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ABSTRACT

This paper describes a light field scalable compression
scheme based on the sparsity of the angular Fourier trans-
form of the light field. A subset of sub-aperture images (or
views) is compressed using HEVC as a base layer and trans-
mitted to the decoder. An entire light field is reconstructed
from this view subset using a method exploiting the sparsity
of the light field in the continuous Fourier domain. The recon-
structed light field is enhanced using a patch-based restoration
method. Then, restored samples are used to predict original
ones, in a SHVC-based SNR-scalable scheme. Experiments
with different datasets show a significant bit rate reduction
of up to 24% in favor of the proposed compression method
compared with a direct encoding of all the views with HEVC.
The impact of the compression on the quality of the all-in-
focus images is also analyzed showing the advantage of the
proposed scheme.

Index Terms— Light field, compression, HEVC, SHVC,
sparsity.

1. INTRODUCTION

During the last two decades, there has been a growing interest
in light field imaging. By capturing the radiance of light rays
emitted by a scene along various directions, light fields en-
able a variety of post-capture image processing applications
such as digital refocusing, viewpoint and perspective chang-
ing, depth estimation, 3D scene reconstruction, or creating
images with an extended focus (where all pixels are in focus).
Light fields can be captured by either an array of cameras [1]
(resulting in a wide baseline) or by single cameras mounted
on moving gantries, or by plenoptic cameras using arrays of
micro-lenses placed in front of the photosensor, leading to the
light fields with narrow baselines [2, 3]. The acquired light
field data exhibits large amount of information, which poses
challenging problems in terms of storage capacity, hence the
need for efficient compression schemes.

Effort has already been dedicated to light field compres-
sion in the community, using either simple tools such as vec-
tor quantization followed by Lempel-Ziv (LZ) entropy cod-
ing [4] or wavelet coding schemes [5, 6], which nevertheless

yield a limited compression efficiency of the order of 20:1.
In addition, 4D wavelet transforms and PCA were applied for
the progressive coding [7, 8]. In the recent years, the state-
of-the-art mono and multi-view video compression schemes,
considering the light field as an array of multiple views, have
also been applied. Inspired by H.264 and MVC, [9] and [10]
proposed new schemes, where specific prediction modes are
added, with or without disparity compensation.

Among the most recent proposals, the latest HEVC video
compression standard was considered for light fields: the ar-
ray of sub-aperture images can be taken as an input [11], or, in
other cases, direct encoding is performed over the lenslet im-
ages captured by plenoptic cameras [12]. Prediction modes
have also been proposed and integrated into an HEVC en-
coder to compress 3D holoscopic content [13]. In [14], a
sparse set of micro-lens images (also called elemental images)
is encoded in a base layer. The other elemental images are
reconstructed at the decoder using disparity-based interpola-
tion and inpainting. The reconstructed images are then used
to predict the entire lenslet image and a prediction residue is
transmitted yielding a 3-layer scheme. Another version of the
multi-view HEVC extension for light field video was intro-
duced in [15], where the inter-view prediction is represented
in a two-directional parallel structure. A homography-based
low rank approximation is proposed in [16], to exploit cor-
relation between the sub-aperture images, using HEVC intra
coding of the low rank representation. An alternative way to
compress light field images was also proposed in [17], where
the focal stack (which consists of photographs focused at dif-
ferent depth values) is encoded with a 3D wavelet and SPIHT
scheme. The entire light field is then reconstructed from the
compressed focus stack using a combination of dimension re-
duction and a 2-D filtering. The paper in [18] presents a lay-
ered approach that segments objects in the ray space and ap-
plies wavelets for the compression of each segment.

In this paper, we introduce a novel scalable coding method
for the light field data based on their sparsity in the angu-
lar (view) Fourier domain. A selected set of the light field
sub-aperture images is encoded in a base layer as a video se-
quence using HEVC and transmitted to the decoder. The non-
selected views are then reconstructed from the decoded subset
of views, by exploiting the light field sparsity in the angular



Fig. 1: An overview of the proposed compression scheme.

continuous Fourier domain. The quality of the reconstructed
light field is afterwards enhanced to allow its use in predict-
ing the original light field within a scalable coding structure.
The prediction residue is encoded in an enhancement layer.
The proposed approach has demonstrated a high compression
efficiency for both real and synthetic light field datasets. A
significant blur reduction has also been observed in the corre-
spondent all-in-focus images.

2. COMPRESSION SCHEME

Let L(x, y, u, v) denote the 4D representation of a light field,
describing the radiance of a light ray parameterized by its in-
tersection with two parallel planes [19]. The angular (view)
coordinates are denoted with (u, v), where u = 1 . . . U and
v = 1 . . . V . The spatial (pixel) coordinates are denoted with
(x, y), where x = 1 . . . Nx and y = 1 . . . Ny). The view at
the angular position (u, v) is defined as Iu,v .

The main steps of the proposed compression scheme are
depicted in Fig.1. First, a sparse set {Ip}p∈P of light field
views at pre-defined positions in P is selected (the selection
approach is shown in Fig.2), and encoded as a video sequence
using HEVC [20] in a base layer (BL). Then, the set of non-
selected views {Iq}q∈Q is reconstructed from the decoded
views {Îp}p∈P (Q∪P = Ω, Ω denoting the entire set of view
positions). The reconstruction is performed using a method
which exploits light field sparsity in the angular Fourier do-
main [21]: SFFT (Sparse Fast Fourier Transform). Finally,
the restored light field is used as an inter-layer predictor of
the original light field, in an enhancement layer (EL) using
SHVC [22], leading to a two-layer SNR-scalable scheme.

2.1. Sparse Reconstruction

A subset of light field views {Ip}p∈P is first selected and
then encoded in HEVC as a YUV sequence (Fig.2) in the
base layer. The corresponding decoded views {Îp}p∈P are
used to reconstruct the remaining views. For this purpose, a
reconstruction method, inspired by [21], is used. Assuming
the light field is k-sparse in the angular continuous Fourier

Fig. 2: Selected sub-aperture images {Ip}p∈P sent as video frames
following a specific scan order to HEVC encoder.

domain, it can be represented as a linear combination of k
non-zero continuous angular frequency coefficients

Lwx,wy
(u, v) =

k∑
i=0

au,v(i)

N
exp(2jπ

uwu(i) + vwv(i)

N
),

(1)
where {wu, wv} are the continuous frequency positions and
{au,v} are the corresponding coefficients. The objective is to
recover the set F = {wu, wv, au,v} of the sparse spectrum
from the decoded views.

First, the 2D Fourier transform of each input view (u, v)
from the decoded set {Îp}p∈P is computed as

Lu,v(wx, wy) = FFT (Lu,v(x, y)), (2)

which gives the spatial frequencies (wx, wy) at the positions
set P , representing the input 1D discrete lines. We will re-
fer to this data as Lwx,wy (u, v)|P , from which the 2D an-
gular spectrum Lwx,wy (wu, wv) for each spatial frequency
(wx, wy) will be recovered.

The algorithm proceeds by first estimating integer fre-
quency positions {wu, wv} using a voting approach from
the input sparse set. Then, the corresponding coefficients
{au,v} are estimated and the frequency positions are refined
to non-integer values, using a two-step iterative approach.
The method is detailed in Fig.3.

2.1.1. Initial frequency positions estimation

The goal of this step is to initialize the set of positions
{(wu, wv)i}ki=0 of the non-zero frequency positions. Per
the slicing theorem [23], the Fourier transform of a discrete
line of a signal gives the projection of its spectrum onto that
line. Therefore, we calculate the Fourier transform in the
angular domain (u, v) of each line segment of the input data
Lwx,wy

(u, v)|P . This yields projections of the 2D spectrum
Lwx,wy

(wu, wv) on these lines. Then, the discrete frequency
positions that receive a vote from each projection will con-
struct the initial estimation for angular frequencies’ positions.
Based on the assumption that the spectrum is sparse, only



Fig. 3: An overview of the sparse reconstruction scheme [21].

few frequencies that receive a vote each time will finally be
preserved.

2.1.2. Coefficients estimation and frequency refinement

The algorithm proceeds afterwards by iteratively refining the
coefficients and their frequency positions as follows:

• Given a set of positions {wu, wv}, the corresponding
coefficients {au,v} are recovered by solving the linear
system of Eqn.1 over the set P of known (u, v) posi-
tions;

• Given the coefficients {au,v}, the frequency positions
{wu, wv} are refined to minimize the residual error
E(P ), using a gradient descent algorithm based on
finite differences

E(P ) =
∑
p∈P
||Îp − I∗p||2, (3)

where Îp denotes the BL-decoded view at position p and I∗p
is the view at the same position, obtained by the sparse recon-
struction algorithm. The error threshold value is transmitted
in the BL coder. Based on the final frequency positions and
corresponding coefficients, all the light field views are recon-
structed using Eqn.1, followed by the inverse Fourier trans-
form in (x, y) coordinates. This gives the reconstructed light
field data {Irp}p∈Ω.

2.2. Quality Restoration

The quality of the reconstructed views {Irq}q∈Q may not be
sufficient for some post-processing applications, because of
the introduced reconstruction noise. We therefore consider
these images, along with the images {Îp}p∈P , as inter-layer
predictors of the original views in a scalable scheme which
further encodes a prediction residue. However, to ensure
an efficient inter-layer prediction, the quality of the recon-
structed images {Irq}q∈Q is first improved using a patch-
based restoration method. The proposed restoration tech-
nique searches with the PatchMatch algorithm [24] for the
best matches between patches in each reconstructed view
Irq and the spatially closest BL-decoded image Îp, and vice
versa. Once the matching process is over, the pixel values
of the restored image are computed as a weighted average
of overlapping patches, which minimizes the bidirectional
similarity distance [25] applied between the reference image

Fig. 4: Quality Restoration. First row: pixel restoration based on
bidirectional matching. Second row: an example of a reconstructed
image Irq (left) and its corresponding restored image Ir∗q (right) from
Crystal dataset: note that the presence of heavy noise in the recon-
structed image does not allow its use as an inter-layer predictor to
enhance the compression efficiency of the EL.

and the restored one. To illustrate the pixel value calculation,
let R1,..., Rm denote all the patches in Irq that contain a pixel
s. D1,...,Dm indicate the corresponding best matches in Îp,
where d1,...,dm are the co-located pixels (see Fig.4). Also, let
R̂1,...,R̂n denote all the patches in Irq that contain pixel s and
serve as the best matches to D̂1,...,D̂n in Îp, and d̂1,...,d̂n be
the co-located pixels in patches D̂1,...,D̂n (see Fig.4). Hence,
the value of s in the final restored image Ir∗q is expressed as

Ir∗q (s) =

∑m
i=1 Îp(di) +

∑n
j=1 Îp(d̂j)

m+ n
. (4)

2.3. Enhancement Layer

The restored views {Ir∗q }q∈Q and the BL-decoded {Îp}p∈P
are loaded into the inter-layer reference picture list in a SNR-
scalable coder in SHVC, for the prediction of the original
light field. Both inter-layer and intra/inter predictions are per-
formed during encoding, and the best coding mode is chosen
(with Rate Distortion Optimization) for each block. Residues
from prediction are then quantized, transformed and encoded,
delivering the enhancement layer (EL) bitstream. A final full
light field data is delivered by the decoder, using both BL and
EL bitstreams.

3. EXPERIMENTAL RESULTS

The sub-aperture images in the BL are encoded using the
HEVC Test Model (HM 16.9), with a GOP size of 8 in a hier-
archical structure. Only the upper-left view is intra-encoded.
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Fig. 5: PSNR-rate performance of the proposed coding method (using QP=22, 27, 32, 37) compared to HEVC Single Layer.
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Fig. 6: Amount of blur in the all-in-focus image resulting from dif-
ferent output data: a higher blur measure indicates a lower quality of
the all-in-focus image.

The QP values are set to 22, 27, 32 and 37. The matrix of
views is scanned row-by-row from left to right and from right
to left to form a video sequence, which is converted to YUV
(4:2:0). This sequence is then encoded using the SHVC Test
Model (SHM 12.1) with the same parameters as above, yield-
ing the EL bitstream. We compare our compression scheme
with a HEVC single layer (SL) coding of the original matrix
of views converted into a YUV sequence, in the same way as
the EL sequence.

Light field images Buddha and Still Life1 (768x768), as
well as Crystal (1024x1024) and Lego Truck 2(1280x860) are
used for tests. The BL sequence is formed by 45 views out
of 81 for the HCI synthetic light fields, and by 93 out of 289
for the Stanford real light fields. The objective quality is
assessed on the YUV components with PSNR averaged on
all views of the matrix, and the bit-rate is calculated from
the coded bitstream for all YUV components. Rate distortion
curves are plotted for PSNR vs. bitrate (Fig.5). The results in
Fig.5 show that significant gains are obtained for the proposed
compression scheme, compared to direct HEVC encoding in
a single layer. Furthermore, estimations performed with the
Bjontegaard metric [26] demonstrate the bit-rate reductions
of 8.2% and 11.83% for synthetic data Still Life and Buddha
respectively, while even more prominent bit-rate reductions of
18% and 24.24% are achieved for real light fields Lego Truck

1https://hci.iwr.uni-heidelberg.de/hci/softwares/light field analysis
2http://lightfield.stanford.edu/lfs.html

and Crystal.
The impact of compression on the quality of the all-in-

focus images is then analyzed for the HCI synthetic light
fields, for which the ground truth depth map is available. We
first generate the focus stack {Fαi} of light field. A digi-
tal refocusing of the central view is performed as explained
in [2]. The all-in-focus image E(x, y) is obtained by choos-
ing, for a pixel at position (x, y) of depth αi, the pixel of the
image from the focus stack which is refocused at this depth
(Fαi(x, y)). Fig.6 shows the blur measure as a function of the
bitrate. The blur is measured with a perceptual edge-based
blur metric [27].

The results in Fig.6 demonstrate that the proposed scheme
outperforms HEVC single layer coding and introduces less
distortion in decoded images. High compression ratios are
achieved, without altering the visual quality of the all-in-focus
image. Besides, it can be remarked that the output of the re-
construction based on BL-decoded views (illustrated in yel-
low) provides an equivalent quality of the all-in-focus image
as the HEVC single layer coding, but at a significantly lower
compression cost.

4. CONCLUSION

We introduced a scalable coding scheme for light field data.
A sparse viewpoint subset is selected and encoded as a base
layer with HEVC. A full light field is reconstructed from
the decoded images using a sparse recovery method in the
Fourier domain. These reconstructed data are enhanced using
the decoded views, and then used as prediction reference for
inter-layer coding of the entire original light field.
The proposed scheme is scalable with two layers, so that
the data used for rendering can either consist of the plain
reconstruction from the sparse view samples, or its refined
version with the enhancement layer. Experimental results
demonstrate that this scalable scheme outperforms HEVC
single layer encoding for the tested light field datasets, both
synthetic and real. The analysis of all-in-focus images also
shows that our method does not induce visual artifacts, even
for data reconstructed from the base layer, which presents
an advantageous outcome for further post-capture light field
applications.
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