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ON A FEW STATISTICAL APPLICATIONS OF

DETERMINANTAL POINT PROCESSES

Rémi Bardenet1, Frédéric Lavancier2, Xavier Mary3 and Aurélien
Vasseur4

Abstract. Determinantal point processes (DPPs) are a repulsive distribution over
configurations of points. The 2016 conference Journées Modélisation Aléatoire et
Statistique (MAS) of the French society for applied and industrial mathematics (SMAI)
featured a session on statistical applications of DPPs. This paper gathers contribu-
tions by the speakers and the organizer of the session.

Résumé. Les processus ponctuels déterminantaux (DPP) sont des distributions
répulsives sur des configurations de points. Au cours des journées Modélisation
Aléatoire et Statistique (MAS) 2016 de la Société française de Mathématiques Ap-
pliquées et Industrielles (SMAI), nous avons organisé une session sur les applica-
tions statistiques des DPP. Cet article rassemble des contributions des orateurs et de
l’organisateur.

1. Introduction

Determinantal point processes (DPPs) are distributions over configurations of points that
encode repulsiveness in a kernel function. Since their formalization in [27] as models for fermions
in particle physics, specific instances of DPPs have half-mysteriously appeared in fields such as
probability [21], number theory [35], or statistical physics [30]. More recently, they have been
used as models for repulsiveness in statistics [24] and machine learning [23]. During the 2016
Journées Modélisation Aléatoire et Statistique (MAS) of the French society for applied and
industrial mathematics (SMAI), we organized a session specifically on statistical applications
of DPPs. This paper gathers contributions by the speakers (FL, XM, AV) and the organizer
(RB), which cover and extend the talks of that session. Jamal Najim also contributed a talk to
the session, on characterizing the distribution of eigenvalues of large covariance matrices. The
content of his talk has already been the topic of a recent paper in the MAS proceedings [18].
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The paper follows the schedule of the MAS session. Section 2 gives a tutorial introduction
to DPPs, Section 3 investigates DPPs as a model in spatial statistics. In Section 4, DPPs are
shown to have desireable properties in survey sampling design. In Section 5, DPPs are used as
a model for the spatial distribution of antennas in cellular networks, and asymptotic results are
obtained to justify the observed loss of repulsiveness in the superposition of independent DPPs.
Finally, in Section 6, Monte Carlo methods are built on DPPs that provide a stochastic version
of Gaussian quadrature.

2. Determinantal point processes

DPPs can be defined on any abstract locally compact Polish space E, see [21, 37]. For
statistical applications the two important cases, detailed in this section, are E being a (finite)
discrete space, say E = {1, . . . , N}, and E = Rd.

2.1. DPPs on a finite discrete space

In this section we consider a finite discrete state space E = {1, . . . , N}. In this case, a point
process on E is simply a probability measure on the set 2E of all subsets of E. As demonstrated
in the sequel, DPPs on E form a flexible family of processes, that generate subsets of E exhibiting
diversity. Most properties of DPPs in this case, including those detailed in the following, can
be found in [23,26,39].

We say that X is a DPP on E if there exists a N ×N matrix K such that for any A ⊂ E

P (X ⊃ A) = detKA, (1)

where KA is the sub-matrix with entries (Kij)i,j∈A, with the convention K∅ = 1. If K is a
Hermitian matrix, then the existence of X is ensured if and only if all eigenvalues of K are in
[0, 1]. In the remainder of this section, we restrict ourselves to real symmetric matrices.

Equation (1) already leads to insightful interpretations. First, the diagonal of K encodes the
marginal probability for each element of E to belong to X. Indeed, from (1), for any i ∈ E,
P (i ∈ X) = Kii. Second for i 6= j, (1) implies

P (i, j ∈ X) = KiiKjj −K2
ij .

Thus, if Kij measures similarity between i and j, then X favours diversity. In particular, the
correlation between the events {i ∈ X} and {j ∈ X} is always negative, and all the more
negative that i and j are similar. In this sense, X generates sets having diverse elements.

If all eigenvalues of K are strictly less than one, or equivalently if (I −K) is invertible, then
we can deduce from the inclusion-exclusion principle that for any A ⊂ E

P (X = A) =
detLA

det(L+ I)
, (2)

where L = K(I −K)−1. As a side note, Equation (2) provides an alternative way to define a
DPP: if X satisfies (2) where L is a positive semidefinite matrix, then it is called an L-ensemble.
Note that all L-ensembles are DPPs in the sense of (1) where K = L(L+ I)−1, but the converse
is not true (if (I−K) is not invertible). L-ensembles are a popular point of view in the machine
learning community, see [23]. It allows to define easily a DPP through a positive semidefinite
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matrix L, without the constraint that all eigenvalues must be less than or equal to 1, unlike
K. The main drawback though is that L does not encode a clear interpretation of the process.
Another limitation is the fact that the probability of the empty set is necessarily positive for
L-ensembles, which is unrealistic for some applications, see e.g. survey sampling in Section 4.

The use of DPPs on finite sets in machine learning or for survey sampling is motivated by
the flexibility of this family of processes, through the choice of K (or L), and also by its many
appealing properties, some of which are detailed below.

i) [unicity] Given a symmetric matrix K with all eigenvalues in [0, 1] , X in (1) is unique

[42]. However the converse is not true: two symmetric matrices K and K̃ have the same

principal minors if and only if K = DK̃D−1 where D is a diagonal matrix with entries
±1, see [14,33]. Therefore in this case, K and K̃ generate the same DPP.

ii) [cardinality] In general, the number of elements in X, denoted by |X|, is random.
Specifically, if we denote by λ1, . . . , λN the eigenvalues of K, the law of |X| corresponds
to the sum of N independent Bernoulli random variables with respective mean λi. In
particular

E(|X|) = tr(K), V(|X|) =

N∑
i=1

λi(1− λi) = tr(K −K2),

where tr means trace. An important particular case occurs when K is an orthogonal
projection matrix. Then X is called a determinantal projection process and |X| =
rank(K) is deterministic. This property is of particular relevance in survey sampling
where fixed-size sampling designs play a major role, see Section 4.

iii) [stability by restriction] The restriction of X to a subset F of E remains a DPP with
kernel matrix KF .

iv) [stability by complement] The complement of X in E, i.e. X̄ = E \X, is also a DPP
and its kernel matrix is I −K.

v) [stability by conditioning] If we condition X to contain all elements of a subset F
of E and/or to exclude all elements of a subset G of E (where F ∩ G = ∅), then the
resulting process on E \ (F ∪G) remains a DPP with explicit kernel, see [23,26].

vi) [simulation] The last property makes possible exact simulation of DPPs. The pro-
cedure, detailed below, basically amounts to generating a first element for X, then a
second element given the first one, then a third element given the first two, and so on.

A generic algorithm to sample from a DPP is given in [21]. We start from an orthonormal

eigendecomposition of K, namely K =
∑N
i=1 λiviv

∗
i , where v∗i denotes the conjugate transpose

of vi, that for generality we assume to possibly be complex (vi ∈ CN ). The procedure presented
in [21] exploits the fact that a DPP is in fact a mixture of determinantal projection processes.
Specifically, the DPP X with kernel K has the same distribution as the DPP with kernel∑N
i=1Biviv

∗
i , where the Bi’s are Bernoulli random variables with mean λi [21] (whence property

ii) above). The algorithm thus consists in first selecting a determinantal projection process
composing this mixture, and second sequentially generating a realization of this process using
the conditional properties of DPPs. The algorithm is summed up as Algorithm 1.

The projection in the second step of Algorithm 1 is the composition of successive projections,
each on the orthogonal complement of V (k), for all element k selected in the previous steps. In

other words, at an intermediate step of the algorithm we have PH⊥ =
∏
k∈X

(
I − V (k)V (k)∗

V (k)∗V (k)

)
.
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Input: K =
∑N
i=1 λiviv

∗
i .

for i = 1, . . . , N , do
select vi with probability λi.

end
Now

• Denote by V the matrix whose columns are the selected vectors, by n their number,
and by V (k) the vector corresponding to the k-th row of V .

• Set H = {0} and X = ∅. Let H⊥ be the orthogonal complement of H in CN .

while dim(H⊥) > 0 do

• Sample k in E \ X according to the discrete distribution
(‖PH⊥V (i)‖2/dim(H⊥))i∈E\X , where PH⊥ denotes the orthogonal projection

matrix onto H⊥,
• Let X ← X ∪{k}, H ← span(H,V (k)) (the vector space of all linear combinations

of V (k) and the elements of H).

end

Algorithm 1: Sampling from a finite DPP

So PH⊥ can simply be updated at each step by multiplication. However, this leads to some
numerical instabilities since after some multiplications PH⊥ can differ from a proper projection.
A more stable alternative is to use a Gram-Schmidt procedure to sequentially construct an
orthonormal basis of H, from which PH⊥ is easily deduced. The details are given for the
continuous case in Section 2.2 and its adaptation to the discrete case is straightforward.

Further properties of DPPs on discrete sets are described in Section 4.

2.2. DPPs on a continuous space

We assume in this section that E = Rd. This is in fact the historical setting where DPPs
have been developed, see the seminal paper [27]. The initial motivation was to characterize
the probability distribution of the locations of particles in physics, specifically for particles in
repulsion (so-called fermions). We will come back to this interpretation later. For a detailed
presentation of DPPs in a continuous setting, we refer to [21,24,37].

A general background on point processes on Rd can be found in [9, 29]. In brief, a point
configuration is a subset of Rd that has a finite number of elements on any bounded subset of
Rd. A point process in Rd is a probability law on the set of all point configurations in Rd. It is
said simple if there is at most one point at each location, almost surely.

Let X be a simple point process on Rd. For a bounded set D ⊂ Rd, denote by X(D) the
number of points of X in D. Let µ be a reference measure on Rd that we assume for simplicity
to be absolutely continuous with respect to the Lebesgue measure. If there exists a function
ρ(k) : Rdk → R+, for k ≥ 1, such that for any family of mutually disjoint subsets D1, . . . , Dk in
Rd

E
k∏
i=1

X(Di) =

∫
D1

. . .

∫
Dk

ρ(k)(x1, . . . , xk)µ(dx1) . . . µ(dxk), (3)

then this function is called the joint intensity of order k of X, with respect to µ. From its
definition, the joint intensity of order k is unique up to a µ-nullset. Henceforth, for ease of
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presentation, we ignore nullsets. In particular we will say that a function is continuous whenever
there exists a continuous version of it. The joint intensity ρ(k)(x1, . . . , xk) can be understood
as the probability that X contains a point in each neighborhood of xi for i = 1, . . . , k. In this
sense joint intensities are continuous analogues of the probabilities P (X ⊃ A) involved in the
discrete case in (1).

We say that X is a DPP on Rd if there exists a function C : Rd × Rd → C, called the kernel
of X, such that for all k ≥ 1

ρ(k)(x1, . . . xk) = det[C](x1, . . . , xk) (4)

for every (x1, . . . , xk) ∈ Rdk, where [C](x1, . . . , xk) denotes the matrix with entries C(xi, xj),

1 ≤ i, j ≤ k. In view of the interpretation of ρ(k), this definition is the continuous counterpart
of (1).

Let us briefly explain why the particular form in (4) arises naturally for the distribution of
fermions in quantum mechanics. A similar description can be found in [22], see also [30, Sec-
tion 5.4] for the physical aspects. Let us consider for simplicity the case of a bounded set where
the number of points (hereafter particles) n is fixed, in which case ρ(n) reduces to the joint dis-
tribution of the location of these points, up to a constant. In quantum mechanics, the quantum
state of a system of n particles is described by a complex-valued n-body wave function, say
ψ(x1, . . . , xn) where x1, . . . , xn stand for the position of each particle. The probability distribu-
tion of the position of particles then admits the density |ψ|2, which corresponds in our notation
to ρ(n) (up to a constant). As a naive proposition, we might assume that this n-body wave
function is simply the tensorial product of all individual wave functions

∏
ψi(xi). But since

the particles are indistinguishable, this could equally well be
∏
ψi(xπ(i)), where π is any per-

mutation of {1, . . . , n}. Moreover, fermions repel and for this reason, in virtue of the so-called
Pauli exclusion principle, the n-body wave function must satisfy the anti-symmetric property
ψ(. . . , xi, . . . , xj , . . . ) = −ψ(. . . , xj , . . . , xi, . . . ) for any i, j. These requirements (indistinguisha-
bility and repulsiveness) led physicists to construct the wave function as an anti-symmetric ver-
sion of the tensorial product, namely ψ(x1, . . . , xn) ∝ ∑π sgn(π)ψ1(xπ(1)) . . . ψn(xπ(n)), which

is the determinant of the matrix Ψ with entries ψi(xj). Finally we get |ψ|2 proportional to

det(Ψ) det(Ψ) = det(Ψ′) det(Ψ) = det(Ψ′Ψ) = detC[x1, . . . , xn] where C(x, y) =
∑
ψi(x)ψi(y).

Beyond quantum mechanics, DPPs surprisingly arise in many examples of probability, the
most famous of them being the law of the eigenvalues of fundamental random matrix models
[1]. For this reason, they have received a lot of attention from a theoretical point of view.
From a statistical perspective, their increasing popularity to encode negative dependencies, as
demonstrated in the following sections, is due as in the discrete case to their flexibility through
the choice of the kernel C, and to their nice properties, mainly the same as in the discrete case,
as discussed now.

A particular case of DPP is the Poisson point process with intensity ρ(x), which is associated
to C(x, x) = ρ(x) and C(x, y) = 0 if x 6= y. This is in some sense the extreme case of a
DPP without interaction, whereas a DPP implies in general repulsiveness. Assume that C is
Hermitian, i.e. C(x, y) = C(y, x). It is not very restrictive for statistical applications to further
assume that C is continuous, which only excludes from useful models the peculiar example of
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the Poisson point process. On any compact set S, C then admits a spectral decomposition

C(x, y) =
∑
i≥0

λSi φ
S
i (x)φSi (y) (5)

where (φSi ) forms an orthonormal basis of L2(S) with respect to µ. In this setting the existence
of X satisfying (4) is equivalent to 0 ≤ λSi ≤ 1 for any i ≥ 0 and any S [27,42]. In the particular
case where µ is the Lebesgue measure and C is invariant by translation, i.e. there exists C0

such that C(x, y) = C0(x− y), leading to a stationary DPP, this condition for existence takes a
simpler form. Namely, it boils down to C0 ∈ L2(Rd) and 0 ≤ ϕ ≤ 1, where ϕ denotes the Fourier
transform of C0, see also Theorem 1 in Section 3. For a general kernel C, existence is ensured if
C is a continuous covariance function and there exists C0 as before such that C0(x−y)−C(x, y)
remains a covariance function (see e.g. Corollary 3.2.6 in [41]).

As in the discrete case, DPPs on Rd enjoy a lot of appealing properties, see [24, 37]. Given
C and a bounded set S, a DPP with kernel C is unique. The distribution of X(S) is known
(this is the sum of Bernoulli variables with mean λSi ). All joint intensities of X are known by
the very definition. The density of X on S with respect to the standard Poisson point process
on S is explicitly known. The restriction of a DPP to a subset S remains a DPP and its kernel
is simply the restriction of C to S × S. If we condition X to contain a finite set of points, then
the resulting process is a DPP with an explicit kernel.

By the last property, we can simulate X on any bounded set S, using the same algorithm
by [21] as in the discrete case. The first step consists in sampling the indexes involved in the
sum of the spectral decomposition (5) according to Bernoulli variables with mean λi. Up to a
re-ordering, let us denote by {1, . . . , n} the selected indexes and V (x) = (φS1 (x), . . . , φSn(x))′.
The second step is akin to the Gram-Schmidt procedure, and is presented in Algorithm 2.

Initialize by

• sampling xn according to the distribution with density (||V (x)||2/n),
• setting e1 = V (xn)/||V (xn)||.

for i = (n− 1) to 1 do

• sample xi in S according to the distribution with density

1

i

||V (x)||2 −
n−i∑
j=1

|e∗jV (x)|2
 ,

• set wi = V (xi)−
∑n−i
j=1 e

∗
jV (xi)ej and en−i+1 = wi/||wi||.

end
return X = {x1, · · · , xn}.

Algorithm 2: Sampling from a continuous DPP: 2nd step. See main text for details about
the complete procedure.

The densities involved above have to be understood with respect to µ and simulations from
them can be done by rejection sampling.
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The algorithm of simulation and some of the properties of DPPs discussed above require to
know the spectral decomposition (5). Unlike the finite case where the kernel is simply a matrix,
this decomposition is in general unknown in the continuous case. To overcome this issue in
practice, we can either define the kernel C directly through its spectral form (see Section 6),
or apply some approximation as discussed in Section 3. Note finally that it is possible to do
statistical inference on C without this spectral knowledge (see Sections 3 and 5).

3. DPPs in spatial statistics

In spatial statistics, a common concern is the analysis of spatial point patterns observed on
a bounded subset of Rd, the most common situation being d = 2. In presence of this kind of
data, a first step usually consists in the estimation of the (first order) intensity ρ, to decide if
it is constant (or equivalently homogeneous), in which case the points are uniformly distributed
in the observation window, or if the intensity is inhomogeneous, in which case the points are
more dense in certain regions of the observation window than elsewhere. In a second step, we
may be interested in the interaction between the points. Three main situations may occur:
independence (the case of the Poisson point process), aggregation (equivalently clustering), or
inhibition. Due to their repulsiveness property, DPPs are well adapted models for inhibition. We
explain below how parametric DPP models can be constructed, in which extent they constitute
a flexible family of models, and how inference can be conducted.

In the spatial point process community, see for instance [29], the two first order moments of
a point process are generally summarized by the intensity ρ and by the pair correlation function
(pcf)

g(x, y) =
ρ(2)(x, y)

ρ(x)ρ(y)
, x, y ∈ Rd. (6)

If g(x, y) = 1, there is no (second order) interaction between two points located in a vicinity of x
and y. If g(x, y) > 1, there is attraction, meaning that it is more likely than in the independent
case to find a point nearby y if a point is already located nearby x. If g(x, y) < 1, there is
inhibition. Following Section 2.2, a DPP with a Hermitian kernel C satisfies

ρ(x) = C(x, x) and g(x, y) = 1− |C(x, y)|2
C(x, x)C(y, y)

.

The expression of g confirms the inhibitive property of a DPP. These formulas also give a clear
interpretation of the kernel C, that helps for the specification of C in a modeling purpose. Some
conditions for existence are nonetheless necessary.

Let us first assume that the point process is stationary, which implies that ρ is constant and
g(x, y) only depends on the difference y−x. For a DPP with a real valued kernel C, stationarity
is equivalent to that C(x, y) only depends on y−x. If C is complex valued, the latter condition
also implies stationarity of the associated DPP, but this condition is only sufficient, an example
being the Ginibre DPP studied in Section 5, which is stationary while its kernel is not invariant
by translation. The following result, proved in [24], gives simple sufficient conditions for existence
of the DPP when C(x, y) only depends on y − x.

Theorem 1. Assume C(x, y) = C0(y − x) where C0 is a continuous Hermitian function in
L2(Rd). Then the existence of a DPP with kernel C is equivalent to that the Fourier transform
of C0 is less than 1.
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The construction of parametric families of DPPs thus becomes straightforward. One only
needs to choose a parametric family of covariance functions C0 and to compute its Fourier
transform in order to check the condition for existence. This condition then becomes a constraint
on the parameters of the family. Note that the advent of a constraint is expected for repulsive
models, as the range of repulsiveness has to be somehow balanced by the mean number of points.
As an extreme example, there is an upper bound on the number of hard balls with a given radius
that one can include in a bounded region. Many examples of parametric covariance functions
having an explicit Fourier transform are already known: Gaussian, Whittle-Matèrn, generalized
Cauchy, Bessel-type, ... We refer to [6, 24] for the expression of these covariance functions and
of their Fourier transform, and the associated constraint on the parameters for existence.

Remark. An alternative parametric family is the β-Ginibre DPP, studied in Section 5, where
the kernel takes complex values. Note that this family has exactly the same second order
properties (same ρ, same g) as DPPs with a Gaussian kernel. However, due to its central role in
random matrix theory, some properties are known for the β-Ginibre DPP that are not available
for the Gaussian DPP family, as for instance the expression of the J-function (see Section 5).
This opens new possibilities for inference, see Section 5.

As we are interested in parametric DPPs to model point patterns exhibiting inhibition, it is
natural to wonder whether DPPs form a flexible class of models. The least repulsive DPP is
the Poisson point process, a peculiar case of DPP without interaction, see Section 2. The most
repulsive stationary DPP with intensity ρ has been determined in [6], where the repulsiveness
is quantified through the behavior of the pair correlation. It corresponds to the DPP whose
kernel has a Fourier transform equal to 1 on the ball centered at the origin with volume ρ. In
dimension 1, this corresponds to the sinc kernel, C0(x) = sin(πρ|x|)/(π|x|), while in dimension 2,
it is sometimes called the jinc kernel given by

C0(x) =
√
ρ
J1(2
√
πρ||x||)√
π||x|| , x ∈ R2, (7)

where J1 denotes the Bessel function of the first kind of order 1. The expression in any dimension
can be found in [6]. Figure 1 shows the pcf of DPPs with kernels from the Whittle-Matèrn, the
generalized Cauchy and the Bessel-type families. This plot illustrates that the most repulsive
DPP within the first two families corresponds to the Gaussian kernel, whose pcf is represented
in bold dashed line, and a realisation of which is shown on the top left plot of Figure 1. Even
if the point pattern clearly exhibits some regularity (or inhibition), it is less regular than a
realisation from the most repulsive DPP shown in the bottom left plot of Figure 1. The pcf of
the latter DPP is represented in bold solid line. It is actually part of the Bessel-type family,
which appears as a more flexible parametric family than the Whittle-Matèrn and the generalized
Cauchy families.

The previous analysis demonstrates that DPPs cover a large range of repulsiveness, from the
Poisson point process to the most repulsive DPP with kernel (7), opening promising possibilities
for modeling. However, it also reveals that DPPs cannot be extremely repulsive. In particular,
a DPP cannot include a hardcore distance δ (this a consequence of [36], Corollary 1.4.13), a
situation where no pairs of points can be at a distance less than δ.

Concerning inhomogeneous models, a common practice in spatial statistics is to assume the
point process to be inhomogeneous at the first order only, meaning that the intensity ρ is not



ESAIM: PROCEEDINGS AND SURVEYS 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r = |x − y|

g(
x,

y)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r = |x − y|

g(
x,

y)

Figure 1. Left: realisations on [0, 100]2 of the DPP with intensity ρ = 1 having
a Gaussian kernel with the maximal possible scale parameter (top) and of the
most repulsive DPP with intensity ρ = 1 given by (7) (bottom). Right: pcf of
the two previous DPPs in bold dashed line and in bold solid line, respectively,
along with the pcf of DPPs with intensity ρ = 1 having a Whittle-Matèrn kernel
(dashed lines on the top right plot), a generalized Cauchy kernel (solid black
lines on the top right plot) or a Bessel-type kernel (solid black lines on the
bottom right plot) for different values of their shape and scale parameters.

constant while the pcf g is invariant by translation. For DPPs, this can be done by taking

C(x, y) =
√
ρ(x)C0(x− y)

√
ρ(y) (8)
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with C0(0) = 1. Then the intensity is ρ(x) and the pcf is 1 − |C0(x − y)|2. The existence of
the associated DPP is ensured whenever ρ(.) is bounded by ρ̃ > 0 and the DPP with kernel
ρ̃ C0(x − y) satisfies the condition of Theorem 1. Parametric models can thus be considered
by assuming a parametric form for ρ(.), possibly depending on covariates, and to choose a
parametric covariance model for C0 as discussed earlier.

Assuming a parametric form like (8) where ρ(x) = ρβ(x) and C0(x) = C0,θ(x) depend on
two different parameters β and θ, we now discuss how to conduct statistical inference from an
observation of X on a bounded set W . The standard procedure is to first estimate β by Poisson
likelihood, that is

β̂ = argmaxβ
∑

x∈X∩W
log ρβ(x)−

∫
W

ρβ(x)dx.

In the homogeneous case of a constant intensity ρ (in which case β = ρ), this gives ρ̂ =
X(W )/|W |. Second, the estimation of θ can be carried out by contrast estimating functions or
estimating equations, typically based on second order characteristics of X like the pcf g. Note
that because of (8), g depends on θ only and not on β. For instance, given a non-parametric
estimate ĝ of g (see [29] for an expression), we can estimate θ by

θ̂ = argmaxθ

∫ rmax

rmin

(ĝ(t)− gθ(t))2dt,

where rmin and rmax are user-specified parameters. A standard choice in practice is to set
rmin = 0.01 and rmax as one quarter of the side length of the observation window. The theoretical
justifications of this two step procedure to estimate β and θ can be found in [5], in the particular
case of stationary DPPs. Other contrast estimating functions are possible, where g is replaced
by another characteristic of the point process, see Section 5 for an example with the J function.

As an alternative to contrast estimation, likelihood inference can be conducted in some cases.
This method is expected to be more efficient than the other methods of inference, at least
asymptotically (that is when W is big enough). Although no theoretical justifications for DPPs
support this claim so far (neither any justification of the consistency of likelihood estimation),
this has been confirmed by some simulations, see [5, 24]. However, to get the expression of the
likelihood from (8), one needs to know the spectral representation of C on W , which is rarely
available. If W is a rectangular set and ρ(x) is constant in (8), an approximation based on the
Fourier transform of C0 is proposed in [24]. If W is the unit square, this gives

C(x, y) ≈ ρ
∑
k∈Zd

ϕ(k)e2πik.(x−y),

for any x, y ∈W , where ϕ denotes the Fourier transform of C0 and k.(x−y) is the inner product
between k and (x−y). The case of a general rectangular set W can easily been deduced, see [24].
This approximation turns out to be quite accurate when ρ is not too small, see [24] for some
justifications and a simulation study.

Several functions are available in the spatstat library [3] of R [32] to manipulate DPP
models on a bounded subset of R2. They allow to define parametric models of homogeneous
and inhomogeneous DPPs, to simulate them (using the spectral approximation presented above
and the Gram-Schmidt algorithm described in Section 2.2), and to fit them to a real dataset.
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4. Determinantal survey sampling

Survey sampling considers the following problem. One wants to acquire knowledge of a
parameter of interest θ, function of {yk, k ∈ E}, where E = {1, · · · , N} is a finite population.
A typical parameter θ is the sum ty(or the mean my) of y. Unfortunately, the values yi are
inaccessible, except for a small part of the population. One therefore uses an estimator of θ con-
structed on a randomly chosen subpopulation. This choice is called the sampling design, whose
properties are of crucial importance to get “good” estimators. In this section, we show that
sampling designs based on DPPs, coined Determinantal Sampling Designs (DSDs) afterwards,
enjoy must of the properties usually required for a sampling design. A good design should in
particular meet the following requirements :

• simplicity of the design and simple algorithmic construction,
• control of the size of the sample,
• statistical amenability (consistency, central limit theorem,...),
• low mean square error of the estimator,

see for instance [8].

4.1. Determinantal processes as sampling designs

A sampling design can always be defined as the law of a vector of Bernoulli variables. Let
E = {1, · · · , N} denote the population. Then a sampling design is the law of B = (Bi, 1 ≤
i ≤ N), vector of Bernoulli variables, and the set X = {i ∈ E|Bi = 1} is called the sample.
This approach by Bernoulli variables is for instance used in [44]. Usually, except for very simple
sampling designs, only the marginal law of each variable Bi is known, and other quantities
remain unknown, or have to be estimated. This is not the case for determinantal sampling
designs, whose description is given below.

Consider X ∼ DPP (K) a DPP with kernel matrix K on E, as defined in Section 2, and
let B = (1i∈X , 1 ≤ i ≤ N). Then Bi = 1i∈X is a Bernoulli variable, and (the law of) B is a
sampling design. We call this design a determinantal sampling design with kernel K. We also
note X ∼ DSD(K) to insist on the sampling interpretation. It then follows from the definition
(1) of DPPs that

P (Πi∈ABi = 1) = detKA.

Therefore, the whole law of the design is known through the principal minors of its kernel.
As DPPs are indexed by symmetric matrices with eigenvalues in [0, 1], DSDs form a para-

metric family of sampling designs. The existence of a perfect simulation algorithm as described
in Section 2 allows to implement these designs in practice.

We interpret below some other properties of DPPs described in Section 2 in terms of sampling
theory. Let X ∼ DSD(K).

(1) The first order inclusion probabilities are the diagonal terms of K, P (i ∈ X) = Kii.
(2) For all i 6= j ∈ E, ∆i,j = P (i, j ∈ X)− P (i ∈ X)P (j ∈ X) = −K2

ij ≤ 0. This is known
in sampling theory as the Sen-Yates-Grundy Condition [2].

(3) The size of the sample X is known through the eigenvalues of K. In particular, X is
of fixed size n (a property usually required in practice) iff K is a projection matrix of
rank n. Also, DSD(K) samples at least one point iff 1 is an eigenvalue of K.

(4) The restriction XF of X to a domain F ⊂ E is also a DSD, XF ∼ DSD(KF ).
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(5) Recall that a sampling design is stratified if the population E can be decomposed as
E =

⋃
k∈K Ek (the Ek are the distinct strata) such that

i ∈ Ek, j ∈ El, k 6= l⇒ Bi, Bj are independent.

It holds that a DSD(K) is stratified if and only if K admits a block matrix decompo-
sition (after reordering of the population by strata).

(6) Poisson Sampling is determinantal with K diagonal. But Simple Random Sampling

(SRS) of size n, defined by P ((i1, ·, im) = X) = 1/
(
N
n

)
if m = n and 0 otherwise is not

determinantal (unless, n = 0, 1, N − 1 or N).
(7) However, it is shown in [25] that for some couples (n,N) there exists DSDs with the

same first and second order inclusion probabilities as SRS.

We finally address in this section a typical requirement of statisticians regarding sampling
designs: the construction of fixed size sampling designs with prescribed unequal first order
inclusion probabilities. Let us explain briefly the reason behind this requirement. In survey
samplings, one usually knows the values of a variable x (on the whole propulation) correlated
with y. If you choose the πi proportional to xi, then one can check that the variance of the
Horvitz-Thompson estimator is proportional to the variance of the number of points of the
design. Thus a fixed size sampling design with πi ∝ xi will achieve perfect estimation of x, and
hopefully produce a low variance estimator of y. The Schur-Horn Theorem [20] allows to derive
the following result:

Theorem 2. Let Π be a vector of first order inclusion probabilities such that
∑N
i=1 Pi = n.

Then there exists X ∼ DSD(K) of fixed size n such that P (i ∈ X) = Kii = Πi.

Moreover, an explicit solution can be constructed. Simpler solutions for equal probability
sampling designs (P (i ∈ X) = Kii = n

N for all i ∈ E) are also constructed in [25].

4.2. Statistical properties

In this section we sum up the statistical properties of the Horvitz-Thompson estimator t̂y of
a total ty =

∑
i∈E yi constructed upon those DSDs. The central limit theorem is based on [43],

and the concentration inequality on [31]. Let X ∼ DSD(K). We pose

(Horvitz-Thompson estimator) t̂y =
∑
i∈X

K−1
ii yi =

∑
i∈E

K−1
ii 1i∈Xyi

and m̂y = 1
N t̂y (my = 1

N ty). Then:

(1) E(t̂y) = ty (the estimator is unbiased).

(2) V(t̂y) = zT (IN −K) ? Kz where zi = yiK
−1
ii and ? is the Schur-Hadamard (entrywise)

product.

(3) (Consistency) If 1
N2

N∑
i=1

K−1
ii y

2
i −→
N→∞

0, then m̂y −my towards 0 in mean square.

(4) (CLT) Under technical assumptions,
m̂y−my√

V(m̂y)

law→ N (0, 1).
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(5) (Concentration (1)) Pose µ = tr(K) and M = max1≤i≤N |yi|. Then

P (|m̂y −my)| > a) ≤ 5 exp

(
− N2a2

162 (NaM + 2µM2)

)
.

(6) (Concentration (2)) If DSD(K) is of fixed size n, we can improve the previous inequality
in

P (|m̂y −my)| > a) ≤ 2 exp

(
− N

2a2

8nM2

)
.

The last three results allow to derive asymptotic as well as finite distance confidence intervals.

We conclude the section by stating three interesting consequences of the knowledge of the
exact expression of the variance. As the Horvitz-Thompson estimator is unbiased, the variance of
the estimator is a good indicator of the precision of the estimator, and one would tend to choose
(if possible) a sampling design with low variance to increase the precision of the estimation.

(1) The quantity yT y − V(t̂y) can be interpreted as a ponderated measure of global repul-
siveness for point processes on a discrete space (see [6] in the continuous setting). As
DPPs are repulsive, we then expect DSDs to achieve small variance within all sampling
designs. This is validated by our empirical studies, see also Section 6 for results in the
continuous setting.

(2) Imagine y is known. Is there a “best” way to estimate its total by a determintal sampling
design ? That is, can we minimize (at least theoretically) the variance of t̂y ?
Assume the diagonal diag(K) of K is fixed. Then

V(t̂y) = yT y − (y/(diag(K))TK ?K(y/(diag(K))

and minimizing the variance is equivalent to maximizing zTK?Kz with z a fixed vector.
This can be interpreted as a quadratic semidefinite optimization problem. Semidefinite
optimization has attracted a lot of interest recently (mainly in the linear setting, see for
instance [7], [46]). But even in the linear case, problems are challenging.

(3) Nevertheless, we can solve the problem of exact estimation (V(t̂y) = 0). The following
result can be found in [25]:

Theorem 3. The total ty is perfectly estimated by t̂y (t̂y = ty) iff DSD(K) is a fixed

size stratified determinantal sampling design with K−1
ii yi constant on each stratum.

Equivalently, ty is perfectly estimated by t̂y iff K is a block diagonal matrix, with

each block a projection matrix with diagonal Kii = αy−1
i (the value α depends on the

block).

5. The β-Ginibre point process and design of a cellular network

This section aims to validate the β-Ginibre point process as a model for the distribution of
base station locations in a cellular network, from real data collected in Paris, France.
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5.1. Theoretical model: the β-Ginibre point process

The Ginibre point process (GPP) with intensity ρ = γ
π (with γ > 0) is a determinantal point

process on C whose kernel Cγ is given for any x, y ∈ C by:

Cγ(x, y) =
γ

π
e−

γ
2 (|x|2+|y|2)eγxy.

If β is a real number between 0 and 1, the β-Ginibre point process (β-GPP) with intensity
ρ = γ

π is a determinantal point process on C whose kernel Cγ,β is given for any x, y ∈ C by:

Cγ,β(x, y) =
γ

π
e−

γ
2β (|x|2+|y|2)e

γ
β xy.

Figure 2. Realizations of PPP and β-GPP for β ∈ { 1
4 ; 3

4 ; 1}.

A β-GPP may be built by combining two operations on a GPP: a thinning with parameter
β (one keeps each point independently with probability β) then a rescaling with parameter√
β, such that we keep the same intensity. Hence, the parameter β provides an information

concerning the degree of repulsiveness of the point process: the smaller β is, the less repulsive
the β-GPP is. Note that such a point process is not defined for β > 1. One can observe in
Figure 2 some realizations of a Poisson point process (PPP) and β-GPPs for different values of
β.

These point processes were investigated in the wireless communication field : they were at
first introduced by Shirai et al. [38] in quantum physics to model fermion interactions. Works of
Miyoshi et al. [28] and Deng et al. [13] have derived a computable representation for the coverage
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probability in cellular networks - the probability that the signal-to-interference-plus-noise ration
(SINR) for a mobile user achieves a target threshold.

5.2. Statistical analysis

In this subsection, we use real data from the mobile network in Paris to show that base
station locations can be fitted with a β-GPP [17]. We introduce the fitting method that allows
to obtain the parameter β and also present the results from the fitting of each deployment and
operator. In order to fit the mobile network deployment on the β-Ginibre model, we use the
J-function. The J-function of a stationary point process X on Rd is defined for any r ∈ R+ by:

J(r) =
1−G(r)

1− F (r)
,

where F is the empty space function of X and G its nearest-neighbor distance distribution
function, defined for some u ∈ Rd and any r ∈ R+ by:

F (r) = P(‖u−X‖ ≤ r)
and

G(r) = P(‖u−X \ {u}‖ ≤ r).
The J-function provides both a characterization of the point process and a direct information

about its attractiveness or repulsiveness. More precisely, when J < 1, X is attractive, otherwise
X is repulsive. The equality J ≡ 1 characterizes the PPP, where there is no interaction between
the particles. For the case of the β-GPP, we get from [13] the following proposition.

Proposition 5.1. The J-function of the β-GPP with intensity γ
π is given for any r ∈ R+ by:

J(r) =
1

1− β + βe−
γ
β r

2 .

Note that for any β this J-function is bigger than one, which confirms that the β-GPP is a
repulsive point process. When β tends to 0, this expression tends to 1, which corresponds to
the J-function of a PPP.

This J-function allows to validate the β-GPP as a distribution model of the repartition of the
base stations for each operator and each technology.

We use the spatstat package to obtain an estimate of the J-function from the raw data.
Since we consider only a finite set of antennas, edge effects might appear on the J-function
estimate. We then have to keep a subset of the data to perform the estimation. Figure 3 gives
the window we considered for extracting data in Paris, France.

This window is chosen such that it covers about 60 % of the city and that its shape matches
the geographical borders. The values of the J-function estimate are computed for r ≤ 600 m.
Above 600 m, the estimation is not relevant due to the edge-effect. J is then directly fitted on
the estimate and the parameter β is deduced. An example of fitting is given in Fig. 4. Visual
inspection reveals a clearly repulsive behaviour of the base stations locations and a good fit to
the theoretical model, especially when compared to the unit J-function of a PPP.

Numerical values of the parameter β and the intensity ρ from the fitting are given in Table
1 for each operator and each technology, and in Table 2 for each operator. Each intensity
ρ is simply computed using the number of corresponding base stations in the window. The
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Figure 3. Example of data sample for one GSM operator. The J-function is
fitted on the points within the polygonal window.
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Figure 4. Example of J-function fitting for SFR on the 3G 900 MHz band.
ρ = 1.92 base stations per kilometer square β = 0.97. Residuals: 0.74.

parameter β is then computed by the method of least squares applied to the J-function of the
β-GPP and its estimation. Data analysis also shows that the superposition of all sites is tending
to a PPP as β is equal to 0.17, which will be confirmed by the asymptotic results mentioned in
the part 5.3.

We hence show that base stations distribution for an operator and for a technology can be
fitted with a β-GPP in the Paris area. The distribution of all base stations of all operators may
therefore be considered as an independent superposition of β-GPP, but can actually be fitted
with a PPP.

5.3. Asymptotics

In order to justify in a theoretical way the Poisson behavior of the independent superposition
of the β-GPPs, we put in this subsection the corresponding asymptotic results.
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Table 1. Numerical values of β per technology and operator.

Orange SFR Bouygues Free

GSM 900 0.81 0.76 0.65 NA

GSM 1800 0.84 0.85 0.71 NA

UMTS 900 NA 0.97 0.53 0.89

UMTS 2100 1.04 0.65 0.82 0.89

LTE 800 1.02 0.93 0.67 NA

LTE 1800 NA NA 0.75 NA

LTE 2600 0.93 0.67 0.63 0.89

Table 2. Numerical values of β and ρ per operator and for the superposition
of all the sites.

Orange SFR Bouygues Free Superposition

β 0,94 0,70 0,81 0,89 0,17

ρ 3,48 3,70 4,23 1,05 10,28

Number of sites 185 197 225 56 547

Assume that the space E is endowed with its Borel space B(E) and denote by NE the space
of configurations on E. For a point process X on E, the application c : E × NE → R+ is a
Papangelou intensity [16] of X if, for any measurable function u : E ×NE → R+,

E
[ ∑
x∈X

u(x,X \ x)
]

=

∫
E

E[c(x,X)u(x,X)]µ(dx).

Intuitively, if x ∈ E and ξ ∈ NE , c(x, ξ) represents the conditional probability of finding a
particle in the location x given the configuration ξ. It allows to propose a new definition for
repulsiveness: a point process X on E with Papangelou intensity c is said to be repulsive (in
the Papangelou sense) if, for any ω, ξ ∈ NE such that ω ⊂ ξ and any x ∈ E,

c(x, ξ) ≤ c(x, ω),

and weakly repulsive (in the Papangelou sense) if, for any ξ ∈ NE and any x ∈ E,

c(x, ξ) ≤ c(x,∅).

The next proposition gives an explicit expression for the Papangelou intensity of a DPP [16].
If C is the kernel of a DPP, denote by TC the functional operator defined for any f ∈ L2(E,µ)
and any x ∈ E by

TCf(x) =

∫
E

C(x, y)f(y)µ(dy).

Proposition 5.2. Let X be a DPP on E with kernel C such that the operator TH = (Id −
TC)−1TC is well-defined. Then, its Papangelou intensity c is given for any x0, x1, . . . , xk by:
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c(x0, {x1, · · · , xk}) =
det(H(xi, xj), 0 ≤ i, j ≤ k)

det(H(xi, xj), 1 ≤ i, j ≤ k)
.

Moreover, X is repulsive in the Papangelou sense.

We now introduce the topology on point processes which is used in this part [11]. The total
variation distance dTV is defined for any measures ν1, ν2 by:

dTV(ν1, ν2) := sup
A∈B(E)

ν1(A),ν2(A)<∞

|ν1(A)− ν2(A)|,

we say that a map h : NE → R is 1-Lipschitz according to dTV if for any ω1, ω2 ∈ NE ,

|h(ω1)− h(ω2)| ≤ dTV(ω1, ω2),

and denote by Lip1(dTV) the set of all such maps which are measurable.
The Kantorovich-Rubinstein distance d∗TV associated to dTV between two point processes X1

and X2 is defined as:

d∗TV(X1, X2) = sup
∣∣∣E[h(X1)]− E[h(X2)]

∣∣∣, (9)

where the supremum is over all h ∈ Lip1(dTV) that are integrable with respect to the distribu-
tions of X1 and X2.

This distance provides a strong topology on the space of point processes: in particular, it is
strictly stronger than convergence in law. A counterpart of this use is that we can only consider
sequences of finite point processes. The following theorem [12] gives an upper bound for this
distance taken between a finite PPP and an other point process.

Theorem 5.3. Let Z be a Poisson point process on E with finite control measure M(dx) =
m(x)dx and X a second point process on E with Papangelou intensity c. Then,

d∗TV(X,Z) ≤
∫
E

E[|m(x)− c(x,X)|]dx.

Using Laplace transforms, we are able to establish the convergence of a superposition of
independent β-GPPs to a PPP and that a β-GPP tends to a PPP as β tends to 0, where these
two results are given for convergence in law. The previous upper bound theorem allows to give
more precise results [12] provided by the following propositions.

Proposition 5.4. For any n ∈ N, let Xn the superposition of n independent, finite and weakly

repulsive point processes Xn,1, . . . , Xn,n, with respective joint intensities ρ
(k)
n,1, . . . , ρ

(k)
n,n (k ≥ 1)

and let Z be a Poisson point process with control measure M(dx) = m(x)µ(dx). Then,

d∗TV(Xn, Z) ≤ Rn + 2n
(

max
i∈{1,...,n}

∫
E

ρ
(1)
n,i(x)µ(dx)

)2

,

where

Rn :=

∫
E

∣∣∣ n∑
i=1

ρ
(1)
n,i(x)−m(x)

∣∣∣µ(dx).
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Corollary 5.5. Under the assumptions and notations of the Proposition 5.4, and assuming
moreover that there exists a real constant A such that for any n ∈ N,

max
i∈{1,...,n}

∫
E

ρ
(1)
n,i(x)µ(dx) ≤ A

n
,

one has for any n ∈ N,

d∗TV(Xn, Z) ≤ Rn +
2A2

n
.

Proposition 5.6. Let C be the kernel of a stationary determinantal point process X on Rd
with intensity ρ ∈ R, Λ be a compact subset of Rd, (βn)n∈N ⊂ (0, 1)N and ZΛ,ρ designs the
homogeneous Poisson point process with intensity ρ reduced to Λ. For any n ∈ N, Xn is the
point process on Rd obtained by combining a βn-thinning with a βn-rescaling on the point process
X that one reduces to Λ. More precisely, Xn is the determinantal point process with kernel Cn
defined by

Cn : (x, y) ∈ E × E 7→ C
( x

βn
1
d

,
x

βn
1
d

)
1Λ×Λ(x, y).

Then,

d∗TV(Xn, ZΛ,ρ) ≤
2βn

1− βn
ρ|Λ|.

6. DPPs for Monte Carlo integration

DPPs have also been used in the design of Monte Carlo numerical integration methods [4]. In
this section, we give an informal description of [4], insisting on the link with Gaussian quadrature.

For the purpose of this section, given a probability density π over Rd, a numerical integration
–or quadrature– method is defined as:

• a rule to build nodes x1, . . . xN ∈ Rd,
• a rule to compute weights wi for 1 ≤ i ≤ N ,

such that
N∑
i=1

wif(xi) ≈
∫
Rd
f(x)π(x)dx (10)

for a large class of functions f . Monte Carlo methods are defined as quadrature methods where
the nodes are the realizations of a collection of N random variables. In traditional Monte
Carlo approaches [34], nodes (xi) are drawn independently, such as in importance sampling,
or using a Markov chain, such as in Markov chain Monte Carlo (MCMC) algorithms. Laws of
large numbers and central limit theorems then guarantee (10), leading to asymptotic confidence
intervals for the integral of width O(N−1/2). This rate is often dubbed the Monte Carlo rate.
The question naturally arises whether we could obtain a faster rate, i.e. smaller confidence
intervals, by introducing more structure in the rule used to sample the nodes (xi).

Intuitively, forcing the nodes to spread evenly across Rd should reduce the variance of the
LHS of (10), as for each draw of the nodes (xi) the whole support of π is evenly covered. In
contrast, independent or MCMC draws will tend to leave more “holes” in the support of π,
and these holes will be different for each draw, resulting in a large variance of the LHS of (10).
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Simultaneously, the nodes should concentrate where π puts a lot of mass, as failing to capture
rapid variations of f in the modes of π will cost a lot in quadrature error. In a nutshell, a good
quadrature method should solve the tradeoff sampling nodes in the modes of π vs. spreading
nodes across Rd to avoid holes. In this section, we explain how DPPs can satisfyingly solve this
tradeoff. To understand how, we first make a detour by a two-century-old quadrature method.

6.1. Gaussian quadrature

For deterministic quadrature methods, Gauss [15] first realized that setting a regular grid
over R was not the most economical way to integrate polynomials. More precisely, consider for
a moment d = 1, and let (pk)k≥0 be the result of applying Gram-Schmidt orthonormalization
in L2(π) to the sequence of monomials qk : x 7→ xk. We call (pk) the orthonormal polynomials
with respect to π [45]. Note that in particular, the degree of pk is k. Finally, let

KN (x, y) =

N−1∑
k=0

pk(x)pk(y) (11)

be the so-called Christoffel-Darboux kernel [40]. Then Gaussian quadrature is defined by setting
(xi)i=1,...,N to be the N zeros of pN , and the weights wi to be 1/KN (xi, xi) for each 1 ≤ i ≤ N .
Gaussian quadrature has the property to be exact whenever f is a polynomial function of degree
up to 2N − 1, that is, (10) is an equality. Gaussian quadrature is thus expected to be accurate
on functions that are limits of sequences of polynomials: Jackson’s approximation theorem for
algebraic polynomials, for instance, says that the error in (10) is O(1/N) for f continuously
differentiable.

Although deterministic, Gaussian quadrature has the property we are looking after: nodes
are well spread across the support of π, while more densely present in the modes of π. To
understand why, denote by ck the leading coefficient of pk. Among all monic polynomials of
degree k, pk/ck is the one with the smallest norm in L2(π), see e.g. [45, Section 3]. Consequently,
the zeros of pk will tend to be far from each other, to make pk as flat and close to zero as possible.
Simultaneously, there will be more zeros where π puts a lot of mass, to make pk even closer to
zero in the areas of Rd that contribute a lot to squared norms in L2(π). These intuitions are
demonstrated on Figure 5(a).

The main disadvantages of Gaussian quadrature are that

(1) there is no generic way to adapt Gaussian quadrature to d ≥ 2. Outside very specific
cases, one has to make the Cartesian product of sets of one-dimensional nodes, thus
raising any bound on the quadrature error to the power 1/d [10].

(2) tight bounds on the error are scarce [47], specific to particular choices of π, and do not
scale well with the dimension d.

(3) orthonormal polynomials are rarely known beforehand and computing them requires
computing the moments of π. This limits the applicability of the method, with most
applications focusing on Jacobi measures π : x 7→ (1− x)a(1 + b)b for some a, b > −1.

6.2. Monte Carlo with DPPs

Looking back at Definitions (3) and (4), DPPs also have the potential to solve the tradeoff
of “sampling in the modes of π but make points spread regularly”. Choosing µ = π in (3), any
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Figure 5. Comparison of quadrature rules. In each plot, π is the same product
Jacobi measure, depicted in green on the marginal plots. The area of each
marker is proportional to its weight wi in the corresponding estimator.

kernel K in (4) that makes the corresponding DPP exist, and denoting (xi) a sample from the
corresponding DPP, (4) implies that

∑
i

f(xi)

K(xi, xi)
(12)

is an unbiased estimator of the RHS of (10). In particular, choosing K = KN the Christoffel-
Darboux kernel (11) yields DPP samples of size N almost surely, and the estimator (12) takes
the same form as Gaussian quadrature in Section 6.1, except the nodes are a sample from
a DPP and not the zeros of pN . Actually, these two sets of nodes are asymptotically very
similar [19], further confirming the intuition that Monte Carlo with a DPP using kernel (11) is
a stochastic version of Gaussian quadrature. It turns out that stochasticity partly solves the
issues of Gaussian quadrature:

(1) the above DPP easily generalizes to general d, as long as π(x) = π1(x1) . . . πd(xd) is
separable. For 1 ≤ ` ≤ d, take (p`k)k to be the orthonormal polynomials with respect to
π`, fix b : N → Nd a bijection that orders d-uplets of integers, and consider the kernel
on Rd × Rd defined by

KN (x, y) =

N∑
k=1

pk1(x1) . . . pkd(xd)pk1(y1) . . . pkd(yd),

where (k1, . . . , kd) = b(k). Then taking µ = π and K = KN in (3) and (4) leads
to a DPP that exists and strictly generalizes the above one-dimensional construction.
Figure 5(b) depicts a draw from this DPP. The weighted set of points in the DPP
sample can be seen to leave fewer holes than i.i.d. sampling with the same marginals in
Figure 5(c).

(2) Most importantly, for any dimension d, one can prove a central limit theorem [4, The-

orem 2.7] for (12) that leads to confidence intervals of size O(N−
1
2−

1
2d ). The proof is
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technically involved and requires assumptions on π, f , and b. In particular, f should
be continuously differentiable. But the reward is an asymptotic quantification of the
quadrature error at a higher level of generality than Gaussian quadrature. Furthermore,
the limiting variance in the central limit theorem [4, Theorem 2.7] then has a strikingly
simple form, and measures how fast the Fourier coefficients of fπ decrease. In other
terms, non-smoothness of the integrand in (10) is paid in limiting variance.

(3) if the moments of π are not known, or π is not separable, one can still draw from
an instrumental DPP that satisfies the assumptions, and then change the weights wi
accordingly. The same central limit theorem holds for this new estimator [4, Theorem
2.9].
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[44] Yves Tillé. Sampling algorithms. Springer, 2011.

[45] V. Totik. Orthogonal polynomials. Surveys in Approximation Theory, 1:70–125, 2005.
[46] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1):49–95, 1996.

[47] S. Xiang and F. Bornemann. On the convergence rates of Gauss and Clenshaw–Curtis quadrature for func-
tions of limited regularity. SIAM J. Numer. Anal., 50(5):2581–2587, 2012.


	1. Introduction
	2. Determinantal point processes
	2.1. DPPs on a finite discrete space
	2.2. DPPs on a continuous space

	3. DPPs in spatial statistics
	4. Determinantal survey sampling
	4.1. Determinantal processes as sampling designs
	4.2. Statistical properties

	5. The -Ginibre point process and design of a cellular network
	5.1. Theoretical model: the -Ginibre point process
	5.2. Statistical analysis
	5.3. Asymptotics

	6. DPPs for Monte Carlo integration
	6.1. Gaussian quadrature
	6.2. Monte Carlo with DPPs
	Acknowledgments

	References

