
HAL Id: hal-01609012
https://hal.inria.fr/hal-01609012

Submitted on 3 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Listing Maximal Independent Sets with Minimal Space
and Bounded Delay

Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, Luca Versari

To cite this version:
Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, Luca Versari. Listing Maximal Inde-
pendent Sets with Minimal Space and Bounded Delay. International Symposium on String Processing
and Information Retrieval (SPIRE), Sep 2017, Palermo, Italy. pp.144-160, �10.1007/978-3-319-67428-
5_13�. �hal-01609012�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132024144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01609012
https://hal.archives-ouvertes.fr

Listing Maximal Independent Sets with Minimal
Space and Bounded Delay

Alessio Conte1, Roberto Grossi1, Andrea Marino1(B), Takeaki Uno2,
and Luca Versari3

1 Università di Pisa, Pisa, Italy
{conte,grossi,marino}@di.unipi.it

2 National Institute of Informatics, Tokyo, Japan
uno@nii.jp

3 Scuola Normale Superiore, Pisa, Italy
luca.versari@sns.it

Abstract. An independent set is a set of nodes in a graph such that no
two of them are adjacent. It is maximal if there is no node outside the
independent set that may join it. Listing maximal independent sets in
graphs can be applied, for example, to sample nodes belonging to differ-
ent communities or clusters in network analysis and document clustering.
The problem has a rich history as it is related to maximal cliques, dom-
inance sets, vertex covers and 3-colorings in graphs. We are interested
in reducing the delay, which is the worst-case time between any two
consecutively output solutions, and the memory footprint, which is the
additional working space behind the read-only input graph.

1 Introduction

Given an undirected graph G = (V,E) with |V | = n nodes and |E| = m edges, a
maximal independent set (MIS) I ⊆ V does not contain any two nodes connected
by an edge, and is maximal under inclusion (no other I ′ ⊃ I has this property).
We pose the question whether listing MISs can be achieved efficiently in small
space and bounded delay.

Although this problem originated in graph theory, as MISs are related to
dominance sets, vertex covers and 3-colorings in graphs, we observe that data
is networked in information systems nowadays. The classical problem of looking
at patterns in texts or sequences, or trees, can be translated into graphs.1 Here
the patterns are MISs, which can be seen as a way to build samples that are
independent from each other, thus motivating the question.

One possible field of application is in networks analysis, such as social science,
where a MIS identifies a group of persons from a tightly connected community

Work partially supported by University of Pisa under PRA 2017 44 project on
Advanced Computational Methodologies for the Analysis of Biomedical Data.

1 The algorithmic techniques are different, and even the simple query asking if a path
occurs in a graph is NP-hard. Nevertheless, discovering patterns in sequences and
patterns in graphs are quite similar tasks, and can share techniques in some cases.

u

I5

I4 I3

I1 I2
w

v

y

zz

x

w

y

x
u

I5

I4 I3

I1 I2
w

zy

Fig. 1. Structure of the solution space defined by reverse search (left) and the solution
tree defined by a parent function (right).

that are isolated from each other, or can be used as sample for communities,
where each node of the MIS is a person from a different community.

MISs are a powerful tool for clustering: they can be used for clustering docu-
ment collections (where two documents are linked if their content is similar), by
using a MIS as a collection of starting points for the chosen clustering method or
for clustering wireless networks to identify hierarchical structures [2]. Moreover,
they are often used to build efficient indexes for answering shortest path or dis-
tance queries (see for instance [12]). MISs are applied for clustering purposes also
in image segmentation, that aims at grouping image pixels into visually “mean-
ingful” segments. In this case, the goal is to select the segments of an image that
are distinct, and together partition the image area. In a graph where segments
are nodes and edges correspond to the overlap of the segments, all the maximal
independent sets correspond to all the non-overlapping segment partitions. [3]
studied the maximum weighted independent set (MWIS) to get the maximally
distinctive partitions by encoding a distinctiveness scoring of the segments into
the nodes weights. This approach was also extended to clustering aggregation in
general [15]. [21] modeled co-occurrences of words and documents in the web as
a graph, and used MWIS’s in this graph to find sets of important but distinct
(i.e., rarely co-occurring) topics. However, the MWIS problem is NP-hard and
hard to approximate. Listing all the MISs can also provide an exact solution for
the latter problem, eventually testing different distinctiveness scoring systems.

Our Results. In this paper we describe an algorithm that lists all the MISs with
Õ(min{ndΔ2,mn}) delay—the Õ notation ignores polylog factors—and O(s)
additional space, using the following parameters: d is the graph’s degeneracy,
that is, the minimum value d for which any induced subgraph has maximum
node degree at most d; Δ is the maximum node degree; s is the maximum size of
a MIS. We assume that the input graph is read-only, and the space complexity
is the additional working space.

As it can be seen, the additional space is asymptotically minimal, and
the delay can be as low as Õ(n) (if d and Δ are Õ(1)), but never larger
than the baseline of O(nm) (ignoring logarithmic factors) given by Tskuiyama
et al. [23]. We further reduce our time bound by providing a second algorithm
with Õ(min{dΔn,mn}) delay which increases the memory requirement to O(n):
this simultaneously improves both best known bounds for delay and space as dΔ
is a pessimistic upper bound on the cost, which is smaller than m in practice.

Related Work. Listing MISs is a classical problem in enumeration which dates
back at least to the 70s, with many results such as producing MISs in lexico-
graphical order [16], experimentally or with guarantees [13], achieving O(n3)
delay but using exponential space. Some results have been also proposed for
particular classes of graphs: claw-free graphs [18], interval graphs, circular-arc
graphs and chordal graphs [14,19,20], trees [14], permutation graphs [25].

In general, listing the MISs of a graph G is equivalent to listing the max-
imal cliques of its complement G = (V,E). However improved algorithms for
maximal cliques, such as the space efficient solution that we presented in [9],2

do not translate into improved bounds for listing MISs: the transformation from
MISs to maximal cliques is not effective, especially in sparse graphs which have
a dense complementary graph, but even in dense graphs, since their complemen-
tary graph can be dense too. These techniques mainly fall in the backtracking
approach, as for [4], or in the reverse search paradigm introduced by [1].

In the former case, these approaches are not output sensitive for both cliques
and MISs, in the sense that their guarantee on the running time is not related
to the number of solutions. In the relatively recent work by Eppstein et al. [10]
for cliques, the overall time O(dn3d/3) becomes O(n2 · 3n/3) to list all the MISs,
as the degeneracy d can be Θ(n) in the complementary graph, while the delay
remains exponential, as in the case of the algorithm in [22]. Moreover, the space
usage, without storing the transformed graph, becomes O(ns) for [22] and O(n2)
for [10]. On the other hand, while adapting the reverse search for maximal cliques
to MISs, the algorithms by Chiba and Nishizeki [6], by Makino and Uno [17]
and Chang et al. [5] require O(n2 − m) space: recalling that arboricity, max-
imum degree, and degeneracy of the complementary graph can be linear, the
delay bound becomes O(n(n2 − m)) for [6], and O(n4) for [5,17]. Moreover, as
shown next in Remark 1, the delay bound in [9] becomes Õ(nm), which does
not improve upon Tskuiyama et al. [23].

Also, since MISs can be considered a hereditary property or independence
set system, they can be listed using the framework of Cohen et al. [7] but the
resulting bounds still do not improve over those of [23]. For these reasons ad
hoc algorithms for cliques and MISs have been proposed separately in the lit-
erature, and the best output sensitive bounds for MISs are O(nm) delay with
O(n2) space [23], or O(n2.37) delay with O(n2) space by using matrix multipli-
cation [17], or O(n2.09) delay with O(n4.27) space [8].

Our Approach. The algorithmic challenges addressed here are related to the
reverse search, which is a powerful enumeration technique introduced by Avis
and Fukuda [1]. Consider the graph-like structure shown in Fig. 1 (left), which we
call the solution digraph: each “cloud”, or node, corresponds to a distinct MIS,
and an arrow from MIS Ii to MIS Ij with label v means that Ij can be computed
from Ii through a node v, using a rule that is specific for the algorithm at hand.
As in other techniques, such as divide and conquer, the algorithmic contribution
is the efficient implementation of the generic step, for the problem at hand.

2 This paper has been organized so as to highlight the novelties with respect to [9].

To list all the MISs, we use the rule to traverse the solution digraph and
output each node/solution once. An easy way to do so is to keep track of all
visited nodes. Even though such methods have been used, e.g. in [13], they are
expensive as they require exponential memory. Reverse search avoids this issue
by choosing a single parent Ii for each MIS Ij , such that Ii < Ij for some given
order (such as the lexicographic one), among all MISs leading to Ij . This way
it induces a directed spanning forest on the solution digraph, as illustrated in
Fig. 1 (right). Some MISs have no parent and are the roots of the spanning forest.
Note that the solution digraph and directed spanning forest are for the purpose
of explanation and never materialized. The roots can be easily identified and are
at most n.

Traversing the solution digraph can be implicitly done by performing a DFS:
each time we explore the possible children solutions and recur in just the ones
whose parent is the current solution, following [17]. This visit can be made
iterative, by avoiding the stack of the recursion. We can restore the state of
the parent when returning from the call to a child. This strategy is particularly
useful if we want to achieve sublinear additional memory, since we avoid using
memory proportional to the height of the recursion tree, where a single bit per
recursion level is too much. Here the techniques in [9] for maximal cliques do not
translate smoothly into improved bounds for MISs, as discussed in Remark 1.

The complexity of the reverse search is dominated by the cost of applying
the rule to the current MIS in the directed spanning forest. Computing the
rule is expensive as the time spent checking not fruitful candidate children is
completely charged on the delay of the algorithm. Thus we introduce a novel
technique that allows us to apply the rule only to the children, rather than to
all the out-neighbors in the solution digraph. We check a necessary condition,
which is lighter to compute than the rule, so that the rule is actually applied to
selected out-neighbors. During this task, we use a small amount of space.

2 Preliminaries

Let G = (V,E) be an undirected and connected graph, represented as adjacency
lists. In this work, we will use the following notation: N(x) is the neighborhood
of node x, and N(x) = V \ (N(x) ∪ {x}) the complementary-neighborhood; for
a set of nodes A, N(A) =

⋂
x∈A N(x) (and we consider N(∅) = V).

We assume the nodes labeled as v1 < v2 < · · · < vn, in a reversed degeneracy
ordering, i.e., so that vn < vn−1 < · · · < v1 is a degeneracy ordering (see,
e.g. [11]). It is easy to see that this ordering can be obtained with O(1) additional
space if it is not given.

We define V<vi
as {v1, v2, . . . , vi−1}. Given a set of nodes A, we then define

A<vi
as respectively A∩V<vi

; for brevity, let N<vi
(vi) be N<(vi). V>vi

, A>vi
and

N>(vi) are similarly defined. Note that in a degeneracy ordering |N>(v)| ≤ d,
so as we are using a reversed degeneracy ordering, we have |N<(v)| ≤ d.

Given an independent set I and a vertex v ∈ V \ I, we denote as I ′
v the set

I<v ∩ N(v).
Given any two independent sets Ii and Ij , we say that Ii < Ij if Ii is lexico-

graphically smaller than Ij as node sets, thus inducing a lexicographic order on
the independent sets. Given an independent set I ⊆ V , complete(I) is defined
as the lexicographically smallest MIS that contains I, and can be computed by
iteratively adding the smallest element that can be added to I, obtaining the
following lemma.

Lemma 1. complete(I) can be computed in Õ(m) time.

3 Listing MISs

Given an independent set I and a node v ∈ V \ I such that I<v 	= ∅, formula (1)
generates a new maximal independent set.

F (I, v) = complete(I ′
<v ∪ {v}) (1)

In the solution digraph illustrated in Fig. 1, there is an arrow Ii → Ij labeled
with v if and only if Ij = F (Ii, v). The parent-child relationship, which defines
the directed spanning forest, is as follows.

parent(I) = complete(I<pi(I)) (2)

where pi(I), the parent index of I, is the smallest element v ∈ I for which
complete(I≤v) = I. Note that if Ii = parent(Ij) and v = pi(Ij), then Ii, Ij , v
satisfy formula (1).

The roots, which have no parent, can be found as complete({v}), for any
v ∈ V such that min{complete({v})} = v; the number of roots is at most n.

During the traversal of the solution digraph, in the current MIS Ij we com-
pute its parent Ii and the parent index v, thus restoring the state of the traversal
when returning from the call to Ij . Keeping this in mind, the delay per listed
MIS is bounded by the maximum amount of time spent in the current MIS, say
I, observing that this time is intermixed with the calls to its children.

The delay can be bounded by the cost of (i) computing I from its parent using
formula (1); (ii) checking each candidate child to see if a call with formula (1)
should be applied; finally (iii) if I is not a root, restoring the state to parent of
I using formula (2). Indeed, once we get the costs (i)–(iii), we can employ the
well-known alternative output technique in [24], so that the delay is bounded
by the costs (i)–(iii) times a constant. We recall that in the alternative output
technique, when the level (i.e. the distance from the root) is odd the output is
done before exploring the children, otherwise it is done soon after.

In the rest of the paper we give the details for our new two algorithms for
listing MISs using the above notions. The first algorithm is presented in Sect. 4
and achieves O(s) additional memory and Õ(min{dΔ2n,mn}) delay. The second
algorithm is presented in Sect. 5 and reduces the delay to Õ(min{dΔn,mn}),
albeit using O(n) space.

One of the core ideas for both algorithms is the efficient computation of the
test in point (ii) above. For the sake of simplicity, this behavior is encapsulated
by the function child-exists, which is executed for each possible candidate.
Our algorithms minimize the space usage by implementing some efficient implicit
iterators that avoid building sets explicitly. For instance, the set I ′

v = I<v ∩N(v)
in formula (1) is never materialized, as its explicit computation is expensive both
in terms of time and space.

Remark 1. Using the above ideas, a listing algorithm for MISs can be immedi-
ately obtained by adapting those for maximal cliques in [9] to MISs, using them
on the complementary graph G explicitly (see Sect. 1) or implicitly by using the
complementary neighborhood N() in place of the neighborhood N() whenever
the latter is needed. We refer to the resulting algorithm to list the MISs using
this simple modification of [9] as base. This is shown in Algorithm 1 and uses
the implementation of function child-exists provided by Algorithm 2.

We further remark that some important optimizations in [9] for cliques are
not useful as they do not bring any benefit for base. Indeed, while in [9] we have
|N>(x)| ≤ d thanks to the degeneracy ordering and |N(x)| ≤ Δ, these bounds
do not hold for complementary neighborhoods. Hence, the improvements done
to check the existence of a child (see Algorithm 2 in [9]) does not improve upon
the basic child conditions of Makino-Uno based approach [17], which is reported
in Algorithm 2 (see also Algorithm 1 in [9]). Indeed, one of the most important

benefit of [9] was the speed up and the memory improvements of this function
thanks to the definition of BK (see Algorithm 2 in [9]), which can be stored
in a O(d) and allows to discard candidates. In the case of MISs, dealing with
BK can be costly, as its size can be Θ(n) for a generic K in G. For this reason
we need to use a more basic check and the function child-exists is replaced
with the equivalent, more basic check used in Algorithm 1 in [9]. As a result,
unfortunately, base has no benefit as shown next. The size of the cand set
increases to Θ(n), thus the cost per solution, that is the cost of a recursive call, is
bounded by n times the cost of a complete call. As the cost of complete takes
Õ(m) (as shown in Lemma 1), this gives us a total time cost per solution Õ(nm)
which does not improve upon the one by Tsukiyama et al [23] (its additional
space usage is O(n)).

In the following, in order to bound our costs, we will use the lemma below.

Lemma 2. pi(I) and parent(I) can be computed in Õ(m) time.

Proof. Given a MIS I, with x = pi(I), we have parent(I) = complete(I<x).
Furthermore, we know that complete(I<y) is equal to I iff y > x. Thus by
computing complete(I<y) we know whether y is larger than x or not. We can
thus look for x in a binary search-like fashion. We can thus find x by performing
O(log |I|) times a complete call, to then compute complete(I<x). The cost
follows. ��

4 Using Minimal Space O(s)

In this section we present our first algorithm, whose focus is minimizing the
additional memory: the algorithm will only store O(s) information on top of
the input graph while keeping the performance competitive with state of the
art approaches. This algorithm aims at improving the cost of child-exists of
Algorithm 2 using O(s) space. The improvements are due to two factors.

On one hand we identify stricter theoretical conditions to determine whether
child-exists will succeed or not, which are used in place of child-exists;
Lemmas 3 and 4 prove the correctness of these conditions, allowing us to prove
the equivalence of Algorithms 2 and 3 in Lemma 5.

On the other hand, we provide non-trivial techniques which allow us to com-
pute our theoretical conditions quickly and using only O(s) additional space: in
detail, we provide fast implicit iterators for sets which are too costly to compute,
and simulate the behavior of complete, stopping it prematurely when suitable
conditions are met.

Lemma 3. complete(I ′
v ∪{v})<v = I ′

v is equivalent to min{N(I ′
v ∪{v})} > v.

Proof. Recalling its definition (see Sect. 2), we know that complete (I) adds
nodes to I in increasing order: indeed, at a given step we select the smallest
node x in N(I) and add it to I; in the following step N(I) will shrink because
we added x to I, and its minimum cannot be smaller than (or equal to) x.

Let y be the first node selected by complete(I ′
v ∪ {v}), that is, y =

min{N(I ′
v ∪ {v})}. If y < v, then complete(I ′

v ∪ {v})<v 	= I ′
v as the earlier set

contains y while the latter does not. Otherwise, if y > v all other nodes selected
by the complete function will too be greater than v; since I ′

v = I<v ∩ N(v) we
thus have complete(I ′

v ∪ {v})<v = I ′
v. ��

Lemma 4. If v > pi(I), Algorithm 3 line 7 returns true iff complete(I ′
v) = I.

Proof. Lines 4–7 of Algorithm 3 correspond to simulating complete(I ′
v) until

the node x that is selected to be added to I ′
v is not in I<v. Then two cases are

possible: either x 	∈ I>v or x ∈ I>v. In the first case, complete(I ′
v) 	= I since

x ∈ complete(I ′
v) and x 	∈ I, so Algorithm 3 returns false. Otherwise, if x ∈ I>v

we show that all nodes in I<v that were not in I ′
v have been added to it: since

I is an independent set, whose nodes are not adjacent to each other, any node
in I<v \ I ′

v must be in N(I ′
v). As so far we only added nodes in I<v \ I ′

v (line 6),
any other node in I<v that was in N(I ′

v), and was not added to I ′
v, is still in it.

However, we have that x = min{N(I ′
v)} > v, thus all and only nodes in I<v \ I ′

v

have been added to I ′
v, making the set equal to I<v. As complete(I<v) = I, it

must be that complete(I ′
v) = I thus the algorithm returns true. ��

We show that, as a result of Lemmas 3 and 4, we can conclude the following.

Lemma 5. child-exists-ms in Algorithm 3 can be used in place of child-
exists in base.

Proof. By Lemma 3 we have that child-exists-ms will return false on line 2
iff complete(I ′

v ∪ {v})<v 	= I ′
v. Otherwise, by Lemma 4, child-exists-ms will

return true if complete(I ′
v) = I, and false otherwise. Thus child-exists-ms

will return the same result as child-exists. ��

Space and Time Cost of Algorithm 3
In the following we provide space and time bounds for Algorithm 3, by firstly

fixing some useful properties in Lemmas 6, 7, and 8.
Notice that I<v \I ′

v = N<(v)∩I<v. Since N(I ′
v ∪{v}) ⊆ N(I ′

v), if there exists
a node x ∈ N(I ′

v ∪ {v}) smaller than v, then x satisfies the properties shown in
Lemma 6. We show that this lemma follows from the definition of parent index
and it is useful to efficiently perform the computation in line 2 in Algorithm 3.

Lemma 6. Let I be a MIS, and v a node s.t. v 	∈ I and v > pi(I). Then
N(I<v)<v = ∅, and for each node x in N(I ′

v)<v we have that either x is in
I ∩ N<(v) or x has a neighbor in I ∩ N<(v).

Proof. Since v 	∈ I and v > pi(I), we have that complete(I<v) = I by definition
of pi. If N(I<v) does contain a node x smaller than v, we could use one of such
nodes to extend I<v and we would have complete(I<v) 	= I, a contradiction.

Consider now N(I ′
v)<v: As I ′

v ⊆ I<v, we have N(I ′
v)<v ⊇ N(I<v)<v. Since

N(I<v)<v = ∅, however, we have ∀x ∈ N(I ′
v)<v, x 	∈ N(I<v), thus either x is in

I<v has a neighbor in it by definition of N(). As x ∈ N(I ′
v)<v, if x is in I<v, it

is actually in I<v \ I ′
v ⊆ N<(v). The statement follows. ��

Hence, we have to verify the conditions of Lemma 6 for the nodes x ∈ N(I ′
v ∪

{v}). However, it is worth noting that the cost of storing N(I ′
v ∪ {v}) is O(n)

which exceeds our memory requirements. To overcome this issue, we show in the
following lemma how to build a heap-based iterator, that iterates over N(I ′

v∪{v})
without computing it.

Lemma 7. Let X ⊆ V be a set of nodes and Y =
⋃

x∈X N(x). We can iter-
ate over every y ∈ Y in increasing order (without explicitly storing Y) in
Õ(min{|X|Δ,m}) time using O(|X|) additional space.

Proof. Allocate a heap and add to it, for each node x in X, its smallest neighbor
y (saving the x responsible for its addition). We can use this heap to iterate in
order all nodes with a neighbor in X as follows: iteratively remove the minimum
element y of the heap, recover the node x responsible for the addition of y,
and insert in the heap the smallest neighbor of x larger than y. This way the
smallest neighbor that we did not extract yet will always be on top of the heap.
It is possible that the same node is extracted more than once; however we can
trivially ignore duplicates as they appear contiguously, since nodes are extracted
in increasing order. Adding/removing an element to/from the heap costs Õ(1),
so the total cost is bounded by Õ(1) times the sum of all degrees of nodes in X,
that is Õ(min{|X|Δ,m}). ��

By Lemma 6, to answer the check at line 2, we can consider nodes y belonging
to I ∩ N<(v) or N(I ∩ N<(v)). In particular, for each of them, we will have to
check that y 	∈ N(v) and N(y)∩I ′

v 	= ∅. To this aim, we use the following lemma.

Lemma 8. Let I be a MIS, v 	∈ I a node such that v > pi(I), and y any node.
We have N(y) ∩ I ′

v 	= ∅ iff there exists z ∈ N(y) such that z < v and z ∈
I and z 	∈ N<(v).

Proof. Recall that I ′
v = I<v ∩ N(v) = I<v \ N<(v), so all and only nodes in I ′

v

are smaller than v, in I, and not in N<(v). As N(y) ∩ I ′
v 	= ∅ iff any node in

N(y) is in I ′
v, and z ∈ I ′

v iff (z < v and z ∈ I and z 	∈ N<(v)) the statement
follows. ��

We are now ready to prove the overall cost of Algorithm 3.

Lemma 9. child-exists-ms can be computed in Õ(min{dΔ2,m}) time with
O(s) space.

Proof. Consider line 2: since N(I ′
v ∪{v}) ⊆ N(I ′

v), by Lemma 6, if there exists a
node x ∈ N(I ′

v ∪{v}) smaller than v, then x is a neighbor of a node in I ∩N<(v)
(note that x cannot be in I ∩ N<(v) since it is in N(I ′

v ∪ {v})). Thus, instead of
computing I ′

v and its complementary-neighborhood, we iterate over node y which
has a neighbor in the set X = I ∩N<(v) using Lemma 7. For each y, we have to
check that y 	∈ N(v) and N(y)∩ I ′

v 	= ∅; for this latter check we use Lemma 8. If
any y fails the check, then we return false, otherwise N(I ′

v ∪ {v})<v = ∅ and we
can continue. We have |I∩N<(v)| ≤ d (due to the reversed degeneracy ordering),
thus the neighbors y that we have to test can be at most dΔ. It follows that the
iteration will cost Õ(min{dΔ,m}) time by Lemma 7. Furthermore, testing each
node y as in Lemma 8 takes Õ(|N(y)|) time as we can perform binary searches
on I, thus the total cost of testing is bounded by Õ(min{dΔ2,m}).

Consider now lines 4–7: Again, using Lemma 6 we know that all nodes x ∈
N(I ′

v)<v are either in I ∩ N<(v), or have a neighbor in it. We can rewrite this
condition as: x has a neighbor in X ′ = (I ∩ N<(v)) ∪ {v}.

In order to compute x in line 5, since N(A)<v ⊆ N(I ′
v)<v, we use Lemma 7 to

iterate over all the neighbors of nodes in X ′; this iteration will yield in increasing
order all nodes at any point in N(A)<v. We actually do not store A, but only the
nodes that are added to A during the while, which we will here call A′. Thus to
check that a node x belongs to N(A), we check N(x)∩I ′

v = ∅ and N(x)∩A′ = ∅;
the earlier part can be done with Lemma 8, while the latter in Õ(A′) time by
using binary searches.

Once we found x = min{N(A)<v}, if it passes the check on line 6 we add it
to A and repeat the loop, otherwise we return the result of the check.

Note that, as we are only iterating over N(I ′
v)<v, we will not find among them

any node in I>v. However, this is easily fixed by saving the node min{I>v}: if at
any point we have x > min I>v, or we finish the iteration on X ′, we return true
since in both cases the candidate to be added to A would have been min{I>v}.

As |X ′| ≤ min{d + 1, s}, and the number of nodes with a neighbor in X are
bounded by O(min{dΔ, n}), similarly to above we can bound the cost of the iter-
ation with Õ(min{dΔ,m}), and the total cost of testing with Õ(min{dΔ2,m}).
Furthermore, note that the condition in line 6 can only succeed up to min{d, s}
times, as each time x is in I<v \ I ′

v, and |I<v \ I ′
v| = |I ∩ N<(v)| ≤ min{d, s};

this means that |A′| ≤ min{d, s}.
Thus the total cost of child-exists-ms is Õ(min{dΔ2,m}), using additional

space O(|X| + |X ′| + |A′|) = O(min{d, s}) by Lemma 7. ��

By using Lemma 9, we are now able to prove the following result.

Theorem 1. There exists an algorithm that enumerates all maximal indepen-
dent sets with Õ(min{ndΔ2,mn}) delay and O(s) additional space.

Proof. By using the structure described in Sect. 3, we can create an algo-
rithm that enumerates all MISs (that is Algorithm 1 where child-exists is
replaced by child-exists-ms), that is complete and correct by Lemma 5.
Its delay is bounded by the costs of (i) the generation function F (I, v) =
complete((I<v∩N(v))∪{v}) (ii) testing each candidate with child-exists-ms,
and (iii) parent-state to return to the parent solution. These costs are
respectively (i) Õ(m) (as shown in Lemma 1), (ii) Õ(n · min{dΔ2,m}) as we
apply Lemma 9 to each of the O(n) candidates, and (iii) Õ(m) (as shown in
Lemma 2). Since m ≤ nΔ, this gives a total cost of Õ(m + min{ndΔ2,mn}) =
Õ(min{ndΔ2,mn}).

As we have no recursion stack, the additional space is simply storing I and v,
and the space required by child-exists-ms, that is O(s). ��

5 Faster Version Using O(n) Additional Memory

In this section, we propose a new algorithm which achieves a smaller time cost
per solution by exploiting properties of the search space and an additional data
structure of size O(n), which mainly stores the amount of neighbors in I<v of each
node in the graph. We use a function child-exists-fast which improves the
time cost of Algorithm 3, by constructing and maintaining this data structure.
This is fundamental to improve the running time since it allows us to reduce the
search space of the nodes considered by child-exists (and the corresponding
iterations), as just nodes with zero neighbors in I<v need to be considered. Since
v varies among all the possible candidates, even the ones not leading to a solution,
this data structure cannot be rebuilt from scratch each time I<v changes, but
needs to be properly updated and restored wherever possible. We will prove that
we can cover these costs.

For the sake of completeness, the final pseudo-code is shown in Algorithm 4.
The functions is-root and parent-state are the same as in base (see Algo-
rithm 1). We will now analyze the difference between base and Algorithm 4, to
show that they are equivalent, and that, hence, Algorithm 4 is correct.

The first difference we can notice is that we use a new function get-next-
cand with respect to the one in base. The new one is faster to compute, since
the sum of the costs of all the calls done with the same I takes just O(n) time
but returns a superset of the one of base. This fact increases the number of
candidate nodes to test but, on the other hand, testing them will be faster here
due to an improved version of child-exists (see Lemma 12).

Lemma 10. We can use function get-next-cand of Algorithm 5 in place of
get-next-cand in base.

Proof. get-next-cand of Algorithm 5 iterates over (V \I)>v, while get-next-
cand in base iterates over {w ∈ ⋃

u∈I N(u) \ I : w > v}. As the latter is a
subset of the former, Algorithm 5 will iterate over all the candidates that will
lead to a child. Furthermore, nodes in (V \ I)>v are still greater than pi(I), thus
the conditions for child-exists are met, and the nodes that do not lead to a
child will fail the check. ��

Notice that the candidate set size is Θ(n), since a single complementary
neighborhood has size Θ(n). Another difference with respect to base, is that we
use function child-exists-fast instead of child-exists function to improve
its computational time. To this aim, we use an additional data structure ws
(for weights), which we keep suitably updated in order to satisfy the following
invariant.

Lemma 11. When child-exists-fast(I, v,ws) is called in Algorithm 4, for
each node i ∈ V , we have ws[i] = |N(i) ∩ I<v|.
Proof. We first remark that for any A,B s.t. A ∩ B = ∅, if ∀i ∈ V ws[i] =
|N(i)∩A| and we call update(ws, B) we obtain ∀i ∈ V ws[i] = |N(i)∩(A∪B)|.
To prove the lemma, it is thus sufficient to show that just before line 8 is executed,
∀i ∈ V ws[i] = |N(i) ∩ I<prev| (for the value of prev at that point).

Let us consider when ws was last modified when line 8 is executed: If this
is the first time that the while loop in line 7 is executed, then ws was last
modified in either lines 4, 13 or 20 by calling build(ws, I<v). Indeed, we have
∀i ∈ V ws[i] = |N(i) ∩ I<prev| by definition of build, as we set prev = v
in lines 3, 9, and 20 respectively, and prev remained unchanged until line 8.
Otherwise, note that child-exists-fast leaves ws unchanged (the changes at
Line 2 are canceled out by Line 11), thus ws was last modified by the previous
execution of line 8 in the while loop (line 7). We prove this case by induction:
Let us refer to the values of v and prev at line 8 in the j-th iteration of the loop
as vj and prevj . Assume that ∀i ∈ V ws[i] = |N(i) ∩ I<prevj

| was true at line 8
in the j-th iteration. As vj = prevj+1 (see line 9), after the line is executed, by
the remark at the beginning of the proof, we have ∀i ∈ V ws[i] = |N(i)∩I<vj

| =
|N(i) ∩ I<prevj+1 |. Since the condition is true for the first iteration, it is true for
any iteration, thus the statement holds in each case. ��

By Lemma 11, the hypothesis on the ws data structure in the following
lemmas are met, so that we can use the new child-exists-fast instead of
child-exists and child-exists-ms.

Lemma 12. Suppose that ws[x] = |I<v ∩ N(x)| for each x ∈ V . Then child-
exists-fast (I,v,ws) in Algorithm 5 can be used instead of child-exists (I,v)
and child-exists-ms (I,v).

Proof. Line 5 in Algorithm 5 is the same as line 2 in Algorithm 3. The loop at
line 2 decrements ws[y] once for each neighbor of y in I ∩ N<(v). After the loop
we have that for each x ∈ V , ws[x] = |(I<v \N<(v))∩N(x)| = |I ′

v ∩N(x)|, thus
x ∈ N(I ′

v) iff ws[x] = 0. It follows that C is initialized to exactly N(I ′
v). Thus,

the loop in lines 6–10 will have the same outcome as the corresponding loop in
lines 4–7 of Algorithm 3: when a node c is selected in line 8, C is updated as if
c was added to I ′

v, thus the following iterations will select the same nodes that
would be selected in Algorithm 3, until finally line 10 is executed, which will
give the same outcome as line 7 in Algorithm 3. ��

The function iterative-spawn has been modified only with the addiction of
the function update, which has effect only on the variable ws which is used by
get-next-cand. Thus since the functions get-next-cand and child-exists-
fast used by Algorithm 4 are equivalent to, respectively, get-next-cand and
child-exists of base by Lemmas 10, 11, and 12, then the function spawn too
is equivalent to the one of base, obtaining the following lemma.

Lemma 13. Algorithm 4 correctly computes all maximal independent sets.

Space and Time Cost of Algorithm 4
In the following, we analyze the complexity of Algorithm 4. We have already

discussed the cost of the new get-next-cand function. In particular, we analyze
the cost of maintaining the counters and the cost of child-exists-fast.

Lemma 14. For any set A ⊆ V , update(ws, A) takes O(min{|A|Δ,m}) time.

Proof. We can obtain the cost above by iterating over all nodes in A and for
each node x incrementing by 1 the counter of its neighbors. This is bounded by
O(|A|Δ), and by O(m) too as it is a sum of the degrees of distinct nodes. ��

The cost for build is simply O(n + min{|A|Δ,m}), since we can set to zero
each ws[x] for each x ∈ V and then apply update(ws, A).

Lemma 15. child-exists-fast takes O(dΔ) time and O(n) space.

Proof. Recall from the proof of Lemma 9 that, as v 	∈ I and v > pi(I), we have
min{N(I<v)} > v, thus ∀x ∈ (V<v \ I) we have ws[x] > 0.

Thus we compute C by simply adding to it any node y whose counter ws[y]
is set to 0 during the loop at line 2. This is only guaranteed to add nodes which
are smaller than v, but this will be enough. Recalling the proof of Lemma 12,
we thus have that C = N(I ′

v)<v. This costs us O(min{dΔ,m}) time, as it is the
sum of the degrees of |I ∩N<(v)| ≤ d distinct nodes. Line 5 takes O(Δ). Indeed,
we can compute N(I ′

v ∪ {v})<v as C \ N(v). If this set is not empty, then the
check fails and we return false.

Let us now consider the cost of the loop at line 6. Keeping C in a dynamic
dictionary, lines 7 and 8 take both Õ(1) time and 9 takes Õ(|N(c)|) time. As the
loop is executed a maximum of |I<v \I ′

v|+1 ≤ |N<(v)|+1 ≤ d+1 times and c is
different every time, this takes Õ(min{dΔ,m}) time. As in Lemma 9 we should

store min{I>v}: since initially C only contains N(I ′
v)<v rather than N(I ′

v), we
return true if C actually becomes empty or if c > min{I>v}, as in both these
cases min{I>v} would have been the candidate actually selected in line 9, that
would result in the algorithm returning true. Finally, before returning the result,
we restore the data structure ws by calling update(ws, I ∩ N<(v)). This takes
O(min{dΔ,m}) time by Lemma 14.

Since the additional space used is O(|C|) = O(min{dΔ, n}), child-exists-
fast can be computed in Õ(min{dΔ,m}) time, using O(n) space. ��

By plugging the results of Lemmas 14 and 15 into the analysis of Theorem 1,
we conclude the following.

Theorem 2. Algorithm 4 lists all the maximal independent sets with a delay of
Õ(min{ndΔ, nm}), and O(n) additional space.

Proof. Using Theorem 1 with the costs of child-exists-fast given by
Lemma 15 we obtain a total cost of Õ(min{ndΔ, nm}). We however need to add
to steps (i) and (iii) the cost of build(ws, I<v) which takes Õ(min{nΔ,m}).
Furthermore, we add to step (ii) the cost of update(ws, (I<v \ I<prev) for each
candidate v. We argue that for any specific I, any node i ∈ I is in I<v\I<prev only
once, since v is never decreasing for I and prev keeps track of the previous value
of v. The total cost is thus the same as update(ws, I), i.e., Õ(min{|I|Δ,m})
by Lemma 14. As |I| ≤ n, neither of these additions affects the total cost of
Õ(min{ndΔ,m}).

Space usage is given by the size of ws and C stored in child-exists-fast,
i.e., O(n). ��

6 Conclusions

In this paper we studied the enumeration of maximal independent sets (MISs)
in graphs, introducing new ideas to check efficiently which neighbors in the
reverse search should be explored, as this task is time- and space-consuming.
For a read-only input graph, our results are the first algorithm with minimal
additional space, proportional to the size of the largest MIS, and an algorithm
which improves both delay and space usage of known approaches. We remark
that a MIS can indeed have linear size: in this case, due to the modular nature of
our algorithms, the execution of the minimal space version can switch on-the-fly
to the faster version which uses O(n) space without increasing the asymptotic
space usage.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–
3), 21–46 (1996)

2. Basagni, S.: Finding a maximal weighted independent set in wireless networks.
Telecommun. Syst. 18(1), 155–168 (2001)

3. Brendel, W., Todorovic, S.: Segmentation as maximum-weight independent set. In:
Advances in Neural Information Processing Systems, pp. 307–315 (2010)

4. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457).
Commun. ACM 16(9), 575–576 (1973)

5. Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in sparse graphs.
Algorithmica 66(1), 173–186 (2013)

6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

7. Cohen, S., Kimelfeld, B., Sagiv, Y.: Generating all maximal induced subgraphs
for hereditary and connected-hereditary graph properties. JCSS 74(7), 1147–1159
(2008)

8. Comin, C., Rizzi, R.: An improved upper bound on maximal clique listing via
rectangular fast matrix multiplication. CoRR, abs/1506.01082 (2015)

9. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enu-
meration for massive network analytics: maximal cliques. In: ICALP, vol. 148, pp.
1–15 (2016)

10. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs. ACM J. Exp. Algorithmics 18 (2013). Article No. 3.1

11. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world
graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
364–375. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7 31

12. Fu, A.W.-C., Wu, H., Cheng, J., Wong, R.C.-W.: IS-LABEL: an independent-set
based labeling scheme for point-to-point distance querying. Proc. VLDB Endow.
6(6), 457–468 (2013)

13. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Proc. Lett. 27(3), 119–123 (1988)

14. Leung, J.Y.-T.: Fast algorithms for generating all maximal independent sets of
interval, circular-arc and chordal graphs. J. Algorithms 5(1), 22–35 (1984)

15. Li, N., Latecki, L.J.: Clustering aggregation as maximum-weight independent set.
In: Advances in Neural Information Processing Systems, pp. 782–790 (2012)

16. Loukakis, E., Tsouros, C.: A depth first search algorithm to generate the family of
maximal independent sets of a graph lexicographically. Computing 27(4), 349–366
(1981)

17. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27810-8 23

18. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theor. Ser. B 28(3), 284–304 (1980)

19. Okamoto, Y., Uno, T., Uehara, R.: Linear-time counting algorithms for indepen-
dent sets in chordal graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp.
433–444. Springer, Heidelberg (2005). doi:10.1007/11604686 38

20. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in
chordal graphs. J. Discrete Algorithms 6(2), 229–242 (2008)

21. Olteanu, A., Castillo, C., Diaz, F., Vieweg, S.: CrisisLex: a lexicon for collecting
and filtering microblogged communications in crises. In: ICWSM (2014)

22. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. TCS 363(1), 28–42
(2006)

23. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

http://dx.doi.org/10.1007/978-3-642-20662-7_31
http://dx.doi.org/10.1007/978-3-540-27810-8_23
http://dx.doi.org/10.1007/11604686_38

24. Uno, T.: Two general methods to reduce delay and change of enumeration algo-
rithms. National Institute of Informatics (in Japan) (2003). TR E, 4

25. Yu, C.-W., Chen, G.H.: Generate all maximal independent sets in permutation
graphs. Int. J. Comput. Math. 47(1–2), 1–8 (1993)

	Listing Maximal Independent Sets with Minimal Space and Bounded Delay
	1 Introduction
	2 Preliminaries
	3 Listing MISs
	4 Using Minimal Space O(s)
	5 Faster Version Using O(n) Additional Memory
	6 Conclusions
	References

