
HAL Id: hal-01590350
https://hal.archives-ouvertes.fr/hal-01590350

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics and Validation of Shapes Schemas for RDF
Iovka Boneva, Jose Labra Gayo, Eric Prud ’Hommeaux

To cite this version:
Iovka Boneva, Jose Labra Gayo, Eric Prud ’Hommeaux. Semantics and Validation of Shapes Schemas
for RDF. ISWC2017 - 16th International semantic web conference, Oct 2017, Vienna, Austria. �hal-
01590350�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132041411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01590350
https://hal.archives-ouvertes.fr

Semantics and Validation of Shapes Schemas for
RDF

Iovka Boneva1, Jose E. Labra Gayo2, and Eric G. Prud’hommeaux3

1 Univ. Lille - CRIStAL - F-59000 Lille, France. iovka.boneva@univ-lille.fr
2 University of Oviedo, Spain. labra@uniovi.es

3 W3C and Stata Center, MIT. eric@w3.org

Abstract. We present a formal semantics and proof of soundness for
shapes schemas, an expressive schema language for RDF graphs that
is the foundation of Shape Expressions Language 2.0. It can be used
to describe the vocabulary and the structure of an RDF graph, and to
constrain the admissible properties and values for nodes in that graph.
The language defines a typing mechanism called shapes against which
nodes of the graph can be checked. It includes an algebraic grouping
operator, a choice operator and cardinality constraints for the number of
allowed occurrences of a property. Shapes can be combined using Boolean
operators, and can use possibly recursive references to other shapes.
We describe the syntax of the language and define its semantics. The se-
mantics is proven to be well-defined for schemas that satisfy a reasonable
syntactic restriction, namely stratified use of negation and recursion. We
present two algorithms for the validation of an RDF graph against a
shapes schema. The first algorithm is a direct implementation of the se-
mantics, whereas the second is a non-trivial improvement. We also briefly
give implementation guidelines.

1 Introduction

rdf’s distributed graph model encouraged adoption for publication and manipu-
lation of e.g. social and biological data. Coding errors in data stores like DBpedia
have largely been handled in a piecemeal fashion with no formal mechanism for
detecting or describing schema violations. Extending uptake into environments
like medicine, business and banking requires structural validation analogous to
what is available in relational or xml schemas.

While owl ontologies can be used for limited structural validation, they are
generally used for formal models of reusable classes and predicates describing
objects in some domain. Applications typically consume and produce graphs
composed of precise compositions of such ontologies. A company’s human re-
sources records may leverage terms from foaf and Dublin Core, but only certain
terms, composed into specific structures, and subject to additional use-specific
constraints. We would no more want to impose the constraints of a single human
resources application suite on foaf and Dublin Core than we would want to as-
sert that such applications need to consume all ontologically valid permutations

of foaf and Dublin Core entities. Further, open-world constraints on owl on-
tologies make it impossible to use conventional owl tools to e.g. detect missing
properties. Shape expression schemas (ShEx 1.0) [6, 8] were introduced as a high
level language in which it is easy to mix terms from arbitrary ontologies. They
provide a schema language in which one can define structural constraints (arc
labels, cardinalities, datatypes, etc.) and since version 2.0 (ShEx 2.0)4, mix them
using Boolean connectives (disjunction, conjunction and negation).

A schema language for any data format has several uses: communicating
to humans and machines the form of input/output data; enabling machine-
verification of data for production, publication, or consumption; driving query
and input interfaces; static analysis of queries. In this, ShEx provides a simi-
lar role as relational and xml schemas. A ShEx schema validates nodes in a
graph against a schema construct called a shape. In xml, validating an element
against an XML Schema5 type or element or Relax NG6 production recursively
tests nested elements against constituent rules. In ShEx, validating a node in a
graph against a shape recursively tests the nodes which are the object of triples
constrained in that shape. An essential difference however is that unlike trees,
graphs can have cycles and recursive definitions can yield infinite computation.
Moreover, ShEx 2.0 includes a negation operator, and it is well known that
mixing recursion with negation can lead to incoherent semantics.

Contributions. In this paper we present shapes schemas, a schema language that
is the foundation of ShEx 2.0 (Sect. 2). The precise relationship between shapes
schemas and ShEx 2.0 is given at the end of Sect. 2. We formally define the
semantics of shapes schemas and show that it is sound for schemas that mix
recursion and negation in a stratified manner (Sect. 3). We then propose two
algorithms for validating an RDF graph node against a shapes schema. Both
algorithms are shown to be correct w.r.t. the semantics (Sect. 4). We finally
discuss future research directions and conclude (Sect. 5).

Related Work. In [8] we gave semantics for ShEx 1.0. The latter does not use
Boolean operators end because of negation, the extension to ShEx 2.0 (and thus
to shapes schemas) is non trivial.

Closest to shapes schemas is the shacl7 language both in terms of pur-
pose and expressiveness. shacl also defines named constraints called shapes to
be checked on rdf graph nodes. Unlike ShEx, shacl is not completely inde-
pendent from the RDF Schema vocabulary: rdfs:Classes play a particular role
there as a shape can be required to hold for all the nodes that are instances
of some rdfs:Class. Therefore validation in shacl requires partial RDF Schema
entailment in order to discover all rdfs:Classes of a node. Regarding expressive-
ness, the main differences between shacl and shapes schemas are that shacl

4 Shape Expressions Language 2.0. http://shex.io/shex-semantics/index.html
5 W3C XML Schema. http://www.w3.org/XML/Schema
6 RELAX NG home page. http://relaxng.org
7 Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/

allows to define constraints based on property paths and for comparison of val-
ues; shacl does not have the algebraic operators some-of and each-of and uses
Boolean connectives for defining complex shapes; finally shacl does not define
the semantics of recursive shapes.

Ontology languages such as owl, description logics or RDF Schema are not
meant to define (complex) constraints on the data and we do not compare shapes
schemas with them. Proposals were made for using owl with a closed world
assumption in order to express integrity constraints [9, 5]. They associate alter-
native semantics with the existing owl syntax and can be misleading for users.

Some approaches use sparql to express constraints on graphs (spin8, RDFU-
nit [3]), or compile a domain specific language into sparql queries [2]. sparql
allows to express complex constraints but does not support recursion. While
sparql constraints can be validated by standard sparql engines, they are har-
der to write and maintain compared to high-level schemas like ShEx and shacl.

Description Set Profiles9 is a constraint language that uses an rdf vocabulary
to define templates and constrain the value and cardinality of properties. It does
not have any equivalent of the each-of algebraic operator, and was not designed
to be human-readable.

Introductory Example. Let is: be a namespace prefix from some ontology, ex: be
the prefix used in the example schema and instance, and foaf: and xsd: be the
standard foaf and xsd prefixes, respectively. The schema S0 is as follows

<UserShape> → foaf:name @<StringValue> ; foaf:mbox @<IRIValue> [0;1]
<ProgShape> → ex:expertise @<IRIValue> [0;*] ; ex:experience @<ExpValueSet>
<ClientShape> → ex:clientNbr @<IntValue> | ex:clientAffil @<AnythgShape>
<IssueShape> → is:reportedBy @<ClientAndUser> ;

is:reproducedBy @<ProgShape> [1;5] ;
is:relatedTo @<IssueShape> [0;*]

<AnythgShape> → IRI @<AnythgShape> [0;*]
<ClientAndUser> → Def Client ; IRI−{ex:clientNbr, ex:clientAffil} @<AnythgShape> [0;*]

AND Def User ; IRI−{foaf:name, foaf:mbox} @<AnythgShape> [0;*]
<StringValue> → xsd:string
<IRIValue> → IRI
<ExpValueSet> → {ex:senior, ex:junior}
<IntValue> → xsd:integer

where Def Client is the definition of <ClientShape>, and similarly for Def User, and
− in the definition of <ClientAndUser> is the set difference operator. The schema
S0 defines four shapes intended to describe users, programmers, clients and is-
sues, respectively. <UserShape> requires that a node has one foaf:name property
with string value, and an optional foaf:mbox that is an iri. The optional mailbox
is specified by the cardinality constraint [0;1]. Other cardinality constraints used
in S0 are [0;*] for zero or more, and [1;5] for one up to five. When no cardinality
is given, the default is “exactly one”. A <ProgShape> node has zero or more

8 SPIN - Modeling Vocabulary. http://www.w3.org/Submission/spin-modeling/
9 Description Set Profiles: A constraint language for Dublin Core Application Profiles.

http://dublincore.org/documents/dc-dsp/

ex:expertise properties with values that are iris, and one ex:experience property
whose value is one among ex:senior and ex:junior. A <ClientShape> has either a
ex:clientNbr that is an integer, or a ex:clientAffil(iation) with unconstrained value
(i.e. <AnythgShape>), but not both. Finally, an issue (<IssueShape>) is reported
by somebody who is client and user, is reproduced by one to five programmers,
and can be related to zero or more issues.

The shapes in S0 whose name contains Value specify the set of allowed values
for a node. This can be the set of all values of some literal datatype (e.g. string,
integer), the set of all nodes of some kind (e.g. iri), or an explicitly given set
(e.g. <ExpValueSet>). <AnythgShape> is satisfied by every node. It states that
the node can have zero or more outgoing triples whose predicates can be any
iri, and whose objects match <AnythgShape>. Finally, <ClientAndUser> uses a
conjunction to require that a node has both the client and the user properties.
Its definition is a bit technical. The right hand side of the conjunction states that
the node must have a foaf:name and an optional foaf:mbox (Def User). Moreover
(the ; operator), the node can have any number ([0;*]) of properties that can be
any iri except for foaf:name and foaf:mbox and whose value is unconstrained.
The latter is necessary in order to allow the “client” properties required by the
left hand side of the conjunction.

Graph G0 here after is described by schema S0. Nodes ex:issue1 and ex:issue2
have shape <IssueShape>; ex:fatima and ex:emin are <ClientAndUser>; ex:ren
and ex:noa have shape <ProgShape>.

ex:issue1
is:reportedBy ex:fatima ;
is:reproducedBy ex:ren , ex:noa ;
is:relatedTo ex:issue2 .

ex:issue2
is:reportedBy ex:emin ;
is:reproducedBy ex:ren ;
is:relatedTo ex:issue1 .

ex:fatima ex:clientNbr 1 ;
foaf:name “Fatima Smith”.

ex:ren ex:expertise ex:semweb ;
ex:experience ex:senior .

ex:noa ex:experience ex:junior .
ex:emin ex:clientAffil “ABC”;

foaf:name “Emin V. Petrov” ;
foaf:mbox <mailto:evp@example.org> .

The RDF Graph Model. As usual, we assume three disjoint sets: IRI a set of
iris, Lit a set of literals, and Blank a set of blank nodes. An RDF graph is a set
of triples over IRI ∪ Blank × IRI × IRI ∪ Lit ∪ Blank. For a triple (s, p, o) in some
graph, s is called its subject, p is called its predicate, and o is called its object.
We denote Nodes(G) the set of nodes of the graph G, that is, the elements that
appear in a subject or object position in some triple of G. The neighbourhood
of node n in graph G is the set of triples in G that have n as subject, and is
denoted neighG(n) or simply neigh(n) when G is clear from the context. We
use disjoint union on sets of triples, denoted]: if N,N1, N2 are sets of triples,
N = N1]N2 means that N1 ∪N2 = N and N1 ∩N2 = ∅.

2 Shapes Schemas

A shapes schema S defines a set of named shapes. A shape is a description of
the graph structure that can be visited starting from a particular node. It can

ShExpr ::= ValueDescr | NeigDescr
| ShapeAnd | ShapeOr
| ShapeNot

ValueDescr ::= a subset of IRI ∪ Lit ∪ { b}
NeigDescr ::= TExpr
ShapeAnd ::= ShExpr ‘AND’ ShExpr
ShapeOr ::= ShExpr ‘OR’ ShExpr
ShapeNot ::= ‘NOT’ ShExpr

(a) Shape expressions.

TExpr ::= TriplePattern | ‘EMPTY’
| SomeOfExpr | EachOfExpr
| RepetExpr

TriplePattern ::= PropSet ’@’ShapeRef
SomeOfExpr ::= TExpr ‘|’ TExpr
EachOfExpr ::= TExpr ‘;’ TExpr
RepetExpr ::= TExpr ‘[’ min ‘;’ max ‘]’
PropSet ::= a subset of IRI
ShapeRef ::= a shape label in L

(b) Triple expressions.

Fig. 1: The grammar for shape expressions and triple expressions.

talk about the value of the node itself and about its neighbourhood. Shapes can
use (Boolean combinations of) other shapes and can be recursive.

Formally, a shapes schema S is a pair (L,def), where L is a set of shape
labels used as names of shapes and def is a function that with every shape
label associates a shape expression. In examples, we write L → S as short for
def(L) = S (for a shape label L and a shape expression S).

Shape Expressions. The grammar for shape expressions is given on Fig. 1a. A
shape expression (ShExpr) is a Boolean combination of two atomic components:
value description and neighbourhood description. A neighbourhood description
(NeigDescr) defines the expected neighbourhood of a node and is given by a
triple expression (TExpr, see below). A value description (ValueDescr) is a set
that declares the admissible values for a node. The set can contain iris, literals,
and the special constant b to indicate that the node can be a blank node.
ShEx 2.0 proposes concrete syntax for different kinds of value description sets
(literal datatypes, regex patterns to be matched by IRIs, intervals, etc.). Here we
focus on defining the semantics so the concrete syntax for such sets is irrelevant.
A ValueDescr can be an arbitrary set with the unique assumption that it has a
finite representation for which membership can be effectively computed.

Triple expressions. Triple expressions describe the expected neighbourhood of a
node. They are inspired by regular expressions likewise dtds and XML Schema
for xml. A triple expression will be matched by the neighbourhood of a node in
a graph, similarly to type definitions in XML Schema that are matched by the
children of some node. The main difference is that the neighbourhood of a node
in an rdf graph is a (unordered) set, whereas the children of a node in an xml
document form a sequence.

The grammar for triple expressions (TExpr) is given on Fig. 1b, in which min
is a natural, and max is a natural or the special value ∗. The basic triple expres-
sion is a triple pattern and it constrains triples. A triple expression composed of
each-of (separated by a ‘;’), some-of (separated by a ‘|’) and repetition operators
is satisfied if some distribution of the triples in the neighborhood of a node ex-
actly satisfies the expression. Sect. 3.1 defines this and draws the analogy with

regular expressions. In examples, we omit the braces for singleton PropSets, e.g.
we write foaf:name @<StringValue> instead of {foaf:name} @<StringValue>.

Example 1 (Shape expressions, triple expressions). In schema S0 from the in-
troductory example, the definitions of the five shapes with name . . . Shape. . .
are triple expressions and collectively make use of all the operators: each-of (;),
some-of (|), repetition. All shapes with name . . . Value. . . are defined by atomic
ValueDescrs. The definition of <ClientAndUser> is a ShapeAnd expression. ut

Relationship between Shapes Schemas and ShEx 2.0. Shapes schemas slightly
generalizes ShEx 2.0 and thus allows for a more concise definition of syntax
and semantics. For readers familiar with ShEx 2.0 we now explain how shapes
schemas differ from ShEx 2.0. First, TriplePattern uses a set of properties, whereas
the analogous triple constraint in ShEx 2.0 uses a single property. This slight
generalization allows to encode the closed and extra constructs of ShEx 2.0.
In shapes schemas, triple expressions are always closed (whereas in ShEx 2.0
they are non closed by default) but an expression E can be made non-closed
by transforming it into E;P @<AnythgShape>[0; ∗], where P is the set of all
IRIs not mentioned as properties in E, and <AnythgShape> is as defined in the
introductory example. The extra modifier is encoded in a similar way, using sets
of properties in triple patterns and negation. Second, a ValueDescr is an arbitrary
set of values that can be iris, literals or blank nodes, whereas the analogous node
constraint in ShEx 2.0 defines a set of allowed values using a combination of
elementary constraints such as xsd datatypes, facets, numerical intervals, node
kinds. Using an arbitrary set of values allows to get rid of unnecessary (w.r.t.
defining the semantics) details. Third, ShEx 2.0 allows to use shape labels in
shape definitions; this is syntactic sugar and is equivalent to replacing the label
by its definition. Finally, in shapes schemas we omit inverse properties which
would make the proofs longer without representing any additional challenge
w.r.t. the semantics.

3 Semantics of Shapes Schemas

A shape defines the structure of a graph when visited starting from a node
that has that shape. In this section we give a precise meaning of the following
statement

shapes sem: node n in graph G has shape (or type) L from schema S10

To give a sound definition for shapes sem is not trivial because of the presence
of recursion. It also requires to make a design choice that we explain now.

Example 2 (Simple recursive schema). Let schema S1 and graph G1 be:
10 “type” is used as synonym of “shape”, esp. in the notion of typing to be introduced

shortly. The use of “type” must not be confused with rdf:type from RDF Schema.
Shapes schemas are totally independent from the RDF Schema vocabulary.

<IssueSh> → is:reportedBy @<Str> ; is:relatedTo @<IssueSh> [0;*]
<Str> → xsd:string

<i1> is:reportedBy “Ren” ; is:relatedTo <i2> .
<i2> is:reportedBy “Bob” ; is:relatedTo <i1> .

Ex. 2 captures the essence of recursion. If <i1> has shape <IssueSh> then
<i2> also has shape <IssueSh>. If on the other hand <i1> does not have shape
<IssueSh>, then neither does <i2>. This illustrates two important aspects of
the semantics of shapes schemas. First, whether a node has some shape cannot
be defined independently of the shapes of the other nodes in the graph. The
consequence of this apparently simple fact is that we need a global statement
about which nodes satisfy which shapes; we call this a typing. A typing must be
correct, i.e. coherent with itself. Second, in the above example there is a (design)
choice to make. Clearly, there are two acceptable alternatives: either (1) both
<i1> and <i2> have shape <IssueSh>, or (2) none of them does. Such choice is
well known for recursive languages: (1) corresponds to a maximal solution, and
(2) to a minimal solution. Both choices can lead to sound semantics. In shapes
schemas we choose the maximal solution. This is justified by applications: in the
above example we do want to consider <i1> as a valid <IssueSh>. It would not
be the case with semantics based on a minimal solution.

3.1 Typing and Correct Typing

The semantics is based on the notion of typing : this is a set of couples that
associate a node of an RDF graph with a shape label (a type). In the sequel we
consider a graph G and a schema S = (L,def).

Definition 1 (node-type association, typing). A node-type association is
a couple (n,L) in Nodes(G) × L. A typing of G by S is a set of node-type
associations.

Example 3. With S1 and G1 from Ex. 2, the following are typings

typing1 = {(<i1>, <IssueSh>), (<i2>, <IssueSh>), (”Ren”, <Str>), (“Bob”, <Str>)}
typing2 = {(“Ren”, <Str>), (“Bob”, <Str>)}
typing3 = {(<i1>, <IssueSh>), (<i2>, <IssueSh>)}
typing4 = ∅.

A typing is correct if, intuitively, it contains an evidence for every node-type
association in it. In the above example typing1 and typing2 are correct, whereas
typing3 is not correct as it contains e.g. the association (<i1>, <IssueSh>) but
does not contain the association (”Ren”, <Str>) that is required for <i1> to
have type <IssueSh>. The empty typing (typing4) is always correct.

Definition 2 (correct typing). Let typing ⊆ Nodes(G) × S. We say that
typing is a correct typing if for any (n,L) ∈ typing, it holds typing , n ` def(L),
where ` is the relation defined on Fig. 2a.

se-value-descr1
n ∈ V

typing , n ` V

se-value-descr2

b ∈ V
n ∈ Blank

typing , n ` V

se-neig-descr
typing ,neigh(n) � E

typing , n ` E

se-shape-and

typing , n ` S1

typing , n ` S2

typing , n ` S1 AND S2

se-shape-or1
typing , n ` S1

typing , n ` S1 OR S2

se-shape-or2
typing , n ` S2

typing , n ` S1 OR S2

se-shape-not
typing , n 6` S

typing , n ` NOTS

(a) Node satisfies a shape expression.

te-tpattern

N = {(subj , pred , obj)}
pred ∈ P

(obj , L) ∈ typing

typing , N � P @L

te-empty
N = ∅

typing , N � EMPTY

te-some-of1
typing , N � E1

typing , N � E1|E2

te-some-of2
typing , N � E2

typing , N � E1|E2

te-each-of

N = N1]N2

typing , N1 � E1

typing , N2 � E2

typing , N � E1;E2

te-repet

N = N1] . . .]Nk

min ≤ k ≤ max
typing , Ni � E for all 0 ≤ i ≤ k

typing , N � E[min; max]

(b) Set of triples matches a triple expression.

Fig. 2: Definitions of the ` and � relations.

Discussion on `. For a shape expression S, the definition of typing , n ` S on
Fig. 2a is by recursion on the structure of S. In Rules se-value-descr, V is a subset
of IRI∪ Lit∪ { b} defining a ValueDescr. A node n satisfies the value description
V if n belongs to the set V , or if n is a blank node and b is in V . The other
base case is Rule se-neig-descr, in which E is a TExpr representing a neighbour-
hood description. A node n satisfies the NeigDescr E if the neighbourhood of n
matches the triple expression E. The matching relation � is defined on Fig. 2b
and discussed below. The remaining four rules are for the Boolean operators.
The rules for AND and OR are as one would expect. Regarding negation, a node
satisfies a ShapeNot expression if it does not satisfy its sub-expression, as stated
by Rule se-shape-not. The premise of that rule is typing , n 6` S and means that
(using the inference rules on Fig. 2a) it is impossible to construct a proof for
typing , n ` S.

Discussion on �. For a set of triples N , a typing typing and a TExpr E, we say
that N matches E with typing , and we write typing , N � E, as defined recursively
on the structure of E on Fig. 2b. Note that the � relation is defined for an
arbitrary set of triples N . In practice, N will be (a subset of) the neighbourhood
of some node. In the basic Rule te-tpattern, P@L is a TriplePattern with P a set
of IRIs and L a shape label. A singleton set of triples {(subj , pred , obj)} matches

the triple pattern if the predicate pred belongs to P and the object has type L
in typing . The other basic rule is Rule te-empty: an empty set of triples satisfies
the EMPTY triple expression.

The remaining rules are about the composed triple expressions. A set of
triples matches a SomeOfExpr if it matches one of its sub-expressions (Rules te-
some-of). The semantics of a EachOfExpr is a bit more complex. A set N matches
an each-of triple expression E1;E2 if N is the disjoint union of two sets N1

and N2, and N1 matches the sub-expressions E1, and N2 matches the sub-
expression E2. Let us make a parallel between regular expressions and triple
expressions. The each-of operator is analogous to concatenation. Recall that a
string w matches a regular expression R1 ·R2 (where · is concatenation) whenever
w can be “split” into two strings w1 and w2 such that their concatenation gives
w (w = w1 · w2), and w1 matches R1, and w2 matches R2. In the case of triple
expressions, the set of triples N is ”split” into two disjoint sets N1 and N2:
disjoint union on sets is analogous to concatenation on words. Following the
same analogy, repetition in triple expressions corresponds to Kleene star (the
star operator) in regular expressions, with the difference that it allows to express
arbitrary intervals for the number of allowed repetitions, whereas Kleene star
is always [0, ∗]. So, in Rule te-repet, a set of triples N matches a repetition
triple expression E[min; max] if N can be split as the disjoint union of k sets
N1, . . . , Nk such that k is within the interval bound [min; max] and each of these
sets matches the sub-expression E. Note that k = 0 is possible only when N = ∅.

The laws of the Boole algebra can be used to put a shape expression in
disjunctive normal form in which only atomic sub-expressions ValueDescr and
NeigDescr are negated. From now on we consider only shape expressions in dis-
junctive normal form. Note also that the each-of and some-of operators are
associative and commutative and we use them as operators of arbitrary arity, as
e.g. in schema S0 from the introductory example.

3.2 Stratified Negation

Because of the presence of recursion and negation, the notion of correct typing
is not sufficient for defining sound semantics of shapes schemas.

Example 4 (Negation and recursion). Let schema S2 and graph G2 below:

<L1> → NOT(ex:p <L2>)
<L2> → NOT(ex:p <L1>)

<n1> ex:p <n2> .
<n2> ex:p <n1> .

These two typings of G2 by S2 are both correct: typing5 = {(<n1>, <L1>)}
and typing6 = {(<n2>, <L2>)} ut

The two typings in Ex. 4 strongly contradict each other. In order to prove that
node <n1> has shape <L1> (in typing5), we need to prove that <n1> does
not have shape <L2>. The latter however does hold in typing6. Such strong
contradictions are possible only in presence of negation. In comparison, in Ex. 2

we also have two contradicting typings, but none of them uses in its proof a
negative statement that is positive in the other typing.

This problem is well known in logic programming e.g. in Datalog, see Chap-
ter 15 in [1] for an overview. The literature considers several solutions for defining
coherent semantics in this case, among which the most popular are negation-
as-failure, stratified negation and well-founded semantics. For instance, well-
founded semantics would answer undefined to the question “does n have shape
L” whenever there exist two proofs that contradict each-other on that fact. We
exclude this solution for two reasons: it is not helpful for users, and it might
require to compute all possible typings which is costly. We opt for stratifica-
tion semantics instead. It imposes a syntactic restriction on the use of recursion
together with negation, so that schemas as the one on Ex. 4 are not allowed.
This is a reasonable restriction because negation in ShEx is expected to be used
mainly locally, e.g. to forbid some property in the neighbourhood of a node.

We now define of stratified negation. The dependency graph of S is a graph
whose set of nodes is L, and that has two kinds of edges labelled dep− and dep+

defined by (recall that shape expressions in disjunctive normal form):

– There is a negative dependency edge dep−(L1, L2) from L1 to L2 iff the shape
label L2 appears in def(L1) under an occurrence of the NOT operator;

– There is a positive dependency edge dep+(L1, L2) from L1 to L2 iff the shape
label L2 appears in def(L1) but never under an occurrence of NOT.

Definition 3 (schema with stratified negation). A schema S = (L,def) is
with stratified negation if there exists a natural number k and a mapping strat
from L to the interval [1; k] such that for all shape labels L1, L2:

– if dep−(L1, L2), then strat(L1) > strat(L2);
– if dep+(L1, L2), then strat(L1) ≥ strat(L2).

The mapping strat is called a stratification of S. A well known property of
stratified negation is that the dependency graph does not have a cycle that goes
through a negative dependency edge. This intuitively means that if shape L1

depends negatively on shape L2, then L2 does not (transitively) depend on L1.
Positive interdependence is allowed in an unrestricted manner, as in S1 from
Ex. 2. S2 from Ex. 4 is not with stratified negation because dep−(<L1>, <L2>)
and dep−(<L2>, <L1>)

Example 5 (Stratification). Let schema S3 below.

<L1> → NOT(ex:a @<L2> ; ex:b @<Str>)
<L2> → ex:c @<L3>

<L3> → ex:c @<L2>
<Str> → xsd:string

The dependency graph contains the edges dep−(<L1>,<L2>), dep−(<L1>,<Str>),
dep+(<L2>,<L3>), dep+(<L3>,<L2>). The unique loop is around <L2> and
<L3> and it goes through positive dependencies only, so the schema is stratified.
A stratification should be such that <Str> and <L2> are on stratums strictly

lower than <L1>, and <L2> and <L3> are on the same stratum. One possible
stratification is <L1> on stratum 2 and the other three shape labels on stratum
1. Another one is <L2> and <L3> on stratum 1, <Str> on stratum 2, and
<L1> on stratum 3. The latter is called a most refined stratification as none of
the stratums can be split.

3.3 Maximal Correct Typing

Recall from Ex. 3 that both typing1 and typing4 are correct. Note that <i1> has
shape <IssueSh> according to typing1 but not according to typing4. Then what
is the correct answer of shapes sem for <i1> and <IssueSh>? Does <i1> have
shape <IssueSh> at the end? This section provides an answer to that question.
In one sentence: we trust typing1 because it is greater; actually it is the greatest
(maximal) typing. The comparison is based on set inclusion.

The following Lemma 1 establishes that a maximal typing always exists in
absence of negation. The proof is based on Lemma 2 in [8] that can be easily
extended for the richer schemas we have here.

Lemma 1. Let S be a schema that does not use the negation operator NOT.
Then for all graphs G, there exists a correct typing typingg of G by S such that
for every typing ′, if typing ′ is a correct typing of G by S, then typing ′ ⊆ typingg.

The typing typingg can be computed as the union of all correct typings typing ′.
Let us now define a maximal typing in presence of negation. Let strat be a

stratification of S that has k strata, with k ≥ 1. For any 1 ≤ i ≤ k, the schema
Si is the restriction of S that uses only the shape labels whose stratum is less
than i. Formally, Si = (Li,def i) with Li = {L ∈ L | strat(L) ≤ i}, and their
respective definitions def i(L) = def(L). Remark that if S is stratified, then S1

is negation-free.
For a set of labels Li ⊆ L, typing |Li

= {(n,L) ∈ typing | L ∈ Li} is the
restriction of typing on the labels from Li.

Definition 4 (stratification-maximal correct typing). Let S = (L,def) be
a schema, G be a graph, and strat be a stratification of S with k stratums (for
k ≥ 1). For any 1 ≤ i ≤ k, let typing i be the typing of G by Si, defined by:

– typing1 is the maximal correct typing of G by S1, as defined in Lemma 1;
– for any 1 ≤ i < k, typing i+1 is the union of all correct typings typing ′ of G

by Si+1 s.t. typing ′|Li
= typing i.

The stratification-maximal correct typing of G by S with stratification strat is
Typing(G,S, strat) = typingk.

Typing(G,S, strat) from the above definition is indeed a correct typing for G by
S, as shown in the following proposition that is the core of the proof of soundness
for the semantics of shapes schemas.

Proposition 1. For any schema S, any stratification strat of S and any graph
G, Typing(G,S, strat) is a correct typing of G by S.

Proof. Goes by induction on the number of stratums. The base case (1 stratum)
is Lemma 1. For the induction case and stratum i + 1, by induction hypothesis
typing i is correct for G and Si. It is enough to show that if typing ′ and typing ′′

are two correct typings for G by Si+1 and typing ′|Li = typing ′′|Li = typing i, then

their union typing = typing ′ ∪ typing ′′ is correct for G by Si+1. Let (n,L) ∈
typing and suppose that (n,L) ∈ typing ′. Because typing ′ is correct, we have
typing ′, n ` def(L). We will show that (*) the proof for typing ′, n ` def(L) can
be used as a proof for typing , n ` def(L). If def(L) does not contain a negation
of a triple expression, then (*) easily follows from the definition of `.

So suppose def(L) contains a negation operator on top of the triple expres-
sions E1, . . . , El. That is, (recall that shape expressions are in disjunctive normal
form), NOTEj is a sub-expression of def(L) for every 1 ≤ j ≤ l. Then the proof
for typing ′, n ` def(L) contains applications of Rule se-shape-not for NOTEj

that witness that there does not exist a proof for typing ′, n ` Ej , for every
1 ≤ j ≤ l. We need to show that a proof typing , n ` Ej cannot exist. Suppose
by contradiction that P is a proof for typing , n ` Ej , for some 1 ≤ j ≤ l. Let
L′ be the set of all shape labels that appear in Ej , then P uses only node-
type associations with labels from L′. That is, typing |L′ , n ` Ej holds. As Ej

is negated in def(L), we have L′ ⊆ Li, so typing |Li
, n ` Ej also holds. But

typing |Li
= typing i ⊆ typing ′. Contradiction. ut

Lemma 2 below establishes that Typing(G,S, strat) does not depend on the
stratification being chosen. This allows to define the maximal correct typing
(Def. 5) and to give a precise meaning of shapes sem (Def. 6) which was the
objective of this section.

Lemma 2. Let S = (L,def) be a schema and G be a graph. Let strat1 and
strat2 be two stratifications of S. Then Typing(G,S, strat1) = Typing(G,S, strat2).

Proof. (Idea) The proof uses a classical technique as e.g. for stratified Datalog.
There exists a unique (up to permutation on the numbering of stratums) most
refined stratification strat ref such that for any other stratification strat ′, each
stratum of strat ′ can be obtained as a union of stratums of strat ref. Then we show
that for any stratification strat ′, Typing(G,S, strat ′) = Typing(G,S, strat ref).

Definition 5 (maximal correct typing). Let S = (L,def) be a schema and
G be a graph. The maximal correct typing of G by S is denoted Typing(G,S)
and is defined as Typing(G,S, strat) for some stratification strat of S.

Definition 6 (shapes sem). Let S = (L,def) be a schema and G be a graph.
We say that node n (of G) has shape L (from S) if (n,L) ∈ Typing(G,S).

4 Validation

In Sect. 3 we have given a declarative semantics of the shapes language. We
now consider the related computational problem. We are again interested by the
shapes sem statement (as defined in Sect. 3), i.e. checking whether a given node
has a given shape.

Input: G: a graph, S = (L,def): a schema, strat a stratification for S with k
strata

Output: Typing(G,S)

1 typing ← ∅;
2 for i from 1 to k do

// Add all node-type associations for stratum i
3 foreach n in Nodes(G) do
4 foreach L in Li do
5 add (n,L) to typing ;

// Refine w.r.t the types on stratum i
6 changing ← true;
7 while changing do
8 changing ← false;
9 foreach (n,L) in typing s.t. L ∈ Li do

10 if not typing , n ` def(L) then
11 remove (n,L) from typing ;
12 changing ← true;

13 return typing

Algorithm 1: The algorithm refine(G,S, strat).

4.1 Refinement Algorithm

Algorithm 1 computes Typing(G,S, strat). The i-th iteration of the loop on
line 2 computes typing i from Def. 4. The algorithm is correct thanks to Lemma 2
from [8] applied to every stratum i. According to that lemma, the maximal typing
defined as the union of all correct typings (i.e. typing i) can be computed by
iteratively removing unsatisfied node-type associations (done on line 11) until a
fixed point is reached (detected when changing remains false). The advantage of
the refine algorithm is that once Typing(G,S) is computed, testing whether node
n has shape L is done with no additional cost by testing whether (n,L) belongs
to Typing(G,S). The drawback is that it considers all node-type associations
which is not always necessary, as shown here after.

4.2 Recursive Algorithm

Algorithm 2 allows to check whether node n has shape L without constructing
Typing(G,S). The idea is to visit only a sufficiently large portion of Typing(G,S).

Example 6 (Motivation of the prove algorithm). Considering schema S3 from
Ex. 5 and graph G3 below:

ex:n1 ex:a ex:n2
ex:n1 ex:b 4 .

ex:n2 ex:c ex:n3 .
ex:n3 ex:c ex:n2 .

We want to check whether ex:n1 has shape <L1>. Remark that the neighbor
nodes of ex:n1 are ex:n2 and 4, whereas the shape labels on which the definition of
<L1> depends are <L2> and <Str>. Any correct proof for typing , ex:n1 ` <L1>
(or for typing , ex:n1 6` <L1>) would have as leaves either applications of Rule se-
value-descr that do not depend on typing , or applications of Rule te-tpattern that

Input: n: node in G, L: label in L, Hyp: a stack over Nodes(G)× L
Output: true if n has label L, false otherwise

1 Hyp = Hyp. push((n,L));
2 Dep = ∅;
3 foreach (n′, L′) in dep(n,L) r Hyp do
4 if prove(n′, L′,Hyp) then
5 Dep = Dep ∪ {(n′, L′)};
6 result = Dep ∪Hyp, n ` def(L) ;
7 Hyp = Hyp. pop();
8 return result ;

Algorithm 2: prove(n,L,Hyp). Graph G and schema S are global variables.

uses node-type associations (n,L) where n is a neighbor of ex:n1 and L′ is a label
such that dep+(<L1>,L′) or dep−(<L1>,L′).

Assume schema S = (L,def) and graph G. For a shape label L in S and a
node n in G, we denote dep(n,L) the set of node-type associations (n′, L′) s.t.
n′ is a neighbor of n (that is, (n, p, n′) ∈ neigh(n) for some IRI p) and L′ appears
as a shape reference in def(L). Algorithm 2 uses this easy to show property:
typing , n |= def(L) iff typing ∩dep(n,L), n |= def(L). In order to check whether
n has shape L, Algorithm 2 will (recursively) check whether n′ has shape L′ for
all (n′, L′) in dep(n,L). The parameter Hyp is a stack of node-type associations
that is also seen (on line 3) as the set of node-type associations it contains. Dep
is a set of node-type associations.

Example 7 (Execution trace of the prove algorithm). Here is the tree of recursive
calls generated during the evaluation of prove(ex:n1, <L1>, []) for graph G3 and
schema S3, where [] is the empty stack. The returned value is given on the
right. prove(ex:n1, <L1>, []) generates four recursive calls that correspond to
dep(ex:n1, <L1>). The call for ex:n3 and <L3> does not generate any recursive
call: dep(ex:n3, <L3>) contains only (ex:n2, <L2>) which is on the stack.

prove(ex:n1, <L1>, []) true
|–prove(ex:n2, <L2>, [(ex:n1, <L1>)]) true
| |–prove(ex:n3, <L3>, [(ex:n1, <L1>), (ex:n2, <L2>)]) true
|–prove(ex:n2, <Str>, [(ex:n1, <L1>)]) false
|–prove(4, <L2>, [(ex:n1, <L1>)]) false
|–prove(4, <Str>, [(ex:n1, <L1>)]) false

The correctness of the prove algorithm is stated by the following:

Proposition 2 (Correctness of the prove algorithm). For any node n and
any shape label L, the evaluation of prove(n,L, []) terminates and returns true
if (n,L) ∈ Typing(G,S) and false otherwise.

Proof (Sketch). For termination: the recursion cannot be infinite-breadth as
prove generates a finite number of recursive calls on line 4. Infinite-depth re-
cursion is also impossible because Hyp is a call stack and the condition on line 3
prevents from (recursively) calling prove with the same node and label.

The proof of correctness goes by induction on the stratum of L using the
most refined stratification strat . For every stratum i we show that whenever
Hyp contains only node-type associations (n′, L′) with strat(L′) > i, and for
any L s.t. strat(L) = i, Typing , n ` def(L) iff prove(n,L,Hyp) returns true.
For the ⇒ direction, the main argument is that if Typing , n ` def(L) then also
Typing ∪Hyp, n ` def(L). This is not true in general because of negation, but is
true if Hyp is on stratum ≥ strat(L) as in this case no type in Hyp is negated in
def(L). For the ⇐ direction, we need to show that if prove(n,L,Hyp) returns
true then (n,L) ∈ Typing(G,S). The problematic case is when prove(n,L,Hyp)
returns true whereas n does not have label L. Such error necessarily comes from
the fact that on line 6 the algorithm used some (n′, L′) ∈ Hyp r Typing(G,S)
in the proof for Dep ∪ Hyp, n ` def(L). Consequently, strat(L) = strat(L′),
and because we consider the most refined stratification, it follows that L and L′

mutually depend on each other in the dependency graph of G. Then we need to
distinguish two cases. Either all shape labels on stratum i only depend on each
others, as for instance <L2> and <L3> from Ex. 5. In that case prove(n,L,Hyp)
returns true based only on hypotheses in Hyp, which is correct w.r.t. the seman-
tics based on maximal solution: if nothing outside stratum i allows to disprove
that n has label L, then it is indeed the case. The other possibility is that a
shape label L′ on stratum i depends also on shapes from lower stratums, as <Is-
sueSh> from Ex. 2 that depends on <Str>. Then the test on line 6 of the call of
prove with L′ will take this dependency into account and return true only if all
conditions, including those that depend on the lower stratums, are satisfied. ut

4.3 On Implementation of the Validation Algorithms

Both algorithms use a test for typing , n ` def(L), which non trivial part is the
test of the � relation required in Rule se-neig-descr. The latter is equivalent to
checking whether a word (a string) matches a regular expression disregarding the
ordering of the letters of the word. Here the word is over the alphabet of triple
patterns that occur in the triple expression. In [4] we presented an algorithm
for this problem based on regular expression derivatives. In [8] we gave another
algorithm for so called deterministic single-occurrence triple expressions. That
algorithm can be extended to general expressions, and was used in several of the
implementations of ShEx available as open source11.

The prove algorithm was presented in a form that is easier to understand but
not optimized. An implementation could reduce considerably the search space of
the algorithm by exploring only relevant node-shape associations from dep(n,L)
For instance, in Ex. 7 checking 4 against L2 is useless first because 4 is accessible
from ex:n1 by ex:b whereas <L2> in the schema is accessible from <L1> by ex:a.

A more involved version of the prove algorithm could memorize portion of
Typing(G,S) to be reused. This however should be done carefully: one should
not memorize all node-shape associations (n,L) for which the algorithm returned
true, as some of these can be false positives as discussed in the proof of Prop. 2.

11 A list of the available ShEx implementations can be found on http://shex.io/

5 Conclusion

In this paper we introduced shapes schemas that formalize the semantics of
ShEx 2.0 and we showed that the semantics of ShEx 2.0 is sound. We also
presented two algorithms for validating an rdf graph against a shapes schema.

ShEx and the underlying formalism presented here are still evolving, and
there are several promising directions some of which are already being explored:
introduce operators for value comparison, use property paths in triple patterns,
define an rdf transformation language based on ShEx. We also plan to consider
several heuristics and optimizations as the ones discussed in Sect. 4.3 in order to
accelerate the validation of shapes schemas. These will be validated on examples.
Another open problem is error reporting in ShEx: how to give useful feedback
for correcting validation errors. We also plan to explore the exact relationship
between shapes schemas and shacl and establish whether shapes schemas can
be encoded in sparql extended with recursion as the one defined in [7].

Acknowledgments. This work was partially supported by CPER Nord-Pas de
Calais/FEDER DATA Advanced data science and technologies 2015-2020, ANR
project DataCert ANR-15-CE39-0009.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. P. M. Fischer, G. Lausen, A. Schätzle, and M. Schmidt. RDF constraint checking. In
Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference. CEUR-
WS.org, 2015.

3. D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen,
and A. Zaveri. Test-driven evaluation of linked data quality. In Proceedings of the
23rd International Conference on World Wide Web (WWW ’14), 2014.

4. J. E. Labra Gayo, E. Prud’hommeaux, I. Boneva, S. Staworko, H. R. Solbrig,
and S. Hym. Towards an RDF Validation Language Based on Regular Expres-
sion Derivatives. In Proceedings of the Workshops of the EDBT/ICDT 2015 Joint
Conference. CEUR-WS.org, 2015.

5. B. Motik, I. Horrocks, and U. Sattler. Adding Integrity Constraints to OWL. In
OWL: Experiences and Directions 2007 (OWLED 2007), 2007.

6. E. Prud’hommeaux, J. E. Labra Gayo, and H. R. Solbrig. Shape expressions: an
RDF validation and transformation language. In Proceedings of the 10th Interna-
tional Conference on Semantic Systems, SEMANTICS 2014. ACM, 2014.

7. J. L. Reutter, A. Soto, and D. Vrgoc̆. Recursion in SPARQL. In 14th International
Semantic Web Conference, 2015.

8. S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. R.
Solbrig. Complexity and Expressiveness of ShEx for RDF. In 18th International
Conference on Database Theory (ICDT). Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

9. J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity constraints in OWL. In
Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI, 2010.

