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INFINITE ERGODIC INDEX OF THE EHRENFEST

WIND-TREE MODEL

ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

Abstract. The set of all possible configurations of the Ehrenfest
wind-tree model endowed with the Hausdorff topology is a compact
metric space. For a typical configuration we show that the wind-
tree dynamics has infinite ergodic index in almost every direction.
In particular some ergodic theorems can be applied to show that if
we start with a large number of initially parallel particles their di-
rections decorrelate as the dynamics evolve answering the question
posed by the Ehrenfests.

1. Introduction

In 1912 Paul and Tatiana Ehrenfest wrote a seminal article on the
foundations of Statistical Mechanics in which the wind-tree model was
introduced in order to interpret the work of Boltzmann and Maxwell
on gas dynamics [EhEh]. In the wind-tree model a point particle moves
without friction on the plane with infinitely many rigid obstacles re-
moved, and collides elastically with the obstacles. The Ehrenfests’ pa-
per dates from times when the notions of probability theory where not
yet rigorously defined. Thus they could not describe the distribution
of the obstacles in a probabilistic way, they used the word “irregular”
to describe it. However, they made precise what they did expected
from the placement of the obstacles: obstacles are identical squares, all
parallel to each other, the placement is irregular, every portion of the
plane contains about the same number of obstacles, and the distances
between the obstacles are large in comparison to the obstacle’s size.

If we fix the direction of the particle, the billiard flow will take only
four directions. The Ehrenfests asked the following question: start K
particles in a given direction, will the number of particles in each of
the four directions asymptotically equalize to about K/4? To answer
this question we study the ergodic properties of the wind-tree model.

We thank Jack Milnor for suggesting a nice presentation of our topology. AMS
acknowledges that this work was started during a post-doc funded by the A*MIDEX
project (ANR-11-IDEX-0001-02), funded itself by the “Investissements d’avenir”
program of the French Government, managed by the French National Research
Agency (ANR)”. She continued working on this project during the ATER posi-
tion she held at Mathematics Laboratory in Orsay in 2015-2016. ST gratefully
acknowledges the support of project APEX "Systèmes dynamiques: Probabilités et
Approximation Diophantienne PAD" funded by the Région PACA.
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Interestingly the birth of ergodic theory can be traced back to the
Ehrenfests’ article in which the word ergodic was used for the first time
with a close mathematical meaning to the current one [GaBoGe]. We
consider the set of all possible configurations and introduce a canonical
topology which makes it a compact metric space. We show that for
(Baire) generic configurations, for almost every direction the billiard
flow has infinite ergodic index, i.e., all its powers are ergodic. In a
finite measure space this would be equivalent to saying that the flow
is weakly mixing. The asymptotic equalization of the directions of K
particles in several senses then follows from various ergodic theorems
(note that we are in the framework of infinite ergodic theory here, so
the Birkhoff ergodic theorem is not directly applicable).

In two previous articles we have considered a subset of configura-
tions which are small perturbations of lattice configurations, and we
showed that the generic wind-tree is minimal and ergodic in almost
every direction [MSTr1, MSTr2]. Although the space of configurations
considered in those two articles is different from the one in this article,
in the two cases, the topology considered is equivalent to our topology
restricted to this smaller set of configurations. Furthermore the proofs
of these two results hold mutatis mutandis in the more general setting
which we consider here.

There have been a number of results on the wind-tree model [DeCoVB,
Ga, HaCo, HaCo1, Tr, VBHa, WoLa], and on the wind-tree model with
periodical distribution of obstacles of squares, rectangles and more re-
cently other polygonal shapes [AvHu, BaKhMaPl, BiRo, De, DeHuLe,
DeZo, FrHu, FrUl, HaWe, HuLeTr].

2. Definitions and main results

For sake of simplicity, a square whose sides are parallel to lines y =
±x will be referred to as rhombus in the rest of the article. The L1

distance in R2 will be denoted by d. Note that balls with respect to
this distance are rhombii.

Fix s > 0. A configuration is an (at most) countable collection of
rhombii with diameter s, whose interiors are pairwise disjoint. Since s is
fixed it is enough to note the centers of the rhombii, thus a configuration
g is an at most countable subset of R

2 such that if z1, z2 ∈ g then
d(z1, z2) ≥ s.

To define a topology on the set of configurations consider polar co-
ordinates (r, θ) on the plane. Each point (r, θ) in the plane is the stere-
ographic projection of a point in the sphere with spherical coordinates
(2 arctan(1/r), θ). Apply the inverse of the stereographic projection to
a configuration g to obtain a subset of the sphere. Let ĝ denote the
union of this set with the north pole of the sphere denoted by {∞}.
Then ĝ is a closed subset of the sphere. Let ρ denote the geodesic dis-
tance on the sphere, i.e., the length of the shortest path from one point
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to another along the great circle passing through them. The topology
we define on the set of configurations is then induced by the Hausdorff
distance dH given by

dH(g1, g2) = max( sup
z1∈ĝ1

inf
z2∈ĝ2

ρ(z1, z2), sup
z2∈ĝ2

inf
z1∈ĝ1

ρ(z1, z2)).

Let Conf be the set of all configurations.

Proposition 1. (Conf, dH) is compact metric space, thus a Baire space.

The proposition is proven in the appendix. Let Uε(g) be the set of
all configurations that are at most ε-close to g, i.e.,

Uε(g) := {g′ : dH(g
′, g) < ε}.

Next we show some topological properties of generic configurations.

Proposition 2. There is a dense Gδ subset G of (Conf, dH) such that
for each g ∈ G

(1) g is an infinite configuration,
(2) every pair of points z1, z2 ∈ g satisfy d(z1, z2) > s.

Remark. Point (2) means that the obstacles centered at z1 and z2 do
not intersect.

Proof. As seen in Proposition 1, (Conf, dH) is compact metric space,
thus a Hausdorff space. Consider the countable dense set {gi} of finite
configurations with centers of the obstacles at rational coordinates of
R2 such that the obstacles are pairwise disjoint. From this set we create
a new countable set {gi,j} of configurations as follows. Consider the
smallest Ni such that the Euclidean ball B(0, Ni) of radius Ni centered
at the origin contains all the obstacles of gi. Fix s′ > s. Then for each
j ≥ 1 define the configuration gi,j to have the obstacles of gi and addi-
tionally obstacles centered at all the points {(Ni+s

′k, 0) : k > j}. Note
that this choice of placement of the additional obstacles is arbitrary,
any other choice would work as well as long as the distance between
any pair of obstacles is uniformly bounded away from 0. Clearly gi,j is
an infinite configuration, the obstacles are pairwise disjoint, and since
gi,j → gi as j → ∞ we see that the set {gi,j} is dense.

We choose a total order on the set {gi,j}, abusing notation we call it
{gn}. Let Bε(gn) := {z ∈ gn : ρ(z,∞) ≥ ε}. Define ε(gn) to be be the
infinimum of ε > 0 such that

i) card(Bε(gn)) ≥ n, and
ii) for any h ∈ Uε(gn)(gn) we have

min {d(z1, z2) : z1, z2 ∈ h corresponding to points of gn in Bε(gn)} ≥ s+ε.

Notice that by construction the obstacles of gn are not only pairwise
disjoint, but inf{d(z, z′) : z, z′ ∈ gn, z 6= z′} > s, thus ε(gn) > 0.
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Clearly

G :=
∞⋂

m=1

⋃

n≥m

Uε(gn)(gn)

is a dense Gδ set. If g ∈ G, then g is in Uε(gn)(gn) for an arbitrarily
large n and thus g is an infinite configuration. Point (2) follows directly
from (ii). �

Fix g ∈ Conf. The wind-tree table Bg is the plane R2 with the
interiors of the union of the trees removed. Fix θ ∈ S

1. The billiard
flow φg,θ

t in the direction θ or simply φθ
t is the free motion in the interior

of Bg with elastic collision from the boundary of Bg (the boundary of
the union of the trees). Once launched in the direction θ, the billiard
direction can only achieve four directions

[θ] := {±θ,±(π − θ)};

thus the phase space Xg,θ of the billiard flow in the direction θ is a
subset of the cartesian product of Bg with these four directions. We
agree that if a billiard orbit hits a corner of a tree, the outcome of the
collision is not defined, and the billiard orbit stops there, its future is
not defined from this time on. Note that in this notation φθ

t , φ
−θ
t , φπ−θ

t

and φθ−π
t denote all the same flow.

A flow ψt preserving a Borel measure m is called ergodic if for each
Borel measurable set A,m(ψt(A)△A) = 0 ∀t ∈ R implies that m(A) =
0 or m(Ac) = 0. The flow ψt is said to have infinite ergodic index if for
each integer K ≥ 1 the K-fold product flow ψt×· · ·×ψt is ergodic with
respect to the K-fold product measure m×· · ·×m. It is a well known
fact that in the finite measure case the notion of infinite ergodic index
is equivalent to weak-mixing. However we are working in the context
of an infinite measure preserving flow.

For each direction θ, the billiard flow φθ
t preserves the area measure

µ on Bg times a discrete measure on [θ], we will also call this measure µ.
Note that µ is an infinite measure. The billiard flow on the full phase
space preserves the volume measure µ×λ with λ the length measure on

S1. Let K ≥ 1, and let ~θ = (θ1, . . . , θK) be a vector of directions. When
θ1 = · · · = θK = θ, we will denote this vector of identical directions by

θ̄. We note the product billiard flow φ
~θ
t := φθ1

t × · · · × φθK
t . This flow

preserves the measure µK := µ× · · · × µ.
Now we can state our main result.

Theorem 3. For any s > 0 there is a dense Gδ subset G of Conf such
that

(1) there exists a dense Gδ set of full measure of directions H such
that the flow φθ

t has infinite ergodic index for every θ ∈ H and
each g ∈ G, and
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(2) for every integer K ≥ 1 there is a dense Gδ set H(K) of full

measure of K-tuples of directions such that the flow φ
~θ
t is ergodic

for every ~θ ∈ H(K) for each g ∈ G.

Remark. If K > 1, we do not know that the set H(K) has product
structure, thus (1) does not follow from (2).

2.1. The precise question posed by the Ehrenfests. Consider
a large but finite number K of initial points in the wind-tree model
in a given direction θ. The Ehrenfests asked whether the particles
directions asymptotically equalize under the wind-tree dynamics, i.e.,
whether there are approximately K/4 particles in each direction after
a large time.

This question is the motivation for our study. Let (~z, ~θ) denote the

initial positions and velocities of these particles, and fi((~z, ~θ)) denote
the number of particles pointing in the direction i ∈ {±θ,±(π − θ)}.
If the functions fi were integrable, then we could give a nice answer to
this question using Theorem 3, but unfortunately this is not the case.
We give three partial answers.

First a finite measure version. Let A ⊂ Bg be a positive but finite
measure subset of the wind-tree table, and let fA

i denote the function
fi restricted to the set A × · · · × A. This function is integrable, thus
applying the Hopf ergodic theorem to the wind-tree flow yields the
following corollary (here G and H are the dense Gδ sets from Theorem
3 which depends on K and s).

Corollary 4. For each s > 0, for each K positive integer, for each
g ∈ G, for each A ⊂ Bg of positive measure, for each θ ∈ H, for each
i, j the following limit holds almost surely as T → ∞:

∫ T

0
fA
i

(
φθ
t × · · · × φθ

t (~z, θ̄)
)
dt

∫ T

0
fA
j

(
φθ
t × · · · × φθ

t (~z, θ̄)
)
dt

→ 1.

This means that if we only count when all the particles are in the set
A then the average over times of the number going in each direction is
asymptotically the same.

If we replace the flow φθ̄
t = φθ

t ×· · ·×φθ
t by its first return flow ψA,θ̄

t to
the region A×· · ·×A, then we can apply the Birkhoff ergodic theorem.

Corollary 5. For each s > 0, for each K positive integer, for each
g ∈ G, for each A ⊂ Bg of positive measure, for each i, the following
limit holds almost surely as T → ∞:

1

T

∫ T

0

fA
i

(
ψA,θ̄
t (~z, θ̄)

)
dt→

∫

A

fA
i dµ× · · · × dµ =

K

4
· area(A).

This means that the average over time of the direction converges to
K/4, but for the first return flow.
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Finally we can replace the fi by integrable functions which some-
how measure a similar phenomenon. For example the sum of the
cubes of the reciprocal of the distance of the particles from the ori-

gin: f̂i((~z, ~θ)) =
∑

{k:~θk=i}
1

min (1,|zk|3)
. These functions are positive and

integrable, thus we can apply the Hopf ergodic theorem to conclude:

Corollary 6. For each s > 0, for each K positive integer, for each
g ∈ G, for each θ ∈ H, for each i, j the following limit holds almost
surely as T → ∞: ∫ T

0
f̂i
(
φθ̄
t (~z, θ̄)

)
dt

∫ T

0
f̂j
(
φθ̄
t (~z, θ̄)

)
dt

→ 1.

This means that then the average over time of the weighted number
going in each direction is asymptotically the same.

For all three results we can replace θ̄ whose components are all equal

to a single θ ∈ H by a vector ~θ ∈ H(G) of directions that are maybe

no longer identical, we can define ψA,~θ analogously to ψA,θ̄ and state
a similar result for the functions fi, f

A
i , f̂i which counts the number of

particles with direction in the ith quadrant (i ∈ {1, 2, 3, 4}).

Corollary 7. For each s > 0, for each K positive integer, for each

g ∈ G, for each A ⊂ Bg of positive measure, for each ~θ ∈ H(K), for
each i, j the following limits hold almost surely as T → ∞:

∫ T

0
fA
i

(
φ
~θ
t (~z,

~θ)
)
dt

∫ T

0
fA
j

(
φ
~θ
t (~z, ~θ)

)
dt

→ 1

1

T

∫ T

0

fA
i

(
ψA,~θ
t (~z, ~θ)

)
dt→

∫

A

fA
i dµ× · · · × dµ =

K

4
· area(A)

∫ T

0
f̂i
(
φ
~θ
t (~z,

~θ)
)
dt

∫ T

0
f̂j
(
φ
~θ
t (~z, ~θ)

)
dt

→ 1.

We interpret these results in the following way; if K particles are
launched in arbitrary generic directions, then the average over time of
the number of particles in the different quadrants are asymptotically
the same in the three senses mentioned above.

3. Proof of wind-tree results

Fix a wind-tree configuration g ∈ Conf. Fix K and n ∈ N, and let

Bg
n :=

(
Bg ∩ {(x, y) : |x| + |y| ≤ ns}

)K
. Note that K does not appear

in this notation, as well as certain other notations in this section, since
it is fixed throughout much of the proof.

We will define a series of notations depending on a vector of directions
~θ. When all the components of the vector are identical, recall that
we agreed to note this vector by θ̄ - the notations defined will apply
automatically to that case as well.
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Figure 1. An 8-ringed configuration and a configura-
tion close to it.

Recall that for each θ, [θ] is the set of all possible directions under
the billiard flow starting in direction θ, i.e., [θ] = {±θ,±(π − θ)}.

We denote the components of the vectors ~θ and ~ψ by θi and ψi. Let

[~θ] := {~ψ : ψi ∈ [θi] for all i} and

Xg,~θ
n := {(~z, ~ψ) : ~z ∈ Bg

n,
~ψ ∈ [~θ]}, Xg,~θ := {(~z, ~ψ) : ~z ∈ Bg, ~ψ ∈ [~θ]}.

We note the product billiard flow on Xg,~θ by φg,~θ. For each n ≥ 1 we

consider the first return flow of φg,~θ,

φg,~θ,n
t : Xg,~θ

n → Xg,~θ
n .

In the future, when it is clear from the context, we will drop the super-

script g from this notation. For each θ ∈ S
1, the flow φg,~θ,n

t preserves
the measure µK . For sake of simplicity, we will denote µK by µ.
Proof of Theorem 3. We prove both statements with the same
strategy: we choose a dense set {fi} of configurations which satisfy
the goal dynamical property of K-fold ergodicity on certain compact
sets. Then we will show that wind-tree tables which are sufficiently well
approximated by this dense set will satisfy the dynamical property on
the whole phase space. The proof for K = 1 is simpler, and we will
mention the simplification in the proof even though this is not formally
necessary for the proof.

A configuration f is called n-ringed if the boundary of the rhombus
{(x, y) ∈ R2 : |x| + |y| ≤ ns} is completely covered by trees as in
Figure 1 left (i.e., the obstacles covering the boundary intersect with
each other on a whole side or do not intersect at all). The union of the
trees which cover the boundary of the rhombus is called the associated
n-ring.

For the proof of ergodicity, i.e., K = 1, let {fi} be a dense set of
parameters such that each fi is an ni-ringed configuration, is not an
n-ringed configuration for all n < ni, and ni is increasing with i. Then
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by [KeMaSm] the billiard flow ψfi,θ
t is ergodic in almost every direction

inside the ni-ring. So, the return flow φfi,θ,n
t is ergodic for all n such

that 1 ≤ n ≤ ni and for almost every direction θ. Since in the rest of
the proof we will consider all the cases K ≥ 1 simultaneously we will

denote φfi,θ,n
t by φfi,~θ,n

t or φ
~θ,n
t where ~θ is the vector (θ).

Consider now the K-fold case. We apply Theorem 1 of [MSTr3], we
state this theorem in the special context of our setting.

Theorem 8. Fix n ≥ 2. Consider the set Z of n-ringed configurations
with a fixed number of non-intersecting obstacles inside the ring with the
topology given by the positions of centers of the inner obstacles. The set
Z contains a dense Gδ set of tables Y such that for each configuration
in Y there exists a full measure Gδ-dense set Θ of directions such that
the billiard flow on table given by this the configuration is weakly mixing
inside the n ring in every direction θ ∈ Θ.

Note that the topology in Theorem 8 is different from the topology
in this article, none this less in our context it yields a countable dense
set of configurations {fi} such that each fi is ni-ringed, not n ringed
for all n < ni, and the flow is weakly mixing for all θ ∈ Θ inside the
ring. To see this note that if f is n-ringed then there is a maximum
number of obstacles that can be contained inside the ring, call this
number m(n). For each 0 ≤ m ≤ m(n) consider now a countable dense
set {fn.m

j } of n-ringed configurations, with m obstacles inside the ring,
where density is in the sense of the topology of Theorem 8 . Since the
obstacles in Theorem 8 are non-intersecting, the fm,n

j are not n′-ringed
for all n′ < n. Then the set {fn.m

j }m,n,j is the required countable dense
set, we linearly enumerate this set, calling it {fi} so that fi is ni-ringed
and ni is increasing with i.

Fix K ≥ 1. Suppose that δi are strictly positive numbers. Then the
set

GK :=
∞⋂

m=1

∞⋃

i=m

Uδi(fi)

is a dense Gδ set. We will show that the δi can be chosen in such a way

that all the configurations in G are K-fold ergodic for all ~θ ∈ ΘK . Note
that the set Θ does not depend on K. This Θ will be the Gδ set H of
full measure that has to be found in the proof. Taking the intersection
∩KGK will finish the proof, thus for sake of simplicity, we will fix K
from here on and drop it from the notations when convenient.

For any ~θ and g ∈ Conf, let {hj}j≥1 be a countable dense collection

of continuous functions in L1(Xg,~θ, µK). For any ~θ such that θi 6∈

{±π
4
,±3π

4
} for all i, the sets Xg,~θ can be homeomorphically identified,

and thus functions {hj} can be considered to not depend on θ. Finally

by restriction, we think of this collection as a collection in L1(Xg,~θ
n , µK

n ).
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The flow φg,~θ is ergodic if and only if the flow φg,~θ,n is ergodic for all
n. Consider the Cesaro average

Sg
n,ℓhj(~z,

~θ) :=
1

ℓ

∫ ℓ

0

hj
(
φg,~θ,n
t (~z, ~θ)

)
dt.

By the Birkhoff ergodic theorem, the flow φg,~θ,n is ergodic for all n if
and only if for all n we have

(1) Sg
n,ℓhj(~z,

~θ) →

∫

X
~θ
n

hj(y) dµ(y)

as ℓ goes to infinity for all j ≥ 1.
Now fix i. The billiard flow φfi,θ

t is weakly-mixing inside the ring

for each θ ∈ Θ, thus φfi,~θ
t inside the ring is ergodic for every ~θ in ΘK .

Thus the first return flows φfi,~θ,n
t are ergodic for every ~θ in ΘK , for all

1 ≤ n ≤ ni. Note that in particular, θ̄ ∈ ΘK for all θ ∈ Θ.
Consider a large time ℓi so that the Cesaro average is 1/i close to its

limit in Equation (1) for a large set of points (many points ~z for many

directions ~θ). More precisely we can find positive integers ℓi ≥ ni, open

sets Hi ⊂ S
1 and sets Cfi,~θ

n ⊂ Xfi,~θ
n so that µ(Cfi,~θ

n ) > µ(Xfi,~θ
n ) − 1

i
,

λ (Hi) > 1− 1
i

and

(2)
∣∣∣Sfi

n,ℓi
hj(~z, ~θ)−

∫

X
fi,

~θ
n

hj(y) dµ(y)
∣∣∣ < 1

i

for all ~z ∈ Cfi,~θ
n , ~θ ∈ (Hi)

K , 1 ≤ j ≤ i, and 1 ≤ n ≤ ni.
Now we would like to extend these estimates to the neighborhood

Uδi(fi) for a sufficiently small strictly positive δi (see Figure 1 right).
For any n such that 1 ≤ n ≤ ni let B̄i

n be the intersection of Bg
n for all

g in the δi-neighbourhood Uδi(fi). Let

X̄ i,~θ
n := B̄i

n × [~θ].

For every 1 ≤ n ≤ ni we define ~ψ = ~ψg,fi a piecewise continuous

map from Bg
n to Bfi

n . When convenient we will write ~ψ(~z, ~θ) instead of

(~ψ(~z), ~θ). The behavior of ~ψ will be defined coordinate by coordinate,

more precisely ~ψ(~z) = (ψ(z1) . . . , ψ(zK)) where ψ will be defined right
now. For z outside the obstacles of fi, we define ψ(z) = z. For each
obstacle O1 of g inside the ring, we consider the corresponding obstacle
O2 of fi and C12 = O2 \ O1. We define a direction ξ that points from
a corner of O1 to a corner of O2 in such a way that the segment along
this direction between the two corners is completely included in C12 (as
in Figure 2). Then for any z ∈ C12, the image ψ(z) of z is the closest
point in the direction ξ in the table Bfi

n (Figure 2). The difference
between the Lebesgue measure of B̄i

n and the measure of Bg
n can be

made arbitrarily small by an adequate choice of δi, simultaneously for
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all g in Uδi(fi). From now on, we make the choice of δi such that

µ(X̄ i,~θ
n ) = µ(B̄i

n) > µ(Bg
n)−

1
i

for all g ∈ Uδi(fi) and all i.

O1

O2

C12 →

Figure 2. The dashed obstacle is O1 and the solid ob-
stacle is the associated obstacle O2. The map ψ maps
all the points on in the gray region C12 to the bound-
ary of the dashed obstacle, for example it maps the bold
segment in the direction ξ to a point in its top endpoint.

By the triangular inequality we have:
∣∣∣Sg

n,ℓi
hj(~z, ~θ)−

∫
X

g,~θ
n

hj(y) dµ(y)
∣∣∣ ≤

∣∣∣Sg
n,ℓi
hj(~z, ~θ)− Sfi

n,ℓi
hj(~ψ(~z), ~θ)

∣∣∣+∣∣∣Sfi
n,ℓi
hj(~ψ(~z), ~θ)−

∫
X

fi,
~θ

n

(hj(y))dµ(y)
∣∣∣+∣∣∣

∫
X

fi,
~θ

n

hj(y) dµ(y)−
∫
X

g,~θ
n

hj(y) dµ(y)
∣∣∣.

Futhermore we choose δi so small that
∣∣∣
∫

X
fi,

~θ
n \X̄i,~θ

n

hj(y) dµ(y)
∣∣∣ < 1

i

and ∣∣∣
∫

X
g,~θ
n \X̄i,~θ

n

hj(y) dµ(y)
∣∣∣ < 1

i

thus by the triangular inequality

(3)
∣∣∣
∫

X
fi,

~θ
n

hj(y) dµ(y)−

∫

X
g,~θ
n

hj(y) dµ(y)
∣∣∣ < 2

i
.

Now the proof bifurcates a bit according to the different cases stated
in the theorem. Consider part (1) of the theorem. Note that ψ is
not continuous, not invertible, and not onto. However it is not far

from being continuous: ||~z − ~ψ(~z)||L∞ < δi for any ~z ∈ Bg
n. By our

convention the billiard flow stops at corners, thus any point (~z, θ̄) for

which the flow is defined up to time ℓi is a point of continuity for φfi,θ̄,n
ℓi

.

Consider such a point, then the point ~ψ(φg,θ̄,n
ℓi

(~z, θ̄)) stays δi-close to

φfi,θ̄,n
ℓi

(~z, θ̄) for g in a small enough neighborhood of fi; thus we can

find δi > 0, an open set Ĥi ⊂ Hi and a set Ĉ i,θ̄
n ⊂ X̄ i,θ̄

n ∩ Cfi,θ̄
n so that

if g ∈ U(fi, δi), then

(4)
∣∣∣Sg

n,ℓi
hj(~z, θ̄)− Sfi

n,ℓi
hj(~ψ(~z), θ̄)

∣∣∣ < 2

i
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for all z ∈ Ĉ i,θ̄
n , θ ∈ Ĥi, 1 ≤ j ≤ i, 1 ≤ n ≤ ni; and µ(Ĉ i,θ̄

n ) > µ(Bg
n)−

2
i

and Ĥi is of measure larger than 1− 2
i
.

Since λ(Ĥi) > 1− 2/i, the set H = ∩∞
M=1 ∪

∞
i=M Ĥi has full measure.

Fix g ∈ G and θ ∈ H, then there is an infinite sequence ik such that g ∈

Uδik
(fik) and θ ∈ Ĥik . Fix n ≥ 1 and consider Cg,θ̄

n := ∩∞
M=1∪

∞
k=M Ĉ ik,θ̄

n .

Recall that we made the choice of δi such that µ(X̄ ik,θ̄
n ) > µ(Bg

n)−
1
ik

.

Since µ(Ĉ ik,θ̄
n ) > µ(X̄ ik,θ̄

n )− 1
ik

, it follows that µ(Cg,θ̄
n ) = µ(Bg

n).
Suppose g ∈ G. Thus for θ ∈ H, for each n ≥ 1 the three inequalities

(2), (3), (4) imply that

|Sg
n,ℓik

(hθj)−

∫

Xθ
n

hj(~z, θ̄)dµ| <
5

i

for all z ∈ Ĉ i,θ̄
n , θ ∈ Ĥi, 1 ≤ j ≤ i, 1 ≤ n ≤ ni and thus

(5) lim
k→∞

Sg
n,ℓik

(hθj) →

∫

Xθ
n

hj(~z, θ̄)dµ

for all (~z, θ̄) in Cg,θ̄
n , for each j ≥ 1. The hθj are dense in L1(Xθ

n, µ) and
limk→∞ ℓik = ∞, thus Equation (5) together with the Birkhoff ergodic

theorem imply that for each n ≥ 1, the first return flow φg,θ̄,n
t is ergodic

for all θ ∈ H. This implies the ergodicity of the billiard flow φg,θ̄
t in

every direction in H.
For part (2) of the theorem we have to slightly modify the previous

arguments. The only difference being that the set of directions we

construct depends on K. For any point (~z, ~θ) of continuity of φfi,~θ,n
ℓi

,

the point φg,~θ,n
ℓi

(~z, ~θ) varies continuously with g in a small neighborhood

of fi; thus we can find δi > 0, an open set Ĥi(K) ⊂ (Hi)
K and a set

Ĉ i,~θ
n ⊂ X̄ i,~θ

n ∩ Cfi,~θ
n so that that if g ∈ U(fi, δi), then
∣∣∣Sg

n,ℓi
hj(~z, ~θ)− Sfi

n,ℓi
hj(~ψ(~z), ~θ)| <

2

i

for all z ∈ Ĉ i,~θ
n , ~θ ∈ Ĥi(K), 1 ≤ n ≤ ni, 1 ≤ j ≤ i; and µ(Ĉ i,~θ

n ) >

µ(Bg
n)−

2
i

and Ĥi(K) is of measure larger than 1− 2
i
.

Since λ(Ĥi) > 1 − 2/i, the Gδ set H(K) = ∩∞
M=1 ∪

∞
i=M Ĥi(K) has

full measure. The rest of the proof of part (2) is identical to that of
part (1). �

3.1. Generalization. If we consider a subset C of (Conf, dH) which
is itself a Baire set such that the set {h : h is N−ringed for N ≥ N0}
is dense in C for each N0 ≥ 1 then Theorem 3 holds in (C, dH) as
well. In particular the set of configurations considered in the articles
[MSTr1],[MSTr2] is a Baire subset of (Conf, dH) thus Theorem 3 holds
in that context as well.
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For convenience we recall the setup, to interpret in our framework we
need to rotate the lattice by 45 degree. In these articles we considered
the plane R2 tiled by one by one closed square cells with corners on
the lattice Z2. Then fix r ∈ [1/4, 1/2) and consider the set of 2r by 2r
squares, with vertical and horizontal sides, centered at (a, b) contained
in the unit cell [0, 1]2, this set is naturally parametrized by

A := {t = (a, b) : r ≤ a ≤ 1− r, r ≤ b ≤ 1− r}

with the usual topology inherited from R2. The parameter space we
considered was AZ2

with the product topology. It is a Baire space.
Each parameter g = (ai,j, bi,j)(i,j)∈Z2 ∈ AZ2

corresponds to a wind-tree
table in the plane in the following manner: the tree inside the cell
corresponding to the lattice point (i, j) ∈ Z2 is a 2r by 2r square with
center at position (ai,j , bi,j)+(i, j). The wind-tree table Bg is the plane
R2 with the interiors of the union of these trees removed. Note that
trees can intersect only at the boundary of cells.

4. Appendix

Proof of Proposition 1. Remember that Uε(g) := {g′ : dH(g
′, g) <

ε}.
Let (gi)i∈N be a sequence of configurations. Consider εn = 1/n. Let

Bε := {z : ρ(z,∞) > ε)}. Let kj be the cardinality of gj ∩ Bε1. The
sequence {kj} is uniformly bounded above since pairs of points have by
assumption distance at least s, thus the sequence ki only take a finite
number of values. Thus we can choose subsequence (gj)j∈J0 such that
the sequence (kj : j ∈ J0) is constant, call this constant c1.

If c1 = 0 then for each j ∈ J0 let g1j be the empty configuration.
Otherwise for each j ∈ J0 let g1j := {z11,j, . . . , z

1
c1,j

} = gj ∩ Bε1 . For

each j we think of g1j as a finite configuration in Conf, but also as a
point in Sc1 . By compactness of Sc1 we can find a subsequence J1 ⊂ J0
such that the (g1j : j ∈ J1) converge to a point g1 := (z11 , . . . , z

1
c1
) ∈ Sc1 .

Note that d(z1i , z
1
j ) ≥ s for all i 6= j, thus g1 ∈ Conf. Furthermore we

have g1j ∈ Uε1(g
1) for all sufficiently large j ∈ J1. Repeat this argument

for n = 2 to produce a subsequence J2 ⊂ J1 which converge to a point
g2 ∈ Sc2. Again we have g2 ∈ Conf and g2j ∈ Uε2(g

2) for all sufficiently
large j ∈ J2. Note that c2 ≥ c1 ≥ 0 and for j = 1, . . . , c1 we have
z2j = z1j . Repeat this construction for each n. Finally we define g to be

the collection of points such that every z ∈ g is in gk for all sufficiently
large k. By construction for any z1, z2 ∈ g we have d(z1, z2) ≥ s, thus
g ∈ Conf. Note that g can be an infinite, finite, or even the empty
configuration.

We claim that g is an accumulation point of the sequence (gj)j∈N.
Fix a neighborhood U of g. Since εn → 0 as n → ∞ we can choose
n so large that Uεn(g) ⊂ U . By construction of g and gn we have
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Uεn(g
n) = Uεn(g). The result follows since gj ∈ Uεn(g

n) for all suffi-
ciently large j ∈ Jn ⊂ N. �

Remark. If we remove the empty and finite configurations from Conf
the space is not even locally compact.

References

[AvHu] A. Avila and P. Hubert, Recurrence for the wind-tree model Annales de
l’Institut Henri Poincaré - Analyse non linéaire.

[BaKhMaPl] P. Bachurin, K. Khanin, J. Marklof and A. Plakhov Perfect retrore-

flectors and billiard dynamics Journal of Modern Dynamics 5 (2011) 33–48.
[BiRo] C. Bianca and L. Rondoni The nonequilibrium Ehrenfest gas: A chaotic

model with flat obstacles? Chaos 19 (2009) 013121.
[De] V. Delecroix Divergent trajectories in the periodic wind-tree model J. Mod.

Dyn. 7 (2013) 1–29.
[DeHuLe] V. Delecroix, P. Hubert and S. Lelièvre Diffusion for the periodic wind-

tree model Ann. Sci. ENS 47 (2014) 1085–1110.
[DeZo] V. Delecroix and A. Zorich Cries and whispers in wind-tree forests

arXiv:1502.06405 (2015)
[DeCoVB] C.P. Dettmann, E.G.D. Cohen and H. van Beijeren Statistical me-

chanics: Microscopic chaos from brownian motion? Nature 401, 875 (1999)
doi:10.1038/44759

[EhEh] P. and T. Ehrenfest Begriffliche Grundlagen der statistischen Auffassung

in der Mechanik Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in
German, translated in:) The conceptual foundations of the statistical approach

in mechanics, (trans. Moravicsik, M. J.), 10-13 Cornell University Press, Itacha
NY (1959).

[FrHu] K. Frączek and P. Hubert Recurrence and non-ergodicity in generalized

wind-tree models arXiv:1506.05884 (2015).
[FrUl] K. Frączek and C. Ulcigrai Non-ergodic Z-periodic billiards and infinite

translation surfaces Invent. Math. 197 (2014) 241–298.
[Ga] G. Gallavotti Divergences and the Approach to Equilibrium in the Lorentz and

the Wind-Tree Models Phys. Rev. 185 (1969) 308–322.
[GaBoGe] G. Gallavotti, F. Bonetto and G. Gentile, Asepcts of Ergodic Qualitative

and Statistical Theory of Motion Springer 2004
[HaWe] J. Hardy and J. Weber Diffusion in a periodic wind-tree model J. Math.

Phys. 21 (1980) 1802–1808.
[HaCo] E.H. Hauge and E.G.D. Cohen Normal and Abnormal Diffusion in Ehren-

fest’s Wind-Tree Model J. Math. Phys. 10 (1969) 397–414.
[HaCo1] E.H. Hauge and E.G.D. Cohen Normal and Abnormal Diffusion in Ehren-

fest’s Wind-Tree Model Phys. Lett. A 25 (1967) 78–79.
[HuLeTr] P. Hubert, Pascal, S. Lelièvre and S. Troubetzkoy The Ehrenfest wind-

tree model: periodic directions, recurrence, diffusion J. Reine Angew. Math.
656 (2011) 223–244.

[KeMaSm] S. Kerckhoff, H. Masur, and J. Smillie, Ergodicity of billiard flows and

quadratic differentials, Annals of Math. (2) 124 (1986), no. 2, 293–311.
[MSTr1] A. Málaga Sabogal and S. Troubetzkoy Minimality of the Ehrenfest wind-

tree model Journal Modern Dynamics 10 (2016), 209–228.
[MSTr2] A. Málaga Sabogal and S. Troubetzkoy Ergodicity of the Ehrenfest wind-

tree model Comptes Rendus Mathematique 354 (2016) 1032–1036.



14 ALBA MÁLAGA SABOGAL AND SERGE TROUBETZKOY

[MSTr3] A. Málaga Sabogal and S. Troubetzkoy Weakly-mixing polygonal billiards

Bulletin London Math. Soc. 49 (2017) 141–147.
[Tr] S. Troubetzkoy Typical recurrence for the Ehrenfest wind-tree model J. Stat.

Phys. 141 (2010) 60–67.
[VBHa] H. Van Beyeren and E.H. Hauge, Abnormal diffusion in Ehrenfest’s wind-

tree model Physics Letters A 39, (1972) 397–398.
[WoLa] W. Wood and F. Lado Monte Carlo calculation of normal and abnormal

diffusion in Ehrenfest’s wind-tree model J. Comp. Physics 7 (1971) 528–546.

INRIA

E-mail address : alba.malaga@polytechnique.edu

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille,

France

Address : I2M, Luminy, Case 907, F-13288 Marseille CEDEX 9, France
E-mail address : serge.troubetzkoy@univ-amu.fr


