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The Power of Quasi-Shortest Paths:
ρ-Geodesic Betweenness Centrality

Dianne S. V. Medeiros, Miguel Elias M. Campista, Nathalie Mitton,
Marcelo Dias de Amorim, and Guy Pujolle

Abstract—Betweenness centrality metrics usually underestimate the importance of nodes that are close to shortest paths but do not
exactly fall on them. In this paper, we reevaluate the importance of such nodes and propose the ρ-geodesic betweenness centrality, a
novel metric that assigns weights to paths (and, consequently, to nodes on these paths) according to how close they are to shortest
paths. The paths that are just slightly longer than the shortest one are defined as quasi-shortest paths, and they are able to increase or
to decrease the importance of a node according to how often the node falls on them. We compare the proposed metric with the
traditional, distance-scaled, and random walk betweenness centralities using four network datasets with distinct characteristics. The
results show that the proposed metric, besides better assessing the topological role of a node, is also able to maintain the rank position
of nodes overtime compared to the other metrics; this means that network dynamics affect less our metric than others. Such a property
could help avoid, for instance, the waste of resources caused when data follow only the shortest paths and reduce associated costs.

Index Terms—Centrality metrics, betweenness, graph, static and dynamic networks.
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1 INTRODUCTION

IDENTIFYING central nodes in a graph is a fundamental
problem in network science [1], [2], [3], [4], [5]. In com-

puter networking, for instance, central nodes may be useful
to run a number of control functions or play the role of
seeders to help disseminate content [6], [7], [8]. Determining
the centrality of a node requires modeling the network as a
graph and computing some sort of centrality metric, which
usually associates the importance of a node with its relative
position in the network [9], [10], [11].

One of the most popular centrality metrics is the between-
ness centrality, which relates the importance of a node to the
number of shortest paths it belongs to [9]. It is known that
network protocols can greatly benefit from this metric [12],
[13], [14], [15]. We argue, however, that using only such
paths to assign importance to a node may underestimate
other important nodes — in particular, those in the close
vicinity of shortest paths but that do not belong to them.
This happens when a node that falls on a certain number of
shortest paths is classified as more important than another
node that belongs to fewer shortest paths but is part of many
more “a-little-bit-longer” paths. Yet, we should question
why such nodes are neglected. In practice, they are good
candidates to maintain the network connected in case a
more important node fails. This situation is illustrated in
Figure 1, where υc is part of all shortest paths between
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Fig. 1. Node υc has a high betweenness because it falls on most
shortest paths between networks N1 and N2. In opposition, υb is almost
completely forgotten, being assigned a very low betweenness, even
though it will assume the role of υc in case this node fails.

networks N1 and N2. Hence, υc is much more central than υb
according to the traditional betweenness centrality. In turn,
υb achieves a betweenness equal to 0 if we consider only the
nodes in N1 and N2. Node υb, however, is very close to all
shortest paths between these networks, differing of 1 hop
only from the shortest path. It is so close that, if υc fails, all
the shortest paths will be deviated to υb and its betweenness
will instantaneously grow. We believe that ignoring υb is not
reasonable, even prior to the failure, as the node is always
close to the shortest paths between N1 and N2 and can be
part of the backup paths between them.

This work questions the use of shortest paths as the
sole parameter to quantify the importance of nodes [16],
[17], [18], [19], [20]. We propose a weighted betweenness
centrality metric that we call ρ-geodesic betweenness centrality.
The key idea is to extend the definition of the traditional
betweenness to also consider the contribution of paths that
are a little bit longer than the shortest ones, herein defined as
quasi-shortest paths. In a nutshell, the ρ-geodesic between-
ness of a node υk is computed using the proportion of
shortest and quasi-shortest paths that υk falls on between
all possible pair of nodes in the network. This proportion is
weighted by the ratio between the cost of the shortest path
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connecting a pair of nodes and the cost of the quasi-shortest
path between the same pair of nodes passing through υk.
The search for quasi-shortest paths is limited by a parameter
ρ, which defines the maximum extra path cost that the
proposed ρ-geodesic betweenness can take into account. We
will see in this paper that a small ρ is enough to capture
well the idea of quasi-shortest paths while keeping the
computational load low.

We evaluate the proposed metric by comparing it with
three existing metrics: traditional betweenness [21], ran-
dom walk betweenness [18], and distance-scaled between-
ness [19]. We compute these metrics for four network
datasets. Firstly, we verify if the metrics are capable of
pinpointing nodes that should receive a different value for
their centralities compared with the traditional between-
ness. Secondly, we compare the concordance between the
rankings obtained for each metric and assess the degree of
differentiation between nodes. Thirdly, we verify the influ-
ence of the parameter ρ on the rank variation and, finally,
the behavior of the rank is investigated over time, to verify
the impact of the metric on the ability to intermediate flows.
The results show that (i) the ρ-geodesic betweenness can
identify nodes poorly classified by betweenness centralities
based on shortest paths, already using low values for ρ. It is
also useful to (ii) provide a wider range of rank positions,
presenting a more fine-grained classification. Yet, the ρ-
geodesic betweenness (iii) reduces the frequency with which
a node loses its ability to intermediate flows, considering
that flows follow the shortest path rule. In addition, (iv) our
metric is able to keep nodes on the same rank position for
longer time spans in networks with dynamic topologies.

As a summary, the contributions of this work are:

• We identify the need of a betweenness metric that
better captures the positions of the nodes in a net-
work, instead of focusing only on shortest paths.

• We propose the ρ-geodesic betweenness, a weighted
centrality metric that better evaluates the importance
of nodes that not necessarily fall on shortest paths
but frequently participate in paths almost as short as
the shortest ones.

• We compare our proposal with a number of related
metrics, including the traditional betweenness cen-
trality, and show that our solution does identify
nodes that are underestimated by other metrics.

This paper is organized as follows. We introduce defi-
nitions used in this work in Section 2. Section 3 discusses
the related works, presenting the formalization of the be-
tweenness metrics. In Section 4 we present the proposal of
this work and we discuss some possible application areas
and the need for a new metric. Section 5 discusses the
difference between our proposal and its main rival. The
evaluation setup is discussed in Section 6, including the
analysis guidelines and the dataset description. Section 7
discusses the results and Section 8 concludes this work,
presenting future research directions.

2 NETWORK MODEL, NOTATIONS AND DEFINI-
TIONS

Let us describe the network model we consider in our
work as well as the main definitions that are necessary to

Shortest path

DL = 3

Quasi-shortest path

DL = 3 + 1

uk

ui

uj

Fig. 2. The shortest path between υi and υj is ∆L∗ = 3 hops long. If
ρ = 1, the quasi-shortest path of length ∆L∗ = 4 through υk can be
considered too.

lay down the basis of our proposal.

2.1 Paths and costs
We consider that networks can be modeled as weighted

graphs G = (V, E , ω), where V and E are the sets of vertices
and edges, respectively, and the weight ω represents the cost
of an edge. Thus, neighbors υi and υj are connected by edge
εi,j whose cost is ωi,j ∈ R+. The edge εj,i automatically
exists if the graph is undirected. If it is undirected, εj,i will
exist only if υj also is neighbor of υi.

A path p1,L between source υ1 and destination υL is an
ordered sequence of distinct nodes in which any consecutive
pair of nodes is connected by a link. A path does not contain
any loops and any change in the sequence of nodes, either
by switching or by shifting a node, originates a new path.
We denote the length of path p1,L as ∆L = L− 1, with L ∈
N∗. The cost of this path is denoted by δ1,L, with δ1,L ∈ R∗+,
and it is given by the sum of the individual costs of all links
composing the path.

The shortest path p∗1,L between υ1 and υL will be the one
for which the cost is the smallest, denoted by δ∗1,L. This
path is also known in the literature as the least cost path. In
this work, we use both shortest path and least cost path inter-
changeably. We also consider, without loss of generality, the
number of hops as the cost of a path, such that δ1,L = ∆L,
with δ1,L ∈ N∗. In this case, the cost of the shortest path
is given by δ∗1,L = ∆L∗. Note that more than one shortest
path may exist between the same pair of nodes. We denote
the number of shortest paths between υi, υj as n∗i,j . Yet, we
denote the number of shortest paths between υi, υj passing
through υk as n∗i,j(υk).

2.2 Taking nodes on quasi-shortest-path into account
We can now provide two conjugated definitions needed

to understand our metric.

Definition 1. Quasi-shortest path: The quasi-shortest path is
a path p1,L for which δ1,L − δ∗1,L ≤ ρ, where ρ is called the
spreadness factor.

Definition 2. Spreadness: The spreadness ρ is the maximum
tolerable difference between the costs δ1,L and δ∗1,L, i.e., ρ =
δ1,L − δ∗1,L, with ρ ∈ R+.

The quasi-shortest path is the most important concept
of this work. The idea behind it is illustrated in Figure 2,
where ρ = 1. Such quasi-shortest paths are able to increase
the importance of nodes that are ignored or underestimated
when we consider only the shortest paths to compute the
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betweenness – this is the case, for example, of node υk (that
does not fall on any shortest paths). Nevertheless, this node
is very close to all shortest paths between both sides of the
network, as represented by nodes υi and υj , respectively.
Paths going through υk differ from the shortest path by
only one hop. Note that more than one quasi-shortest path
with the same cost can exist between two nodes and more
than one of the paths between these nodes can pass through
the same intermediary node. Therefore, we represent the
number of quasi-shortest paths between υi, υj as ni,j and,
among those, the ones passing through υk as ni,j(υk).

The spreadness ρ defines how much we can stretch the
geodesic, i.e., how long the quasi-shortest paths can be. This
limitation avoids the explosion of the number of possible
paths. Although we defined ρ ∈ R+, in this work we
consider the number of hops as cost metric and, thus, ρ ∈ N.
The spreadness limits the search depth to look only for
quasi-shortest paths that are slightly longer than the shortest
path. The idea is based on the fact that the throughput of
information traveling through paths for which δ1,L � δ∗1,L
is expected to be low. Note that if ρ = 0, δ1,L = δ∗1,L, and
only the shortest paths are considered.

3 CENTRALITY METRICS: SHORTEST PATHS AND
OTHER ALTERNATIVES

It is common to rely on the notion of centrality to
quantify the importance of a node. Examples of centrality
metrics are degree, closeness, and betweenness [9], [10], [11],
[20]. The degree relates to the popularity of a node, the
closeness to how quickly it can access or spread resources
(e.g., information), and the betweenness to the control of a
node over network flows [9]. We focus on the betweenness,
formally introduced by Freeman in 1977 [21] based on the
intuitions revealed in several previous works, using paths
to determine the importance of a node.

3.1 Betweenness centrality

The idea behind the betweenness centrality is that the
more a node υk is centrally positioned, the more it falls
on shortest paths between other nodes [22], [23], [24], [25].
Hence, such nodes are strategically positioned and can in-
fluence the network by controlling the flow of information.
Considering a pair of nodes υi, υj , the control exerted by
υk over the flows between these nodes increases with the
number of shortest paths between them that cross υk.

Freeman assumes that the probability that a message
passes through one of the existing shortest paths between
υi, υj is 1/n∗i,j [21]. Hence, we can randomly pick one of
such paths passing through υk with probability [21]:

bi,j(υk) =
n∗i,j(υk)

n∗i,j
, (1)

which can be averaged for all pairs in the network, defining
the overall betweenness centrality of υk as:

Btrad(υk) =
∑
i∈|V|

∑
j∈|V|

n∗i,j(υk)

n∗i,j
, (2)

where i 6= k, j 6= i, and j 6= k1. The betweenness can be
normalized by the maximum possible value assigned to a
node in a network. This is obtained for the central node in
a star graph with the same number of nodes as the network
in analysis. The betweenness for this central node is equal to
the number of paths it falls on: (1/2)(|V|−1)(|V|−2) [21], in
undirected graphs; or (|V| − 1)(|V| − 2), in directed graphs.

Freeman suggests that his metric is suitable for networks
where node betweenness can potentially impact the exam-
ined process, such as in communication networks, where
it is highly relevant to know the potential to control the
communication for each node [21]. Nevertheless, Freeman’s
betweenness is limited to simple graphs, leaving aside the
strength or cost of the relationship between adjacent nodes
(weight). In the remainder of this paper, we refer to Free-
man’s betweenness as the traditional betweenness or Btrad.

Freeman also assumes that the information flow is al-
ways governed by the shortest-path rule, which may not
be true in some cases. For instance, rumors and diseases
spread randomly. Rumors can be, in addition, intentionally
channeled through specific intermediaries [26]. Policies [27]
and the placement of virtual machines, on the other hand,
are neither necessarily ruled by randomness nor shortest
paths. Instead, they usually follow previously defined re-
quirements, e.g., to meet energy constraints or performance
goals. Yet, in mesh networks, we should search for the
highest capacity links, which do not always coincide with
the shortest paths, it must account the weights of the links.

Many works already questioned the shortest-path rule,
proposing new metrics to quantify the importance of a
node [16], [17], [18], [19], [20], [28], [29]. Some of them
also tried to tackle this issue in weighted networks [16],
[20]. The most simple proposals were made by Borgatti and
Everett [19] and Geisberger et al. [29], as discussed next.

3.2 Bounded-distance and distance-scaled between-
ness

Borgatti and Everett still focus on shortest paths, but
they argue that the length of the path should influence the
betweenness because longer paths are less valuable to be
controlled or may not be realistic for some networks, such
as friendship. Based on these assumptions, Borgatti and
Everett propose two approaches to lower the importance
of longer paths. In the first one, they simply disregard the
shortest paths longer than κ, defining the bounded-distance
betweenness (Bκ) as formalized in Equation 3:

Bκ(υk) =
∑
i∈|V|

∑
j∈|V|

∆L∗
i,j≤κ

n∗i,j(υk)

n∗i,j
· (3)

The second approach considers all shortest paths but
weights the betweenness with the inverse of the length
of the path, which defines the distance-scaled betweenness
(Bdist), formalized as:

Bdist(υk) =
∑
i∈|V|

∑
j∈|V|

1

∆L∗i,j
· n
∗
i,j(υk)

n∗i,j
· (4)

1. We always consider these three constraints. Therefore, they will be
omitted in the remainder of the manuscript.
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3.3 Linearly-scaled betweenness

Geisberger et al. proposed a complementary variation of
the distance-scaled betweenness, the linearly-scaled between-
ness (Blin), in which they also account for the distance
between the source and the intermediary node, arguing
that intermediary nodes closer to the destination should
have more control on the communication. Their metric is
formalized in Equation 5:

Blin(υk) =
∑
i∈|V|

∑
j∈|V|

∆L∗i,k
∆L∗i,j

× n∗i,j(υk)

n∗i,j
· (5)

3.4 Betweenness for weighted networks

Changing the focus to weighted networks, Freeman et
al. [16] and Opsahl et al. [20] studied how to quantify the
importance of nodes in such scenarios, crucial to represent
the strength or the cost of a relationship between two nodes.
Freeman et al. interpret the weight of each edge in the
graph as the capacity of a channel. Thus, the more distant
the node, the narrower the channel and, consequently, the
smaller the capacity (until the nodes are set apart, where no
channel exists at all). The authors determine the maximum
flow, mi,j , between a pair of nodes and the maximum flow
between these nodes that passes through υk, mi,j(υk). To
this end, they use the concept of cut sets. If this cut set is
removed from the graph, the pair of nodes will no longer be
able to communicate. The overall dependency on υk to the
maximum flow defines the flow betweenness (Bflow), which
measures the flow amount supported by a node when the
maximum flow is pumped in the network. It is given by:

Bflow(υk) =
∑
i∈|V|

∑
j∈|V|

mi,j(υk)· (6)

This value can be normalized by the total flow between all
pairs of nodes, given by

∑
i∈|V|

∑
j∈|V|mi,j .

The main drawback of the flow betweenness is the need
to know all the independent sets between each pair of
nodes in the network, which increases its time complexity.
Opsahl et al. proposed a simpler workaround to handle
weighted networks [20]. They extend the traditional concept
to account both the number of paths and the strength of the
relationship between the nodes. The authors use a modified
implementation of Dijkstra’s algorithm to find the shortest
path using inverted weights tuned by a parameter α ∈ R+,
which determines the relative importance of the number of
links compared to the link weights. The metric accounts for
only the number of shortest paths (α = 0), only the inverse
of the weights (α = 1), favors the length of the path over
the cost (0 < α < 1), or favors the cost of the path over the
length (α > 1). The metric is formalized as:

Bωα(υk) =
∑
i∈|V|

∑
j∈|V|

nωαi,j (υk)

nωαi,j
, (7)

where nωαi,j and nωαi,j (υk) represent, respectively, the number
of shortest paths and how many of them pass through υk.

uf
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Fig. 3. Example of network where betweenness centrality metrics can
fail to capture the importance of a critical node on a quasi-shortest path.
The clouds represent any type of connected network topology.

3.5 Random walk betweenness

The aforementioned works consider that information
in the network always follows some kind of ideal path.
Newman claims that a realistic betweenness measure should
include paths that are not necessarily the shortest [18].
Thus, he proposes to completely relax the idea of following
ideal paths, suggesting that information in the network can
wander around essentially at random until it finds its des-
tination. Thus, we should include contributions from many
paths that are not optimal in any sense. Hence, he proposes
the random walk betweenness (Brnd), which measures the
number of times that a random walk starting at a source
and ending at a destination passes through a node along
the way, averaged over all pairs of nodes. Such a metric is
computed using matrix methods, and it is proven [18], [28]
to be equivalent to the current flow betweenness [17], [18]. The
formal definition of random walk betweenness is given by:

Brnd(υk) =
∑
i∈|V|

∑
j∈|V|

I
(ij)
k , (8)

where I(ij)
k is the amount of information flowing through

υk, which is half the sum of the absolute values of the
information flowing along the edges incident to this node.

Note that, in the traditional betweenness, the flow knows
exactly where it is going to and which path is the best to ar-
rive there; whereas in the random walk betweenness, it has
no prior idea of where the destination is, wandering around
at random until the destination is found. Hence, we can
consider these metrics as the two extremes of a betweenness
centrality spectrum with the other metrics based on shortest
paths lying between them.

4 ρ-GEODESIC BETWEENNESS CENTRALITY

We propose the ρ-geodesic betweenness centrality 2 (Bρ),
which aims to capture the potential of intermediary nodes
neglected by shortest-path-based betweenness centralities.
Such nodes can be crucial to the network, but are not
accounted by typical betweenness metrics just because they
do not fall on a sufficiently large number of shortest paths.
This is illustrated in Figure 3, in which both υc and υb are
important to maintain the network components C1 and C2
connected, and υe connects an edge node to the rest of the

2. A preliminary version of this work was accepted at GIIS’16 [30].
Here, we propose a metric that improves the relation between the ratio
of shortest and quasi-shortest paths and the cost ratio; furthermore,
contrarily to the conference paper, we also consider additional paths
other than only the shortest quasi-shortest paths.
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TABLE 1
Comparison of traditional (Btrad), distance-scaled (Bdist) and random
walk (Brnd) betweenness metrics for the nodes highlighted in Figure 3.

Node Btrad Bdist Brnd

υc 63.0 12.1 47.6
υb 9.0 2.5 35.6
υe 17.0 3.9 17.0

network. The traditional betweenness of υe is higher than
the one of υb. This is counter-intuitive, because it seems
that υb is topologically more crucial than υe. Indeed, it can
assume a much more important role for the entire network
connectivity, compared with υe, mainly if υc fails.

Table 1 compares the betweenness computed for υe, υc,
and υb using the traditional, distance-scaled, and random
walk betweenness, considering two mesh networks com-
posed of six nodes, one connected between υe and υy , and
the other connected to υx, as shown in Figure 3. We observe
in Table 1 that the random walk betweenness is the only
metric able to capture the importance of υb to the network
by giving it more weight than to υe. This happens because
this metric also accounts paths longer than the shortest one.

4.1 Metric formalization
Our approach differs from the aforementioned works

by considering in a single metric the number of shortest
and quasi-shortest paths between all pairs of nodes, as
well as the cost of each path. These costs are introduced
as a ratio between the cost of the shortest path, δ∗i,j , and
the cost of the quasi-shortest path through υk, given by
δi,j = δi,k+δk,j . Hence, the ρ-geodesic betweenness weights
the paths proportionally to their costs, assigning higher
importance to nodes on shorter paths. The maximum cost
of the quasi-shortest path depends on the spreadness factor
ρ. For instance, if ρ = C , the maximum cost considered for
the quasi-shortest path will be δ∗i,j + C , hence if a certain
path costs δ∗i,j + (C + ϕ), where ϕ ∈ R∗, it will be ignored
in the computation. Note that we account for all the paths
with cost δi,j ≤ δ∗i,j +C , including the shortest one (C = 0).

The concept of the ρ-geodesic betweenness (Bρ) is quite
similar to the one of the traditional betweenness, which
can be understood as the frequency with which υk falls on
shortest paths between all pairs of nodes in the network.
Analogously, the proposed metric measures the frequency
with which υk falls on paths that cost less than or equal to
δ∗i,j+ρ. The idea behind the limitation imposed by ρ is based
on the fact that the throughput of information traveling
through paths for which δi,j � δ∗i,j is expected to be low.
The proposed metric is formalized in Equation 9.

Bρ(υk) =
∑
i∈|V|

∑
j∈|V|

δi,k+δk,j−δ∗i,j≤ρ

n∗i,j(υk) + ni,j(υk)

n∗i,j + ni,j
× δ∗i,j
δi,k + δk,j

·

(9)
Again, if ρ = 0, δi,j = δ∗i,j , and only the shortest paths
are accounted for. In addition, the metric is computed for
source-destination nodes that lie in the same component,
such that each partial value is equal to zero if these nodes
are in different components.

4.2 Properties
The ρ-geodesic betweenness centrality has the following

properties:

• It considers the number of multiple paths, both short-
est and quasi-shortest.

• It increases with the participation of υk in both
shortest and quasi-shortest paths.

• It prioritizes low cost paths by decreasing the contri-
bution of expensive paths through a cost ratio.

• It grows with the centrality of the node.

Note that, in this work, the node is considered more
central if it participates on multiple paths, either shortest
or quasi-shortest. The reason behind this consideration is
that nodes that participate in several quasi-shortest paths
should not be discarded just because they are not on the
shortest path, as they could be important in many situations.
For instance, such nodes that are so close to the shortest
path could serve as backup nodes during a network failure.
In Figure 3, for example, υb is part of a possible backup
path between both sides of the network. The ρ-geodesic
betweenness of nodes υc, υb, and υe for ρ = 3 are equal to
117.10, 39.56 and 35.62, respectively. Thus, we note that υb
is now given the importance we intuitively believe it should
have when compared to the other highlighted nodes.

The upper and lower limits of each partial term of the
metric depend on the proportion of shortest and quasi-
shortest paths that υk participates. In addition, these limits
depend on the ratio between the costs of such paths. The
value of ρ can modify the proportion of node participation
on shortest and quasi-shortest paths. As a consequence, it
can influence the limits of each partial term, being able to
decrease the lower limit down to 0 if δi,k + δk,j − δ∗i,j > ρ.

Higher values of ρ allow to find more quasi-shortest
paths and if ρ is sufficiently high to account at least one
of these paths, the lower limit will tend to 0 if the cost
of the quasi-shortest paths is much greater than the cost
of the shortest path between the same pair of nodes, i.e.,
δi,k + δk,j � δ∗i,j . Note that if the cost is ∞, the nodes are
considered as not reachable, meaning that the contribution
to the ρ-geodesic betweenness is null. The lower limit will
also tend to 0 if the value of ρ provides too many quasi-
shortest paths, such that the number of existing paths
between υi, υj is much greater than the number of such
paths that υk falls on, i.e., n∗i,j + ni,j � n∗i,j(υk) + ni,j(υk).
In the best case scenario, the upper limit of each term
is equal to 1, when υk only falls on shortest paths and
participates in all shortest paths connecting υi, υj , meaning
that n∗i,j(υk) + ni,j(υk) = n∗i,j + ni,j and δ∗i,j = δi,k + δk,j

Another important characteristic of the ρ-geodesic be-
tweenness is its intrinsic higher variance, compared to
other shortest-path-based centrality metrics, such as the
traditional and distance-scaled betweenness. As so, we can
have a broader spectrum to classify nodes according to
their importance and, thus, we achieve a more fine-grained
node ranking. This is specially true for higher values of
ρ. Further, the ρ-geodesic betweenness is able to assign
importance to nodes even if their ego network density
is unitary, whereas the aforementioned metrics cannot, as
we observe in Figure 4. If we consider only the set of
nodes {υa, υb, υc, υd, υe}, it is clear that using only shortest
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Fig. 4. The nodes in the example can be divided in 3 sets accord-
ing to their ability to intermediate flows: {υa, υe} cannot intermediate
them, {υb, υd} intermediate the great majority, and {υc} intermediates
if necessary. Nevertheless, shortest-path-based centralities, such as the
traditional and the distance-scaled betweenness, classify υc in the same
set of υa and υe.

TABLE 2
Comparison of the betweenness of nodes in Figure 4. Both the random
walk (Brnd) and ρ-geodesic betweenness (Bρ) are able to broaden the

node ranking. The distance-scaled (Bdist) and traditional (Btrad)
betweenness cannot capture the importance of node υc.

Node Btrad Bdist Brnd Bρ=1

υa 0.0 0.0 0.0 0.0
υb 3.0 1.3 3.7 2.7
υc 0.0 0.0 1.3 1.3
υd 3.0 1.3 3.7 2.7
υe 0.0 0.0 0.0 0.0

paths will lead us to a condensed ranking, with only two
positions, occupied by two groups of nodes: {υb, υd} and
{υa, υc, υe}. Nevertheless, υc is clearly different from υa and
υe in the sense that it can obviously intermediate communi-
cations, if necessary, while the former cannot because they
are endpoints. Therefore, we argue that the second group
should not be composed by {υa, υc, υe}. Instead, υc should
be reclassified as more important than the other two nodes
in this group, broadening the ranking. This reclassification
is achieved by both the random walk and the ρ-geodesic
betweenness, as we observe in the results of Table 2. Note,
however, that the ρ-geodesic betweenness metric assigns
lower importance to υc proportionally to υb and υd (1.3 vs.
2.7) than the random walk betweenness (1.3 vs. 3.7).

4.3 Implementation
The proposed metric is implemented using the algorithm

described in Algorithm 1. In this work, we use the num-
ber of hops as cost metric and, thus, ρ ∈ N. Therefore,
we use ∆max = ρ + 1 vectors D∆

src and N∆
src for each

src to account for the paths that cost from 0- to ρ-hops
more than the shortest one. Vectors D∆

src and N∆
src are

composed by numNodes elements each and D∆
src represents

the path cost between src and all other nodes, while N∆
src

has the number of paths between these nodes. Hence, for
a given ρ, we have D∆

src = [δsrc,1, . . . , δsrc,numNodes] and
N∆

src = [nsrc,1, . . . , nsrc,numNodes]. Note that 0 ≤ ∆ ≤ ρ,
where ∆ = 0 refers to arrays concerning the shortest paths,
and ∆ > 0, to the ones regarding the quasi-shortest paths
of cost δ∗i,j + 1 ≤ δi,j ≤ δ∗i,j + ρ. Yet, N k∆

src represents
∆max = ρ + 1 matrices with size numNodes × numNodes,
where each matrix represents one source node. In these
matrices, each element is the number of paths between src
and all other nodes that υk falls on. Hence, N k∆

src for a
given ρ is represented by:

Algorithm 1 BASIC ρ-GEODESIC BETWEENNESS

Input: ρ,G
Output: ρ-GB

1: for src← 1, numNodes do
2: D∆

src, N
∆
src, N k∆

src, Tsrc ← INITIALIZE(G, ρ)
3: D0

src, N
0
src, Tsrc ← FIND SP(src, ρ)

4: D∀∆>0
src , N k∀∆>0

src , N∀∆>0
src ← FIND QSP(src, Tsrc)

5: ρ-GB←ACCUMULATE(ρ, src, D∆
src, N

∆
src,

N k∆
src, ρ-GB)

Algorithm 2 ACCUMULATE CONTRIBUTIONS FROM src TO
ALL NODES

Input: ρ, src, D∆
src, N

∆
src, N k∆

src, ρ-GB
Output: ρ-GB

1: for dest← 1, numNodes do
2: for k ← 1, numNodes do
3: if υk 6= υsrc & υk 6= υdest & υsrc 6= υdest then
4: for ∆← 0, ρ do
5: if ∃ SP through υk ‖ ∃ QSP through υk

then
6: ρ-GBk ← ρ-GBk +

N k0
src,dest+N k∆

src,dest

N0
src,dest+N

∆
src,dest

· D
0
src,dest

D∆
src,dest

N k∆
src =

 n1,1(υk) . . . n1,numNodes(υk)
. . . . . . . . .

nnumNodes,1(υk) . . . nnumNodes,numNodes(υk)

 .
Vector Tsrc is composed by numNodes elements and it
contains the maximum allowed cost for the quasi-shortest
path between src and all other nodes, i.e., Tsrc = [δsrc,1 +
ρ, . . . , δsrc,numNodes+ρ]. Finally, ρ-GB is a vector composed by
numNodes elements, where each element is the ρ-geodesic
betweenness of an intermediary node υk.

Algorithm 1 uses as input the matrix representation of
the network, G, and the spreadness factor, ρ. It returns
the vector ρGB, which contains the ρ-geodesic betweenness
of every node. The function INITIALIZE is responsible to
create the arrays and initialize them with the proper values.
As we use the number of hops as the cost of the path,
the function FIND SP implements the Breadth-First Search
(BFS) algorithm to find the shortest paths, while the function
FIND QSP implements the Depth-First Search (DFS) algo-
rithm, constrained in depth by vector T, to find the quasi-
shortest paths. Note that FIND SP uses ρ as input only to
compute the maximum allowed length of the quasi-shortest
paths. If a real cost was used, for instance, these functions
must be changed. A possible candidate is to modify the
Dijkstra algorithm to compute paths that costs more than
the shortest one.

The ACCUMULATE function is described in Algorithm 2,
and it is responsible for summing up the contribution of
each pair of nodes υi, υj to the betweenness of the interme-
diary node υk. Each time this function is called it updates
the ρ-geodesic betweenness of the intermediary nodes that
participate in the paths from src to all the other nodes.
Consequently, in the end of the loop of the basic algorithm,
vector ρ-GB will contain the ρ-geodesic betweenness of
every node due to every single pair of nodes in the network.
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4.4 Application

We saw in Table 2 that both the random walk and our
metric are able to assign more importance to nodes that are
not on shortest paths. This will be more broadly confirmed
in Section 7, using real datasets. One may ask, then, why
bother to create another metric if the random walk between-
ness proposed by Newman [18] does the same job gracefully.
The main reason for that is the basis conjecture behind the
random walk betweenness itself, which cannot be applied in
some cases. Newman states in his work [18] that his metric
suits well situations where information may follow random
paths until it finds its destination, and he considers that
information may not know where it is going to. This may
be true if no global knowledge about the network structure
exists, or if we are trying to model the natural spread of
diseases, for instance. As a counter example, in a computer
network where end-to-end paths do exist, and the source of
information knows exactly who is the target of the message,
it will always try to use the most efficient path. Similarly,
in transport networks, a driver or a delivery vehicle will
always be more interested in using the shortest path. In both
networks, the packet delivery fits better to model the flow
process in the network. In these networks, and others, it is
not always that the shortest path will be the best option.
That is why we also need to consider longer paths.

We argue that the utilization of quasi-shortest paths, or at
least considering them as reasonable alternatives, is a choice
that can be driven by (i) reactive or (ii) proactive situations.
In the first case, entities try to escape from the common-
sense, a.k.a., the shortest path, to avoid unwanted conse-
quences that are already expected to happen. For instance,
a packet may be sent through a quasi-shortest path if the
shortest path between two nodes in a computer network is
congested, or a node, or link, in this path is expected to fail.
Also, the driver in a transport network can chose a-little-bit-
longer paths during rush hours to avoid jammed shortest
paths. The idea is that it is better to take a little extra time to
arrive, when compared to the normal shortest path, than
to either risk being blocked on the normal shortest path
or being forced to take alternative paths on-the-fly. As for
the proactive situations, the idea is to avoid, beforehand, to
damage the shortest path in the near future. This situation
can happen whenever multiple alternatives exist and any
one of them could be picked according to a given criteria.
For instance, each packet flow can be sent through different
paths so as to prevent congestions in computer networks. In
the same sense, the audience of a soccer game may also
follow different trajectories using different gates to enter
a stadium. Even in social networks we can observe the
situation where information may occasionally follow a path
that is neither shortest nor random, e.g., the act of a friend
telling a secret of a third person to a common friend. In
both proactive and reactive situations, the entity arbitrarily
choses a slightly longer path when there is a high chance
that the shortest path is damaged or will be damaged in
the near future. We use the spreadness factor to denote the
additional cost the entity is willing to pay to arrive at the
destination the fastest possible, considering that the shortest
path can be damaged in some sense. This can be better
understood using an analogy. Suppose that we have a set of

pipes, with different diameters, ending in a container. The
shorter pipes are also the larger ones, whereas thin pipes are
long. We want to fill the container the fastest we can with
some kind of solid particle. We cannot push all the particles
through the shorter pipe because at some point it will be
clogged. Hence, the fastest way to fill the container is to
push the particles through all the pipes. Nevertheless, we
cannot use some thinner pipes because the solid particles
do not fit into them. In this case, the spreadness factor could
model the diameter of the pipe, so that only the ones into
which the particles fit can be used.

5 RANDOM WALK VS. ρ-GEODESIC BETWEEN-
NESS

The random walk betweenness considers all existing
paths between any pair of nodes in the network, no matter
the path length. The contribution of each path to the impor-
tance of a node is proportional to the probability of using the
path. This probability, in turn, varies simultaneously with
the length of the path and the degree of the nodes on it. If
successive nodes have high degree or if the path is long, the
contribution will be lower. Unlike random walk between-
ness, in ρ-geodesic betweenness, we weight the contribution
only as a function of the path length. In addition, we reduce
the number of paths according to the spreadness factor.
Hence, the contribution of longer paths tends to decrease
more quickly for the random walk betweenness, as long as
the nodes on the path have degree greater than 2.

To incorporate the several paths considered in the ran-
dom walk betweenness we use mainly two approaches.
The first one simulates several random walks between
pairs of nodes. This method allows for the computation
of approximated values of the random walk betweenness
in a distributed fashion [31], [32]. Either sequential or dis-
tributed algorithms, however, require extra attention to not
allow the random walks to loop over the same sequence of
nodes, which would erroneously increase the importance of
nodes that are traversed many times. Moreover, we need to
be able to stop the simulation at a step where the values
computed for the random walk betweenness approximate
the exact value given by Newman’s algorithm [18]. Note
that the convergence time can be unfeasible for some appli-
cations when using this method [31]. The second approach
computes the metric using Newman’s algorithm, which
applies a matrix approach in a very elegant fashion. This
approach, however, is not appropriate for disconnected or
directed graphs, due to the generation of null determinants
that prevents further computation. The complexity of this
algorithm isO((m+n)n2), which is roughlyO(n3) in sparse
and O(n4) in dense networks. The ρ-geodesic betweenness,
in turn, does not have any restriction regarding the struc-
ture of the network. Additionally, since it only considers
paths up to a length and not all the paths as the random
walk betweenness, it is less time consuming. Note that,
in some applications, it is reasonable to exclude all paths
longer than a threshold to compute the importance of a
node, as these paths are much likely neglected. Taking a
look at Algorithms 1 and 2, we observe that the functions
INITIALIZE, FIND_SP and FIND_QSP, and ACCUMULATE
are, respectively, O(n2), O(m+n), and O(ρn2), where ρ is a
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Fig. 5. Averaged results for the maximum and minimum absolute dif-
ferences between the random walk and the ρ-geodesic betweenness,
for ρ = {1, 3}. The minimum difference is independent of ρ, while the
maximum difference becomes more significant for higher ρ.

constant. Hence, the complexity of the ρ-geodesic between-
ness metric is reduced compared with Newman’s algorithm
and it can be computed in O(n2) or O(n3), depending if the
network is sparse or dense, respectively. The complexity of
our metric can be further reduced if the algorithm is paral-
lelized, which is a matter of parallelizing the single-source
shortest paths (SSSP) and the accumulation functions in
Brandes’ algorithm [33], considering unweighted networks.
This is feasible [34], [35], [36], [37] and the graph traversal
performed in the SSSP needs to be run ρ+1 times to find all
the paths we need to compute the ρ-geodesic betweenness.
In addition, if only local knowledge is available, it is possible
to modify a distributed algorithm as the one proposed by
Lehman and Kaufman [38] to compute our metric.

As discussed in this section, the random walk and the ρ-
geodesic betweenness are quite different, even though their
purpose is to account non-ideal paths. The main differences
between them is the number of paths considered in the
computation and the weight assigned to each one of them.
We investigate the impact of this difference on the impor-
tance of nodes in synthetic random networks with power
law degree distribution (P ∝ degree(υi)

−α), generated
by the Havel-Hakimi [39], [40] algorithm. We chose the
power law distribution because it is the most common in
real networks [41]. We were able to generate graphs with
scaling factor within 1.5 ≤ α ≤ 4.9. This is not a problem,
because researchers claim that for most real networks α falls
approximately between 2 and 3 [41], [42]. Thus, we show the
results for this range, without loss of generality.

We generate 10 random graphs for each α and compute
the absolute maximum and minimum differences between
the values assigned by the random walk and the ρ-geodesic
betweenness, considering all nodes in the graph. Figure 5
shows the averaged results for each α. We observe that
the minimum difference is always close to zero, while the
maximum difference depends on the value of ρ. Note that
increasing α means that many more nodes will have very
low degree. Particularly, the Havel-Hakimi algorithm orig-
inates star-like graphs for higher α. This effect is shown in
Figure 6, where the star graph is depicted in Figure 6(e)
for comparison. Considering the 1-geodesic betweenness
(ρ = 1) we note that the maximum difference between
the metrics remains almost constant for all α. For the 3-
geodesic betweenness (ρ = 3), the maximum difference

becomes more significant for 2 ≤ α ≤ 3. We believe that
within this interval the number of highly weighted paths
considered by the ρ-geodesic betweenness becomes much
greater than the ones for the random walk betweenness.
As such paths can be used as backup or offloading paths,
nodes that participate on them should be valuable. Hence,
our metric is able to predict better which nodes are more
important to increase network resilience. As a consequence,
the network can achieve better throughput when our metric
is used to determine node importance.

6 EVALUATION SETUP

We analyze the impact and relevance of our metric on
four datasets for ρ ≤ 5, with ρ ∈ N. Thus, we account for
all quasi-shortest paths for which δi,j ≤ δ∗i,j + {1, 2, 3, 4, 5},
hence computing the {1, 2, 3, 4, 5}-geodesic betweenness.
The analysis guidelines and the datasets are described next.

6.1 Analysis guidelines

Our analysis captures the importance of nodes according
to their topological distribution in the network. We use the
traditional betweenness as the baseline centrality metric to
assess the characteristics of the ρ-geodesic betweenness. We
begin with the (i) analysis of the correlation between the
random walk, distance-scaled and ρ-geodesic betweenness
with the traditional betweenness. The goal is to discover
how close to the traditional betweenness they are and if
they can pinpoint nodes that should be reclassified, even
if strongly correlated to the traditional betweenness. Nodes
can be reclassified in higher or lower positions, according
to its new value of betweenness. Then, we investigate
the (ii) behavior of the ranking obtained for each metric,
studying the level of agreement between the metrics and
the reclassification of nodes. Note that the rank position of
a node depends on the value of betweenness assigned to
it, such that the first node (most important) has the highest
betweenness. Following, we (iii) examine how often we can
prevent nodes to lose their ability to intermediate flows, and
for how long they can keep the same position.

6.2 Datasets

In order to maintain the generality of the metric, we
use four datasets with distinct characteristics to evaluate
our proposed metric. The importance of nodes is depicted
according to its topological position. Smaller nodes have
smaller traditional betweenness; more bluish nodes have
higher degree; and more reddish, have lower degree.

• Freeman’s EIES: relationships in a group of 32 aca-
demics [43]. A directed edge between two nodes
[υi, υj ] exists only if υi has sent a message to υj ,
totaling 460 links, with a density of 0.464.

• Dolphins: association relationships between 62 dol-
phins in Doubtful Sound, New Zeland [44]. Nodes
correspond to dolphins and the interaction between
them is represented by an undirected edge εi,j , total-
ing 159 links. The density of this network is 0.084.

• PhD Students: directed network with density 0.001
representing the relationships between 1,025 PhD
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(a) α = 1.5 (b) α = 2.5 (c) α = 3.5 (d) α = 4.5 (e) Star, |V | = 100

Fig. 6. Comparison between a star network and sample random networks with power law degree distribution for different α. Both networks have
100 nodes and it is clear that the structure of the network changes with α, becoming more similar to a star as α increases.
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Fig. 7. The correlation with the traditional betweenness is clearly strong for all metrics, being stronger for the distance-scaled betweenness. The
random walk and ρ-geodesic betweenness show more capability to identify nodes that should receive a different value for the betweenness. Note
that the axis are normalized by (|V| − 1)(|V − 2) if the graph is asymmetric, and by 0.5 · (|V| − 1)(|V − 2) otherwise.

students and supervisors [45]. A directed link exists
from υi to υj only if υi is the supervisor of υj , totaling
1,043 links.

• TAPASCologne Dataset: vehicular traffic model of
Cologne, Germany [46]. We use 10 samples of the
original subset, containing from 1,584 to 1,916 nodes
and from 1,573 to 2,044 undirected links, depending
on the snapshot sample. Each node is a vehicle and
an edge exists between nodes if they are less than
50 meters away from each other. The density of all
samples is 0.001.

7 RESULTS

We explore our metric to verify the impact of the quasi-
shortest paths on the importance of a node to the network.
To this end, we divide the results in three categories, accord-
ing to the guidelines presented in Section 6: (i) the ability of
recognizing nodes that should be attributed another value of
betweenness, (ii) the changes in the rank position of nodes,
and (iii) the ability to intermediate flows.

7.1 Recognition of poorly classified nodes

It is important to know how the metrics relate to the
traditional betweenness to discover how the additional re-
quirements of each metric influence the similarity between
them. Simultaneously, it is important to know if the metrics
can highlight nodes that were over or underestimated, even
if they are strongly correlated to the traditional between-
ness. The results are shown in Figure 7, where the x-axis
is the normalized traditional betweenness and each curve
represents one of the other three metrics, also normalized.
The normalizing factor is given by 0.5 · (|V| − 1) · (|V| − 2)
for the undirected graphs and by (|V| − 1) · (|V| − 2) for the
directed ones, as explained in Section 3. In addition, the axes
in Figures 7(b) and 7(d) are scaled for better visualization.
The random walk betweenness is computed only for the
Dolphins dataset due to restrictions of Newman’s algorithm.
We only show the curves for the 1- and 5-geodesic between-
ness (ρ = {1, 5}, respectively), for the sake of clearness. The
curves for the other values of ρ lie between these two.

Figure 7 shows that all metrics are strongly correlated to
the traditional betweenness, as their coefficient of determi-
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Fig. 8. The Kendall’s W coefficients plotted to each pairwise combination
of betweenness centrality metrics show a high level of agreement be-
tween them. The lowest concordance happens between the traditional
and the ρ-geodesic betweenness for ρ = 5. This is due to the potentially
numerous quasi-shortest paths considered on the metric computation,
more significantly varying the importance of nodes and, consequently,
their rank positions.

nation (R2) is high. The strongest correlation is found for the
distance-scaled and 1-geodesic betweenness. As ρ increases
the correlation decreases, since the participation of nodes in
quasi-shortest paths increases, pinpointing more nodes that
should be reclassified. Nonetheless, ρ = 1 is already enough
to pinpoint some nodes. This is shown by the dispersion of
points around the curve or, mathematically, by the standard
deviation of each fitting, combined with the R2 value. By
comparing these parameters for each curve, we find that
the higher the standard deviation and the lower the R2,
the more misclassified nodes we can identify. Note, that R2

cannot be very small (< 0.35), as it would give us only a
moderate correlation, meaning that the metrics are almost
completely different, and that is not of our interest.

Figure 7(b) shows a singular behavior. The ρ-geodesic
betweenness is quite identical to the traditional between-
ness in the PhD. Students network, independently of ρ.
This happens because the relationships between nodes in
this network have strong socialization tendencies, which

turns out to produce few multiple paths. The correlation
between the random walk and traditional betweenness can
be observed in Figure 7(c). We note that, in this scenario, this
metric is similar to the 1-geodesic betwenness (ρ = 1), and
both can almost equally identify that some nodes should be
reclassified.

7.2 Impact on node classification

Knowing that the ρ-geodesic betweenness can identify
nodes that should be reclassified, we further investigate
how it performs this task and how the value of ρ influences
the ranking. Such rank is established using the betweenness
of the nodes, such that the most important node has the
highest betweenness and is the first in the rank, while the
node with the lowest betweenness is the less important
and, thus, the last in the rank. We use the node ranking
for the Dolphins network to analyze the level of agreement
between the metrics. To this end we compute the Kendall’s
W coefficient for each pair combination of the metrics. The
more close to the border is the blue octagon in Figure 8, the
higher is the level of agreement between the metric and all
the others. The ranking provided by the distance-scaled be-
tweenness, for instance, is almost in perfect agreement with
the one for the traditional betweenness. The disagreement
between the random walk and the traditional betweenness
is higher than the one between the 1-geodesic between-
ness and the traditional betweenness. As ρ increases, in
turn, the disagreement with the traditional betweenness
also increases, because the quasi-shortest paths accounted
become significant. This also happens if we compare the
concordance between the random walk betweenness and
our metric. This discussion does not reflect, however, the
rate with which nodes are reclassified. Although the con-
cordance between the metrics is high, the reclassification
rate is also high. For instance, we found that compared to
the traditional betweenness, several nodes are reclassified
independently of the metric we use. We have a reclassifica-
tion rate of 66.1% using the distance-scaled betweenness,
75.8% for the random walk betweenness, and for the ρ-
geodesic betweenness we have 74.2%, 77.4%, 79.0%, 75.8%,
and 77.4% for ρ ∈ {1, 2, 3, 4, 5}, respectively. This happens
because, contrary to Kendall’s W coefficient, the reclassifica-
tion rate does not account whether the change in the rank
position is significant.

In order to investigate the intensity of the reclassification,
we analyze in Figure 9 how the rank varies according to the
metrics we use. The x-axis represents the transition between
the metrics, while the y-axis shows the number of positions
that a node gained or lost when we change from one metric
to the other. The color grid shows how frequently the nodes
gain or lose y positions. Figure 9(a) illustrates the results
for the Freeman dataset. We observe that at least half of the
nodes keep the same position when we change from the
traditional to the 1-geodesic betweenness (ρ = 1), as shown
by the purplish color for y = 0. Note that we can find nodes
that gain up to 10 positions if we use the proposed metric.
In turn, if we use the distance-scaled betweenness, 100%
of nodes stay in the same position. We also observe that
increasing ρ affects the ranking with nodes losing or gaining
up to 2 positions. The variation stops at ρ = 4, as for ρ = 5
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(d) Cologne #1.

Fig. 9. The distance-scaled, random walk and ρ-geodesic betweenness are able to redistribute the node ranking to different extents, compared to
the traditional betweenness.
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Fig. 10. Compared to the traditional betweenness, the distance-scaled
and ρ-geodesic betweenness are able to spread the classification rank,
giving room to more positions. Hence, we find less nodes tied in the
same position. The random walk betweenness surprisingly increases
the number of tied nodes in the Dolphins dataset.

the influence of quasi-shortest paths ends. We highlight that,
in all scenarios, for ρ > 2 most nodes keep their positions
unchanged, as shown by the reddish rectangles for y = 0.

Figure 9(b) shows the result for the PhD. Students
dataset. Some nodes change their position when we use the
ρ-geodesic betweenness, but the distance-scaled between-
ness has the most significant influence on the ranking for

this scenario, as it spreads the classification. This corrob-
orates the correlation results found for this dataset. We
observe in Figures 9(c) and 9(d) that all metrics change
significantly the node ranking. For the Dolphins dataset
the random walk and ρ-geodesic betweenness redistribute
several nodes in the rank. The variation on the positions
of the rank is representative, with a range that lies, ap-
proximately, between [−21, 13] for the random betweenness
and [−18, 10] for our metric. In the Cologne network, the
ρ-geodesic betweenness has more power of modification
compared with the other metrics, ranging from −80 to 28
positions. Note that the number of nodes in each dataset is
very different and changing a certain number of positions in
each one has a different impact. For instance, if we disregard
ties, i.e., each position can be occupied by one node only,
a node in the Freeman dataset promoted by 10 positions
improves its importance by 31.25%. In contrast, a node in
the sample 1 of the TAPASCologne dataset, in the same
condition, would improve its importance by only 0.64%.

We further investigate how the centrality metrics eval-
uated herein behave in the presence of ties. The idea is to
find how the metrics assess the importance of nodes once
tied in the same rank position by the traditional between-
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Fig. 11. The proposed ρ-geodesic betweenness is able to reduce the
number of times that nodes lose their ability to intermediate flows in
the network compared to the other metrics, even for the most important
nodes. The ρ-geodesic betweenness can prevent up to 3 losses more
compared to the traditional and distance-scaled betweenness.

ness. The result are shown in Figure 10 for all datasets,
considering 1 ≤ ρ ≤ 5. We define the rate of broken ties as
1−# tied nodes other metrics/# tied nodes trad vision.
We observe that the tiebreaking rate for the ρ-geodesic be-
tweenness is usually equal or greater than the other metrics.
The only exception is the PhD. Students scenario, singular
in its construction, which does not provide many multiple
paths that could benefit the ρ-geodesic betweenness. Note
that, in this figure, a negative tiebreaking rate means that
the number of tied nodes increased.

The ρ-geodesic betweenness is strongly correlated to
the traditional betweenness but it moves away from the
latter as ρ increases. As such, we can identify nodes that
should be given more importance. Even for ρ = 1 we
can find poorly classified nodes, but to a lesser proportion.
Following, we investigate how our metric can influence
nodes intermediation ability, overtime, supposing that flows
follow the shortest-path rule. In this case, not being part of
any shortest path implies that the node cannot intermediate
communications. It is expected that the number of nodes
that participate in shortest path influences how many nodes
can be elected to be part of a shortest path. Generalizing,
we claim that the more nodes have null betweenness, the
less nodes can be elected to participate in a data path or
to store any resource. This is harmful especially in dynamic
networks or in the presence of node failures, because having
less options of nodes to play the role of a data path compo-
nent could break the network into disconnected components
or stop main functionalities if a principal node fails and
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Fig. 12. In the highly dynamic scenario of the TAPASCologne vehicular
network, the ρ-geodesic betweenness is the metric that changes less
frequently the ranking of nodes. Of all nodes in the network, 1.2% remain
in the same rank position for up to 10 seconds.

there is no good option to replace it. Note that resources in
this context can have multiple meanings, from information
itself to physical or virtual machines that play important
roles in the network. To analyze this aspect, we took 10
samples from the TAPASCologne dataset, each 10 seconds.

Figure 11(a) is a cumulative distribution that shows how
often we can prevent the loss of ability to intermediate
flows. The x-axis is the number of times that we could
avoid to lose this ability, while the y-axis represents how
often at least x losses were potentially avoided during the
period in analysis, i.e., P (X ≤ x). While x = 0 means that
the loss of the intermediation ability was never prevented,
x = 10 means that nodes never lost this ability. Clearly, the
ρ-geodesic betweenness is capable of always avoid the loss
of the intermediation ability more than the other metrics.
Of course, th0is result is of poor use if the nodes that keep
the ability are the ones that are never used because their
betweenness is very small, ergo the last nodes in the rank.
Therefore, we analyze the top initial 20 nodes in the network
to further verify if they also benefit from this behavior.

Figure 11(b) shows how many times more we can avoid
nodes to lose their intermediation ability when we change
from the traditional to the distance-scaled and ρ-geodesic
betweenness, for the initially top-ranked nodes in the net-
work. The x-axis is the node label in ascending order of
importance. The y-axis indicates the difference between the
number of times the loss was avoided by the distance-scaled
and ρ-geodesic betweenness compared to the traditional
betweenness, in absolute values. We observe that for the
top 20 nodes, the distance-scaled betweenness never avoids
more losses than the traditional betweenness. On the other
hand, the ρ-geodesic betweenness is able to avoid up to 3
losses more than the traditional betweenness for almost half
of these nodes.

For last, we analyze how long nodes can remain in
the same rank position using each metric. Figure 12 shows
how frequently we can find nodes that can keep the same
position during the 90 seconds time interval analyzed for
the TAPASCologne dataset. The majority of nodes in this
interval frequently jumps between rank positions and none
of them is able to maintain the same position for more than
20 seconds. Hence, in Figure 12, we only show the results for
10 ≤ x ≤ 30. We observe that few nodes remain in the same
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rank position and they do so for approximately 10 seconds
maximum. Although this is valid for the minority of nodes
in this network, we can quickly note that the ρ-geodesic
betweenness is the metric that achieves the highest number
of nodes that can keep the same rank position, reaching
1.2% of nodes for ρ = 1, which is 6 times higher than
the traditional and ρ-geodesic betweenness for ρ = {3, 4}.
Therefore, we claim that the ρ-geodesic betweenness is the
metric that can better keep the ranking unchanged for the
highly dynamic scenario provided by the Cologne network.

8 CONCLUSION

We proposed the ρ-geodesic betweenness centrality, a
variation of the traditional betweenness that uses both
shortest and quasi-shortest paths. The idea is to increase
the importance of nodes that do not necessarily fall on
shortest paths, but can still be considered critical to the
network operation, reducing the reorganization and costs
of the network upon failure of a central node. The random
walk betweenness also follows this idea, but it considers that
information travels at random using all existing paths. This
is not the case in some situations, such as in the majority
of computer and transport networks, and even in some
social networks. In addition, the complexity of this metric is
higher than the one of our metric. Further, although similar
in concept, the ρ-geodesic betweenness is quite different
from the random walk betweenness in practice, specially
for networks that follow a power law degree distribution
with 2 ≤ α ≤ 3. We verified the impact of the ρ-geodesic
betweenness through the analysis of four datasets with
distinct characteristics, for which we also computed the tra-
ditional and distance-scaled betweenness. We additionally
computed the random walk betweenness for the dataset that
represents a completely connected and undirected graph.
Our results show that our metric is able to reclassify nodes,
promoting those that participate in many paths. Also, the ρ-
geodesic betweenness spreads the classification rank, giving
room to break ties between nodes, as the number of quasi-
shortest paths they fall on can be different. The random walk
betweenness also present these characteristics, but depend-
ing on the dataset, it can increase the number of nodes tied
in the same position. We also observed that the ρ-geodesic
betweenness has the potential to avoid the loss of the ability
to intermediate flows in networks that use shortest path
based rules to distribute resources, which can range from
information flow to real or virtual machines, lowering asso-
ciated costs. This is true even for the most important nodes
in the network. As a consequence, if we use rules based
on the ρ-geodesic betweenness we can potentially reduce
the waste of resources. Some of these networks can quickly
change their topology and in the vehicular network scenario
that we analyzed, we found that the ρ-geodesic betweenness
can provide the longest rank stability to the larger number
of nodes compared to the other metrics. As future work,
we plan to extend our algorithm to compute the metric
for weighted networks and we intend to investigate the
performance of the network running under rules based on
the ρ-geodesic betweenness. Also, we will face it to real
networks (by running experiments on realistic platforms)
and study its relevance in different use cases.
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Université Pierre et Marie Curie, Paris, France,
where he heads the Networks and Performance
Analysis team. His research interests include
the design and evaluation of mobile networked
systems.

Guy Pujolle is a Professor at Université Pierre
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