
HAL Id: hal-01583824
https://hal.inria.fr/hal-01583824

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Random Process for a Large-Scale
Peer-to-Peer Lottery

Stéphane Grumbach, Robert Riemann

To cite this version:
Stéphane Grumbach, Robert Riemann. Distributed Random Process for a Large-Scale Peer-to-Peer
Lottery. 17th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS), Jun 2017, Neuchâtel, Switzerland. pp.34-48, �10.1007/978-3-319-59665-5_3�. �hal-01583824�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132046934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01583824
https://hal.archives-ouvertes.fr


Distributed Random Process for a

large-scale Peer-to-Peer Lottery

Stéphane Grumbach and Robert Riemann

Inria
{stephane.grumbach,robert.riemann}@inria.fr

Abstract Most online lotteries today fail to ensure the verifiability of the
random process and rely on a trusted third party. This issue has received
little attention since the emergence of distributed protocols like Bitcoin
that demonstrated the potential of protocols with no trusted third party.
We argue that the security requirements of online lotteries are similar
to those of online voting, and propose a novel distributed online lottery
protocol that applies techniques developed for voting applications to an
existing lottery protocol. As a result, the protocol is scalable, provides
efficient verification of the random process and does not rely on a trusted
third party nor on assumptions of bounded computational resources. An
early prototype confirms the feasibility of our approach.
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1 Introduction

Lottery is a multi-billion dollar industry [1]. In general, players buy lottery tickets
from an authority. Using a random process, e.g. the drawing of lots, the winning
tickets are determined and the corresponding ticket owners receive a reward.

In some lotteries, the reward may be considerable, and so is the incentive to
cheat. The potential of fraud gained attention due to the Hot Lotto fraud scandal.
In 2015, the former security director of the Multi-State Lottery Association in
the US was convicted of rigging a 14.3 million USD drawing by the unauthorised
deployment of a self-destructing malware manipulating the random process [2].

In order to ensure fair play and ultimately the trust of players, lotteries are
subject to strict legal regulations and employ a technical procedure, the lottery
protocol, to prevent fraud and convince players of the correctness. Ideally, players
should not be required to trust the authority. Verifiable lottery protocols provide
therefore evidence of the correctness of the random process.

In a simple paper-based lottery protocol, tickets are randomly drawn under
public supervision of all players from an urn with all sold tickets to determine the
winners. Afterwards, all tickets left over in the urn are also drawn to confirm their
presence and convince the losers of the correctness. Without public supervision,
the random process can be repeated until by chance a predefined result occurred.
Further, the process can be replaced entirely by a deterministic process.
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In practice, the public supervision limits the number of lottery players and
is further very inconvenient, because players are required to respect the time
and locality of the drawing procedure. With the advent of public broadcasting
channels, first newspapers, then radio and television broadcasting, protocols were
employed that replaced the public supervision by a public announcement. Only
few players and notaries verify here the correctness of the random process. In
consequence, the majority of non-present players are required to trust the few
present individuals for the sake of scalability. With the increasing availability
of phones and later the internet, protocols have been adapted to allow also the
remote purchase of lottery tickets, e.g. from home or a retail store.

The technical evolution lead to a gradual change of how people play lottery,
but in many cases, the drawing procedure has not been adapted and resembles
more a legacy that prevails for nostalgic reasons than to provide security. In the
simple paper-based lottery protocol, the chain of custody establishes trust. All
operations may be inspected by eye-sight.

This technique cannot be directly adapted for an online lottery. Thus, most
verifiable online lottery protocols [3, 4, 5] rely on a concept based on two elements.
All players can actively contribute to the random process. Nobody can compute
the random process result or its estimation as long as it is possible to contribute
or buy new tickets. The latter is required to prevent educated contributions
to circumvent the uniform distribution of the random process. It is the lottery
protocol that must ensure the order in time of the contribution and the actual
determination of winners.

A protocol consisting of equipotent players contributing each to the random-
ness of the publicly verifiable random process is promising for its similarity with
the simple paper-based lottery protocol. Again, all players participate in the
execution and supervision of the random process. The feasibility to construct
such protocols with no trusted third parties has been demonstrated by the crypto-
currency Bitcoin [6] that is a distributed protocol for remote financial transactions,
while previously online banking based on trusted financial authorities, the bank
institutes and central banks, has been without alternative [7]. Lottery protocols
based on Bitcoin have been already considered [8], c.f. Section 2.

Although different, the security requirements of lotteries share common
concerns with those of voting systems [9]. Both lottery and voting protocols have
to assure trust in an environment of mutual distrust among players, respectively
voters, and the potentially biased authorities. The literature on voting protocols
and online voting protocols is extensive and comprises flexible protocols that may
be adapted to different voting systems beyond the general case of majority voting.
Of particular interest for a lottery are online voting protocols that allow for a
random choice. Already the paper-based voting common for general elections
provides a solution to improve the scalability of the simple paper-based lottery
protocol: the introduction of multiple offices run in parallel. We focus on online
voting protocols that do not rely on trusted parties and aim to provide security
properties that we adopt for lottery applications as follows:
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Correctness of the random process All numbers are equally likely to win.
Nobody can predict the random process better than guessing.

Verifiability of the random process Players can be convinced that the ran-
dom process has not been manipulated.

Privacy of the player Players do not learn the identity of other players to
prevent blackmailing or begging.

Eligibility of the ticket Tickets cannot be forged. Especially, it is impossible
to create a winning ticket after the outcome of the random process is known.

Confidentiality of the number Numbers are confidential to ensure fairness.
Tickets of other players cannot be copied to reduce their potential reward.

Completeness of the reward Players can verify the number of sold tickets
that may determine the reward.

Our contribution is a novel protocol for verifiable large-scale online lotteries with
no trusted authority to carry out the random process, for which we use concepts
originating from online voting.

The paper is organized as follows. In the next section, we review related
work addressing both lottery and voting protocols. Our protocol is based on an
existing online lottery protocol and the distributed hash table Kademlia that are
presented in Section 3. Then, we introduce our protocol in Section 4 and discuss
its properties in Section 5.

2 Related Work

Different protocols have been proposed that allow players to contribute to the
publicly verifiable random process and take measures to prevent early estimations
of the result while it is still possible to contribute.

A trivial solution in the context of secure parameters for cryptography is
recalled in [10]. In a first round, all players choose secretly a number and publish
on a public broadcasting channel a commitment on their number, e.g. using a
hash. In a second round, all secret numbers are revealed and verified using the
commitment. Finally, all values are concatenated using the XOR operation to
form the result. The protocol owes its correctness due to the clear separation
in two rounds of player’s contributions. However, the authors stress that the
protocol is neither robust nor scalable. A termination is not possible if one player
does not reveal its secret number and for the verification, all players have to run
as many XOR operations and send as many messages as there are players.

Subsequently, a random process protocol with only one round is proposed [10].
A delay between player contribution and winner identification by the authority
is imposed, so that estimations would be available only after contributions are
no longer allowed. Players or any other third party can engage before a deadline
in the collection of arbitrary data, e.g. using social networks like Twitter, to
generate a seed, an essentially random bit string. Right after the deadline, the
authority publishes a commitment on an additional, secretly chosen seed. Both
seeds provide the input for a proof of work. A proof of work is computationally
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expensive to generate and thus time-consuming. A delay is inevitable. However,
due to its asymmetry, the proof allows for efficient verification. Once the proof is
found, the winners are derived from it. The additional seed prevents dishonest
players to predict the results for different potential last-minute contributions.
One has to assume that the last honest contribution is made sufficiently late to
prevent the same attack from the authority.

Chow’s online lottery protocol [5] published prior to [10] relies on a technique
called delaying function [3] that is similar to a proof of work, but is not asymmetric
and does not provide efficient verification. The authority commits here on the
concatenation of the players’ commitments on their secretly chosen number and
derives then the winners. Players can claim the reward by publishing the input
data of their commitment. Similar to [10], a late honest player commitment is
assumed to prevent a prediction by the authority. Then, all security measures
from the introduction are provided. The protocol requires players to process the
commitment of all other players and recompute the delaying function in order to
verify the random process, which is impractical for large-scale lotteries.

Solutions for a scalable probabilistic verification of online lotteries [11] or
online voting [12] have been presented based on a concatenation/aggregation
over a tree structure. In order to verify the result at the root of the tree, players
or voters can repeat the computation of intermediate results for a predefined or
random subset of all tree nodes. With increasing number of verified nodes, the
probability of a manipulated result at the root node diminishes.

Other online lottery protocols introduce mutually distrusting, non-colluding
authorities to allow for a separation of powers. In [13], a distinct auditor ensures
secrecy and immutability of the player’s tickets and prevents the lottery authority
from adding illegitimately tickets. For this, blind signatures and public-key
encryption are employed. The protocol does not cover the random process and
its verification. Authorities are assumed not to collude.

In [14], the secrecy of online lottery and voting protocols is addressed at the
same time. A mechanism based on homomorphic encryption, distributed key
generation and threshold decryption is proposed. A set of mutually distrusting
authorities have to cooperate to decrypt the result of the random process or the
voting. A colluding set of dishonest authorities below the threshold cannot reveal
prematurely the result, i.e. to add a winning ticket in the lottery case. Players or
voters are entitled to trust that the set of dishonest, colluding authorities does
not meet the threshold. Ideally, the power to decrypt would be shared among all
players or voters. Practically, this is often not feasible due to scalability issues.

The Scalable and Secure Aggregation (SPP) online voting protocol [15] builds
also on distributed decryption and employs a tree overlay network to improve
the scalability. A small set of authorities is randomly chosen among all voters.
If too many of those chosen voters are absent after the aggregation, the decryp-
tion threshold cannot be reached and, consequently, a protocol termination is
impossible.

The potential of the Bitcoin blockchain [6] for a distributed random process has
been examined. However, it has been shown that the manipulation of presumably
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random bits is realistic even with limited computational capacity and financial
resources [8]. An integration of the proof of work from [10] and an alternative
crypto-currency Ethereum [16] has been proposed1 with no practical solution yet
for a verification due to the limitation imposed by the blockchain.

3 Preliminaries

The starting point for the proposed protocol is the centralised online lottery
protocol of Chow et al. [5], recalled hereafter with an alternative verification
based on hash trees [11]. For the proposed lottery protocol, we choose to distribute
the random process to all players. The overlay network comprising all players is
provided by the distributed hash table (DHT) Kademlia [17] that is described in
Section 3.2. The integration of these building blocks is shown in Section 4.

3.1 Centralised Online Lottery Protocol

The following presentation of Chow’s protocol [5, 11] is reduced to aspects required
for our proposition. We use the following notation:

A authority (Dealer in [5])
Pi player, i-th out of n
ni number in the set L chosen by player Pi

ri random bit string of given length chosen by player Pi

η(·) cryptographic hash function, e.g. SHA-3
η0(·) cryptographic hash function mapping any ri to L
σA(·) authority’s signature scheme using key-pair (pkA, skA)

Chow’s protocol implements a lottery in which every player Pi has to choose a
number ni ∈ L and send a commitment on it to the authority A. A aggregates all
commitments to a value h. That means, every Pi contributes to h. The aggregate h
is used as an input parameter for a delaying function (DF) preventing A from
early result estimations. The outcome of DF is used to compute the winning
number nR with a verifiable random function and the secret key of A. Players
do not have the secret key required to compute nR, but can verify nR using the
public key of A.

During the ticket purchase phase, Pi acquires from A a personal sequence
number si. Pi has to choose its number ni and a random bit string ri to compute
its commitment ticketi with bit string concatenation || and XOR operation Y.
Pi sends ticketi to A and receives in return the signature σA(ticketi) as a receipt.

ticketi = si||(ni Y η0(ri))||η(ni||si||ri)

The DF cannot be evaluated before h depending on all commitments is given,
which is ideally only after the purchase phase. In [5], the DF input parameter

1 http://www.quanta.im, https://kiboplatform.net (accessed 02/02/2017)

http://www.quanta.im
https://kiboplatform.net
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h is recursively computed from all n commitments with h = η(chainn) and
chaini = η(chaini−1||ticketi) with an empty initial chain chain0. An alternative
introduced in [11] consists of a computation of h using a T -ary Merkle tree [18]
with ticketi assigned to the leaf tree nodes. In both cases, all ticketi are published
to allow the verification of h by the players requiring memory and computational
resources of respectively O (n) and O (logT (n)).

Once the authority has published the verifiable winning number nR, the
reward claiming phase begins in which players Pi with ni = nR provide their
sequence number si and their secret random value ri to A via a secure channel.
Upon verification of the commitment ticketi by A, the reward is granted. Pj with
nj 6= nR may verify that their commitment ticketj has been used to compute h
and are assumed to have trust in the infeasibility of A to compute DF more than
once between the latest honest ticket contribution and the publication of nR.

3.2 Distributed Hash Table Kademlia

The distributed hash table (DHT) Kademlia [17] provides efficient discovery of
lottery players and routing which is a precondition for the aggregation protocol
in Section 4.1. Therefore, a binary overlay network is established in which each
player Pi is assigned to a leaf node xi, that is a bit string of size B. The notation
is as follows:

x a Kademlia leaf node ID (KID) of size B
B size of a KID in bits, e.g. 160
xi KID of player Pi

d node depth, i.e. number of edges from the node to the tree root
Ŝ(x, d) subtree whose root is at depth d which contains leaf node x
S(x, d) sibling subtree of which the root is the sibling of the root of Ŝ(x, d)

k maximum number of contacts per Kademlia subtree

The leaf node identifiers x ∈ {0, 1}B (B bits) span the Kademlia binary tree
of height B and are denoted KID. Each player Pi joins the Kademlia overlay
network using its KID defined as xi = η(ti) with an authorization token ti and
the hashing function η(·). The value ti is generated as part of the ticket purchase.
B is chosen sufficiently large, so that hash collisions leading to identical KIDs
for distinct players are very unlikely. Consequently, the occupation of the binary
tree is very sparse.

A node in the tree is identified by its depth d ∈ {0, . . . , B} and any of its
descendant leaf nodes with KID x. A subtree Ŝ(x, d) is identified by the depth d
of its root node and any of its leaf nodes x. We overload the subtree notation
to designate as well the set of players assigned to leaves of the corresponding
subtree. Further, we introduce S(x, d) for the sibling subtree of Ŝ(x, d), so that
Ŝ(x, d) = Ŝ(x, d+ 1) ∪ S(x, d+ 1). The entire tree is denoted Ŝ(x, 0). We observe
that ∀d : Pi ∈ Ŝ(xi, d) and ∀d : Pi /∈ S(xi, d).
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Fig. 1. Example of Kademlia k-buckets for KID xi = 100 assuming B = 3. The
sparse tree is partitioned into subtrees S(xi, d) with their root node depth d. The
k-buckets for each d contain at most k players Pj ∈ S(xi, d).

Kademlia defines the distance d(xi, xj) between two KIDs as their bit-wise
XOR interpreted as an integer. In general, a player Pi with KID xi stores
information on players with xj that are close to xi, i.e. for small d(xi, xj).
For this purpose, Pi disposes of a set denoted k-bucket of at most k players
Pj ∈ S(xi, dj) for some dj > 0.2 See Fig. 1 for an example. The size of subtrees
decreases exponentially for growing depth d. Hence, the density of known players
of corresponding k-buckets grows exponentially.

Kademlia ensures that the routing table, that is the set of all k-buckets, is
populated by player lookup requests for random KIDs to the closest already
known players. Requests are responded with a set of closest, known players
from the routing table. One lookup might require multiple, consecutive request-
response cycles. Further, Kademlia provides requests to lookup and store values.
All operations scale with O (logn) [19]. Kademlia is used by many BitTorrent
clients and as such well tested.

4 Distributed Lottery

We introduce now the lottery protocol. It is run by an authority that handles
the ticket purchase and carries out the distribution of the reward upon winner
verification, but not the random process itself. The random process is distributed
to all players using the protocol described below. The description of the lottery
protocol is given in Section 4.2.

2 Note that originally [17] the common prefix length b is used to index k-buckets/sibling
subtrees while we use the depth d = b + 1 of the root of the subtree.



8 Stéphane Grumbach and Robert Riemann

4.1 Distributed Aggregation Protocol

We present a distributed aggregation protocol based on Kademlia. It relies on
Advokat [20], whose aggregation algebra, distributed aggregation algorithm,
and measures to increase its Byzantine fault tolerance are briefly recalled.

Aggregation Algebra Aggregates are values to be aggregated, whether initial
aggregates, constituting inputs from players, or intermediate aggregates obtained
during the computation. The aggregation operation, ⊕, combines two child
aggregates to a parent aggregate in A, the set of aggregates. We assume ⊕ to be
commutative. For the lottery, ⊕ maps pairwise bit strings provided by all players
to one final bit string used to determine the winners. The algebra is sufficiently
flexible to cover a broad range of aggregation-based applications and has been
devised initially for distributed online voting [20].

Aggregates are manipulated through aggregate containers, i.e. a data structure
that contains next to the aggregate itself the context of the ongoing computation.
The aggregate container of an aggregate a associates a to a Kademlia subtree
Ŝ(x, d) and ensures integrity and verifiability of the aggregation. It has the
following attributes:

h hash η(·) of the entire aggregate container, but h
a aggregate, a = a1 ⊕ a2
c counter of initial aggregates in a, c = c1 + c2

c1, c2 counter of initial aggregates of child aggregates
h1, h2 container hashes of child aggregates
Ŝ(x, d) identifier of subtree whose initial aggregates are aggregated in a

Similar to the aggregation of aggregates, one or two aggregate containers of a1,
a2 can be aggregated to a parent aggregate container. To inherit the commut-
ativity of the aggregation of aggregates ⊕, (h1, c1) and (h2, c2) must be sorted in
e.g. ascending order of the child hashes h1 and h2.

Distributed Aggregation Algorithm Using the aggregation operator ⊕,
every player Pi computes the intermediate aggregate for all the parent nodes from
its corresponding leaf node xi up to the root node of the Kademlia overlay tree.
The aggregates used to compute any intermediate aggregate of a given subtree
Ŝ(xi, d) are given by its child nodes’ aggregates of Ŝ(xi, d+ 1) and S(xi, d+ 1).
Hence, aggregates have to be exchanged between players of the sibling subtrees
and Kademlia’s k-buckets provide the required contact information.

The aggregation is carried out in B epochs, one tree level at a time. Epochs
are loosely synchronized, because players may have to wait for intermediate
aggregates to be computed in order to continue. First, every player Pi computes
a container for its initial aggregate ai. The container is assigned to represent the
subtree Ŝ(xi, B) with only Pi. In each epoch for d = B, . . . , 1, every player Pi

requests from a random Pj ∈ S(xi, d) the aggregate container of subtree S(xi, d).
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With the received container of S(xi, d) and the previously obtained of Ŝ(xi, d),
player Pi computes the parent aggregate container, that is then assigned to the
parent subtree Ŝ(xi, d− 1). If S(x, d) = ∅ for any d, the container of Ŝ(x, d− 1) is
computed only with the aggregate container of Ŝ(x, d) from the previous epoch.

After B consecutive epochs, player Pi has computed the root aggregate aR

of the entire tree Ŝ(xi, 0) that contains the initial aggregates of all players. If
all players are honest, the root aggregate is complete and correct. Due to the
commutativity of the container computation, all players find the same hash hR

for the container of the root aggregate aR. An individual verification is implicitly
given, because every player computes aR starting with its ai.

Byzantine Fault-Tolerance The distributed aggregation is very vulnerable
to aggregate corruptions leading to erroneous root aggregates containers. We
present intermediate results to safeguard the aggregation. Please refer to [20]
for a more in-depth discussion. For the attack model, we assume a minority of
dishonest (Byzantine) players controlled by one adversary that aims to interrupt
the aggregation, and manipulate root aggregates. Dishonest players can behave
arbitrarily. Like in Kademlia, time-outs are used to counter unresponsive players.

To prevent Sybil attacks, it must be ensured that a player a) cannot choose
on its own discretion its tree position given by the leaf node xi but b) can proof
its attribution to xi [21]. Every player Pi generates a key pair (pki, ski) which
must be signed by A. Hence, Pi sends pki to A during the ticket purchase and
receives the signature of A to be used as the authorization token ti = σA(pki).
The KID xi = η(ti) is derived from ti and is neither chosen unilaterally by A
nor by Pi. Eventually, players provide for every message m exchanged among
players the signature of the sender σi(m), its public key pki to verify σi(m), and
the authorization token ti to verify pki.

Moreover, a dishonest authority shall be prevented to add new players after
the aggregation has started and dishonest players to delay their contributions
after predefined, global deadlines. In order to suppress both, signatures of those
players are considered invalid, who are at the start of the aggregation not in the
corresponding k-bucket even though the bucket contains less than k players and
should be exhaustive.

Further, player signatures are employed to detect deviations from the protocol.
For every computed aggregate container of Ŝ(xi, d) with hash h and counter c,
player Pi produces an aggregate container signature σi(h, d, c). Other players
can verify the signature using pki and verify using xi = η(ti) that Pi ∈ Ŝ(xi, d).
Hence, pki and ti must be provided along every signature σi(h, d, c).

The impact of dishonest players is limited by redundant requests to confirm
a computed so-called candidate container using signatures of other players on
the same container hash as depicted in Fig. 2. Next to the proper signature ( 2 )
on h and h1, a signature on h from a player in each child subtree ( 3 and 4 )
and one on h2 ( 1 ) must be provided for a confirmation if the respective subtree
is non-empty which can be determined using Kademlia lookup requests. The
number of distinct signatures on h, here 3, is a security parameter denoted l.
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xi xq xj xl xp

Ŝ(xi,d) S(xi,d) =
Ŝ(xj ,d)

S(xj ,d + 1)

S(xl,d + 2)

S(xj ,d + 2)

1 pull

2

compute

4

confirm
3

confirm

Fig. 2. Pj with xj produces a confirmed aggregate container of S(xi, b). This
scheme applies to all tree levels with possibly large subtrees to request from. If
the subtrees S(xj , d+ 2),S(xl, d+ 2) are empty, the depth is further increased
until a non-empty subtree may be found.

Only the confirmed container including the signatures is used to respond to
requests from players in the sibling subtree. If a confirmation is not possible,
e.g. due to non-cooperating dishonest players, the confirmed child containers are
provided instead, so that the receiver can compute the aggregation on its own.

If confirmation requests reveal diverging containers, a majority vote using the
number of distinct signatures for every container hash is used. If another container
than the previously computed is selected and if h2 differs, then the request for
the sibling aggregate container ( 1 ) is repeated, otherwise, the previous epoch is
repeated allowing for a recursive correction.

The majority vote confirms for subtrees with many players with great probab-
ility the aggregate container of the honest players. The attribution of KIDs xi to
players Pi is random, so that a global minority of dishonest players is uniformly
distributed over all subtrees and a honest majority can be assumed for most local
subtrees.

Though, dishonest players may have a local majority in subtrees with only few
players. Here, an analysis of the signatures of confirmed containers allows honest
players to detect dishonest behaviour in the following cases with certainty. Given
two signatures σi(h, d, c) and σi(h′, d, c) from the same player Pi with different
hashes h 6= h′, Pi deviated from the protocol with certainty if c ≤ l. Either
Pi signed two distinct initial aggregate containers or accepted a non-confirmed
container. For c > l, there is a non-zero probability that Pi is honest, but may
have been tricked. A manipulation may not be detected or only later during the
recursive correction. The number of distinct signatures l can be increased to
detect manipulations with certainty for higher c, and may depend on the player
configuration in the respective subtree.

At last, the root aggregate container aR shall be confirmed more often,
i.e. more signatures on its hash h are gathered from different players, to increase
the confidence that it has been adopted by the majority of honest players.
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4.2 Lottery Protocol

The proposed protocol allows for a lottery with playing mode CL or LO [13]:

Classic Lottery (CL)

Rewards are distributed with respect to a randomly ordered list of all players.
Lotto (LO)

Rewards are distributed based on the secret, prior choice of each player.

The protocol has six phases of which ticket purchase, reward claiming and
winner verification follow closely Chow’s protocol [5]. Its model provides for an
authority A, a tracker and players Pi. For CL, η0(·) is identical to η(·), so that
the root aggregate aR of the distributed aggregation is in the domain of the
KIDs x.

Setup

1. A generates a key-pair (pkA, skA) and chooses a random bit string rA.
2. A publishes the ticket purchase deadline, pkA, η(·), η0(·) and η(η(rA)). Fur-

ther, A specifies the duration of the aggregation epoch for each tree level.

Ticket Purchase

1. Pi picks a random string ri, and for CL its number ni. It generates (pki, ski).
2. Pi sends pki to the authority and obtains in return a sequence number si

and its authorization token ti = σA(pki).
3. Pi computes xi = η(ti) and connects to the Kademlia DHT using an already

connected contact provided by the authority or a separate tracker.
4. Pi prepares its initial aggregate ai = η(ticketi). For CL, ticketi = si||ri and

for LO, ticketi = si||(ni Y η0(ri))||η(ni||si||ri), c.f. Section 3.1.

Distributed Random Process

1. After the ticket purchase deadline, A publishes the number of sold tickets n.
2. All Pi compute jointly the root aggregate aR. The ⊕-operation is given by

ai ⊕ aj = η(aij) with aij = ai||aj , if ai < aj , otherwise aij = aj ||ai. It is a
commutative variant of the binary Merkle tree scheme proposed in [11].

3. Proofs of protocol deviation in form of pairs of signatures are sent to A that
can reveal the corresponding players and revoke their right to claim a reward.

Winner Identification

1. A requests the root aggregate of multiple random Pi until a considerably
large majority of the sample confirmed one aR.

2. A publishes aR, rA and the winning number nw = η0(aR) Y η0(rA).
3. For CL, A computes all xi = η(ti), orders all Pi by their Kademlia XOR

distance d(nw, xi) = nw Y xi and players on a par by nw Y si, and publishes
as many ordered xi as there are rewards. For LO, winners Pi have ni = nw.
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Reward Claiming

1. The winner Pi sends all its confirmed aggregate containers to A to proof
their participation. For LO, Pi must also provide its ticketi and (si, ri).

2. Proofs are published for verification by other players.

Winner Verification

1. η(η(rA)) is computed for comparison with the previously published value
and nw is verified.

2. Players verify that winner Pi participated in the aggregation by comparing
its published containers with their computed containers.

3. For CL, player verify the order of the published winners and compare it to
their own positioning. For LO, ticketi is reproduced for the given (si, ri) and
its hash must equal ai found in the published confirmed aggregate containers.

4. If the rewards depend on the number of sold tickets n, n is compared to the
counter c of the root aggregate container.

5 Evaluation

We analyse the protocol with respect to the security properties introduced in
Section 1 under the adversary model from Section 4.1 of an adversaryD controlling
a fraction b < 0.5 of dishonest players of n players in total. The performance of
the protocol depends upon b, the security parameter l and the distribution of
honest and dishonest players over the tree. We assume that D and A collude.

Most Likely Scenario Due to the uniform player distribution and for a reas-
onably sized b, D has most likely a dishonest majority only in subtrees with large
depth d > 1 containing only a small number n′ of players. l can be adjusted to
detect container manipulations of subtrees with n′ ≤ l using signatures. Most
likely, all dishonest players have to provide a container with their signature to
at least one honest player, which corresponds to a commitment to their ticketi,
before D can learn all containers for a given depth d.
1. The correctness of the random process and its implicit verification [11] due

to the distributed computation is with great probability ensured, because D
cannot change or add tickets after a prediction becomes possible.

2. The privacy of players is ensured. Other players cannot learn the identity of
each other from the exchanged messages.3

3. The authorization token ti ensures eligibility. A participation after the ag-
gregation has started even with a valid ti is unlikely, because honest players
close in the tree deny belated players and do not confirm their containers.

4. The commitment scheme for LO provides confidentiality, because number ni

of Pi cannot be revealed without knowledge of the secret ri [5].
5. The counter c of the root aggregate container allows to examine the com-

pleteness of the reward.
3 The leak of the identity due to the communication channel, e.g. by the IP address,
may be solved using privacy networks like Tor and is out of the scope of this paper.
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Worst Case Scenario The distribution of honest and dishonest players is highly
unbalanced. We assume a majority of dishonest players in a subtree Ŝ(xe, d) for
some d with n′ > l. Neither the majority nor the confirmation criterion prevent a
manipulation with certainty. The local minority of honest players may be excluded
from the aggregation unable to proof their participation. As the manipulation is
bounded locally, correctness and eligibility are only locally violated.

If D has further in all other non-sibling subtrees Ŝ(·, d) at least one dishonest
player to provide the local aggregate container, D can compute with the secret rA

from A the winning number nw while the container for Ŝ(xe, d) is not yet known
to honest players and may be altered to change nw. A proof of work is required
to choose a particular nw. The correctness is not ensured.

The distribution of n′ honest or dishonest players to Ŝ(xe, d) and its sibling
subtree S(xe, d) follows the Binomial distribution B(n′, p) with p = 0.5 and a
variance of the ratio of players in Ŝ(xe, d) of p2/n′. As a result, the probability of a
local dishonest majority decreases reciprocally in n′. n′ decreases for increasing d,
but for large d, it is unlikely to have a dishonest player in all non-sibling subtrees
for the limited number of dishonest players.

Scalability Kademlia’s communication and memory resources are O (logn) [19].
The same applies to the distributed aggregation and its verification [20] if upper
bounds are defined for the number of attempts and stored container candidates
of the confirmation and correction mechanism of the distributed aggregation.

6 Conclusion

We have presented a novel online lottery protocol that relies on a distributed
random process carried out by all players in a peer-to-peer manner. Players are
assumed to participate throughout the random process. Unlike Chow’s protocol
[5], it allows for both classic lottery and lotto. It provides correctness and
verification of the random process based on the assumption of a well-distributed
minority of dishonest players. In the most likely scenario, the correctness of the
random process is based on an information theoretical secure sharing scheme
instead of assumptions on the communication or computational capacities of the
authority or the adversary. Further, cryptography has been reduced to asymmetric
encryption and signatures. As in many distributed protocols [6, 15], the provided
security is probabilistic, which may be acceptable for a lottery. We leave for
future work a quantitative analysis of the impact of the adversary.

A basic demonstrator has been implemented to carry out a classical lottery.
The authority has been omitted in favour of free participation. Redundant requests
for Byzantine fault-tolerance are not covered yet. Based on HTML5, it runs
in the browser. The implementation of Adavokat is based on the Kademlia
library kad4 and was tested previously with up to 1000 simulated nodes [20].
Message passing among players relies on WebRTC allowing for browser-to-browser
communication. Tests have been run with few players at this stage.
4 http://kadtools.github.io/, v1.6.2 released on November 29, 2016

http://kadtools.github.io/
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