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Abstract
Process discovery aims at constructing a model from a set of obser-

vations given by execution traces (a log). Petri nets are a preferred tar-
get model in that they produce a compact description of the system by
exhibiting its concurrency. This article presents a process discovery algo-
rithm using Petri net synthesis, based on the notion of region introduced
by A. Ehrenfeucht and G. Rozenberg and using techniques from linear
algebra. The algorithm proceeds in three successive phases which make
it possible to find a compromise between the ability to infer behaviours
of the system from the set of observations while ensuring a parsimonious
model, in terms of fitness, precision and simplicity. All used algorithms
are incremental which means that one can modify the produced model
when new observations are reported without reconstructing the model
from scratch.

1 Introduction
The notion of region introduced by Andrzej Ehrenfeucht and Grzegorz Rozen-
berg [1, 2] is at the origin of numerous studies on the synthesis of Petri nets [3]
from specifications given by labelled transitions systems or by languages. Algo-
rithmic solutions for the synthesis of Petri nets using linear algebra techniques
∗Supported by DFG (German Research Foundation) through grant Be 1267/15-1 ARS (Al-

gorithms for Reengineering and Synthesis).
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[4, 5, 6] and combinatorial techniques [7, 8, 9] have been used in the context
of process discovery [10, 11]. Indeed, the goal of process discovery [12, 13] is
to construct a model of a system under observation from a set of its execution
traces, a so-called log of the system. Even though a log usually consists of a
very large set of executions traces it can not exhaust all possibilities. A process
discovery algorithm should therefore be able to generalize. Namely, by learning
from the samples of behaviour given in the log it must be able to infer that
some execution trace that was not reported in the log is nonetheless a valid
behaviour of the system. But it should not generalize too much. Otherwise the
model would lack in precision. On the other hand the generated model should
be as simple as possible where the complexity of a Petri net would take into
account the number of its places, the weights of its flow relation etc. Another
key feature is the incrementality of the construction which means that one can
amend the model when new observations are reported without reconstructing
the model from scratch.

It may also be desirable for process discovery to be able to identify possible
outliers in the log. Namely, it would discard executions traces that deviate from
the behaviour of the intended model and are consequently interpreted as errors.
However, Petri net synthesis always provides an over-approximation of the lan-
guage given as input. Thus the constructed model reproduces all the execution
traces reported in the log. We say that it fits the log. Therefore, in the Petri
net synthesis approach to process discovery one tends to consider that outliers
have already been eliminated during a preprocessing phase applied to a con-
crete version of the log. The full log contains additional informations, including
word frequencies, that can be used to detect suspicious behaviours. Thus, one
considers that all execution sequences in the log are valid behaviours and there-
fore a correct model should fit the log. A convenience of this assumption is to
enable us to cleanly delineate the learning ability of process discovery. Namely,
one should only infer behaviours that are shared by all the models that fit the
log. A model is precise if it adds few behaviours to those obtained by general-
ization. Since Petri net synthesis returns a model whose language is the least
over-approximation of the log by a Petri net language (at least when all minimal
regions are taken into account) it provides an optimal solution in that respect.
However, this solution may be unnecessarily complicated. The remaining con-
cern is thus to find a good compromise between precision and simplicity. For
that purpose we present in this paper some techniques and heuristics that can
be used to extract simpler models associated with subsets of minimal regions.

Section 2 presents a self-contained account of Petri net synthesis from a
prefix-closed language. Our solution toward process discovery is described in
Section 3 and assessed in the concluding section.
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2 Petri Net Synthesis from a Prefix-closed Lan-
guage

2.1 Petri Nets
We restrict to Petri nets whose transitions correspond bijectively to a fixed
set of events E = {e1, . . . , en}. A place p can then be encoded as a vec-
tor p = (p0, . . . , p2n) ∈ N1+2n where p0 = M0(p) is the value of the place
in the initial marking and the other components provide the flow relations:
pi = •p(ei) and pn+i = p•(ei). Thus p = (M0(p); •p; p•). For instance
the places of the Petri net depicted in Fig. 1 are encoded by the following
vectors: p1 = (0, 2, 0, 1, 0, 0, 0, 0, 4), p2 = (3, 0, 0, 1, 4, 2, 4, 0, 0), and p3 =
(2, 0, 2, 0, 0, 0, 0, 1, 0). Since its set of transitions is fixed we identify a Petri
net with its set of places and represent it by the matrix whose columns are the
vectors that encode places.
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Figure 1: A Petri net and its graph of reachable markings.

The transition relation between markings is given by

M [e〉M ′ ⇐⇒ M [e〉 and M ′ = M • e

where • is a (total) action of the set of events E on the set of “extended”
markings M ∈ ZP where P is the set of places (in which we admit negative
entries). It is defined via the next three points where e ∈ E and w ∈ E∗: (1)
M • ε = M , (2) (∀p ∈ P ) (M • e)(p) = M(p)− p•(e) + •p(e), and (3) M • (w ·
e) = (M • w) • e. Relation M [w〉 given next ensures that reachable markings
contain only non-negative entries: (1) M [ε〉 always holds, (2) M [e〉 ⇐⇒ (∀p ∈
P ) M(p) ≥ p•(e), and (3) M [w · e〉 ⇐⇒ M [w〉 and M • w[e〉 The language
of a Petri net L(N) = {w ∈ E∗ |M0[w〉} is thus a prefix-closed language of E∗.
Note that

(M • w)(p) = M0(p) + Ψ(w)(•p− p•) (1)
where Ψ(w) ∈ NE , the Parikh vector of w, records the number Ψ(w)(ei) of
occurrences of letter ei in w: Ψ(w)(ei) = ]ei

(w).
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2.2 Regions
If L ⊆ E∗ is a prefix-closed language one has L ⊆ L(N) ⇐⇒ (∀w · e ∈
L) M0 • w[e〉. Hence by Equation (1): L ⊆ L(N) ⇐⇒ (∀w · e ∈ L)(∀p ∈
N) M0(p) + Ψ(w)(•p − p•) ≥ p•(e). Using the vector encoding of places this
equivalence can be reformulated as

L ⊆ L(N) ⇐⇒ (∀w · e ∈ L)(∀p ∈ N) 〈Ψ(w), e〉 · p ≥ 0 (2)

where 〈v, e〉 = (1; v;−v−e) for v ∈ NE and e ∈ E. We let LC ⊆ NE×E denote
the set of pairs (v, e) for which exists w ∈ L such that Ψ(w) = v and w · e ∈ L.
We identify LC with the matrix whose rows are the vectors 〈v, e〉.1 One has

L ⊆ L(N) ⇐⇒ (∀p ∈ N) LCp ≥ 0 (3)

and then L ⊆ L(N) ⇐⇒ LCN ≥ 0. In view of Equation (3), we let the regions
of a prefix-closed language L be the places of the net synthesized from L, given as
N (L) =

{
p ∈ N1+2n

∣∣ LCp ≥ 0
}

. Hence we have a Galois connection between
prefix-closed languages and Petri nets:

L ⊆ L(N) ⇐⇒ LCN ≥ 0 ⇐⇒ N ⊆ N (L) (4)

Using Equation (3) with L = L(N) we get that (∀p ∈ N) L(N)Cp ≥ 0,
i.e. a place of a Petri net is a region of its language, called the extension of
the place. Nonetheless not all regions of L = L(N) are extensions of places
of N . They correspond to places that can be added to N without modifying
its language. Due to the Galois connection the composition N (L(·)) is indeed
a closure operation and N (L(N)), called the saturation of N , is obtained by
adding to N all the places that permit the execution of every word in L(N).2

2.3 Separation Problems
Applying the Galois connection (Equation 4) to an atomic Petri net N = {p}
tells us that

L ⊆ L({p}) ⇐⇒ p ∈ N (L) (5)

meaning that a vector p ∈ N1+2n is a region of L if and only if, viewed as
an atomic Petri net, it allows the execution of every word in L. Note that
w · e ∈ L({p}) if and only if w ∈ L({p}) and 〈Ψ(w), e〉 · p ≥ 0. Hence for any
w ∈ L({p}) and e ∈ E we say that place p inhibits event e after reading w
when 〈Ψ(w), e〉 · p < 0. Accordingly, for any prefix-closed language L, we let

1Note that 〈v, e〉 determines both vector v ∈ NE and event e ∈ E so that we shall allow
ourselves to write for instance (∃〈v, e〉 ∈ LC) Φ(v, e) in place of (∃w ∈ E∗)(∃e ∈ E) w ·e ∈
L ∧ Φ(Ψ(w), e), and accordingly to view LC also as a set of vectors in Z1+2n, the rows of
matrix LC.

2The following properties are direct consequences of the Galois connection: (1) L is a Petri
net language, i.e. (∃N) L = L(N), if and only if L = L(N (L)); (2) if N is a synthesized
net, i.e. (∃L) N = N (L), then N = N (L(N)) and it is the largest Petri net with the given
language (i.e., N is saturated); (3) L(N (L)) is the least Petri net language containing L.
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LSP ⊆ NE ×E denote the set of vectors 〈v, e〉 for which exists w ∈ L such that
Ψ(w) = v and w ·e 6∈ L. An element sp ∈ LSP is called a separation problem for
L. We say that place p ∈ N1+2n witnesses the separation problem sp ∈ LSP,
or that the separation problem is solved by the place, when sp · p < 0. Then a
language L is a Petri net language, i.e. L = L(N) for some Petri net N , if and
only if every instance of the separation problems in LSP is solved by some place
of N . Then N ⊆ N (L), i.e. N is formed from a subset of regions of L. 3

Say that a set R ⊆ N (L) of regions is complete w.r.t. a prefix-closed language
L if it witnesses all solvable instances of separation problems, i.e. for every
〈v, e〉 ∈ LSP, when (∃p ∈ N (L)) 〈v, e〉·p < 0, then also (∃p ∈ R) 〈v, e〉·p <
0. Suppose that L is a Petri net language. R ⊆ N (L) is complete if and only
if L(R) = L. In particular if R ⊆ N ⊆ N (L(N)) then R is complete if and
only if L(R) = L(N), i.e. places in N \ R are redundant places that can be
dropped without modifying the language. If L is not a Petri net language
and R ⊆ N (L) is a complete set of regions then the language L(R) is not
necessarily the least language of a Petri net that contains L. It nevertheless
satisfies L(R) ∩ L · E = L(N (L)) ∩ L · E4 which states that L(R) differs from
the optimal solution L(N (L)) only after having strictly exited language L. We
call such a solution a suboptimal Petri net solution for L.

2.4 Minimal Regions
Two regions that differ only by a non-negative multiplicative factor, namely p
and p′ with p′ = k ·p for some 0 6= k ∈ N, provide equivalent places.5 Thus one
can without loss of generality consider vectors with rational entries and consider
the cone of regions given by

R(L) =
{
r ∈ Q1+2n ∣∣ r ≥ 0 ∧ LCr ≥ 0

}
(6)

This cone is generated by its finite set of extremal rays. Up to a multiplication
by a non-negative integer one can assume that each extremal ray has integral
entries. They constitute the set Rmin(L) = {r1, . . . , rK} of minimal regions of
L. We can restrict ourselves to minimal regions because minimal regions are
witnesses to all solvable separation problems (as sp · (Σλi · ri) < 0 with λi ≥
0 =⇒ (∃i) sp · ri < 0) and the net synthesized from minimal regions is
language equivalent to the synthesized net: L(N (L)) = L(Rmin(L)). Indeed,
by the same reasoning as above, if p = Σλi · ri inhibits event e after reading
w, so does some minimal region. Hence L({p}) ⊆

⋂
i L({ri}) = L(Rmin(L)).

Thus if each separation problem can be solved by R ⊆ Rmin(L) then L is the
language of the corresponding Petri net: L = L(R). Otherwise, L(Rmin(L)) is
the least Petri net language that contains L.

3Indeed L = L(N) =
⋂
{L({p}) | p ∈ N } iff (1) (∀p ∈ N) L ⊆ L({p}), i.e. p ∈ N (L)

and (2) (∀w ∈ L) (∀e ∈ E) w · e 6∈ L =⇒ (∃p ∈ N) 〈Ψ(w), e〉 · p < 0.
4Indeed let u ∈ L, such that u · e 6∈ L and u · e ∈ L(R) \ L(N (L)). Then sp = 〈Ψ(u), e〉

has a solution (in N (L)) but not in R, a contradiction.
5in the sense that one place can be replaced by the other in any Petri net without modifying

its behaviour.
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3 Incrementality of the Synthesis
The Petri net synthesized from a log (a prefix-closed language L ⊆ E∗) is
constructed from minimal regions that are associated with the extremal rays of
the cone of regions (Equation 6). We show that this construction is incremental.
Namely, it can be presented as an online process that updates the constructed
Petri net model whenever new execution sequences are added to the log which
are not executable in the current model. At each point in time the constructed
Petri net model is such that its language is an over-approximation of the current
log. For ease of presentation we decompose this process into three parts. A
preprocessing phase turns the log into a so-called specification graph from which
the set of linear constraints LC characterizing the set of regions and the set LSP

of separation problems can be extracted. Then we compute the set of minimal
regions based on LC. In a post-processing phase we extract a complete set of
places from the full set of minimal regions via LSP.

3.1 Generating the Set of Linear Constraints and Separa-
tion Problems

The specification graph of a prefix closed language L defines an over-approximation
LΨ,I of L that should be part of the language of any intended Petri net real-
ization of L. As such it specifies the generalization that process discovery is
expected to perform. First, we define the Parikh-Closure LΨ of L that charac-
terizes all Petri net models of L and then we refine it to LΨ,I when additional
information on cyclic behaviours are available. The specification graph allows
to produce the set of linear constraints and the separation problems that are
used to generate a Petri net model.

3.1.1 Parikh-Closure of a Language

The linear constraints that define the cone of regions are given by the vectors
in LC: (

∀p ∈ N1+2n) p ∈ N (L) ⇐⇒ (∀c ∈ LC) c · p ≥ 0 (7)

Nonetheless if w ·a and w′ ·a are two nonempty words of L where w and w′ have
the same Parikh image v then they lead to the same constraint 〈v, a〉 ∈ LC. This
is due to the fact that, by Equation (1), a Petri net language is Parikh-closed,
meaning that it is a prefix-closed language such that (∀w,w′ ∈ L) Ψ(w) =
Ψ(w′) ⇒ [(∀e ∈ E) w · e ∈ L⇔ w′ · e ∈ L]. The Parikh closure LΨ, i.e. the
least Parikh-closed language containing a prefix-closed language L, is given by
the labelled transition system TSΨ(L) with states S = {Ψ(w) | w ∈ L}, ini-
tial state s0 = Ψ(ε), and transitions T =

{
(v, e,v + e)

∣∣ 〈v, e〉 ∈ LC}. Hence
v e−→ v′ in TSΨ(L) if and only if v′ = v + e and there is a w ∈ E∗ such that
Ψ(w) = v and w · e ∈ L.

A prefix-closed language and its Parikh closure define the same set of linear
constraints, namely LC = (LΨ)C, and thus N (L) = N (LΨ). By Equation (4) it
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Figure 2: Abstraction TSΨ(L) of the log L =
Pref({abc, bad}). It defines the language LΨ =
Pref({abc, bad, abd, bac}).

follows that LΨ ⊆ L(N) for every Petri net such that L ⊆ L(N). Note that the
set of constraints LC and the set of separation problems LSP of a Parikh-closed
language L are disjoint and determine each other.

3.1.2 Taking cyclic behaviours into account

The transition system TSΨ(L) allows to produce each constraint c ∈ LC and
separation problem sp ∈ LSP only once and its size is expected to be much
smaller than the size of the log L. It can be seen as an approximation of the
reachability graph of the Petri net to be synthesized. Nonetheless, this transition
system is acyclic whereas the reachability graph of the Petri net synthesized from
the log will usually contain cycles. We obtain a much more accurate specification
of the expected model if we have knowledge about the cyclic behaviours. For
instance one often considers that a complete transaction, or treatment of a
case, in a workflow system does not affect the internal state of the system. This
property, called soundness [12], means that after the treatment of a case the
system recovers its initial state where it can initiate a new case. Each execution
sequence is related to some case and we can assume to be able to distinguish a
completed execution from a partial execution of a case. For that purpose let us
assume that L is the prefix-closure of its set Lmax of maximal elements (for the
prefix order relation). Words in Lmax would correspond to complete executions
of a case and their Parikh vectors should be T -invariants for the Petri net to be
synthesized, whose prefix language should therefore contain the prefix-closure
of the ω-language Lωmax.

We obtain the specification graph TSΨ,I(L) as a quotient of TSΨ(L) using
the linear transformation induced by the Gaussian elimination. More precisely
we let EQ = EQ1∪EQ2 where initially EQ1 consists of equations v = 0 for each
generator v of I and EQ2 = ∅ and we transform this system into equivalent
systems of equations until EQ1 = ∅. At each stage we choose an equation∑
λiai = 0 in EQ1 and an index i such that λi 6= 0. We remove this equation

from EQ1 and add it to EQ2 in the form ai =
∑
j 6=i

−λj

λi
aj , and replace all

occurrences of ai in all the other equations of EQ by the corresponding value.
We suppress equations of the form 0 = 0 that may appear in EQ1 on that
occasion. One ends up with a system of equations of the form ai =

∑
j∈J qi,jaj

for every i 6∈ J with rational coefficients qi,j . This system can then be presented
as equations with integral coefficients consisting of equations ai =

∑
j∈J ni,ja

′
j

for i 6∈ J and aj = nja
′
j for j ∈ J . It defines a linear transformation πI from

ZE to ZE′ where E′ =
{
a′j | j ∈ J

}
. Two states of TSΨ(L), or more generally
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two vectors of ZE , are said to be equivalent modulo I, in notation v ≡I v′ when
πI(v) = πI(v′). Thus the resulting quotient graph TSΨ,I(L) embeds into the
lattice ZE′ .

d′

c′c c

c c c

c

b

b

a a

a
d

d

Figure 3: Illustration of the con-
struction of TSΨ,I(L) with Lmax =
{ccadb, cbcccdb, caacdadb}. I is generated
by the vectors a+b+2c+d, 2b+4c+d, and
3a+ b+ 2c+ 2d. By Gaussian elimination
the system I = 0 is transformed into the
following system: a = d′, b = −2c′ + d′,
c = c′, and d = −2d′.

Say that a prefix-closed language L is I-saturated where I is a finitely gen-
erated subgroup of ZE if (∀w,w′ ∈ L) Ψ(w′) ≡I Ψ(w) =⇒ w ≡L w′ where
w ≡L w′ ⇐⇒ w−1L = (w′)−1L is the Nerode equivalence. The language
LΨ,I of TSΨ,I(L) is the least I-saturated language containing L, and one has
LΨ,I ⊆ L(N) ⇐⇒ N ⊆ N (L) for every Petri net N such that each element of
I is an invariant of N , i.e. such that I · N = 0 where I is the matrix with row
vectors 〈v〉 = (0; v,−v) for v ranging over a set of generators for I.

Note that, even though one considers only the invariants associated with the
completed executions, by Gaussian elimination we can also retrieve invariants
associated with “inner” cyclic computations. For instance if ad and abcd are
both in Lmax we deduce that b+ c is an invariant and thus infer that any word
in a(bc)∗d belongs to every Petri net model that fits the log. More generally if
Lmax ⊆ L′max is a finite but sufficiently large and representative subset of the set
L′max of maximal execution sequences of a Petri net (with language L′ωmax) then
Lmax will allow us to infer all the invariants of the net and by executing words
in Lmax in the model we will take all the transitions of its graph of reachable
markings. In that case the specification graph TSΨ,I(L) will be isomorphic to
the graph of reachable markings.

3.1.3 Incremental computation of the specification graph

The specification graph SG = TSΨ,I(L) can be constructed incrementally. In-
deed, when a new sequence w is added to Lmax we “run” this sequence w in SG
adding as many new states and transitions as necessary. Each new transition
induces an additional constraint in LC (which should be withdrawn from the set
of separation problems) and each new state s induces the additional separation
problems associated with the events e that are not allowed in this new state.6

6More precisely the new states are ∆(S,w) = {πI(Ψ(w′)) | w′ � w } \ S, and the new
transitions are ∆(T,w) = {(πI(Ψ(w′)), e, πI(Ψ(w′) + e) | w′ · e � w }\T where w′ � w means
that w′ is some prefix of w. A new transition (s, e, s′) induces a new constraint 〈v, e〉 and each
new state s and event e not allowed in s induces a new separation problem {〈v, e〉 | e ∈ E }
where v is the Parikh image of some path from the initial state to state s.
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Finally we also add the constraint Ψ(w) = 0 to LC (by introducing the two
inequalities Ψ(w) ≥ 0 and −Ψ(w) ≥ 0), and we apply Gaussian elimination to
update the representation of the specification graph. It is important to note that
the production of constraints is monotonous (we add constraints). However, at
each stage one can produce new separation problems and suppress some others
at the same time.

3.2 Computing the Minimal Regions
The computation of the set of extremal rays of the cone of regions is given in
Algorithm (1).

Algorithm 1 Computation of the minimal regions
Invariant R(L) =

{
x ∈ Q1+2n

∣∣ x ≥ 0 ∧ LCx ≥ 0
}

= {yR | y ≥ 0}
where the columns of R are the extremal rays of R(L)
Initially LC = ∅ and R = I1+2n
if some update of the log induces new constraints then
LC ← LC ∪ C where C are new constraints
R(L) =

{
x ∈ Q1+2n | ∃y ≥ 0 x = yR ∧ Cx ≥ 0

}
for all constraint (row) c of C do

We update R by intersecting the cone R = {yR | y ≥ 0}
with the half-space Hc = {x ∈ Qn | c · x ≥ 0}
R>0 ← {r ∈ R | c · r > 0}
R<0 ← {r ∈ R | c · r < 0}
R← R \R<0

for all r+ ∈ R>0 and r− ∈ R<0 with r+ and r− adjacent in R do
let r = (−c · r−)r+ + (c · r+)r−
r is the ray of the face generated by r+ and r− that lies in the
hyperplane

{
x ∈ Q1+2n | c · x = 0

}
R← R ∪ {r}

end for
end for

end if

It is a slight adaptation of the corresponding algorithm given in [3, p. 208]
that emphasizes its incrementality.

In the course of this algorithm we have to compute the adjacency relation
between the extremal rays. We recall the following alternative characteriza-
tion of this relation: Given a matrix A, the corresponding polyhedral cone
is C(A) = {x ∈ Qn | Ax ≥ 0}. Two extremal rays r1 and r2 are adjacent in
R = {yR | y ≥ 0} if and only if there does not exist another extremal ray r3
(i.e. distinct from r1 and r2) with suppA(r3) ⊆ suppA(r1) ∪ suppA(r2) where
suppA(r) = {a ∈ A | a · r > 0}. If A′ is obtained from A by adding a new
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constraint c and r ∈ R \R<0 then

suppA′(r) = suppA(r) ∪ {c} if r ∈ R>0

= suppA(r) if c · r = 0

We further compute suppA′(r) for the newly introduced extremal rays. We then
use the above characterization to update the adjacency relation, knowing that
two extremal rays r1 and r2 in R \R<0 are adjacent in C(A) if and only if they
are adjacent in C(A′).

In addition to the above incremental computation of the set of the minimal
regions we also need to update the value of a Boolean matrix SEP that records
those regions solving each separation problem. The rows of matrix SEP are in-
dexed by the extremal rays r, its columns by the separation problems sp ∈ LSP

and SEP(r, sp) = true ⇐⇒ r · sp < 0. When language L is upgraded to
L′ ⊃ L we suppress (respectively add) the rows corresponding to the extremal
rays that disappear (resp. appear) according to Algorithm (1). Similarly we
suppress the columns corresponding to the elements of (L′)C ∩ LSP (separa-
tion problems that become constraints) and add new columns associated with
(L′)SP \ LSP (new separation problems). Finally we compute the entries asso-
ciated either with a new extremal ray or a new separation problem.

3.3 Extracting a Petri Net Model
The method can be adapted to pure Petri net by encoding a place p as the
vector p = (M0(p); •p− p•), the definition of matrix LC is not modified but we
replace the constraint r ≥ 0 in the definition of the cone of regions (Equation
6) by r0 ≥ 0. The Petri net associated with the whole set of minimal regions
provides the model in this class whose language is the least over-approximation
of the log. However as illustrated by the example given in Figure 4 this solution
may contain redundant places.

Simple heuristics can be put forward to construct a complete subset of min-
imal regions. For instance one can iteratively select some region r that solves
the largest number of separation problems, and suppress from matrix SEP the
columns that corresponds to separation problems solved by r, and the row as-
sociated with r. The procedure stops when no separation problems remains
(matrix SEP is empty) or if none of the remaining separation problems can be
solved by the remaining regions (all entries of SEP are zeroes). Even though
in practice this algorithm performs quite well it does not necessarily produce
the simplest Petri net over-approximation of the log. We can improve the con-
structed model by applying the following linear programming problem to that
initial solution. Let the weight w(r) ∈ N of a region r ∈ R(L) describe how
complicated the region r is. For example, it can be measured by its initial
value together with the sum of its flow arc inscriptions: w(r) =

∑2n
i=0 ri. For

r ∈ R(L), the variable xr ∈ {0, 1} has value 1 iff the region r is part of the solu-
tion R = {r ∈ R(L) | xr = 1}. Similarly, for sp ∈ LSP, the variable ysp ∈ {0, 1}
has value 1 only if some region r ∈ R solves sp. A pair (x,y) is a potential so-
lution if it satisfies y ≤ x ·SEP, which means that for each separation problem
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Figure 4: Petri net associated with
the set of minimal pure regions com-
puted from the specification graph
of Fig. 3. Places p4 and p5 are re-
dundant and can be removed. The
corresponding regions do not solve
any separation problem that cannot
already be solved by the other three
places. The restriction to the set
{p1, p2, p3} is the Petri net of Fig. 1
whose marking graph can be com-
pared to the specification graph of
Fig. 3. This Petri net thus provides
the least over-approximation of the
log with a pure Petri net language.
However, without the restriction to
pure Petri nets, this specification
graph would be realisable exactly.

sp which is supposed to be solved (ysp = 1), there is indeed a region r in the
solution (xr = 1) that solves it (SP(r, sp) = 1). The weight of a potential
solution (x,y) is then the value

∑
xr=1 w(r) = x ·w. Solving the optimization

problem
min weight(y) = arg min

x
{x ·w | y ≤ x · SEP} (8)

leads to a set of regions with minimal weight that solves every separation prob-
lem sp such that ysp = 1. In particular if vector y encodes the set of solvable
separation problems we obtain a complete set of regions with a minimal weight.
By doing so we put emphasis on precision, by finding optimal models that pro-
vide a minimal over-approximation and then on simplicity by selecting among
these models one with a minimal weight. Priority is thus given to precision over
simplicity.

We may be interested to find alternative models that are less precise but
simpler. For that purpose we quantify the penalty of not solving a separation
problem by introducing the cost c(sp) ∈ N of a separation problem sp ∈ LSP.
For instance, one can count the number of words in the log that lead to some
state s of the specification graph. If only few words reach state s, then the
cost of a separation problem sp = 〈v, e〉 is low. This is in particular the case
when state s has just been introduced due to an update of the log. The cost of
a solution (x,y) is given by

∑
ysp=0 c(sp) = (1 − y) · c. We are interested in

solutions (x,y) which have a low weight and a low cost. Since these two goals
are conflicting, there is no unique best solution, but a Pareto front of pairwise
incomparable solutions. To find all solutions in the Pareto front, we solve a
series of integer linear programming problems. We start from a complete set of
regions with an optimal weight computed as indicated above. Thus y0 encodes
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the set of solvable separation problems and x0 = min weight(y0) is a complete
set of regions of minimal weight. Given a solution (xi,yi), we can find the next
solution (xi+1,yi+1) that is part of the Pareto front and has lower weight via:

yi+1 = arg min
y
{(1− y) · c | (∃x) y ≤ x · SEP and x ·w < xi ·w} (9)

and xi+1 = min weight(yi+1). Solving the previous problem with i = 0 provides
a solution (x1,y1) that has slightly higher cost than (x0,y0), but its weight is
better. Iterating this procedure provides a series of points on the Pareto front.
This can be repeated until we reach the solution with an empty set of regions
and the maximal cost, max cost =

∑
c(sp), at which point the complete Pareto

front was found. More realistically we will stop when the cost reaches a threshold
indicating that the solution generalises too much, or we will limit ourselves to
the first two or three solutions.

Note that this process is incremental, because algorithms that solve integer
linear optimisation problems work by having a current solution that is improved
upon. Thus, if the problem to solve changes, the optimal solution that was
previously found provides a good initial solution to start from.

4 Conclusion
As mentioned in the introduction Process Discovery puts emphasis on the fol-
lowing criteria: Replay-fitness states that the model is able to reproduce the
executions in the log, Generalization is the ability to learn behaviours of the
system from the set of samples found in the log, Precision stipulates that the
generated model does not generalize too much, and finally Simplicity states that
the model has a small size and complexity.

According to the principle of parsimony (a.k.a. Occam’s Razor) generaliza-
tion makes sense when the produced model provides the simplest explanation
for the observed behaviour. Hence it should maximize Replay-fitness and Sim-
plicity. The log does not contain all the behaviors of the intended model mainly
because of concurrency and the existence of cyclic behaviours. The construction
of the specification graph takes these two aspects into account to obtain the op-
timal level of generality: it characterizes the Petri net models that fit to the log
and whose invariants contain the Parikh images of cycles. A Petri net system
synthesized from a set of minimal regions always provides an over-approximation
of the language given as input. We thus have perfect replay-fitness. The approx-
imation is the more precise as we consider more regions. Hence we obtain the
more precise model by considering the whole set of minimal regions. Nonethe-
less optimality w.r.t. language inclusion does not guarantee simplicity of the
model. For that purpose we presented some heuristics to extract a complete
subset of minimal regions that minimize the size and complexity of the model.
Completeness means that the selected regions witness all solvable instances of
separation problems. For that reason it produces a Petri net with a suboptimal
language. The optimal language is obtained when all separations problems can

12



be solved. Then one can use integer linear programming to find such a sub-
optimal solution with a minimal weight, hence a model as simple as possible
amongst this set of best precise candidates. Finally one can also generate some
alternative solutions that are simpler but less precise. To sum up the presented
method provides a good compromise between the ability to infer behaviours of
the system from the set of observations while ensuring a parsimonious model,
in terms of fitness, precision and simplicity.

All used algorithms are incremental which means that one can modify the
produced model when new observations are reported without reconstructing the
model from scratch. Incrementality has been overlooked in the context of process
discovery because a log is usually a very large, and hopefully representative, set
of executions sequences and therefore we do not expect to gain new information
from the observation of extra runs. We think that incrementality is nevertheless
an important feature when the process under observation can evolve and produce
new behaviours due to some modifications in the organization. In that respect,
it might also be interesting to account for behaviours that disappear. For that
purpose we might choose to discard executions sequences in log after a certain
amount of time. However, in that situation, reminiscent of the the logic of theory
change [14], we lose monotony and it is not at all clear that our method can
easily be amended for that purpose. This question may be the subject of future
research.
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