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The combination of the 
functionalities of feedback circuits 
is determinant for the attractors’ 
number and size in pathway-like 
Boolean networks
Eugenio Azpeitia1, Stalin Muñoz2,*, Daniel González-Tokman3,*, Mariana Esther Martínez-
Sánchez4,5,*, Nathan Weinstein6,*, Aurélien Naldi7, Elena R. Álvarez-Buylla5,8, 
David A. Rosenblueth2 & Luis Mendoza9

Molecular regulation was initially assumed to follow both a unidirectional and a hierarchical 
organization forming pathways. Regulatory processes, however, form highly interlinked networks 
with non-hierarchical and non-unidirectional structures that contain statistically overrepresented 
circuits or motifs. Here, we analyze the behavior of pathways containing non-unidirectional (i.e. 
bidirectional) and non-hierarchical interactions that create motifs. In comparison with unidirectional 
and hierarchical pathways, our pathways have a high diversity of behaviors, characterized by the 
size and number of attractors. Motifs have been studied individually showing that feedback circuit 
motifs regulate the number and size of attractors. It is less clear what happens in molecular networks 
that usually contain multiple feedbacks. Here, we find that the way feedback circuits couple to each 
other (i.e., the combination of the functionalities of feedback circuits) regulate both the number and 
size of the attractors. We show that the different expected results of epistasis analysis (a method 
to infer regulatory interactions) are produced by many non-hierarchical and non-unidirectional 
structures. Thus, these structures cannot be correctly inferred by epistasis analysis. Finally, we show 
that the combinations of functionalities, combined with other network properties, allow for a better 
characterization of regulatory structures.

Early approaches considered that molecular regulation is composed of hierarchical and unidirectional interac-
tions, where “upstream” molecules regulate “downstream” molecules, but molecules are not regulated by mol-
ecules at the same or lower levels (molecules usually represent genes and gene products1). Unidirectional and 
hierarchical interactions form pathways, comprised by an input, internal molecules, and an output. Pathway 
dynamics (i.e., how the components in the pathway are activated and inhibited in time), follow a sequential order 
of regulatory events going from the input to the output through the internal molecules. Even though pathway 
dynamics seem to be an inherent property of molecular regulation2,3, molecular regulation is usually complex, 
forming highly inter-connected networks that are neither unidirectional nor hierarchical4–6. Our objective is to 
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systematically study the effect of including non-hierarchical and non-unidirectional (i.e. bidirectional) interac-
tions within pathways.

Adding interactions within a pathway modifies the pathway structure (i.e., the interaction graph describing 
the regulatory interactions between the molecules), allowing for the appearance of regulatory motifs. Motifs are 
statistically overrepresented regulatory interactions found in molecular networks5. Among the motifs, circular 
chains of oriented interactions known as feedback circuits, are specially relevant, because they regulate both the 
number and size of the attractors7,8. Attractors are stationary network states that represent biologically mean-
ingful properties9, such as cell identity10,11. Positive feedback circuits are necessary to have multiple attractors 
and negative feedback circuits are necessary to produce cyclic attractors12,13. Moreover, the maximum possible 
number of attractors is regulated by positive feedback circuits14. It is not completely clear, however, how the 
precise size and number of attractors are regulated within molecular networks where many feedback circuits are 
present15–17. In this work, we focus on the effect that adding non-hierarchical and non-unidirectional interactions 
has over the size and the number of attractors. In particular, we study how multiple feedback circuits, that result 
from the added interactions, regulate the size and number of attractors.

The study of the properties of non-hierarchical and non-unidirectional networks is fundamental to detect 
and solve limitations of traditional analyses. In particular, experimental research at small scales commonly uses 
traditional analyses that rely on the hierarchical and unidirectional assumptions. For example, assuming that 
regulatory interactions are hierarchical and unidirectional, epistasis analysis, as described in refs 1,18,19, can 
distinguish between different pathway structures by interpreting and organizing epistatic interactions (sensu 
Bateson20). The presence of non-unidirectional and non-hierarchical interactions, however, can produce incom-
plete or even wrong inferences when using epistasis analysis21. Here, we look for useful traits to distinguish 
between non-hierarchical and non-unidirectional regulatory structures that could improve inference methods, 
such as epistasis analysis.

In this work, we use synchronous Boolean networks to do a comprehensive analysis of Pathway-like net-
works (PLNs) that are non-hierarchical and non-unidirectional versions of pathways. We focus on the dynamical 
properties of PLNs, represented by both the number and the size of attractors. We show that PLNs have a large 
dynamical diversity in comparison with pathways. We confirm that feedback circuits are important regulators of 
the size and the number of attractors in a network. Then, we show for the first time, as far as we know, that the 
precise size and number of attractors in networks with multiple feedback circuits is in large part determined by 
the combination of the functionalities of feedback circuits. This combination refers to the network states where 
the feedback circuits in a network have an actual effect over the network dynamics. Then, we show that there are a 
vast number of PLNs producing the same set of attractors, hindering a correct inference of PLNs structures with 
methods such as epistasis analysis. Interestingly, PLNs producing the same set of attractors also have remarkably 
similar sets of combinations of functionalities. Thus, we explore how to use the combination of functionalities 
combined with both the network dynamic and structure for the characterization of PLNs. Our results show that 
PLNs with the same structure and with the same combination of functionality form small regions with dynam-
ically distinguishable properties. Thus, the study of such regions could facilitate the inference of such networks.

Methods
Boolean networks. In this work, we use the Boolean formalism to model molecular networks for the fol-
lowing reasons. (1) Because of their simplicity, Boolean networks are well suited to perform analyses in a large 
number of networks, without needing to deal with problems such as parameter estimation. (2) Despite their sim-
plicity, Boolean networks obtain biologically meaningful results (e.g., refs 10, 11 and 22–24). (3) Feedback circuits 
are fundamental for this work, and feedback circuit functionality is well studied in Boolean networks25,26. (4) Here 
we will focus on the size and number of attractors, and it has been proven that in Boolean networks positive and 
negative feedback circuits are a necessary condition for multistability and oscillations, respectively13,27. (5) We 
will use epistasis analysis, as described in refs 1, 18 and 19, that assumes that the molecules behave as Boolean 
variables. Hence Boolean networks are a natural and simple extension of epistasis analysis.

Molecular networks have variables representing the molecules included in the network (e.g., genes, proteins, 
hormones, among other molecules). In Boolean networks, variables can only take one of two possible values, 0 or 1,  
and their dynamics is described by

+ = …x t f x t x t( 1) ( ( ), , ( )), (1)i i n1

where xi(t + 1) represents the value of variable i at the time t + 1 as a Boolean function Fi of its n regulators  
xi(t), ..., xn(t) at the current time. In particular, we use synchronous Boolean networks, where the value of all var-
iables is updated at each time step.

The set of all values of the variables at time t is a network state. The number of network states in any network 
is equal to 2v, where v is the number of variables. Stationary network states are known as attractors. Single-state, 
stationary configurations are known as fixed-point attractors, whereas a set of network states that orderly repeat 
correspond to cyclic attractors. The size of an attractor is equal to the number of network states that conform such 
attractor.

For this work it is important to note that not all interactions in a network structure are necessarily functional. 
An interaction from a variable i to a variable j is considered functional, if j can change its value due to a change 
only in the value of i. The interaction sign is positive, if the change in the value of j goes in the same direction 
as the change in the value of i, and is negative otherwise (Fig. 1A; see Supplementary Methods for formal defi-
nitions). Note that a variable can act as a positive regulator and as a negative regulator of the same variable in 
different network states. According to some authors, interactions where a variable is a positive and negative reg-
ulator of another variable are not common in real molecular networks21,28–30. On the other hand, non-functional 
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Figure 1. Basic concepts and Pathway-like networks. (A) Analysis of the functionality of the interaction 
from B to A (red link in the interaction graph above). Notice that in the last pair of lines of the table, A(t +  1) 
and B(t) values are opposite, while A(t) is equal to 1 in both lines, indicating that a change, only in the value 
of B (highlighted in light red) can change the value of A in the next time step (highlighted in red). Thus, the 
interaction is functional and negative. (B) Above, the interaction graph of a network containing two positive 
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interactions, where a regulator does not influence the value of the regulated variable, do not provide any mean-
ingful information. Hence, in the networks analyzed here, we forbid both non-functional interactions and inter-
actions where a regulatory variable has both a positive and a negative influence over another variable.

A feedback circuit is a set of directed interactions forming a closed path. Feedback circuits can be positive 
or negative. The sign of a feedback circuit is given by the signs of its interactions. A circuit is positive if it has an 
even number of negative interactions, it is negative otherwise. The sole presence of a circuit in a network does 
not guarantee its functionality. Thus, a circuit is considered functional if all interactions of the circuit are func-
tional in a set of common network states25. Notice that using our sign and functionality definitions, there are 
four categories of feedback circuits, positive functional, negative functional, positive non-functional and negative 
non-functional. Furthermore, in this work, functional feedback circuits are characterized by the sign and number 
of network states where the circuit is functional (cardinality). The combination of the functionalities of feedback 
circuits is the set of all circuits functionalities present in a given network (Fig. 1B).

Here, we compare the structural and dynamical distance between networks. The structural distance is the sum 
of connectivity differences between the interaction graphs of two different networks. In particular, we considered 
as a connectivity difference any difference in the number or the sign of the interactions of two interaction graphs 
(Fig. 1C). The dynamic of a model can be visualized as a state diagram. A state diagram is a directed graph where 
each state in the state space represents a network state and is connected to the update state reached after applying 
to it the Boolean functions associated with the variables. The dynamic distance is a measure of the difference 
between the state diagrams of two networks. To calculate the dynamic distance we sum the differences in the 
states reached after applying to each network state the Boolean functions of each network (Fig. 1C).

Pathway-like networks construction. We analyze two types of networks, namely pathways and 
pathway-like networks (PLNs), both containing different types of interactions identified with the acronyms 
MUS, OUS and MP, which stand for mandatory unknown sign, optional unknown sign, and mandatory posi-
tive, respectively (Fig. 1G). MUS and MP interactions form unidirectional and hierarchical pathway structures 
(Fig. 1D). PLNs contain MUS, MP and OUS interactions (Fig. 1E,F). We construct two PLNs variants: single 
(1-PLNs) and double (2-PLNs). 1-PLNs is the set of networks that contains a pathway within its structure and at 
least one OUS interaction (Fig. 1E). 2-PLNs is the set of networks composed by two parallel pathways regulating 
the same output and at least one OUS interaction (Fig. 1F). 2-PLNs may have cross-regulation between their 
constituent pathways, which is a common biological situation.

We used two different approximations to analyze the size and the number of attractors. (1) We simulated each 
PLN starting from all network states until finding the attractors. (2) We use symbolic algorithms to search for 
PLNs with a specific number and size of attractors. It is important to note that in most cases, a given network 
structure can be described by more than one set of Boolean functions. Thus, there is a vast number possible PLNs 
structural and dynamical variants. Without considering the sign of the interactions, the number of possible struc-
tures for a network with v variables is equal to 2v2

. The Boolean functions associated with a variable is 22r
. where r 

is the number of regulators of the variable. Therefore, the total number of possible Boolean functions for a com-
pletely interconnected network with v variables is ×2v 2r

. In particular, there are ≈ 4.15 ×  1034 2-PLNs. The analysis 
of such a number of variants is humanly and computationally unfeasible. Thus, we use random sampling or con-
strained the maximum number of interactions for 2-PLNs analyses (see Supplementary Methods for more 
details).

Results
Non-hierarchical and non-unidirectional interactions greatly increases the dynamical diversity 
of pathways. Conventionally, molecular regulation is represented as unidirectional and hierarchical path-
ways, comprised by an input, internal molecules, and an output (Fig. 1D). To study pathways with more realistic 
structures, we consider the possibility that the internal molecules may regulate any component inside the path-
way (excluding the input). We call this structure a Pathway-like network (PLN). We analyzed single (1-PLNs) 
and double (2-PLNs) PLNs (Fig. 1E,F). PLNs have non-unidirectional interactions, and the internal molecules 
are non-hierarchically organized. For simplicity, we refer to PLNs as non-unidirectional and non-hierarchical 

feedback circuits, one between A and B (red and green interactions) and the other of A with itself (blue 
interaction). As observed below, both feedback circuits are functional, as there exists at least one network state 
(the network states are conformed by all the combination of A(t) and B(t) values in the left side of the tables) 
where all the interactions of each circuit are functional. The cardinality is equal to the sum of the network states 
where the feedback circuit is functional. Thus, the combination of functionalities of this network comprises a 
positive feedback circuit from A to A with a cardinality of two, and a positive feedback circuit between A and B 
with a cardinality of two. (C) Dynamical and structural distance between two networks. Above, the interaction 
graphs of two different networks. The structural distance is equal to the differences between the interaction 
graphs of the networks. Below, the state diagrams of the networks. The dynamical distance is equal to the sum 
of the differences (highlighted in yellow) between the state diagrams of both networks. (D) Pathway, (E) 1-PLN 
and (F) 2-PLN structure. INP =  INPUT and IM =  Intermediary Molecules. (G) Interaction types considered 
in this work to construct pathways, 1-PLNs and 2-PLNs: mandatory positive (MP), mandatory of unknown 
sign (MUS) and optional of unknown sign (OUS). Mandatory interactions are always present, while optional 
interactions can be either present or not. Positive interactions are always positive. Unknown sign interactions 
can be either positive or negative.
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structures. Regarding their dynamics, PLNs are constructed in such a way that the generation of Boolean func-
tions producing “meaningless” behaviors is forbidden21,28. Altogether, PLNs contain realistic structural and 
dynamical properties (see Methods).

We analyzed the dynamical diversity, measured as the number and the size of attractors in pathways, 1-PLNs 
and 2-PLNs. The simulation of all pathways, all 1-PLNs and more than randomly selected 30 million 2-PLNs. 
showed that the dynamical diversity vastly increases from pathways to 1-PLNs to 2-PLNs (Fig. 2A,B). Because 
the inputs follow the identity function, the minimum number of attractors is equal to 2|inputsl|, where inputs 
is the set of inputs. On the other hand, the maximum number of attractors found in our simulations are 2, 6, 
and 40 in pathways, 1-PLNs and 2-PLNs, respectively. This increase is also observed in the mean values, where 
the mean value of the number of attractors of 2-PLNs is significantly larger than in 1-PLNs (P <  0.001; Fig. 2C; 
see Supplementary information file for detailed information about all statistical results). Similar results can 
be observed for the size of attractors. Specifically, the maximum sizes are 1, 4, and 13 for pathways, 1-PLNs 
and 2-PLNs, respectively. Here, too, the mean value of the size of the 2-PLNs attractors is significantly larger 
(P <  0.001; Fig. 2D). Note that both the mean size and mean number of attractors are much closer to their mini-
mum value than to their maximum value. This indicates that most networks have a small number of attractors of 
small size; and at first sight it seems that they might fit a long-tailed distribution. However, these data do not fit 
power-law, logarithmic, exponential, normal or Poisson distributions. Nevertheless, our results clearly show that 

Figure 2. PLNs properties and relations. Distribution of the (A) number and (B) size of the attractors in 
pathways, 1-PLNs and 2-PLNs. Mean and confidence interval of the (C) mean number and (D) mean size of 
attractors for 1-PLN and 2-PLNs. (E) Relation between the number and mean size of attractors of 2-PLNs. 
(F) Mean size of attractors vs. 2-PLNs connectivity. Number of attractors vs. connectivity of 2-PLNs (G) and 
1-PLNs (H). 2-PLNs mean size of attractors vs. quantity of (I) positive and (J) negative feedback circuits, 
respectively. 2-PLNs number of attractors vs. quantity of (K) positive and (L) negative feedback circuits, 
respectively. In E-L each point represents a single 2-PLN or 1-PLN data, while the line represents the values 
predicted by Poisson GLM. Points in are displaced the X axis only for visual purpose. Similar results were found 
in 1-PLNs (Fig. S1).
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the overall diversity of dynamical behaviors grows from pathways to 1-PLNs to 2-PLNs, due to the addition of 
non-unidirectional and non-hierarchical interactions.

Feedback circuits’ role in the regulation of the PLNs attractors properties. We noticed that there 
is a statistically significant negative relation between the mean size and the number of attractors (P <  0.001; 
Figs 2E and S1A), suggesting that both the size and the number of attractors are regulated by the same prop-
erty, but in opposite directions. Then, we noticed that as we increase the number of non-unidirectional and 
non-hierarchical interactions, the size of the attractors increases in 2-PLNs (P <  0.001; Fig. 2F) and the number 
of attractors increases in both 1-PLNs and 2-PLNs (P <  0.001; Fig. 2G,H), showing that the property regulating 
the size and number of attractors, increases as we increase the connectivity of the PLNs. Positive feedback circuits 
are necessary for multistability, while negative feedback circuits are necessary to produce cyclic attractors12,13 and 
adding more non-unidirectional and non-hierarchical interactions creates more feedback circuits. Thus, it seems 
reasonable to think that the appearance of feedback circuits in PLNs structures is responsible for the increase in 
the dynamical diversity, and that depending on their sign, the feedback circuits will increase the size or the num-
ber of attractors. Indeed, positive feedback circuits are positively related with the number of attractors (P <  0.001), 
and negative feedback circuits are positively related with the size of attractors (P <  0.001;; Fig. 2I,J). Furthermore, 
positive feedback circuits have a negative relation with the size of attractors (P <  0.001), while negative feedback 
circuits have a negative relation with the number of attractors (P <  0.001; Figs 2K,L and S1B–E), explaining the 
negative relation between number and size.

To better analyze how feedback circuits regulate the size and number of attractors we divided PLNs in four 
categories. (1) PLNs with the minimum number of attractors, whose mean size is bigger than the mean size of 
certain percentage of the total set of PLNs analyzed (n− s+ ). (2) PLNs with more attractors than certain percent-
age of the PLNs, all fixed-point attractors (n+ s− ). (3) PLNs with the minimum number attractors, all fixed-point 
(n− s− ). (4) PLNs with more attractors than a percentage of the PLNs, whose size is bigger than the same per-
centage of the PLNs (n+ s+ ) (Fig. 3A). We classified all 1-PLNs and selected 10,000 2-PLNs of each category 

Figure 3. PLNs attractors properties regulation by feedback circuits. (A) Classification of PLNs according to 
the number and mean size of the attractors: n+ more attractors than 70%, 80%, 90%, 95% or 99% of the PLNs, 
n−  minimum number of attractors, s+ mean size of attractors bigger than 70%, 80%, 90%, 95% or 99% of the 
PLNs and s−  fixed-point attractors. (B) Total number of combinations of functionalities in 50 random sampling 
of 2,000 2-PLNs and 2,000 n− s−  2-PLNs (F). Mean number of combinations of functionalities contained in 
2-PLNs structures and in n− s−  2-PLNs structures obtained from a sampling of one million 2-PLNs randomly 
generated (F̂). Mean number of 2-PLNs and n− s−  2-PLNs structures that contained each combination of 
functionalies obtained from a sampling of one million 2-PLNs randomly generated (T).
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2-PLNs

Total ± CI Ratio ± CI Positive ± CI Negative ± CI

70%

 n− s− 3.34 ±  0.04 1.25 ±  0.02 1.71 ±  0.02 1.62 ±  0.03

 n− s+ 3.64 ±  0.04 0.74 ±  0.02 0.98 ±  0.02 2.64 ±  0.04

 n+ s− 3.77 ±  0.04 2.53 ±  0.02 3.13 ±  0.04 0.65 ±  0.02

 n+ s+ 4.72 ±  0.04 1.11 ±  0.02 2.25 ±  0.03 2.45 ±  0.03

80%

 n− s− 3.34 ±  0.04 1.25 ±  0.02 1.71 ±  0.02 1.62 ±  0.03

 n− s+ 3.70 ±  0.04 0.67 ±  0.02 0.99 ±  0.02 2.70 ±  0.03

 n+ s− 4.46 ±  0.04 2.71 ±  0.02 3.69 ±  0.04 0.72 ±  0.02

 n+ s+ 5.66 ±  0.05 1.16 ±  0.02 2.87 ±  0.03 2.76 ±  0.03

90%

 n− s− 3.34 ±  0.04 1.25 ±  0.02 1.71 ±  0.02 1.62 ±  0.03

 n− s+ 3.74 ±  0.04 0.66 ±  0.02 1.02 ±  0.02 2.72 ±  0.03

 n+ s− 4.71 ±  0.04 2.83 ±  0.02 3.88 ±  0.04 0.71 ±  0.02

 n+ s+ NA NA NA NA

95%

 n− s− 3.34 ±  0.04 1.25 ±  0.02 1.71 ±  0.02 1.62 ±  0.03

 n− s+ 4.65 ±  0.04 0.62 ±  0.02 1.31 ±  0.02 3.39 ±  0.04

 n+ s− 5.08 ±  0.04 3.00 ±  0.02 4.28 ±  0.04 0.73 ±  0.02

 n+ s+ NA NA NA NA

99%

 n− s− 3.34 ±  0.04 1.25 ±  0.02 1.71 ±  0.02 1.62 ±  0.03

 n− s+ 5.17 ±  0.05 0.62 ±  0.02 1.51 ±  0.02 3.66 ±  0.04

 n+ s− 5.51 ±  0.05 3.30 ±  0.02 4.68 ±  0.04 0.76 ±  0.02

 n+ s+ NA NA NA NA

Table 1.  2-PLNs feedback circuits. Positive/negative ratio and number of positive and negative feedback 
circuits in 2-PLNs divided by category (n+ s+ , n− s+ , n+ s−  and n− s− ) using different thresholds for the 
number and the mean size of attractors. The number of positive and negative feedback circuits within the same 
category, have significant differences in all cases (P <  0.001). Differences of the total and the ratio between 
categories is shown in the Supplementary Material. NA stand for not enough data available. The “Total” column 
corresponds to the sum of positive and negative feedback circuits.

1-PLNs

Total ± CI Ratio ± CI Positive ± CI Negative ± CI

80%

 n− s− 2.59 ±  0.12 1.06 ±  0.03 1.24 ±  0.08 1.35 ±  0.08

 n− s+ 2.57 ±  0.07 0.57 ±  0.03 0.29 ±  0.02 2.29 ±  0.07

 n+ s− 2.74 ±  0.09 2 ±  0 2.46 ±  0.09 0.29 ±  0.03

 n+ s+ NA NA NA NA

90%

 n− s− 2.59 ±  0.12 1.06 ±  0.03 1.24 ±  0.08 1.35 ±  0.08

 n− s+ 2.52 ±  0.10 0.75 ±  0.07 0.15 ±  0.02 2.37 ±  0.09

 n+ s− 2.88 ±  0.13 2 ±  0 2.63 ±  0.12 0.25 ±  0.04

 n+ s+ NA NA NA NA

95%

 n− s− 2.59 ±  0.12 1.06 ±  0.03 1.24 ±  0.08 1.35 ±  0.08

 n− s+ 2.67 ±  0.17 NA 0 2.67 ±  0.17

 n+ s− 3.00 ±  0.00 NA 3.00 ±  0.00 0

 n+ s+ NA NA NA NA

Table 2.  1-PLNs feedback circuits. Positive/negative ratio and number of positive and negative feedback 
circuits in 1-PLNs divided by category (n+ s+ , n− s+ , n+ s−  and n− s− ) using different thresholds for the 
number and the mean size of attractors. The number of positive and negative feedback circuits within the same 
category, have significant differences in all cases (P <  0.001 except n− s−  for which P <  0.057). Differences of 
the total and the ratio between categories is shown in the Supplementary Material. It was not possible to do 
statistical analyses with 95% due to the lack of variability. The “Total” column corresponds to the sum of positive 
and negative feedback circuits. NA stand for not enough data available.
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from a sample of over six million 2-PLNs that were randomly generated. We used five percentages for the size 
and the number of attractors, namely 70%, 80%, 90%, 95% and 99%. In 1-PLNs it is not possible to define 99% 
and 70%, due to the limited amount of data, and we did not find n+ s+  1-PLNs for any percentage and for n+ s+  
2-PLNs using 90% or higher. Then, to see if the quantity of feedback circuits in a PLN is important to determine 
the number and the size of the attractors, we compared the total number of feedback circuits of n+ s+ , n+ s− , 
n− s+  and n− s− . In 2-PLNs, the total number of feedback circuits consistently and significantly increase from 
n− s−  to n− s+  to n+ s−  to n+ s+  (Tables 1 and S1), suggesting that as the number of feedback circuits increases, 
the number and size of attractors tends to increases too. According to Kwon et al.31, the positive/negative feedback 
circuits ratio provides the trend of the number and the size of attractors, with larger ratio values for networks with 
more attractors of smaller size. If this is the case, n+ s−  PLNs should have a bigger positive/negative feedback cir-
cuits ratio than n− s+ . On the other hand, n− s−  and n+ s+  could have a balance between positive and negative 
feedback circuits. As observed in Tables 1, 2, S1 and S2, this is indeed the case in both 1-PLNs and 2-PLNs using 
all percentages (P <  0.001). From the circuits ratio result, we can expect the PLNs n+ s− to have more positive 
feedback circuits and fewer negative feedback circuits, the opposite behavior for n− s+ , and a similar number 
of positive and negative feedback circuits in the n+ s+  and n− s− . As observed, this is the case in both 1-PLNs 
or 2-PLNs (Tables 1 and 2). Thus, our results support the idea that the positive/negative feedback circuits ratio 
provides the correct trend for the size and the number of attractors.

The combination of the functionalities of the feedback circuits regulates the attractors size and 
number. It is important to note that because the feedback circuits ratio provides a statistical relation of how 
the number and size of attractors will behave, there could be some instances where the size and number are not 
consistent with the feedback circuits ratio. In fact, we detected PLNs that behaved opposite to what was expected 
from their feedback circuits ratio. For example, we found PLNs n+ s−  with a lower positive/negative feedback 
circuits ratio than the mean ratio in PLNs n− s+  and vice versa (e.g., Supplementary Fig. S2). Observe that the 
mere presence of a feedback circuit in the structure does not guarantee the expected behavior unless the circuit 
is functional8,25. Then, the feedback circuits ratio might not predict the correct trend when some of the circuits 
are not functional. For a circuit to be functional, all interactions within such a circuit should be functional in a 
shared set of network states25 (Fig. 1B). To study whether the functionality of the circuits is behind the unex-
pected behaviors, we analyzed the functionality of feedback circuits of all 1-PLNs and a sampling of one million 
2-PLNs. Indeed, we found that not all feedback circuits in the PLNs are functional. However, considering only 
functional feedback circuits do not eliminated all the unexpected behaviors (e.g., Supplementary Fig. S2). This 
result indicates that the circuits’ ratio and functionality is not enough to understand how the size and the number 
of attractors are regulated. Thus, we decided to look for complementary properties that could allow us to better 
understand how the number and size of attractors are regulated.

We noticed that the effect the multiple feedback circuits have over the number and size of the attractors 
depends, not only on their sign and functionality, but also on how circuits couple to each other. In particular, we 
observed that the same feedback circuits in the same network structure can be functional in a different number 
of network states (i.e., a circuit can have different cardinalities) and changes in the cardinality of a circuit can 
(1) modify the number and the size of the attractors and (2) modify the cardinality of other circuits (Fig. S3). 
Thus, the cardinality of the circuits could be important to understand how multiple feedback circuits couple and 
determine the number and size of attractors. Accordingly, we defined the combinations of the functionalities of 
feedback circuits (hereinafter named combinations of functionalities) of a PLNs as the set of all its circuits func-
tionalities, characterized by sign and cardinality (Fig. 1B). If a specific number and size of attractors is produced 
only by certain combinations of functionalities, a set of PLNs with the same number and size of attractors, such as 
n− s−  PLNs, should have a reduced number of combinations of functionalities than a set of PLNs with different 
number and size of attractors. Thus, to study if only certain combinations of functionalities can produce a specific 
number and size of attractors, we compared the number of combination of functionalities in (1) all 1-PLNs against 
all n− s−  1-PLNs and in (2) 50 samples of 2,000 2-PLNs against 2,000 n− s−  2-PLN, randomly selected from 50 
samples of 100,000 2-PLNs randomly generated. Indeed, there are only eight combinations of functionalities in 
n− s−  1-PLNs and 62 in 1-PLNs. Similarly, there are significantly fewer combinations of functionalities in n− s−  
2-PLNs (788 ±  7.74) than in 2-PLNs (1,510 ±  11.07; P <  0.001; Fig. 3B). This result supports the idea that specific 
number and size of attractors are produced by specific combinations of functionalities. Then, if only certain 
combinations of functionalities are capable of produce a specific number and size of attractors, only some of the 
combinations of functionalities contained in a structure should produce attractors of a specific size and number.  
We found that by selecting the n− s−  PLNs, the mean number of combinations of functionalities contained 
in each structure in all 1-PLNs and in one million randomly selected 2-PLNs diminished from 8.85 ±  21.38 to 
2.66 ±  3.65 and from 14.24 ±  0.199 to 2.36 ±  0.146 in 1-PLNs and 2-PLNs, respectively (Fig. 3B). This reduction 
is significant in the 2-PLNs case (P <  0.001), demonstrating that over the large number of existing combinations 
of functionalities in a structure, only some of them are able to produce a specific number and size of attractors.

Observe that networks with different structures can produce the same combination of functionalities 
(Fig. S3A,B). If the combination of functionalities regulates the attractors’ size and number, different PLN struc-
tures producing the same combination of functionalities should also be able to produce the same number and 
size of attractors. The latter would be better supported if each combination of functionalities were, on average, 
contained in the same number of structures in a set of PLNs with the same size and number of attractors and in 
a set of PLNs with different size and number of attractors. To analyze if this is the case, we compared the mean 
number structures containing each combination of functionalities in (1) all 1-PLNs structures against all n− s−  
1-PLN structures and in (2) the structures 2-PLNs against the structures of n− s−  2-PLN, from a sample of one 
million randomly selected 2-PLNs. Each combination of functionalities is contained in exactly two structures 
in both n− s−  1-PLNs and the complete set of 1-PLNs. Similarly, the combinations of functionalities of 2-PLNs 
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and n− s−  2-PLNs are contained in 1.46 ±  0.005 and in 1.43 ±  0.0022 structures (Fig. 3B), respectively, showing 
no significant differences (P <  0.331). By doing an analysis of individual PLNs, we find some instances, in which 
the same combination of functionality produce a different number or size of attractors. We looked for, but did 
not find, other complementary properties, such as additional interactions, that allows to completely understand 
how the number and the size of the attractors is regulated. However, our results strongly suggest that network 
structures with the same number of variables and with the same combination of functionalities, in general, can 
produce the same number and size of attractors.

Figure 4. Characterization of the PLNs that produce the epistasis results. (A) Boolean interpretation of the 
epistasis analysis using the + + pathway variant shown in (B). (B) Target attractors for each of the four pathway 
variants using the epistasis analysis. Mutated genes are highlighted in grey. For 1-PLNs we only consider INP1, 
GENE1/2 and OUTPUT values. Epistasis analysis do not consider the possibility of a second parallel and cross-
talking pathway. Thus, the asterisks represent unknown values for GENE3 and GENE4 in the 2-PLNs case. 
Input values are considered equal to 1 because the epistasis analysis assumes that the input values are constant 
during the experiment1. (C) Percentage of 2-PLNs that produce the target attractors of a different pathway 
variant than the pathway variant contained in the 2-PLN as we added more interactions to the unidirectional 
and hierarchical pathway structure. (D) Percentage of combinations of functionalities shared between the PLNs 
that produced each of the four sets of target attractors.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7:42023 | DOI: 10.1038/srep42023

Combinations of the functionalities of feedback circuits and the analysis of epistasis. It is 
important to note that our definition of combination of functionalities is independent of the specific network 
states that are attractors. Thus, a complementary way to test if the combinations of functionalities regulate the 
number and the size of attractors, is to search for networks with the same number of attractors of the same size, 
but whose attractors are represented by different network states. These networks should be produced by the same 
or similar sets of combinations of functionalities.

We noticed that epistasis analysis, as described by refs 1, 18 and 19, provides this possibility. Briefly, epistasis 
is a term used when the phenotype of an allele is masked by an allele in another locus. The gene with the allele 
whose phenotype persists when the alleles of both loci are present is called epistatic gene, while the other is the 
hypostatic gene. Epistasis analysis uses a simple set of two rules to order the epistatic and hypostatic genes1,18,19. 
First, in a double-mutant experiment, the epistatic gene is upstream and positively regulates the downstream gene 
when the two genes used in the double-mutant display a characteristic single-mutant phenotype under the same 
condition. And second, in a double mutant experiment, the epistatic gene is downstream and is negatively regu-
lated by the upstream gene when the two genes display a characteristic single mutant phenotype under different 
conditions. The epistasis analysis can be formalised in Boolean terms in a straightforward way (Fig. 4A). Observe 
that the possible combinations of positive and negative interactions in a pathway already gives four pathway var-
iants that have the same number and size of attractors, but the attractors of each pathway variant correspond to 
different network states. Previous works had characterized the expected results of the four pathway variant1,18,19. 
Thus, we used the expected results of each pathway variant by the epistasis analysis to further analyze the impor-
tance of the combinations of functionalities in the regulation of the size and number of attractors.We named 
each pathway variant according to the sign of the regulation from GENE1 to GENE2 and from GENE2 to the 
OUTPUT, as + + , + − , − +  and −  − . Then, we interpreted the epistasis analysis expected results for each pathway 
variant as the set of target attractors in our PLNs (Fig. 4B) and analyzed the number of 1-PLNs and 2-PLNs that 
achieved each of the four possible sets of target attractors.

The number of PLNs able to produce the target attractors in the 1-PLNs is 60 for the + +  and + −  variants and 
68 for the − +  and − −  variants. We were unable to perform an exhaustive 2-PLNs search because of the astro-
nomical number of redundant 2-PLNs found. Restricting our search to 2-PLNs with a maximum of five extra 
interactions compared to the pathway structure, we found more than 4.731 ×  107 2-PLNs that produced each set 
of target attractors. In the 1-PLNs case, the target attractors of a pathway variant are only obtained when the same 
pathway variant is contained in the PLN. On the other hand, ≈ 2.41% of the 2-PLNs produced wrong inferences. 
We considered PLNs producing the target attractors of a pathway variant different from the pathway variant con-
tained in its structure as wrong inferences. This demonstrates that epistasis analysis can produce wrong regulatory 
inferences when analyzing non-unidirectional and non-hierarchical networks, as stated before by our group21. 
The wrong inferences increase as we added more interactions (Fig. 4C) and are produced thanks to the added 
interactions between the parallel pathways contained in the 2-PLNs. It is interesting to note that, apparently, 
when there are wrong inferences, the extra interactions produce an alternative pathway that conformed with the 
expected pathway variant but that contained some intermediary steps between GENE1/2 or between GENE2 and 
OUTPUT (see some examples in Fig. S4). However, the alternative pathway by itself is not sufficient to produce 
the expected results as the alternative pathway can be created by adding one interaction and inconsistencies 
between the target attractors and the pathway variant contained in the PLNs appear only when we added three or 
more interactions (Fig. 4C). Thus, our results demonstrate that epistasis analysis produce wrong and incomplete 
inferences in non-hierarchical and non-unidirectional networks, but when a network has a low connectivity, 
wrong regulatory inferences are scarce.

The combinations of functionalities that produced the four target attractors are almost the same in both 
1-PLNs and 2-PLNs. In 1-PLNs all four target attractors share one combination of functionalities (see Fig. S5). 
This is a meaningful result as that is the only combination of functionalities that produced the target attractors 
of the variants + +  and + −  and one of the two combination of functionalities that produce the target attractors 
of the variants − +  and − − . In the 2-PLNs case, there are 6,481 combinations of functionalities that produced 
the target attractors of the variants + +  and + −  and 7,060 that produced the target attractors of the variants − +  
and − − . 6,304 combinations functionalities are shared by the four pathway variant (Fig. 4D). This is an astonish-
ing result that greatly supports the importance of the combinations of functionalities to determine the attractors 
properties, as the target attractors vary for each pathway variant, indicating that the common feature among the 
PLNs found are the number and the size of attractors.

Comprehensive characterization of PLNs. Having multiple networks producing the same set of results 
raises a problem for the analyses of molecular regulation by methods, such as the epistasis analysis, as they cannot 
distinguish between these networks. Hence, we did an exploration of which properties could be useful to distin-
guish between these networks. For this characterization, we used all 1-PLNs and 2-PLNs with no more than two 
interactions added to the unidirectional and hierarchical pathway structure, because comparison of 2-PLNs with 
three or more extra interactions was extremely challenging or computationally impossible.

First, we analyzed if structurally similar PLNs followed similar dynamics (Fig. 1C). As observed in Fig. 5A, 
dynamical and structural distances are weakly correlated. Because the correlation is weak, structurally close PLNs can 
have large dynamical distances and vice versa. Thus, even when dynamical and structural properties are correlated,  
this correlation is not sufficient to distinguish between different network strucutres15,32–34. Then, we noticed that 
PLNs producing the expected results of the same pathway variant are dynamically closer than networks producing  
the results of a different pathway variant. Likewise, PLNs with the same combination of functionalities are con-
tained in clusters of PLNs with the same structure. Interestingly, PLNs within the same cluster and with the same 
combination of functionalities are among the more similar networks at the dynamic level (Fig. 5B). Thus, PLNs 
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Figure 5. PLNs characterization. (A) 2-PLNs relationship between dynamical and structural distance. (B) On 
the left side, 1-PLNs dendogram using the dynamical distance. Each leaf of the dendogram represent a 1-PLN. 
As observed, 1-PLNs containing the results of the same pathway variant form distinguishable clades, colored 
with red (+ +  variant), yellow (+ −  variant), purple (− −  variant) and green (− +  variant). The blue A and red B 
beside the dendogram represent the two combinations of functionalities found in 1-PLNs and are aligned with 
the 1-PLNs that contain them. 1-PLNs not aligned with an A or a B do not have any functional circuit. On the 
right side, clusters formed of 1-PLNs with a structural distance of 0. The blue and red nodes of the clusters are 
approximately aligned with their corresponding 1-PLNs marked with the blue As and red Bs in the dendogram. 
Grey nodes of the clusters correspond to PLNs with no functional circuits.
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with the same combination of functionalities and the same structure form small groups with extremely similar 
dynamic properties. Based on these results, we believe that studying the characteristics of these regions could be 
an important step towards a better and more general understanding of molecular regulation and could allow for 
a better characterization of regulatory networks to improve the scope of traditional methods for the inference of 
regulatory interactions. The analysis of such regions and their integration in epistasis analysis context remain as 
interesting questions for future research.

Conclusions and Discussion
We characterized the effect of adding certain interactions within unidirectional and hierarchical pathway struc-
tures. These extra interactions create realistic regulatory structures with a resulting non-unidirectional and 
non-hierarchical organization containing motifs that we named Pathway-like Networks (PLNs). Additionally, 
we included certain procedures to ensure the creation of only biologically meaningful dynamics3,22,28. As a result, 
PLNs have realistic structural and dynamical properties. We used a Boolean formalism to model the dynamic 
of these networks for many reasons, such as its simplicity and the fact that it have been successfully used to 
model many gene regulatory networks10,11,22–24. However, Boolean formalisms has some limitations that should 
be addressed in the future. For example, in certain cases the level of expression or concentration of genes and pro-
teins produces regulatory interactions that cannot be modeled in Boolean terms (e.g., aggravating and synthetic 
interactions). Despite the limitation of the Boolean formalism, our work clearly shows that PLNs have a great 
dynamical diversity, characterized by the number and the size of attractors.

The explosion in the dynamical possibilities of the PLNs was expected from previous works. For example, 
Kauffman9 hypothesized that the number of attractors in random Boolean networks increases as v . Later, it was 
found that the number of attractors in Boolean networks increases faster than any power law as the number of 
variables increases35. A strict comparison between these proposals and our results is difficult, because both 
Samuelsson and Kauffman’s proposals were based on studies with a fixed number of connections, while our net-
works have a variable connectivity. Nonetheless, our results clearly show that the dynamical diversity of PLNs is 
vast, compared with the dynamical diversity of unidirectional and hierarchical pathways.

We then focused on the role of network motifs, specially feedback circuits, in the size and the number of 
attractors. We found that, as the number of positive feedback circuits increases, the number of attractors increases 
and the size of the attractors decreases. We also observed the exact opposite relation between the number of nega-
tive feedback circuits and the number and size of attractors. These results were expected considering that positive 
and negative feedback circuits are required for multistability and oscillations12,13. As it has been reported31, the 
positive/negative feedback circuits ratio give the correct trend for the number and the size of the attractors. These 
results are interesting, but they do not explain how feedback circuits in PLNs, which can have multiple coupled 
feedback circuits, regulate the size and number of attractor. Thus, we looked for a more mechanistic understand-
ing of the regulation of the size and the number of attractors by analyzing the coupling of feedback circuits. We 
found that the combination of functionalities (i.e., the way feedback circuits couple) is a key regulator of the 
number and the size of attractors. In general, PLNs with the same combination of functionalities can produce the 
same number and size of attractors, independently of its structure.

It is important to note that the same combination of functionalities can produce attractors of different size 
and number, indicating that the combination of functionalities definition does not capture completely the regu-
lation of the size and the number of attractors, leaving many interesting issues for future research. Some of these 
issues are, if an extended or modified definition of the combination of functionalities would allow to completely 
understand how multiple circuits regulate the size and the number of attractors. For example, does considering 
other properties, such as the functionality of interactions between variables of different circuits could improve our 
understanding of how circuits regulate the number and the size of attractors? It might also be that the property 
regulating the size is not the same property that regulates the number of attractors. Another important point for 
future research is that we compared networks with the same number of variables, but it could be that the same 
combination of functionalities in a network with different variables will produce attractors with different proper-
ties. Hence, we wonder if there is a way to characterize the number and size of the attractors in a network, inde-
pendently of the number of variables in such a network. Anyhow, we believe that studying how multiple feedback 
circuits couple and modify the properties of a network, will provide the answer to many of these questions. Thus, 
it is worthy of further research and could provide insightful information about molecular regulation in general.

In accordance with previous observations15,23,36, we found that several PLNs with different structures are capa-
ble of producing the same number, size, and even the same set of attractors. This result emphasizes how lim-
ited are the traditional methods for the analysis of experimental results, such as the epistasis analysis1,18,19. First, 
because such analyses consider only a restricted number of possible networks, they are not well suited to deal with 
the huge diversity of possible dynamic behaviors in real molecular networks. Second, because such methods are 
unable to distinguish between alternative networks producing the same set of attractors. Thus, we looked for the 
number of PLNs that produced the epistasis results. In 2-PLNs, the number of networks that produced the same 
set attractors was so large, that we needed to constrain our search to a limited number of PLNs structures. It is 
important to remember that all these networks produce exactly the same attractors, which represent the results 
expected by epistasis analysis. As a consequence, we can conclude that with the use of epistasis analysis multiple 
regulatory structures are indistinguishable16. Even more, we found that in some cases they can even produce 
wrong gene regulation inferences21. These incorrect inferences are due to the appearance of alternative path-
ways that can produce the expected behaviors. There may not be general rules to infer complex network struc-
tures, such as PLNs15,16. However, our results suggest that it is fundamental to expand the analyses of regulatory 
interaction, allowing them to include and consider the presence of regulatory motifs, such as feedback circuits. 
Considering feedback circuits could be specially relevant, as according to our results, networks sharing the same 
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structure and the same combination of functionalities produce dynamically similar regions. Consequently, in 
principle, it should be possible to use information, such as the combination of functionalities, to produce better 
inferences of regulatory structures. In fact, our preliminary studies suggest that not assuming a unidirectional 
and hierarchical structure, already improves the inference of regulatory structures37. Thus, we believe that a more 
general understanding of the combination of functionalities and its relation with networks structure and dynamic 
will open possible ways to study and analyze molecular regulation of biological processes.
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Erratum: The combination of the 
functionalities of feedback circuits 
is determinant for the attractors’ 
number and size in pathway-like 
Boolean networks
Eugenio Azpeitia, Stalin Muñoz, Daniel González-Tokman, Mariana Esther Martínez-
Sánchez, Nathan Weinstein, Aurélien Naldi, Elena R. Álvarez-Buylla, David A. Rosenblueth & 
Luis Mendoza

Scientific Reports 7:42023; doi: 10.1038/srep42023; published online 10 February 2017; updated on 22 March 2017

This Article contains typographical errors.

In the methods section under subheading ‘Boolean networks’, “In Boolean networks, variables can only take one 
of two possible values, 0 or 1, and their dynamics is described by

+ = …x t f x t x t( 1) ( ( ), ( )), (1)i n1 1

where xi(t +  1) represents the value of variable i at the time t +  1 as a Boolean function Fi of its n regulators xi(t), 
… , xn(t) at the current time”.

should read:

“In Boolean networks, variables can only take one of two possible values, 0 or 1, and their dynamics is described 
by

+ = …x t f x t x t( 1) ( ( ), ( )), (1)i n1 1

where xi(t +  1) represents the value of variable i at the time t +  1 as a Boolean function fi of its n regulators xi(t), 
… , xn(t) at the current time”.

In the Results section under subheading ‘Non-hierarchical and non-unidirectional interactions greatly 
increases the dynamical diversity of pathways’,

“Because the inputs follow the identity function, the minimum number of attractors is equal to 2|inputsl|, where 
inputs is the set of inputs”.

should read:

“Because the inputs follow the identity function, the minimum number of attractors is equal to 2|inputs| where 
inputs is the set of inputs”.
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