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ABSTRACT

This paper deals with uncertainty considerations in damage diagnosis using the stochas-
tic subspace-based damage detection technique. With this method, a model is estimated
from data in a (healthy) reference state and confronted to measurement data from the
possibly damaged state in a hypothesis test. Previously, only the uncertainty related to
the measurement data was considered in this test, whereas the uncertainty in the estima-
tion of the reference model has not been considered. We derive a new test framework,
which takes into account both the uncertainties in the estimation of the reference model
as well as the uncertainties related to the measurement data. Perturbation theory is ap-
plied to obtain the relevant covariances. In a numerical study the effect of the new com-
putation is shown, when the reference model is estimated with different accuracies, and
the performance of the hypothesis tests is evaluated for small damages. Using the de-
rived covariance scheme increases the probability of detection when the reference model
estimate is subject to high uncertainty, leading to a more reliable test.

INTRODUCTION

Vibration based monitoring, as it is used for structural health monitoring (SHM),
takes advantage of the fact that the dynamical behavior of a structure is affected by dam-
ages [1]. Stochastic subspace identification (SSI) methods has been proven useful for
the identification of civil and mechanical structures under ambient excitation, as those
approaches provide output-only algorithms and particular information about the excita-
tion is not needed [2]. Based on subspace properties of SSI, the stochastic subspace-
based damage detection (SSDD) technique [3–5] sets up a statistical framework, where
a reference model is estimated in a (healthy) reference state of the structure. It is then
confronted to measurements of the current system, without repeating the system identi-
fication step in the testing states.
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In detail, the null space of the Hankel matrix of output covariances is estimated in the
reference state, which is related to the reference model. Together with measurement data
of the current system, a residual vector is generated based on the reference null space
and the estimated output covariances of the current system. The residual is statistically
evaluated in a hypothesis test to decide if the system has changed. For this decision, the
computed test statistic is compared to a threshold in the monitored state. Various works
are published, showing the successful application of the method to numerical and real
case studies, e.g. [6].

The test performance is highly dependent on the covariance estimate of the consid-
ered residual, which is a related to the stochastic nature of the measured signals. Cur-
rently, the hypothesis tests take into account the uncertainties of the measured data for
the residual covariance [7], but uncertainties related to the reference null space are not
considered. The current theory is thus limited to ideal cases, where the reference model
is well known. However, the reference null space is also estimated from data in practice
and thus subject to uncertainties. Consequently, these uncertainties should also be taken
into account for the statistical evaluation of the residual.

In this paper we show how to obtain a residual covariance taking into account uncer-
tainties of the data and also of the reference null space by using perturbation propagation
theory. The effect of the new residual covariance on the test performance is shown and
discussed in a numerical study.

In the following chapter we recall the theoretical background of the SSDD method.
Then we present the derivation of the residual covariance taking into account uncertain-
ties in the reference null space, before applying the new approach in a numerical study.

SUBSPACE-BASED DAMAGE DIAGNOSIS

Stochastic subspace-based residual

The vibration behavior of a mechanical structure can be described by a linear time-
invariant dynamical system

Mz̈(t) + Cż(t) + Kz(t) = vF (t), (1)

where t denotes continuous time, M , C and K ∈ Rm×m are the mass, damping and
stiffness matrices. Vector z(t) ∈ Rm contains the displacements of the m degrees of
freedom of the structure. vF (t) is an external force, which is usually unknown for civil
structures and modeled as white noise. Observing the structural system in (1) with a set
of r acceleration sensors we get the measurements

y(t) = Lz̈(t) + e(t), (2)

where y ∈ Rr is the measurement vector, matrixL ∈ Rr×m contains the sensor locations,
and e is the measurement noise.

Measurements are recorded at discrete time instants k with a sampling rate τ . The
stochastic discrete time state-space model corresponding to (1) is considered, namely{

xk+1 = Axk + wk

yk = Cxk + vk,
(3)



where x ∈ Rn denotes the state, and the measured output is y ∈ Rr. The system matrices
A and C denote the state transition matrix with dimension m ×m and the observation
matrix with dimension r ×m, respectively. The state noise wk and output noise vk are
assumed to be white noise, possibly correlated.

For damage diagnosis, it is checked if data from the current state of the structure fits
to a reference model or not. This is done by evaluating a residual vector. The residual
is based on the covariance-driven output-only subspace method, using the fact that the
system matrices A and C are linked to the block Hankel matrix

H def
=


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

... . . . ...
Rp+1 Rp+2 . . . Rq+p

 = Hank(Ri) (4)

containing the output covariance Ri = E(yky
T
k−i) = CAi−1G with G = E(xk+1y

T
k ), as

it is described in detail in [4]. Let S be the left null space matrix of H in the reference
state, such that STHref = 0 holds. S is referred to as the reference null space, which
is related to the reference model. Let Ĥ be an estimate of H in the current state of
the structure, which is estimated from R̂i = 1

N

∑N
k=1 yky

T
k−i using N measured outputs

{yk}k=1,...,N . Based on the null space property of S in the reference state, the residual
vector ζ is defined as

ζ =
√
Nvec(ST Ĥ), (5)

where vec(·) denotes the column stacking vectorization operator. The expected value of
ζ deviates from 0, if the system deviates from the reference state and thus the expected
value of Ĥ changes compared to Href . It has been shown that the residual vector is
asymptotically Gaussian distributed (for large N )

ζ −→

{
N (0,Σζ) undamaged state
N (Jζ,θδ,Σζ) damaged state

(6)

with zero mean in the reference state and non-zero mean in the damaged state. In here,
Jζ,θ is the sensitivity of the residual in the reference state with respect to a reference sys-
tem parameter θ = θ0 (e.g. containing the collection of modal or structural parameters),
δ is unknown but fixed, and Σζ is the residual covariance. Note that both the residual
sensitivity and the covariance are computed in the reference state, details are given in [4].

Hypothesis testing

The evaluation of changes in the residual and thus in its distribution properties is
done by means of hypothesis tests. Generalized likelihood ratio (GLR) tests are used,
as proposed e.g. in [4, 5, 8]. They give the information whether the measured output
corresponds more likely to a system with θ = θ0 or to a system with a changed system
parameter. The hypotheses can be written as

for the reference system H0 : θ = θ0

for the damaged system H1 : θ = θ0 + δ/
√
N ,

(7)



and the hypothesis test writes

t = ζTΣ−1ζ Jζ,θ(J
T
ζ,θΣ

−1
ζ Jζ,θ)

−1J T
ζ,θΣ

−1
ζ ζ. (8)

The test statistic t is asymptotically χ2 distributed, having d = rank(Jζ,θ) degrees of
freedom. It is central in the reference state, and non-central in the damaged state with
non-centrality parameter λ = δTJ T

ζ,θΣ
−1
ζ Jζ,θδ.

The diagnosis of the system’s health state finally is made by comparing the test statis-
tic t to a threshold, which has to be computed in a training phase in the undamaged
reference state for a given type I error.

RESIDUAL COVARIANCE WITH UNCERTAINTY IN REFERENCE MODEL

The performance of the hypothesis test in (8) is highly dependent on the residual
covariance Σζ . Up to now, only the covariance ΣH = lim cov(

√
Nvec(Ĥ)) related to

the data in Ĥ itself is considered in its computation. However, the null space matrix S
describing our reference model in the residual is usually not perfectly known in practice,
but only an estimate Ŝ of S is obtained from measurements in the reference state and
thus afflicted with uncertainties. Hence, its covariance should be also be considered in
the computation of the residual covariance, which is described in the following. First, the
residual covariance is related to both covariance contributions regarding the estimated
reference null space Ŝ and the data in the Hankel matrix Ĥ based on the propagation of
first-order perturbations. Second, the covariance related to Ŝ is described in detail.

Perturbation Approach for Covariance Computation

Let Ŷ = f(X̂) be a vector valued function of some estimate X̂ of X . A first order
Taylor approximation yields f(X̂) ≈ f(X) + JY,X(X̂ − X), or in delta notation de-
scribing first-order perturbations, ∆Y ≈ JY,X∆X , where JY,X is the derivative of f ,
and ∆X = X̂−X for X̂ close toX . Then, the covariance of the function of the estimate
can be expressed as cov(Ŷ ) ≈ JY,X cov(X̂) J T

Y,X .
For the proposed covariance computation the residual function in Equation (5) is

considered as a function of two multivariate random variables Ŝ and Ĥ, instead of a
function of only one variable Ĥ. A first-order perturbation of the residual then yields

∆ζ = vec(
√
N ∆ST Ĥ) + vec(

√
N ŜT∆H)

= (ĤT ⊗ I)P(p+1)r×qr−n︸ ︷︷ ︸
Jζ,S

vec(
√
N ∆S) + (I ⊗ ŜT )︸ ︷︷ ︸

Jζ,H

vec(
√
N ∆H), (9)

using the relation vec(AXB) = (BT ⊗ A)vec(X), where ⊗ is the Kronecker product,
andPa,b is a permutation matrix such that vec(XT ) = Pa,bvec(X) for a matrixX ∈ Ra×b

[7]. It holds S ∈ R(p+1)r×(p+1)r−n andH ∈ R(p+1)r×qr, where r is the number of sensors,
and n denotes the system order.

Let Ŝ be obtained from a Hankel matrix Ĥ0, using the singular value decomposition
(SVD)

Ĥ0 =
[
U1 U2

] [D1 0
0 D2

] [
V T
1

V T
2

]
(10)



with Ŝ = U2. Then, a perturbation of S yields the relation vec(∆S) = JS,H0vec(∆H0),
where the sensitivity JS,H0 will be elaborated in the subsequent section. Finally,

∆ζ = Jζ,S JS,H0 vec(
√
N ∆H0) + Jζ,Hvec(

√
N ∆H)

=
[
Jζ,SJS,H0 Jζ,H

]︸ ︷︷ ︸
A

[
vec(
√
N ∆H0)

vec(
√
N ∆H)

]
. (11)

For the calculation of Σζ , covariance estimates of ΣH = lim cov(vec(
√
NĤ)) and of

ΣH0 = lim cov(vec(
√
NĤ0)) are used, which can be obtained easily from data. The

procedure is e.g. described in [9]. Matrix Ĥ0 and the corresponding null space Ŝ are
estimates obtained in the reference state of the system, and Ĥ is an estimate obtained
in the current system for the damage detection test. Thus both matrices Ĥ0 and Ĥ are
obtained from different datasets and are statistically independent. Then, the residual
covariance follows from (11) as

Σζ = A
[
ΣH0 0

0 ΣH

]
AT

= Jζ,S JS,H0ΣH0J T
S,H0 J T

ζ,S + Jζ,HΣHJ T
ζ,H (12)

In fact, both covariances ΣH0 and ΣH can be estimated in the reference state of the
system thanks to the small change hypothesis [10], and it holds ΣH0 = ΣH in (12).

Sensitivities of the Reference Null Space

Now, the required sensitivity JS,H0 of the null space matrix is derived for Equation
(12). Consider Ŝ = U2 is calculated using the SVD in (10), thus the perturbation of H0

is propagated to the left null space vectors within the SVD.
Let U1 and U2 be the the column space and the left null space of Ĥ0, U1 ∈ Rh×n

and U2 ∈ Rh×s, where n is the number of non-zero singular values, s = (p + 1)r − n
and h = (p + 1)r. For the perturbation propagation from Ĥ0 to its column space U1 it
holds [11]

∆U1 = U1R + U2U
T
2 ∆H0 V1∆

−1
1 , (13)

where R is a matrix that will be canceled in the following, and the expected values of all
singular values in ∆1 are distinct from zero. In the vectorized form it follows

vec(∆U1) = (In ⊗ U1) vec(R) + ((V1Σ
−1
1 )T ⊗ U2U

T
2 ) vec(∆H0). (14)

This perturbation is now propagated to the left null space U2. From UT
1 U2 = 0 it follows

In∆UT
1 U2 + UT

1 ∆U2Is = 0

⇒ (Is ⊗ UT
1 ) vec(∆U2) = −(UT

2 ⊗ In) Ph,n vec(∆U1). (15)

Considering UT
2 U2 = I and thus ∆(UT

2 U2) = 0, it follows ∆UT
2 U2 + UT

2 ∆U2 = 0 and

Ps,s(Is ⊗ UT
2 ) vec(∆U2) + (Is ⊗ UT

2 ) vec(∆U2) = 0. (16)



Thus, with (15) and (16), a perturbation of the left null space satisfies[
Isn

Ps,s + Is2

] [
Is ⊗ UT

1

Is ⊗ UT
2

]
vec(∆U2) =

[
−(UT

2 ⊗ In) Ph,n
0

]
vec(∆U1). (17)

As the first matrix on the left handside is in general not invertible, consider the particular
solution

vec(∆U2) = −(Is ⊗ U1)(U
T
2 ⊗ In) Ph,n vec(∆U1)

= −Ps,h(U1 ⊗ UT
2 ) vec(∆U1). (18)

We now have the perturbation propagation from a matrix to its left null subspace by
plugging (14) into (18):

vec(∆U2) = −Ps,h (U1 ⊗ UT
2 )
[
(In ⊗ U1) vec(R) + ((V1D

−1
1 )T ⊗ U2U

T
2 )vec(∆H0)

]
= −Ps,h(U1D

−1
1 V T

1 ⊗ Is)(Iqr ⊗ UT
2 )︸ ︷︷ ︸

JU2,H0

vec(∆H0) (19)

With Ŝ = U2, the product Jζ,H0 = Jζ,SJS,H0 in (12) melts down to

Jζ,H0 = (ĤT ⊗ Is) Ph,s(−Ps,h)(U1D
−1
1 V T

1 ⊗ Is)(Iqr ⊗ ŜT )

= −(ĤTU1D
−1
1 V T

1 ⊗ Is)(Iqr ⊗ ŜT ) = −V1V T
1 ⊗ ŜT . (20)

This holds since Ĥ and Ĥ0 are consistent estimates of the same matrix for the covariance
computation in the reference state of the system, and thus their subspaces are equal.

APPLICATION

In a numerical study the effect of the new covariance comparison is evaluated by
comparing results to the previous computation method that does not take into account
uncertainties in the reference null space. We consider a 8-mass-spring-damper with 1.5%
damage in the damaged state at element 3. The null space Ŝ and the residual sensitivity
and covariance are computed in the reference state. The considered system parameter θ
is chosen to be the stiffnesses of the 8 springs. Thus the χ2-test has 8 degrees of freedom,
and the expected value of the test statistic in the reference state is 8.

Figure 1 shows the distribution of the test statistic in Monte Carlo simulations. It is
shown in healthy and damaged states using the previous and the new covariance com-
putation. The null space Ŝ and the covariances are computed on N = 50000 samples in
the reference state. In this case it can be seen that the mean of the test statistic deviates
significantly from its theoretical value of 8 when not considering the uncertainty on Ŝ in
the previous computation. This is due to the fact that the reference null space may not
be perfectly estimated, and the previous algorithm does not consider the related uncer-
tainty in the hypothesis test. Nevertheless, the distribution in the damaged state is shifted
toward higher χ2-values, and damage can be detected in most cases when choosing an
empirical threshold in the reference state. Choosing a threshold from the theoretical dis-
tribution in the reference state is not possible in this case, since it only leads to false
alarms.
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Figure 1. Histograms of test statistic for previous (a) and new (b) covariance computation.

With the new residual covariance, the theoretical mean of the test statistic in the
reference state is well obtained, as the uncertainties related to the reference null space
are taken into account. Moreover, the distribution in the damaged state is better separated
from the distribution in the reference state, leading to a better probability of detection.
So both theoretical or empirical thresholds will not give false alarms in the undamaged
state, and damages can be better detected.

In Figure 2a the mean of the test statistic is shown for the previous and the new co-
variance computation in the reference state. Different data lengths for computation of Ŝ
and the covariances are considered. It can be seen that the previous computation method
needs more data to reach the theoretical test value, whereas the convergence behavior
with the new covariance scheme is much better. If enough data is available, the previous
computation method gives also proper results. This is due to the fact, that the estimation
of the reference null space is more precise with more data, and then its contribution to
the residual covariance decreases. However, the new covariance computation should be
preferred when only few measurements are available in the reference state.

To illustrate both algorithms’ performance in the damaged state, the ratio the test
value means between the damaged and the undamaged state is shown in Figure 2b. Con-
sidering the distribution plots in Figure 1, the ratio measures how far the mean shifts in
the tested state. The tests using the new covariance perform better for less data. The
impact of considering the covariance of Ŝ decreases when more data is available.
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Figure 2. Mean of test statistic (a) and test performance (b) for previous and new covariance
computation in dependence of data length in reference state.



CONCLUDING REMARKS

A new computation method has been provided for the residual covariance in the
subspace-based damage detection method. On top of the uncertainties related to mea-
surement data that is tested for damage, the new computation takes also into account
the uncertainties related to the reference model properly. As a result the computed test
values in the reference state are very close to the theoretically expected values and the
test performance is more reliable in the damaged state. Numerical results show that the
uncertainties related to the reference model should not be neglected, especially when
few data is available in the reference state.
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7. Döhler, M. and L. Mevel. 2013. “Efficient multi-order uncertainty computation for stochastic
subspace identification,” Mechanical Systems and Signal Processing, 38(2):346–366.

8. Basseville, M., M. Abdelghani, and A. Benveniste. 2000. “Subspace-based fault detection
algorithms for vibration monitoring,” Automatica, 36(1):101–109.
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