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ABSTRACT:

We propose a depth map inference system from monocular videos based on a novel dataset for navigation that mimics aerial footage
from gimbal stabilized monocular camera in rigid scenes. Unlike most navigation datasets, the lack of rotation implies an easier
structure from motion problem which can be leveraged for different kinds of tasks such as depth inference and obstacle avoidance.
We also propose an architecture for end-to-end depth inference with a fully convolutional network. Results show that although tied to
camera inner parameters, the problem is locally solvable and leads to good quality depth prediction.

1. INTRODUCTION

Scene understanding from vision is a core problem for autonomous
vehicles and for UAVs in particular. In this paper we are specifi-
cally interested in computing the depth of each pixel from a pair
of consecutive images captured by a camera. We assume our
camera’s velocity (and thus displacement between two frames)
is known, as most UAV flight systems include a speed estimator,
allowing to settle the scale invariance ambiguity.

Solving this problem could be beneficial for applying depth-based
sense and avoid algorithms for lightweight embedded systems
that only have a monocular camera and cannot directly provide
a RGB-D image. This could allow such devices to go without
heavy or power expensive dedicated devices such as ToF cam-
era, LiDar or Infra Red emitter/receiver (Hitomi et al., 2015) that
would greatly lower autonomy. In addition, many RGBD sen-
sors are unable to operate under sunlight (e.g. IR and ToF), and
most of them suffer from range limitations and can be inefficient
in case we need long-range trajectory planning (Hadsell et al.,
2009). The faster an UAV is, the longer the range we will need to
efficiently avoid obstacles. Unlike RGB-D sensors, depth from
motion is robust to high speeds since it will be normalized by
the displacement between two frames. Given the difficulty of the
task, several learning approaches have been proposed to solve it.

A large number of datasets has been developed in order to pro-
pose supervised learning and validation for fundamental vision
tasks, such as optical flow (Geiger et al., 2012, Dosovitskiy et
al., 2015, Weinzaepfel et al., 2013) stereo disparity and even
3D scene flow (Menze and Geiger, 2015, N.Mayer et al., 2016).
These different measures can help figure up scene structure and
camera motion, but they remain low-level in terms of abstrac-
tion. End-to-end learning of a certain value such as three dimen-
sional geometry may be hard to compute on a totally unrestricted
monocular camera movement.

We focus on RGB-D datasets that would allow supervised learn-
ing of depth. RGB pairs (preferably with the corresponding dis-
placement) being the input, and D the desired output. It turns
out that today, for learning depth from video, the choice among
existing RGB-D datasets is either unrestricted w.r.t. ego-motion
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Figure 1. Camera stabilization can be done via a) mechanic
gimbal or b) dynamic cropping from fish-eye camera, for drones

or c) hand-held cameras

(Firman, 2016, Sturm et al., 2012), or based on stereo vision,
equivalent to lateral movement (Geiger et al., 2012, Scharstein
and Szeliski, 2002).

We thus propose a new dataset, described Part 3, which aims at
proposing a bridge between the two by assuming that rotation is
canceled on the footage that contains only random translations.

This assumption about videos without rotation appears realistic
for two reasons:

• hardware rotation compensation is mainly a solved problem,
even for consumer products, with IMU-stabilized cameras
on consumer drones or hand-held steady-cam (Fig 1).

• this movement is somewhat related to human vision and
vestibulo-ocular reflex (VOR) (De Nó, 1933). Our eyes ori-
entation is not only induced by head rotation, our inner ear
among other biological sensors allows us to compensate par-
asite rotation when looking at a particular direction.

Assuming only translations allows to dramatically simplify links
between optical flow and depth, and leverage much simpler com-
putation. The main benefit being the camera movement’s dimen-
sionality, reduced from 6 (translation and rotation) to 3 (only
translation). However, as discussed in Part 4, depth is not com-
puted as simply as with stereo vision and requires being able
to compute higher abstractions to avoid a possible indeterminate
form, especially for forward movements.

Using the proposed dataset, we show that depth can be learned as
an end-to-end problem just like other usual Deep Learning prob-
lems. With a trained artificial neural network, we obtain much
better depth accuracy than flow based methods and are confident
this will be efficiently leveraged for sense and avoid algorithms.
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2. RELATED WORK

2.1 Monocular vision based sense and avoid

Sense and avoid problems are mostly approached using a ded-
icated sensor for 3D analysis. However, some works have been
done trying to leverage Optical flow from Monocular camera (Souhila
and Karim, 2007, Zingg et al., 2010). They highlight the diffi-
culty of estimating depth solely with flow, especially when the
camera is pointed toward movement. One can note that rota-
tion compensation was already used with fish-eye camera in or-
der to have a more direct link between flow and depth. Another
work (Coombs et al., 1998) also demonstrated that basic obstacle
avoidance could be achieved in cluttered environments such as a
closed room.

Some interesting work concerning obstacle avoidance from Monoc-
ular camera (LeCun et al., 2005, Hadsell et al., 2009, Michels et
al., 2005) showed that single frame analysis can be more efficient
than depth from stereo for path planning. However, these works
were not applied on UAV, on which depth cannot be directly de-
duced from distance to horizon, because obstacles and paths are
three-dimensional.

More recently, Giusti et al. (Giusti et al., 2016) showed that a
monocular system can be trained to follow a hiking path. But
once again, only 2D movement is approached, asking a UAV go-
ing forward to change its yaw based on likeliness to be following
a traced path.

2.2 Depth inference

Deep Learning and Convolutional Neural Networks have recently
been widely used for numerous kinds of vision problem such as
classification (Krizhevsky et al., 2012) and have also been used
to generate image with meaningful content (Long et al., 2015)

Depth from vision is one of the problems studied with neural net-
work, and has been addressed not only with image pairs, but also
single images (Eigen et al., 2014, Saxena et al., 2005, Garg et al.,
2016, Godard et al., 2017). Depth inference from stereo has also
been widely studied (Luo et al., 2016, Zbontar and LeCun, 2015).

Current state of the art methods for depth from monocular view
tends to use motion, and especially structure from motion, and
most algorithms do not rely on deep learning (Cadena et al., 2016,
Mur-Artal and Tardos, 2016, Klein and Murray, 2007, Pizzoli et
al., 2014). Prior knowledge w.r.t. scene is used to infer a sparse
depth map with its density usually growing over time. These
techniques also called SLAM are typically used with unstructured
movement, produce very sparse point-cloud based 3D maps and
require heavy calculation to keep track of the scene structure and
align newly detected 3D points to the existing ones. However
SLAM is generally used for off-line 3D scan rather than obstacle
avoidance.

Our goal is to compute a dense (where every point has a valid
depth) depth map using only two successive images, and without
prior knowledge on the scene and movement, apart from the lack
of rotation and the scale factor.

2.3 Navigation datasets

As discussed earlier, numerous datasets exist with depth ground
truth, but to our knowledge, no dataset proposes only translational

Still Box Datasets
image size number of scenes total size (GB)
64x64 80K 19
128x128 16K 12
256x256 3.2K 8.5
512x512 3.2K 33

Table 1. datasets sizes

Scenes parameters
field of view 90o

max render distance 200m
primitives number 20

texture ratio 0.5
size range of meshes (m) [0, 2]

distance range of meshes (m) [0, 25]
displacement 10cm

length (frames) 10
nominal shift 3

speed equivalent (for 30fps) 9m.s−1

Table 2. datasets parameters

movement. Some provide IMU data along with frames (Smith et
al., 2009, Gaidon et al., 2016), that could be used to compensate
rotation but their size in terms of different scenes would only let
us use them for finetuning or validation.

3. STILL BOX DATASET

From our understanding of the lack of an adequate dataset for
our problem, we decided to design our own synthetic dataset.
We used the rendering software Blender to generate an arbitrary
number of random rigid scenes, composed of basic 3d primitives
(cubes, spheres, cones and tores) randomly textured from an im-
age set scrapped from Flickr (see Fig 2).

These objects are randomly placed and sized in the scene, so that
they are mostly in front of the camera, with possible variations
including objects behind camera, or even camera inside an object.
Scenes in which camera goes through objects are discarded. To
add difficulty we also applied uniform textures on a proportion
of the primitives. Each primitive thus has a uniform probability
(corresponding to texture ratio) of being textured from a color
ramp and not from a photograph.

Walls are added at large distances as if the camera was inside
a box (hence the name). The camera is moving at a fixed speed
value, to a uniformly distributed random direction, which remains
constant for each sequence. It can be anything from forward/back-
ward movement to lateral movement (which is then equivalent to
stereo vision). Tables 1 and 2 show a summary of our scenes
parameters. They can be changed at will, and are stored in a
metadata JSON file to keep track of it. Our dataset is then com-
posed of 4 sub-datasets with different resolutions, 64px dataset
being the largest in terms of number of samples, 512px being the
heaviest in data.

4. END-TO-END LEARNING OF DEPTH INFERENCE

4.1 Why not disparity ?

Flow Estimation and disparity (which is essentially magnitude
of optical flow vectors) are problems for which there is a lot of
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Figure 2. Some examples of our renderings with associated
depth maps (red is close, violet is far)

very convincing methods (Ilg et al., 2016, Kendall et al., 2017).
Knowing depth and displacement in our dataset, one could think
it is easy to get disparity, train a network for it using existing op-
tical flow methods, and get the depth map indirectly. The link
between disparity and depth is actually prone to large errors. To
understand why, we can consider a picture with (u, v) coordi-

nates, and optical center at P0 =

(
u0

v0

)
, and define our system

as follows:

Definition 1 Disparity δ(P) is defined here by the norm of the

velocity flow, flow(P) =

(
du
dv

)
of a point P =

(
u
v

)
.

∀P =

(
u
v

)
, δ(P) = ‖flow(P)‖

Definition 2 Focus of Expansion is defined by the point Φ where

each flow vector flow(P) =

(
du
dv

)
of a point P =

(
u
v

)
is headed

from. Note that this property is only true in a rigid scene and
without rotation. One can note that for a pure translation, Φ is the
projection of the displacement vector of the camera onto its own
focal plane.

∀P =

(
u
v

)
, det

(−→
PΦ, flow(P)

)
= 0

Theorem 1 For a random rotation-less displacement of norm V
of a pinhole camera, with a focal length f , depth ζ(P) is an ex-
plicit function of disparity δ(P), focus of expansion Φ and optical
center P0

∀P, ζ(P) =
V f√

f2 +
∥∥∥−−→P0Φ

∥∥∥2


∥∥∥−→PΦ

∥∥∥
δ(P)

− 1



This result (proved in annex A) is in a useful form for limit values.
Lateral movement corresponds to ||

−−→
P0Φ|| → +∞ and then

lim
||
−−→
P0Φ||→+∞

ζ(P) =
fV

δ(P)

When approaching Φ, knowing that depth is a bounded positive
value, we can deduce:

δ(P) ∝
P→Φ

∥∥∥−→PΦ
∥∥∥

Limit of disparity in this case is 0 and we use its inverse. As a
consequence, small errors on disparity estimation will result in
diverging values of depth near the focus of expansion, while it
corresponds to the direction the camera is moving to, which is
clearly problematic for depth-based obstacle avoidance.

Given the random direction of our camera’s displacement, com-
puting depth from disparity is therefore much harder than for a
classic stereo rig. To tackle this problem, we decided to set up
an end-to-end learning workflow, by training a neural network to
explicitly predict the depth of every pixel in the scene, from an
image pair with constant displacement value D0.

4.2 Dataset augmentation

The way we store data in 10 images long videos, with each frame
paired with its ground truth depth, allows us to set a posteri-
ori distances distribution with a variable temporal shift between
two frames. For example, using a baseline shift of 3 frames, we
can assume a depth three times greater than for two consecutive
frames (shift of 1). A shift of 0 will result in an infinite depth,
capped to a certain value (here 100m). In addition, we can also
consider negative shift, which will only change displacement di-
rection without changing speed value. These augmentation tech-
niques allow us, given a fixed dataset size, to get more evenly
distributed depth values to learn, and also to decorrelate appear-
ance from depth, preventing any over-fitting during training, that
would result in a scene recognition algorithm and would perform
poorly on a validation set.

4.3 Depth Inference training

Our network is broadly inspired from FlowNetS (Dosovitskiy et
al., 2015) (initially used for flow inference) and called Depth-
Net. It is described Fig 3. Every convolution (apart from depth
module) is followed by a Spatial Batch Normalization and ReLU
activation layer. Batch normalization helps convergence and sta-
bility during training by normalizing a convolution’s output over
a batch of multiple inputs (Ioffe and Szegedy, 2015), and Recti-
fied Linear Unit (ReLU) is the typical activation layer (Xu et al.,
2015). One should note that FlowNetS initially used LeakyReLU
which has a non-null slope for negative values, but tests showed
that ReLU performed better for our problem. The main idea be-
hind this network is that upsampled feature maps are concate-
nated with corresponding earlier convolution outputs. Higher
semantic information is then associated with information more
closely linked to pixels (since it went through less strided con-
volutions) which is then used for reconstruction. It is also im-
portant to note that contrary to FLowNetS, our network does not
need to be completely agnostic to optical flow structure, as it will
be given frame pairs from rigid scenes, which dramatically low-
ers our problem’s dimensionality. We therefore assumed that a
thinner network would perform as well as a simple variation of
FlowNetS and used half the feature maps for each layer.

This multi-scale architecture proved to be very efficient for flow
and disparity computing while keeping a very simple supervised
learning process. Our network is admittedly very simple and one
could leverage some more advanced work that were used for flow
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Typical Conv Module
SpatialConv, 3x3
SpatialBatchNorm
ReLU

Typical Deconv Module
SpatialConvTranspose, 4x4
SpatialConv, 3x3
SpatialBatchNorm
ReLU

Input image pair

Conv1, stride 2

Conv2, stride 2

Conv3, stride 2

Conv3.1

Conv4, stride 2

Conv4.1

Conv5, stride 2

Conv5.1

Conv6, stride 2

Conv6.1

Deconv5

Concat5

Deconv4

Concat4

Deconv3

Concat3

Deconv2

Concat2

Depth2

Final depth output MultiScale
L1 Loss

Depth6

Up Depth6

Depth5

Up Depth5

Depth4

Up Depth4

Depth3

Up Depth3

6xHxW

32x1/2Hx1/2W

64x1/4Hx1/4W

128x1/8Hx1/8W

256x1/16Hx1/16W

256x1/32Hx1/32W

512x1/64Hx1/64W

256x1/32Hx1/32W

128x1/16Hx1/16W

64x1/8Hx1/8W

32x1/4Hx1/4W

1x1/64Hx1/64W

1x1/32Hx1/32W

1x1/16Hx1/16W

1x1/8Hx1/8W

1x1/4Hx1/4W

Figure 3. DepthNet structure parameters, Conv and Deconv
modules detailed above

Figure 4. result for 64x64 images, upper-left: input (before
being downscaled to 64x64), lower-left: Ground Truth depth,
lower-right: our network output (16x16), upper-right: error

(green is no error, red is over-estimated depth, blue is
under-estimated)

and disparity, such as FlowNetC or GC-Net (Kendall et al., 2017)
among many others. The main point of this experimentation is
to show that direct depth estimation can be beneficial regarding
unknown translation. Like FlowNetS, we use a multi-scale crite-
rion, with a L1 reconstruction error for each scale.

Loss =
∑

s∈scales

γs
1

HsWs

∑
i

∑
j

|outputs(i, j)− ζs(i, j)|

(1)
where

• γs is the weight of the scale, arbitrarily set to Ws in our
experiments.

• (Hs,Ws) = (1/2nH, 1/2nW ) are the height and width of
the output.

• ζs is the scaled depth groundtruth, using average pooling.

As said earlier, we apply data augmentation to the dataset using
different shifts, along with classic methods such as flips and rota-
tions.

Fig 4 shows results from 64px dataset. Like FlowNetS, results are
downsampled by a factor of 4, which gives 16x16 Depth Maps.

One can notice that although the network is still fully convolu-
tional, feature map sizes go down to 1x1 and then behave exactly
like a Fully Connected Layer, which can serve to implicitly figure
out motion direction, and spread this information across the out-
puts. The second noticeable fact is that near FOE, (see Fig 5 for
pixel-wise depth error according to distance from FOE) the net-
work has no difficulty in inferring depth, which means that it uses
neighbor disparity and interpolates when no other information is
available.

This can be interpreted as 3d shapes identification, along with
their magnification: pixels belonging to the same shape are deemed
to have close and continuous depth values, resulting in a FOE-
independent depth inference.
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Figure 5. mean depth error as a function of distance from FOE,
for DepthNet64

Network
L1Error RMSE

train test train test
FlowNetS64 1.69 4.16 4.25 7.97

DepthNet64 2.26 4.49 5.55 8.44

FlowNetS64→128→256→512 0.658 2.44 1.99 4.77
DepthNet64→128 1.20 3.07 3.43 6.30

DepthNet64→128→256 0.876 2.44 2.69 4.99

DepthNet64→128→256→512 1.09 2.48 2.86 4.90
DepthNet64→512 1.02 2.57 2.81 5.13

DepthNet512 1.74 4.59 4.91 8.62

Table 3. quantitative results for depth inference networks.
FlowNetS is modified with 1 channel outputs (instead of 2 for
inferring flow), and trained from scratch for depth with Still

Box. Subscript indicates fine tuning process.

4.4 From 64px to 512px Depth inference

One could think that a fully convolutional network such as ours
can not solve depth extraction for pictures greater than 64x64.
The main idea is that for a fully convolutional network, each pixel
is applied the same operation. For disparity, this makes sense be-
cause the problem is essentially similarity from different picture
shifts. Wherever we are on the picture, the operation is the same.
For depth inference when FOE is not diverging (forward move-
ment is non negligible), Theorem 1 shows that once you know
the FOE, distinct operations should be done depending on the
distance from the FOE and from the optical center P0. The only
possible strategy for a fully convolutional network would be to
also compute the position in the image and to apply the compen-
sating scaling to the output.

This problem then seems very difficult, if not impossible for a
network as simple as ours, and if we run the training directly on

Network size
980Ti

Quadro
K2200m TX1

1 8 1 8 1 8

FlowNetS64 39.4 225 153 76 41 29 14

DepthNet64 7.33 364 245 190 124 70 40

FlowNetS512 39.4 69 8.8 16 N/A 2.8 N/A
DepthNet128 7.33 294 118 171 75 51 15

DepthNet256 7.33 178 36 121 30 39 3.2

DepthNet512 7.33 68 8.8 51 7.6 9.2 N/A

Table 4. Size (millions of parameters) and Inference speeds (fps)
on different devices. Batch sizes are 1 and 8 (when applicable).

A batch size of 8 means 8 depth maps computed at the same time

Figure 6. some results on 512x512 images from
DepthNet64→128→256→512, same color code as for 64x64 input
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Figure 7. some results on real images input. Up is from a Bebop
drone footage, down is from a gimbal stabilized smartphone

video

512x512 images, the network fails to converge to better results
than with 64x64 images (while better resolution would help get-
ting more precision). However, if we take the converged network
and apply a fine-tuning on it with 512x512 images, we get much
better results. Fig 6 shows training results for mean L1 recon-
struction error, and shows that our deemed-impossible problem
seems to be easily solved with multi-scale fine-tuning. As Ta-
ble 3 shows, best results are obtained with multiple fine-tuning,
with intermediate scales 64, 128, 256, and finally 512 pixels.
FlowNetS is performing better than DepthNet but by a fairly light
margin while being 5 times heavier and most of the time much
slower, as shown in Table 4. As our network is leveraging the re-
duced dimensionality of our dataset due to its lack of rotation, it is
hard to compare our method to anything else apart from this vari-
ation of FlowNetS. Disparity estimation is equivalent to a lateral
translation, on which our network has also been trained, and then
could be used to compare to other algorithms but this reduced
context seems unfair compared to methods specifically designed
for it and we decided not to include it.

Fig 6 and 7 shows qualitative results from our validation set, and
from real condition drone footage, on which we were careful to
avoid camera rotation. These results did not benefit from any fine-
tuning from real footage, indicating that our Still Box Dataset, al-
though not realistic in its scenes structures and rendering, appears
to be sufficient for learning to produce decent depth maps in real
conditions.

5. UAV NAVIGATION USE-CASE

We trained a network for depth inference from a moving camera,
assuming its velocity is always the same. When running during
flight, such a system can easily deduce the real depth map from
the drone displacementDt between the two frames, knowing that
the training displacement was D0 (here 0.3m)

ζ(t) =
Dt
D0

DepthNet(It, It−1) (2)

One of the drawbacks of this learning method is that the f value
(which is focal length divided by pixel size) of our camera must
be the same as the one used in training. Our dataset creation
framework however allows us to change this value very easily for
training. One must also be sure to have pinhole equivalent frames
like during training.

Depending of the depth distribution of the groundtruth depth map,
it may be useful to adjust frame shift. For example, when flying
high above the ground, big structure detection and avoidance re-
quires knowing precise distance values that are outside the typical
range of any RGB-D sensor. The logical strategy would then be
to increase the temporal shift between the frame pairs provided
to DepthNet as inputs.

More generally, one must ensure a well distributed depth map
from 0 to 100m to get high quality depth inference. This prob-
lem can be solved by deducing optimal shift ∆t from precedent
inference distribution, e.g:

∆t+1 = ∆t
Eζ
E0

whereE0 is an arbitrarily chosen value around which our network
has the best accuracy, e.g. 50m, because our network outputs
from 0 to 100m, and Eζ is the mean of precedent output, i.e.:

Eζ =
1

HW

∑
i,j

DepthNet(It, It−∆t)i,j

6. CONCLUSION AND FUTURE WORK

We proposed a novel way of computing dense depth maps from
motion, along with a very comprehensive dataset for stabilized
footage analysis. This algorithm can be used for depth-based
sense and avoid algorithm in a very flexible way, in order to cover
all kinds of path planning, from collision avoidance to long range
obstacle bypassing.

Future works include using batch inference to compute depth
with multiple shifts ∆t,i. As shown in Table 4, batch size greater
than 1 can be used to some extent (especially for low resolution)
to efficiently compute multiple depth maps.

ζi(t) = DepthNet(It, It−∆i,t)

These multiple depth maps can then be either combined to con-
struct a high quality depth map, or used separately to run two dif-
ferent obstacle avoidance algorithm, e.g. one dedicated for long
range path planning (and then a high value ∆i,t) and the other
for reactive and short range collision avoidance (with low ∆i,t).
While one depth map will display closer areas at zero distance
but further regions with precision, the other will set far regions
to infinity (or 100m for DepthNet) but closer region with high
resolution.

We also consider an implementation of a real dataset for fine tun-
ing, using UAVs footages and either a preliminary thorough 3D
offline scan or groundtruth-less techniques (Zhou et al., 2017).
This would allow us to measure quantitative quality of our net-
work for real footages and not only subjective as for now.

We also believe that our network can be extended to reinforce-
ment learning applications that will potentially result in a com-
plete end-to-end sense and avoid neural network for monocular
cameras.
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A. APPENDIX A : PROOF OF THEOREM 1

For a random rotation-less displacement of norm V , depth ζ(P)
is an explicit function of disparity δ(P), focus of expansion Φ and
optical center P0

∀P, ζ(P) =
V f√

f2 +
∥∥∥−−→P0Φ

∥∥∥2


∥∥∥−→PΦ

∥∥∥
δ(P)

− 1


PROOF We assume no rotation. which means Φ is projection of
B on A.

m

A

B

Let m =

mx

my

mz

 be
−→
AB

Φ =

(
Φu
Φv

)
=

(
u0 + f mx

mz

v0 + f
my

mz

)
(3)

let PXY Z be a point

XY
Z

. For camera B we have PB =(
uB
vB

)
=

(
u0 + f X

Z

v0 + f Y
Z

)

relative movement of PXY Z is −m

so we have


dX = −mx

dY = −my

dZ = −mz

If we compute uA for PA :

uA = u0 + f
X − dX
Z − dZ

du = uB − uA = f

(
X

Z
− X +mx

Z +mz

)
du =

f

Z +mz

(
−mx +

X

Z
mz

)
du =

mz

Z +mz
(uB − Φu)

Similarly, with v, we get:

{
du = mz

Z+mz
(uB − Φu)

dv = mz
Z+mz

(vB − Φv)
(4)

We consider disparity δ(P) norm of the flow
(
du
dv

)
expressed in

frame B (which is correlated to depth at this frame).

∀P =

(
u
v

)
, δ(P) =

∥∥∥∥ du
dv

∥∥∥∥ =
mz

Z +mz

∥∥∥−→PΦ
∥∥∥ (5)

Consequently, we can deduce depth at frame B from disparity :

∀P =

(
u
v

)
, ζ(P) = mz


∥∥∥−→PΦ

∥∥∥
δ(P)

− 1

 (6)

From our dataset construction, we know thatm2
x +m2

y +m2
z = V 2

Let us call
{

∆u = u0 − Φu
∆v = v0 − Φv

From 3, we get: {
mx = mz∆u

f

my = mz∆v
f

V 2 = m2
z

(
1 +

∆u2 + ∆v2

f2

)

mz =
V f√

f2 + ∆u2 + ∆v2

and then from 6 we get

∀P, ζ(P) =
V f√

f2 +
∥∥∥−−→P0Φ

∥∥∥2


∥∥∥−→PΦ

∥∥∥
δ(P)

− 1

� (7)
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