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1 LIVIA, École de technologie supérieure (ÉTS), Montreal, Canada
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75013, Paris, France

4 LTCI lab - IMAGES group, Télécom ParisTech, Paris, France
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Abstract. The extraction of fibers from dMRI data typically produces a
large number of fibers, it is common to group fibers into bundles. To this
end, many specialized distance measures, such as MCP, have been used
for fiber similarity. However, these distance based approaches require
point-wise correspondence and focus only on the geometry of the fibers.
Recent publications have highlighted that using microstructure measures
along fibers improves tractography analysis. Also, many neurodegenera-
tive diseases impacting white matter require the study of microstructure
measures as well as the white matter geometry. Motivated by these, we
propose to use a novel computational model for fibers, called functional
varifolds, characterized by a metric that considers both the geometry
and microstructure measure (e.g. GFA) along the fiber pathway. We use
it to cluster fibers with a dictionary learning and sparse coding-based
framework, and present a preliminary analysis using HCP data.

1 Introduction

Recent advances in diffusion magnetic resonance imaging (dMRI) analysis have
led to the development of powerful techniques for the non-invasive investigation
of white matter connectivity in the human brain. By measuring the diffusion
of water molecules along white matter fibers, dMRI can help identify connec-
tion pathways in the brain and better understand neurological diseases related
to white matter [6]. Since the extraction of fibers from dMRI data, known as
tractography, typically produces a large number of fibers, it is common to group
these fibers into larger clusters called bundles. Clustering fibers is also essential
for the creation of white matter atlases, visualization, and statistical analysis of
microstructure measures along tracts [12].

Most fiber clustering methods use specialized distance measures, such as
Mean Closest Points (MCP) distance [4, 11]. However, these distance-based ap-
proaches require point-wise correspondence between fibers and only consider
fiber geometry. Another important aspect for white matter characterization
is the statistical analysis of microstructure measures. As highlighted in recent
publications, using microstructure measures along fibers improves tractographic



analysis [3, 10, 12, 15–17]. Motivated by these, we propose to use a novel compu-
tational model for fibers, called functional varifolds, characterized by a metric
that considers both the geometry and microstructure measure (e.g. generalized
fractional anisotropy) along fiber pathways.

Motivation for this work comes from the fact that the integrity of white
matter is an important factor underlying many cognitive and neurological dis-
orders. In vivo, tissue properties may vary along each tract for several reasons:
different populations of axons enter and exit the tract, and disease can strike at
local positions within the tract. Hence, understanding diffusion measures along
each fiber tract (i.e., tract profile) may reveal new insights into white matter
organization, function, and disease that are not obvious from mean measures of
that tract or from the tract geometry alone [3, 17]. Recently, many approaches
have been proposed for tract based morphometry [12], which perform statis-
tical analysis of microstructure measures along major tracts after establishing
fiber correspondences. While studies highlight the importance of microstructure
measures, most approaches either consider the geometry or signal along tracts,
but not both. The intuitive approach would be to consider microstructure signal
during clustering also. However, this has been elusive due to lack of appropriate
framework.

As a potential solution, we explore a novel computational model for fibers,
called functional varifolds [1], which is a generalization of the varifolds framework
[2]. The advantages of using functional varifolds are as follows. First, functional
varifolds can model the fiber geometry as well as signal along the fibers. Also,
it does not require pointwise correspondences between fibers. Lastly, fibers do
not need to have the same orientation as in the framework of currents [5]. We
test the impact of this new computational model on a fiber clustering task, and
compare its performance against existing approaches for this task.

As clustering method, we reformulate the dictionary learning and sparse cod-
ing based framework proposed in [8, 7, 9]. This choice of framework is driven by
its ability to describe the entire data-set of fibers in a compact dictionary of
prototypes. Bundles are encoded as sparse non-negative combinations of mul-
tiple dictionary prototypes. This alleviates the need for explicit representation
of a bundle centroid, which may not be defined or may not represent an actual
object. Also, sparse coding allows assigning single fibers to multiple bundles,
thus providing a soft clustering.

The contributions of this paper are threefold: 1) a novel computational model
for modeling both fiber geometry and signal along fibers, 2) a generalized cluster-
ing framework, based on dictionary learning and sparse coding, adapted to the
computational models, and 3) a comprehensive comparison of fully-unsupervised
models for clustering fibers.

2 White matter fiber segmentation using functional
varifolds

2.1 Modeling fibers using functional varifolds

In the framework of functional varifolds [1, 2], a fiber X is assumed to be a
polygonal line of P segments described by their center point xp ∈ R3 and tangent
vector βp ∈ R3 centered at xp and of length cp (respectively, yq ∈ R3, γq ∈ R3

and dq for a fiber Y with Q segments). Let fp and gp be the signal values
at center points xp and yq respectively, and ω the vector field belonging to a



reproducing kernel Hilbert space (RKHS) W ∗. Then the fibers X and Y can be

modeled based on functional varifolds as: V(X,f)(ω) ≈
∑P

p=1
ω(xp,βp, fp)cp and

V(Y,g)(ω) ≈
∑Q

q=1
ω(yq,γq, gp)dq. More details can be found in [1].

The inner product metric between X and Y is defined as:

〈V(X,f), V(Y,g)〉W∗ =

P∑
p=1

Q∑
q=1

κf (fp, gq)κx(xp, yq)κβ(βp,γq)cpdq (1)

where κf and κx are Gaussian kernels and κβ is a Cauchy-Binet kernel. This can
be re-written as:

〈V(X,f), V(Y,g)〉W∗ =

P∑
p=1

Q∑
q=1

exp
(−‖fp − gq‖2

λ2
M

)
exp

(−‖xp − yq‖2
λ2
W

)(βp
Tγq

cp dq

)2

cp dq

(2)
where λM and λW are kernel bandwidth parameters. For varifolds [2], a com-
putational model using only fiber geometry and used for comparison in the
experiments, we drop the signal values at center points. Thus, the varifolds-
based representation of fibers will be: VX(ω) ≈

∑P

p=1
ω(xp,βp)cp and VY (ω) ≈∑Q

q=1
ω(yq,γq)dq. Hence, the inner product is defined as:

〈VX , VY 〉W∗ =

P∑
p=1

Q∑
q=1

exp
(−‖xp − yq‖2

λ2
W

)(βp
Tγq

cp dq

)2

cp dq. (3)

2.2 Fiber Clustering using Dictionary learning and sparse coding

For fiber clustering, we extend the dictionary learning and sparse coding based
framework presented in [8, 7, 9]. Let VT be the set of n fibers modeled using
functional varifolds, A ∈ Rn×m+ be the atom matrix representing the dictionary
coefficients for each fiber belonging to one of the m bundles, and W ∈ Rm×n+

be the cluster membership matrix containing the sparse codes for each fiber.
Instead of explicitly representing bundle prototypes, each bundle is expressed as
a linear combination of all fibers. The dictionary is then defined as D = VTA.
Since this operation is linear, it is defined for functional varifolds.

The problem of dictionary learning using sparse coding [8, 7] can be expressed
as finding the matrix A of m bundle prototypes and the fiber-to-bundle assign-
ment matrix W that minimize the following cost function:

arg min
A,W

1

2
||VT − VTAW ||2W∗ , subject to: ||wi||0 ≤ Smax. (4)

Parameter Smax defines the maximum number of non-zero elements in wi (i.e.,
the sparsity level), and is provided by the user as input to the clustering method.

An important advantage of using the above formulation is that the recon-
struction error term only requires inner product between the varifolds. Let
Q ∈ Rn×n be the Gram matrix denoting inner product between all pairs of
training fibers, i.e., Qij = 〈VXi,fi , VXj ,fj 〉W∗ . Matrix Q can be calculated once
and stored for further computations. The problem then reduces to linear algebra
operations involving matrix multiplications. The solution of Eq. (4) is obtained
by alternating between sparse coding and dictionary update [8]. The sparse codes



of each fiber can be updated independently by solving the following sub-problem:

arg min
wi∈Rm

+

1

2
||VXi

− VTAwi||2W∗ , subject to: ||wi||0 ≤ Smax. (5)

which can be re-written as:

arg min
wi∈Rm

+

1

2

(
Q(i, i) +w>i A

>QAwi − 2Q(i, :)Awi

)
, s.t.: ||wi||0 ≤ Smax. (6)

The non-negative weightswi can be obtained using the kernelized Orthogonal
Matching Pursuit (kOMP) approach proposed in [8], where the most positively
correlated atom is selected at each iteration, and the sparse weights ws are
obtained by solving a non-negative regression problem. Note that, since the size
of ws is bounded by Smax, it can be otained rapidly. Also, in case of a large
number of fibers, the Nystrom method can be used for approximating the Gram
matrix [7]. For dictionary update, A is recomputed by applying the following
update scheme, until convergence:

Aij ← Aij
(QW>)

ij

(QAWW>)
ij

, i = 1, . . . , n, j = 1, . . . ,m. (7)

3 Experiments

Data: We evaluate different computational models on the dMRI data of 10 un-
related subjects (6 females and 4 males, age 22-35) from the Human Connectome
Project (HCP) [14]. DSI Studio [18] was used for the signal reconstruction (in
MNI space, 1mm), and streamline tracking employed to generate 50, 000 fibers
per subject (minimum length 50 mm, maximum length 300 mm). Generalized
Fractional Anisotropy (GFA), which extends standard fractional anisotropy to
orientation distribution functions, was considered as along-tract measure of mi-
crostructure. While we report results obtained with GFA, any other along-tract
measure may have been used.

Parameter impact: We performed k-means clustering and manually selected
pairs of fibers from clusters most similar to major bundles. We then modeled
these fibers using different computational models, and analyzed the impact of
varying the kernel bandwidth parameters. The range of these parameters were
estimated by observing the values of distance between centers of fiber segments
and difference between along tract GFA values for selected multiple pairs of
fibers. Figure 1 (top left) shows GFA color-coded fibers for 3 pairs corresponding
to a) right Corticospinal tract – CST (R), b) Corpus Callosum – CC, and c) right
Inferior Fronto-Occipital Fasciculus – IFOF (R). Cosine similarity (in degrees) is
reported for the fiber pairs modeled using varifolds (Var) and functional varifolds
(fVar), for λW = 7 mm and λM = 0.01.

Figure 1 (top left) shows GFA color-coded fiber pairs. The color-coded vi-
sualization reflect the variation of fiber geometry, microstructure measure (i.e.
GFA) along fiber, and difference in GFA along fiber for the select fiber pairs.
This visualization of variation and difference in GFA values along fibers support
our hypothesis that modeling along tract signal along with geometry provides
additional information. The change in cosine similarity for CC from 45.8 degrees



Fig. 1: Along-fiber GFA visualization and cosine similarity between pairs of fibers
from three prominent bundles: a) CST (R), b) CC, c) IFOF (R), using frame-
work of varifolds (Var) and functional varifolds (fVar) (top left), and Comparing
variation of cosine similarity for the select fiber pairs over kernel bandwidth
parameters λW and λM for the framework of functional varifolds (top right:
CST (R), middle left: CC, middle right: IFOF (R)); Impact of λM on clustering
consistency (measured using Average Silhouette) for m = 100, 125, 150 for func-
tional Varifolds vs Varifolds (bottom left), and functional Varifolds vs GFA only
(bottom right)

(using varifolds) to 66.3 degrees (using functional varifolds) while for CST (R)
from 45.6 degrees to 72.4 degrees, reflect more drop in cosine similarity if along
tract signal profiles are not similar. This shows that functional varifolds imposes
penalty for different along fiber signal profiles.

Figure 1 also compares the impact of varying the kernel bandwidth parame-
ters for functional varifolds using similarity angle between pairs of these selected
fibers (top right: CST (R), bottom left: CC, bottom right: IFOF (R)). We show
variation over λW = 3, 5, 7, 9 and 11 (mm) and λM = 0.001, 0.005, 0.01, 0.05,
and 0.1.

Comparing the parameter variation images in Figure 1 we observe that the
cosine similarity values over the parameter space show similar trends for all 3
pairs of fibers. This observation allows us to select a single pair of parameter



Model m=100 m=125 m=150

fVar 0.3624 0.3451 0.3314
Var 0.3356 0.3089 0.2905
GFA -0.0579 -0.0584 -0.0610
MCP 0.3240 0.2888 0.2619

Fig. 2: Mean silhouette obtained with Varifolds, Varifolds, GFA, and MCP, com-
puted for varying a number of clusters, over 10 subjects and 3 seed values (left).
Detailed results obtained for 10 subjects using m=100 (right).

values for our experiments. We have used λW = 7 mm and λM = 0.01 for
our experiments based on the cosine similarity values in Figure 1. The smaller
values for λW (< 7mm) and λM (< 0.01mm) will make the current fiber pairs
orthogonal while for larger values we lose the discriminative power as all fiber
pairs will have very high similarity.

Quantitative analysis: We report a quantitative evaluation of clusterings
obtained using as functional varifolds (fVar), varifolds (var), MCP and GFA
computational model. The same dictionary learning and sparse coding frame-
work is applied for all computational models. For each of the 10 HCP subjects,
we compute the Gramian matrix using 5, 000 fibers randomly sampled over the
full brain for 3 seed values. The MCP distance dij is calculated between each
fiber pair (i, j), as described in [4], and the Gramian matrix obtained using a
radial basis function (RBF) kernel: kij = exp

(
−γ ·d2ij

)
. Parameter γ was set

empirically to 0.007 in our experiments.
Since our evaluation is performed in an unsupervised setting, we use the

silhouette measure [11, 13] to assess and comparing clustering consistency. Sil-
houette values, which range from −1 to 1, measure how similar an object is to its
own cluster (cohesion) compared to other clusters (separation). Figure 1 (bot-
tom row) shows impact of λM on clustering consistency for functional Varifolds
w.r.t Varifolds and GFA only. Figure 2 (right) gives the average silhouette for m
= 100, 125, and 150 clusters, computed over 10 subjects and 3 seed values. The
impact of using both geometry and microstructure measures along fibers is eval-
uated quantitatively by comparing clusterings based on functional varifolds with
those obtained using only geometry (i.e., varifolds, MCP), and only along-fiber
signal (i.e., GFA). As can be seen, using GFA alone leads to poor clusterings, as
reflected by the negative silhouette values. Comparing functional varifolds with
varifolds and GFA, we observe a consistently improved performance for different
numbers of clusters. To further validate this hypothesis, we also report the aver-
age silhouette (over 3 seed values) obtained for 10 subjects using m = 100. These
results demonstrate that functional varifolds give consistently better clustering,
compared to other computational models using the same framework1.

Qualitative visualization: Figure 3 (top row) shows the dictionary learned for
a single subject (m = 100) using functional varifolds (fVar), varifolds (Var), and
MCP distance. For visualization purposes, each fiber is assigned to a single clus-
ter, which is represented using a unique color. The second and third rows of the

1 Silhouette analyzes only clustering consistency, not the along-fiber signal profile.



fVar Var MCP

Fig. 3: Full clustering visualization (m = 100, top row), single cluster visualiza-
tion (mid row), and GFA based color coded visualization of the selected single
cluster (bottom row). Using following computational models for fibers: functional
varifolds (left column), varifolds (middle column), and MCP distance (right col-
umn). Superior axial views. Note: (top row) each figure has a unique color code.

figure depict a specific cluster and its corresponding GFA color-coded profiles.
We observe that all three computational models produce plausible clusterings.
From the GFA profiles of the selected cluster (with correspondence across com-
putational models), we observe that functional varifolds enforce both geometric
as well as along-tract signal profile similarity. Moreover, the clustering produced
with varifolds or MCP (i.e., using only geometric properties of fibers), are similar
to one another and noticeably different from that of functional varifolds.

4 Conclusion

A novel computational model, called functional varifolds, was proposed to model
both geometry and microstructure measure along fibers. We considered the task
of fiber clustering and integrated our functional varifolds model within frame-
work based on dictionary learning and sparse coding. The driving hypothesis that
combining along-fiber signal with fiber geometry helps tractography analysis was
validated quantitatively and qualitatively using data from Human Connectome
Project. Results show functional varifolds to yield more consistent clusterings
than GFA, varifolds and MCP. While this study considered a fully unsupervised
setting, further investigation would be required to assess whether functional var-
ifolds augment or aid the reproducibility of results.
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