states that the left and right
neighbors of any “ready” node i lie closer to i than any “ready” node j different
from i .

We used tlc to verify NeighborProp
∆
= HalfNeighbor ∧ NeighborClosest .

Running tlc for more than a month did not yield a counter-example. Using
tlaps, we have mechanically proved that NeighborProp implies Property 4, as
asserted by the following theorem.

Theorem 6 (Reduction). HalfNeighbor ∧NeighborClosest ⇒ CorrectDeliver .

We sketch our mechanically verified tlaps proof of Theorem 6 by two lem-
mas. The first lemma shows that, assuming the hypotheses of Theorem 6, then
for any two “ready” nodes i , n, with i 6= n and key k , if node i covers k then i
must be at least as close to k as is n.

Lemma 7 (Coverage Lemma).

HalfNeighbor ∧NeighborClosest

⇒ ∀i ,n ∈ Ready : ∀k ∈ I : i 6= n ∧ Covers(lset [i], k)

⇒ AbsDist(i , k) ≤ AbsDist(n, k)

The second lemma shows, under the same hypotheses, that if i covers k then
n cannot cover k . Taking together Lemma 7 and Lemma 8, Theorem 6 follows
easily by the definitions of the property CorrectDeliver (Property 4) and the
action Deliver (see Fig. 4).

5 http://www.mpi-inf.mpg.de/~tianlu/software/PastryTheoremProving.zip

14 Tianxiang Lu, Stephan Merz, Christoph Weidenbach

Lemma 8 (Disjoint Covers).

HalfNeighbor ∧NeighborClosest

⇒ ∀i ,n ∈ Ready : ∀k ∈ I : i 6= n ∧ Covers(lset [i], k)

⇒ ¬Covers(lset [n], k)

In order to complete the proof that our model of Pastry satisfies Property 4,
it is enough by Theorem 6 to show that every reachable state satisfies properties
HalfNeighbor and NeighborClosest . We have embarked on an invariant proof and
have defined a predicate that strengthens these properties. We are currently in
the process of showing that it is indeed preserved by all actions of our model.

6 Conclusion and Future Work

In this paper we have presented a formal model of the Pastry routing protocol, a
fundamental building block of P2P overlay networks. To the best of our knowl-
edge, this is the first formal model of Pastry, although the application of formal
modeling and verification techniques to P2P protocols is not entirely new. For
example, Velipalasar et al. [10] report on experiments of applying the Spin model
checker to a model of a communication protocol used in a P2P multimedia sys-
tem. More closely related to our topic, Borgström et al. [2] present initial work
towards the verification of a distributed hash table in a P2P overlay network in
a process calculus setting, but only considered fixed configurations with perfect
routing information. As we have seen, the main challenge in verifying Pastry
lies in the correct handling of nodes joining the system on the fly. Bakhshi and
Gurov [1] model the Pure Join protocol of Chord in the π-calculus and show that
the routing information along the ring eventually stabilizes in the presence of
potentially concurrent joins. Numerous technical differences aside, they do not
consider possible interferences between the join and lookup sub-protocols, as we
do in our model.

Pastry is a reasonably complex algorithm that mixes complex data structures,
dynamic network protocols, and timed behavior for periodic node updates. We
decided to abstract from timing aspects, which are mainly important for perfor-
mance, but otherwise model the algorithm as faithfully as possible. Our main
difficulties were to fill in details that are not obvious from the published descrip-
tions of the algorithm, and to formally state the correctness properties expected
from Pastry. In this respect, the model checker helped us understand the need
for the extension of the join protocol by lease granting, as described in [5]. It was
also invaluable to improve our understanding of the protocol because it allowed
us to state “what-if” questions and refute conjectures such as the symmetry
of leaf set membership (Property 5). The building of the first overall model of
Pastry in TLA+ took us about 3 months. Almost two third of it was devoted to
the formal development of the underlying data structures, such as the address
ring, leaf sets or routing tables.

After having built up confidence in the correctness of our model, we started
full formal verification using theorem proving. In particular, we have reduced the

Towards Verification of the Pastry Protocol using TLA+ 15

correctness Property 4 to a predicate about leaf sets that the algorithm should
maintain, and have defined a candidate for an inductive invariant. Future work
will include full verification of the correctness properties. Afterwards, we will
extend the model by considering liveness properties, which obviously require
assumptions about the ring being sufficiently stable. We also intend to study
which parts of the proof are amenable to automated theorem proving techniques,
as the effort currently required by interactive proofs is too high to scale to more
complete P2P protocols.

Acknowledgements: We would like to thank the reviewers for their valuable
comments.

References

1. Rana Bakhshi and Dilian Gurov. Verification of peer-to-peer algorithms: A case
study. Electr. Notes Theor. Comput. Sci., 181:35–47, 2007.

2. Johannes Borgström, Uwe Nestmann, Luc Onana Alima, and Dilian Gurov. Verify-
ing a structured peer-to-peer overlay network: The static case. In Corrado Priami
and Paola Quaglia, editors, Global Computing, volume 3267 of Lecture Notes in
Computer Science, pages 250–265. Springer, 2004.

3. Miguel Castro, Manuel Costa, and Antony I. T. Rowstron. Performance and de-
pendability of structured peer-to-peer overlays. In International Conference on
Dependable Systems and Networks (DSN 2004), pages 9–18, Florence, Italy, 2004.
IEEE Computer Society.

4. Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and StephanMerz. Verifying
safety properties with the TLA+ proof system. In Jürgen Giesl and Reiner Hähnle,
editors, Intl. Joint Conf. Automated Reasoning (IJCAR 2010), volume 6173 of
Lecture Notes in Computer Science, pages 142–148. Springer, 2010.

5. Andreas Haeberlen, Jeff Hoye, Alan Mislove, and Peter Druschel. Consistent key
mapping in structured overlays. Technical Report TR05-456, Rice University, De-
partment of Computer Science, August 2005.

6. Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

7. Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. Towards verification of
the pastry protocol using TLA+. Technical Report MPI-I-2011-RG1-002, Max-
Planck-Institute fr Informatik, April 2011.

8. Rice University and Max-Planck Institute for Software Systems. Pastry: A sub-
strate for peer-to-peer applications. http://www.freepastry.org/.

9. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), pages 329–350, November
2001.

10. Senem Velipasalar, Chang Hong Lin, Jason Schlessman, and Wayne Wolf. Design
and verification of communication protocols for peer-to-peer multimedia systems.
In IEEE Intl. Conf. Multimedia and Expo (ICME 2006), pages 1421–1424, Toronto,
Canada, 2006. IEEE.

11. Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifi-
cations. In L. Pierre and T. Kropf, editors, Correct Hardware Design and Verifica-
tion Methods (CHARME’99), volume 1703 of Lecture Notes in Computer Science,
pages 54–66, Bad Herrenalb, Germany, 1999. Springer.

