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Abstract

In this work, we generalize the sparse variation (SV) combining the total-variation (TV) and
the L1 regularization and introduce a novel family of convex and non-quadratic regularizers for fast
deconvolution of large 2D fluorescence images. These regularizers are defined as mixed Lν-L2 norms
(ν ≥ 1) which group image intensity and spatial differentials, computed at each pixel of the image.
By coupling a regularization term of this family with a quadratic data fidelity term, we propose a
fast and efficient deconvolution method by using the primal-dual (proximal) algorithms to minimize
the corresponding energy functional. Experiment results on both 2D simulated and real fluorescence
scanner images demonstrate the performance of our method in terms of restoration quality as well
as computational time.

Keywords : Fluorescence imaging, image deconvolution, sparse variation, convex optimization,
proximal algorithms

1 Introduction

Fluorescence microscopy is nowadays an imaging technique widely used in the field of biomedical
sciences for cell biology research. The sample of interest is first labelled by fluorescent molecules
before being excited by the illumination light of a given wavelength ; upon the excitation, fluorophore
re-emits light of relatively longer wavelength which is then collected by photosensitive sensors to
form the digitized image of the input sample. This imaging modality provides in practice a very
powerful framework to biologists for observing, analyzing, and studying specific fluorescently-tagged
structures at very high spatial and temporal resolutions.

Despite number of advantages, there are two major limitations of fluorescence microscopy. The
first limitation is the presence of noise in acquired images. Similarly to other optical imaging tech-
niques, the main contribution of noise here is the photon (shot) noise. The latter is mainly due
to the quantum nature of light, implying that the arrival of a photon on a sensor is a random
event and thus the number of incident photons over a period of time is a random variable de-
pending on the brightness of the light source. In the context of fluorescence imaging, the image
signal-to-noise-ratio (SNR) is usually very low because the low dose of illumination light is required
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to avoid photo-bleaching of fluorescent molecules and preserve specimen integrity (photo-toxicity).
Additionally, the quality of acquired fluorescence images is worsened by the blurring effect. This
second limitation (i.e. blur) is a consequence of various factors during acquisition process including
optical diffraction, excitation wavelength, immersion medium refraction and specimen thickness.
These limitations not only degrade the image quality in terms of overall visualization but also have
a negative severe impact on specimen analysis since they reduce the ability to recognize the objects
of interest from noisy background and to detect fine details.

To improve the quality of images acquired by fluorescence microscopes, deconvolution is fre-
quently suggested as pre-processing step for noise removal and resolution enhancement before fur-
ther analysis. It aims at restoring the original (noise-free and sharp) image from observed noisy
and blurry image, which is in general an ill-posed inverse problem. Number of regularization-based
methods have been proposed over the past few decades in order to stabilize numerically the solution
of the underlying inverse problem as well as to produce better estimation in the sense that the latter
looks more similar to real-world images. The choice of an appropriate regularization modelling prior
knowledge about the imaged objects is thus highly important for high-quality deconvolution results.

In this paper, we present a novel family of convex regularizers which are well-suited for fluores-
cence microscopy images by taking into account the characteristics of fluorescence imaging context.
These regularizers are inspired from the concept of sparse variation (SV), originally introduced by
Eickenberg et al. for MRI segmentation [1]. Indeed, based on the observation of the sparse dis-
tribution and the co-localization of regions with high intensity and high-magnitude gradient on
fluorescence images, we consider the mixed norm L1-L2 norm of a linear transform combining the
image intensity and spatial differential coefficients into one feature vector, computed at each pixel
of the image, to promote the spatial sparsity of bright objects over relatively darker background.
Under the assumption of additive Gaussian noise, the image deconvolution problem then corres-
ponds to the minimization of a convex functional which can be efficiently solved by primal-dual
(proximal) algorithms. We evaluate furthermore the proposed SV-based deconvolution method on
both simulated and real fluorescence images. Experimental results prove that our regularization
approach outperforms total variation (TV) [2] which is the most widely used regularizer in image
processing, and is very competitive when compared to the Hessian Schatten-norm regularizer [3].

The remainder of the paper is organized as follows. In Section 2, we briefly review several existing
deconvolution methods for bi-dimensional (2D) fluorescence microscopy images. In Section 3, we
introduce the norm-based regularization approach which is frequently used in image processing.
We derive a novel family of convex non-quadratic regularizers by generalizing the concept of sparse
variation. In Section 4, given the family of regularizers, a general variational framework for image
deconvolution is presented. We also describe an optimization algorithm to solve the underlying
variational problem. Then, in Section 5, we assess the performance of our approach on simulated
and real large fluorescence images. Finally, we conclude this paper and propose some future work
in Section 6.

2 Related works for deconvolution of fluorescence images

In fluorescence microscopy, the arising blur is mainly induced by the limited aperture of the
objective which results in light diffraction through the optical system. The diffraction phenomenon
implies that light emitted by an infinitely small point source appears wider at the focal plan and
spreads into a specific pattern called “point spread function” (PSF). As a consequence, the obtained
2D image of an object is the superposition of these emitted light patterns from each point of the
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object. It can be mathematically modelled as the convolution product of the imaged object and
the PSF of the microscope under the linear shift-invariance assumption of the imaging system. In
contrast with hardware-assisted techniques that aim at adjusting the optical system to reduce the
size of the PSF and/or reject out-of-focus light before it reaches the detector, hence improving the
spatial resolution of acquired images, deconvolution is a computational post-processing technique
which consists in restoring a sharper image of the object from its blurry digitized version.

In the last twenty years, many deconvolution methods have been investigated in order to deal
with the steadily increasing amounts of microscopy data. The most popular deconvolution approach
is the linear filtering method such as Wiener and Tikhonov-Miller [4, 5, 6] filters. The former pro-
vides the minimizer of the mean squared error between the estimated (deconvolved) image and the
true image, while the latter consists in minimizing an energy functional composed of a quadra-
tic data term and a quadratic regularization term, resulting in linear operations on the acquired
image. Both Wiener and Tikhonov-Miller filters assume that the acquired image is corrupted by
additive Gaussian noise. Despite the simplicity and low-computation-requirement, such linear me-
thods usually produce limited deconvolution results since they do not restore fine image details at
frequency components that are beyond the bandwidth of the point spread function (i.e. the support
of its Fourier transform). Moreover, the positivity of the results obtained with these filters can not
be always guaranteed due to their linear nature. It presents therefore a major issue while dealing
with fluorescence microscopy images in which pixel intensities have positive values by definition.

To handle this issue, several iterative non-linear algorithms have been proposed instead of pre-
viously mentioned one-step approaches. Among them, the iterative constrained Tikhonov-Miller
algorithm [4, 5, 6] and a modified version of it which is called the Carrington algorithm [7, 8] consist
in minimizing iteratively the Tikhonov functional. The only difference between them is in the way
they integrate the constraint of non-negativity at each iteration. In contrast with these additive-
form algorithm, the Gold-Meinel algorithm [9] implicitly incorporates the positivity by considering
a multiplicative formulation. As an alternative, the Richardson-Lucy algorithm [10, 11, 12] which
is derived from the maximum likelihood estimation (MLE) under the assumption of Poisson noise
involves similar multiplicative-form iterations. An important drawback of both Gold-Meinel and
Richardson-Lucy algorithms is however their numerical instability, resulting in noise amplification
after a small number of iterations. A further review of these classical deconvolution algorithms is
given in [13].

Later on, the total variation (TV) regularization approach, originally introduced by Rudin,
Osher and Fatemi for image denoising [2], was widely used for image deconvolution [14], including
in microscopy imaging [15, 16]. The success of this well-known approach is mainly due to its ability
to preserve sharp edges and smooth homogeneous areas in the underlying images. Although, its
downside is the staircasing effect, resulting in images of contiguous regions with constant intensities
[17]. This effect is rather an artifact than a desired property on non-synthetic images. A family of
non-quadratic functionals which involve Schatten norms of the Hessian matrix has been investigated
in [3] as second-order extensions of TV in order to attenuate staircasing effect. Its performance was
furthermore depicted in [18, 19] showing their effectiveness in biomedical applications, specially for
fluorescence image deconvolution. Beside these Hessian-based regularizers, other second and higher-
order regularization approaches were also proposed as alternatives, including the L1 norm of the
Laplacian operator, the modified Laplacian and the affine total-variation (see [3] for comprehensible
comparison). Recently, a novel energy functional has been introduced using a specific non-convex
regularization functional [20] to cope with the relevant characteristics of fluorescence images. This
functional tends to penalize jointly the pixel intensities and intensity variations to favor sparsely
distributed bright objects over relatively darker background. However, its non-convex nature leads
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to complicated optimization problems and does not guarantee the convergence to global optimum.
A gentle initialization of the algorithm is suggested in [20] to overcome local minima of the energy
functional. An appropriate regularizer which takes into account important characteristics of fluo-
rescence imaging in a similar way as in [20], and possesses interesting mathematical properties,
including convexity, invariance to contrast, scale, rotation, and translation as total variation and
Hessian Schatten norm regularizers, is therefore highly recommended for fast and high-quality de-
convolution of large fluorescence images.

3 Norm-based regularization

Most of commonly-used regularizers in imaging problems (such as denoising, deconvolution,
inpainting, etc.) have the following form :

ER(u) =

∫
Ω

Φ(Lu(x)) dx , (1)

where u is an image defined on a square domain Ω ⊂ R2, L (called “regularization operator”) is a
linear operator used to control the spatial distribution of u and Φ(·) is a positive potential function
usually related to a norm distance. A typical example is the Tikhonov regularization using the
squared Euclidean (L2-) norm chosen as potential function (Φ = ‖ · ‖22), frequently combined with
the identity operator (L = Id) or a differentiation operator (such as the gradient and the Laplacian
operators) or eventually a orthogonal projection operator in order to cope with particular structure
of the desired solution. Due to their convex and differentiable properties, quadratic penalties are wi-
dely used for many years to numerically stabilize inverse problems arising in number of applications
including astronomy [21, 22], ultrasound imaging [23], scanning-tunneling microscopy [24], electrical
tomography [25], magnetic resonance imaging [26] and atomic-force microscopy [27]. Nevertheless,
despite its mathematical tractability and implementation simplicity, Tikhonov regularization yields
unsatisfactory results if the image transform (by the regularization operator L) does not have a
small norm. In particular, when differentiation operator is used, it tends to produce blurred details
in obtained images since images with low gradient magnitudes are encouraged.

3.1 Differential norm regularizers

To avoid over-smoothing caused by quadratic functionals, non-quadratic regularizers have been
studied recently as alternative solutions. One of the most popular among them is total variation [2]
which considers the gradient operator and the Euclidean norm as the following :

TV(u) =

∫
Ω
‖∇u(x)‖2 dx , (2)

where ∇u(x) ∈ R2 denotes the gradient of u at the point x. By definition, total variation can be
interpreted as the L1-norm of the image gradient magnitude ‖∇u‖2 ; or in other words, it corresponds
to the mixed L1-L2 norm (‖ · ‖1,2) of the image gradient ∇u where the L1-norm acts on the spatial
domain Ω and the L2-norm acts on the gradient vector components. The use of the L1-norm, which
promotes sparsity, favors images with vanishing gradients except at some points and thus allows to
restore well-preserved and sharp edges, showing the superior performance of TV when compared
to the Tikhonov approach. The convexity of such a norm enables to consider efficient optimization
algorithms [28] and explains the wide use of total variation in various imaging applications due to
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its computational simplicity. However, the drawback of TV is the staircasing effect (also known as
blocking artifact) since imposing vanishing gradients also leads to piecewise-constant reconstructions
while the underlying images are not necessary piecewise-constant.

A way to prevent the blocking artifact is to “regularize” the TV functional by replacing the
Euclidean norm of the image gradient by a smooth approximation [29] of the following form :

TVhε(u) =

∫
Ω
hε(‖∇u(x)‖2) dx , (3)

where hε : R+ → R is a smooth and non-decreasing function on R+ and ε is a parameter controlling
the smoothness of the approximation. An usual and convenient choice for hε is the Huber function

t 7−→
{

1
2ε t

2 if |t| ≤ ε ,
|t| − ε if |t| > ε ,

(4)

which leads to the so-called “Huber norm”. This “norm” has similar behavior as the Euclidean norm
for high gradient (when ‖∇u‖2 > ε) but is quadratic for small gradient and thus implies the property
of avoiding the blocking artifact of the associated TV-Huber (TVH) regularizer. The performance
of TV-Huber model has been proved in [30] for image denoising.

Another way to overcome the issue of staircasing is to consider higher-order differentiation
operators instead of first-order operators. By investigating the Hessian operator which is a second-
order operator, Lefkimmiatis et al. proposed a family of convex regularizers as an extension of total
variation [3]. It is based on the matrix norm of the Hessian, computed at each point of the image

HVp(u) =

∫
Ω
‖Hu(x)‖Sp dx , p ≥ 1 , (5)

where Hu(x) is the Hessian matrix of u at the point x

Hu(x) =

 ∂2

∂x2
u(x) ∂2

∂x∂yu(x)

∂2

∂y∂xu(x) ∂2

∂y2
u(x)

 , (6)

and ‖Hu(x)‖Sp denotes its Schatten p-norm [31] defined as

‖Hu(x)‖Sp =

(
2∑
l=1

σpl (Hu(x))

) 1
p

, (7)

with σl(Hu(x)) the l-th singular value of Hu(x). The above-mentioned regularization functionals
named Hessian variation (HV) favor vanishing second-order differentials, hence lead to piecewise-
linear reconstructions in comparison with piecewise-constant reconstructions produced by total va-
riation. They allow not only to prevent the undesired staircasing effect but also to provide better
approximation of the spatial variation of image intensities.

In spite of the effectiveness of these Hessian-based regularizers, there are however few important
characteristics of fluorescence imaging which were not considered by this approach, especially the
sparsity of the spatial distribution of high-intensity regions and the colocalization between these
regions and those with high magnitude gradients. In the next part, we introduce a novel regulari-
zation approach which exploits these interesting characteristics but preserves the desired properties
of total variation as well as Hessian variation, such as convexity, contrast, rotation, translation, and
scale invariance. It enables thus the application of convex optimization algorithms that are very
efficient for large scale problems as in the context of fluorescence microscopy.
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3.2 Generalized sparse variation

Originally introduced in [1] for brain MRI segmentation, sparse variation (SV) is a non-quadratic
penalty defined as

SVρ(u) =

∫
Ω

√
ρ2‖∇u(x)‖22 + (1− ρ)2u(x)2︸ ︷︷ ︸

‖K1,ρu‖2

dx , (8)

where ρ ∈]0, 1[ is a parameter controlling the trade-off between spatial regularity and sparsity, and
K1,ρ is the linear operator gathering the image gradient and the image intensity components :

K1,ρ =

[
(1− ρ) Id
ρ ∇

]
and K1,ρu(x)=

(1− ρ)u(x)
ρ ∂xu(x)
ρ ∂yu(x)

 ∈ R3 , (9)

with ∂x and ∂y denote the first order derivative in the horizontal and vertical direction respectively.
From this point-of-view, sparse variation is closely similar to total variation and can also be expressed
as a mixed L1-L2 norm as :

SVρ(u) = ‖K1,ρu‖1,2 , (10)

where the operator K1,ρ is considered instead of the gradient operator. This regularizer has been
proposed to reduce blocking artifacts by combining the L1 penalty (on the image intensity), which
enforces the sparsity of the images with TV penalty, which enforces the sparsity of image gradient.
The idea behind this combination is to sparsify jointly the spatial distribution of image intensities
and image gradients and to allow smooth variations between spatially-contiguous non-zero regions
of the underlying image. Indeed, it encourages images with background with small intensity values
and sparsely distributed bright objects since if a pixel is non-null, the gradient vector at this pixel
is non-null as well, or otherwise both of them are null. Such images look like surprisingly to those
which are typically obtained in fluorescence imaging.

Based on the concept of grouping image intensity and spatial differentials, we propose an ex-
tended version of sparse variation using the second order differentiation operator. The proposed
regularization which is named as Hessian-based sparse variation (HSV) is defined as the following :

HSVρ(u) =

∫
Ω

√
ρ2‖Hu(x)‖2F + (1− ρ)2u(x)2 dx , (11)

where ‖ · ‖F denotes for the matrix Frobenius norm and ρ ∈]0, 1[ is the weighting parameter. We
also note that the Frobenius norm which is the square root of the sum of squared matrix entries
coincides with the Schatten 2-norm (‖ · ‖S2) in the case of the Hessian matrix due to its symmetry.
More interestingly, by using the fact that the Frobenius norm of the Hessian matrix is equal to the
Euclidean norm of its vectorized version, if we define

K2,ρ,


(1− ρ) Id
ρ ∂2

xx

ρ ∂2
xy

ρ ∂2
yx

ρ ∂2
yy

 , (12)

the expression of the Hessian-based sparse variation can be re-written as :

HSVρ(u) =

∫
Ω
‖K2,ρu‖2 dx = ‖K2,ρu‖1,2 . (13)
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It recalls once again the famous mixed L1-L2 norm mentioned earlier. Our Hessian-based regulariza-
tion is analogous to those introduced in [20] which also combines image intensities and second-order
differentials but a relaxed logarithm function is used for more sparsifying effect as

u 7−→
∫

Ω
log(‖K

2, 12

u‖2 + ε2) dx , (14)

where ε > 0 is a control parameter to prevent the singularity at 0 of the logarithm.
From the definitions (8)–(13), we remark furthermore that the original sparse variation and its

Hessian-based version correspond to convex regularizers since they are defined as the integration of
linear operators. It is easy to verify that these regularizers are homogeneous, shift- and rotation-
invariant as total variation. These properties not only are important in the sense of mathematical
functional analysis but also allow the design of exact and efficient algorithms which are not possible
for the smooth logarithm-based regularizer described in [20]. In general, by using an arbitrary k-th
order differentiation operator and by replacing the L1-norm by a Lν-norm (ν ≥ 1), we obtain a
generalized version of sparse variation as the following :

GSV(k)
ρ,ν(u) ,‖K

k,ρ
u‖νν,2

,
∫

Ω

[
ρ2‖D(k)u(x)‖22 + (1− ρ)2u(x)2

] ν
2
dx , (15)

where D(k) denotes the corresponding vectorized version of a k-th order differentiation operator
and ν is the parameter controlling the convexity degree of the functional. The family of convex
regularizers GSV

(k)
ρ,ν includes therefore sparse variation (k = 1, ν = 1) and Hessian-based sparse

variation (k = 2, ν = 1). In this work, we only consider k = 1 or 2 for the sake of simplicity, and we
focus on the case of ν = 1 to impose the sparsity of the image transform K

k,ρ
u which is the most

important property to restore fluorescence images.

4 Variational image deconvolution

4.1 Continuous framework

Given an observed image f : Ω→ R which is blurred and noisy, image deconvolution consists in
restoring the underlying image u : Ω→ R such that the following acquisition model holds :

f = T (Hu) , (16)

where H denotes the linear operator representing the blur related to the optical system (e.g., point
spread function) and T is a degradation operator modeling the measurement noise. In fluorescence
microscopy, the arising shot noise is usually modeled by the Poisson distribution (or eventually by a
mixed Poisson-Gaussian distribution) which is non-stationary and signal-dependent. Although this
model is very convenient for modeling purpose, it also leads to practical computational difficulties
since its associated data fidelity term is non-quadratic and is defined only for strictly positive
images (not defined for images having zero-value pixels). To avoid the strict positivity issue, instead
of considering the Poisson noise model, we assume, in this work, that the observed image f is
corrupted by a Gaussian white noise as the following :

f = Hu+ η , (17)
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where η denotes the additive Gaussian noise with zero-mean and standard deviation σ. Variance
stabilization techniques [22, 32, 33, 34] can be used in the case of Poisson-Gaussian noise to ap-
proximately convert the mixed noise into a Gaussian noise [35].

Under the assumption of additive Gaussian noise, the associated data fidelity term is a quadratic
functional which corresponds to a least-squares fitting :

ED(u) =
1

2

∫
Ω

(
Hu(x)− f(x)

)2
dx . (18)

Putting together this quadratic data term and the proposed regularization, the so-called SV (sparse
variation) deconvolution can be reformulated as a minimization problem :

û = arg min
u

1

2
‖Hu− f‖22 + λ‖K

k,ρ
u‖1,2 (19)

= arg min
u

∫
Ω

[1

2
(Hu(x)− f(x))2 + λ‖K

k,ρ
u(x)‖2

]
dx ,

where k = 1 or 2, 0 ≤ ρ ≤ 1 and λ ≥ 0 is the regularization parameter. We remark that the problem
(19) is convex since the underlying energy functional is sum of convex terms, but it is non-smooth
because of the singularity of the regularization term. Solving such a problem is not a trivial task due
to its non-smoothness. Smooth approximation can be envisaged to overcome the non-differentiability
of the underlying energy functional (objective) if we want to use standard differentiable optimization
techniques (such as gradient descent or Newton-Raphson method). However, the solution of the
approximated problem could be different from those of the original problem because the behavior
of the objective is modified. Up to our knowledge, only primal-dual methods [36, 37] allows to
solve directly this kind of convex and non-smooth problem without any modification of the energy
functional.

4.2 Discrete formulation

Since the observed noisy and blurry image f , which is obtained at the end of the acquisition
process, is represented by its digitized (discrete) version and not by its continuously defined coun-
terpart. The continuous model is not appropriate for discrete images even though the estimation
of the continuous image u from discrete samples of f is in principle possible. For that reason, we
propose to consider a discrete version of (19) by assuming that the images u and f are sampled
according to the sampling grid

Λ = Z2 ∩ Ω = {1, 2, . . . ,M} × {1, 2, . . . , N} . (20)

For a coordinate p = (i, j) ∈ Λ, we denote by ui,j = u(p) (resp. fi,j = f(p)) the value of u (resp.
f) at the position (i, j). Discrete version of these images are therefore given by {ui,j}1≤i≤M,1≤j≤N
and {fi,j}1≤i≤M,1≤j≤N . Let us consider X = RMN a finite dimensional vector space equipped with a
standard inner (scalar) product

〈w,w′〉X =
M∑
i=1

N∑
j=1

wi,jw
′
i,j
. (21)

The induced norm by the defined inner product is given by

‖w‖X2 =
√
〈w,w〉X =

 M∑
i=1

N∑
j=1

w2
i,j

 1
2

. (22)
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It is easy to check that both {ui,j}i,j and {fi,j}i,j belong to the mentioned vector space X .
In the following, without risk of ambiguity, we will consider the notations K

k,ρ
: X → X 2k+1 and

H : X → X for discrete versions associated with the intensity-differential-grouping and the blurring
operator. In the discrete setting, the blurring operatorH corresponds to a discrete convolution which
can be efficiently computed by using fast Fourier transform (FFT) [38, 39, 40, 41]. To discretize
K
k,ρ

(with k = 1 or 2), we use standard finite differences for the gradient and Hessian operators
with Neumann conditions on image boundaries

(K1,ρu)i,j =

 (1− ρ)ui,j
ρ(D(1)

1 u)i,j
ρ(D(1)

2 u)i,j

 ∈ R3 , (23)

and

(K2,ρu)i,j =


(1− ρ)ui,j
ρ(D(2)

1, 1u)i,j
ρ(D(2)

1, 2u)i,j
ρ(D(2)

2, 1u)i,j
ρ(D(2)

2, 2u)i,j

 ∈ R5 , (24)

where

(D(1)

1 u)i,j =

{
ui+1,j − ui,j if i < M ,
0 if i = M ,

(25a)

(D(1)

2 u)i,j =

{
ui,j+1 − ui,j if j < N ,
0 if j = N ,

(25b)

(D(2)

1, 1u)i,j =

{
ui+1,j − 2ui,j − ui−1,j if 1 < i < M ,
0 otherwise ,

(25c)

(D(2)

2, 2u)i,j =

{
ui,j+1 − 2ui,j − ui,j−1 if 1 < j < N ,
0 otherwise ,

(25d)

(D(2)

1, 2u)i,j =(D(2)

2, 1u)i,j =


ui+1,j+1 − ui+1,j − ui,j+1 + ui,j

if i < M and j < N ,
0 otherwise .

(25e)

Let us consider these discrete operators and define the mixed L1-L2 norm of {(K
k,ρ
u)i,j}i,j as

‖K
k,ρ
u‖X1,2 =

M∑
i=1

N∑
j=1

‖(K
k,ρ
u)i,j‖2 , (26)

where the L1-norm acts now on the discrete domain Λ. The energy functional associated with SV
deconvolution problem in the discrete setting then reads, where λ ≥ 0,

E(u) =
1

2
‖Hu− f‖2X2

+ λ‖K2,ρu‖X1,2 . (27)

Furthermore, due to the nature of photon-limited imaging in fluorescence microscopy which
implies that image intensities are upper and lower bounded, range constraints on image intensities
can also be added

C = {u : 0 ≤ ui,j ≤ umax, 1 ≤ i ≤M, 1 ≤ j ≤ N} (28)

= [0, umax]MN ⊂ X ,
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where the lower bound 0 guarantees to positivity of the solution and the upper bound umax > 0 is
the maximal intensity value allowed. Finally, we consider the following minimization problem :

û=arg min
u

1

2
‖Hu− f‖2X2

+ λ‖K
k,ρ
u‖X1,2 + ıC(u) , (29)

where ıC denotes the characteristic function of the convex subset C defined as

ıC(u) =

{
0 if u ∈ C ,

+∞ otherwise . (30)

We notice that the objective function in (29) is a sum of linear composite functions as u 7→∑m
n=1 Fn(Lnu), where each Fn is a convex function and each Ln is a linear bounded operator.

Formally, we can write m = 3, F1 = ıC, L1 = Id, F2 = λ‖ · ‖X1,2, L2 = K
k,ρ

and F3 = 1
2‖ · ‖

2
X2
,

L3 = H(·)− f . Generic primal-dual proximal approaches can be used to minimize this linear com-
bination of convex functions as proposed in [42, 43], but it is not optimal since the smoothness
of the quadratic terms 1

2‖Hu − f‖
2
X2

is not exploited. In order to solve the problem (29), the de-
sign of an appropriate algorithm requires therefore to take into account the specific form of the
corresponding energy, i.e. the sum of a simple convex function F = ıC, a more sophisticated com-
posite function G ◦ L = λ‖K

k,ρ
(·)‖X1,2 (here, G = λ‖ · ‖X1,2 and L = K

k,ρ
) and a smooth function

H = 1
2‖H(·)− f‖2X2

.

4.3 Minimization of the proposed energy

In this section, we present a first-order method to minimize the sum of convex functions in (29),
based on the proximal splitting approaches [44, 45, 46, 47, 48, 36, 37, 49]. It consists in decomposing
(splitting) the original problem into several simple sub-problems in the way that each single function
of the sum can be processed separately. Indeed, smooth function involves its gradient operator, while
non-smooth function implies its Moreau proximity operator [50]. These operators are well-suited
for large-scale problems arising in signal and image processing, because they only exploit first-order
information of the function and thus enable fast and efficient computation.

Let us recall first that the proximity operator of a convex function J : X → R is defined as

proxτJ (u) = arg min
w∈X

J (w) +
1

2τ
‖u− w‖2X2

, (31)

where τ > 0 is a control parameter. From this definition, it easy to verify that the proximity operator
of the function F (u) = ıC(u) is nothing else than the projection (according to the norm ‖ · ‖X2)
onto the convex subset C = [0, umax]MN as the following

proxτF (u) = arg min
w∈X

ıC(w) +
1

2τ
‖u− w‖2X2

(32)

= arg min
w∈C

‖u− w‖2X2
.

If we denote projC the projection operator on C, its closed-form expression is given by(
projC(u)

)
i,j

= max(0,min(umax, ui,j )) , (33)

which is completely simple and easy to compute. Meanwhile, the quadratic function H (u) =
1
2‖Hu − f‖2X2

possesses an analytic form for its associated proximity operator but the latter is
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slightly complicated

proxτH (u) = arg min
w∈X

1

2
‖Hw − f‖2X2

+
1

2τ
‖u− w‖2X2

(34)

= (τH>H + Id)−1(τH>Hf + u) ,

where the symbol > denotes the adjoint of a linear operator and H> : X → X satisfies 〈Hw,w′〉X =
〈w,H>w′〉X . The evaluation of proxτH (u) corresponds to the inverse of a linear system that is not
always possible in practice due to the high dimension of the problem. For this reason, optimization
methods which involve the gradient of H are more appropriate since they do not require any inverse
operator. In the comparison with F and H , the calculation of the proximity operator in the case of
the composite function G ◦L(u) = λ‖K

k,ρ
u‖X1,2 is theoretically possible but is challenging because

of the presence of K
k,ρ

which is not diagonal.
To solve the minimization problem (29), we adopt the full splitting approach described in [37, 49].

The key idea of this approach is to evaluate the gradient, proximity and linear operators individually
in order to avoid implicit operations such as inner loops or inverse of linear operators. Accordingly,
only “simple” computations are considered such as the gradient ∇H , the proximity operators of F
and G , the linear mapping L and its adjoint operators L>. The corresponding proximal algorithm
for the problem (29) is written under the following general form :

u(`+1) = proxγF

{
u(`) − γ

(
L>z(`) +∇H (u(`))

)}
, (35a)

z(`+1) = proxζG ?
{
z(`) + ζL

(
2u(`+1) − u(`)

)}
, (35b)

where γ, ζ > 0 are proximal parameters, G
? denotes the Legendre-Fenchel conjugate of G and

its proximity operator proxζG ? can be directly computed from proxG
ζ

by using Moreau’s identity
v = ζ proxG

ζ
(vζ ) + proxζG ? (v). Following [37, 49], to guarantee the convergence of the proposed

algorithm, the parameters γ and ζ must fulfill the condition

γ

(
1

2
+ ζ|||L>L|||

)
< 1 , (36)

where ||| · ||| denotes the operator norm. The proofs of the convergence can be found in [37]. We
also note that the proposed algorithm belongs to the class of primal-dual algorithms which provide
not only the solution of the primal problem (a.k.a. the original minimization problem) but also the
solution of its dual problem.

Since the closed-form of proxγF is already given, it remains us now to define the analytic
expression of other terms in (35a) and (35b). We start with the gradient of the quadratic function
H which is straightforwardly obtained by

∇H (u) = H>(Hu− f) . (37)

Next, we remark that the regularization operator L = K
k,ρ

is a linear mapping u ∈ X 7→ K
k,ρ
u =

(vt)
1≤t≤2k+1

∈ X 2k+1, then its adjoint operator L> = K
k,ρ
> is defined using the equation 〈u,K

k,ρ
>v〉X =

〈K
k,ρ
u, v〉X 2k+1 , which implies(

K1,ρ
>v
)
i,j =(1− ρ)v1

i,j
+ ρ[(D(1)

1 )>v2]i,j+ ρ[(D(1)

2 )>v3]i,j (38)

11



(a) (b) (c) (d) (e)

Figure 1 – Set of biological images acquired by SIM technology. From left to right : (a) actin
cytoskeleton, (b) microtubule, (c) tumor tissue, (d) muscle tissue, and (e) adipose tissue. The first
two images are cell images collected from the Cell Image Library (http://www.cellimagelibrary.
org) with id number CIL 7053 and CIL 36147 respectively (CIL stands for the Cell Image Library
identifier). The last three images are tissue images in the dataset used in [51] (available at https:
//dukespace.lib.duke.edu/dspace/handle/10161/10892).

and (
K2,ρ

>v
)
i,j =(1− ρ)v1

i,j
+ ρ[(D(2)

1, 1)
>v2]i,j+ ρ[(D(2)

1, 2)
>v3]i,j

+ ρ[(D(2)

2, 1)
>v4]i,j+ ρ[(D(2)

2, 2)
>v5]i,j , (39)

where the involving adjoint operators (D(1)
1 )>, (D(1)

2 )>, (D(2)
1, 1)
>, (D(2)

1, 2)
>, (D(2)

2, 1)
>, and (D(2)

2, 2)
> are given in

the appendix section. From equations (38) and (39), one can deduce the following upper bounds :

|||K1,ρ
>K1,ρ ||| ≤ (1− ρ)2 + 8ρ2 , (40a)

|||K2,ρ
>K2,ρ ||| ≤ (1− ρ)2 + 64ρ2 , (40b)

that are used for choosing the proximal parameters γ and ζ.
The last term we want to deal with is the proximity operator proxζG ? . We also note that

the proposed primal-dual algorithm does not necessitate evaluating the proximity operator of the
composite function G ◦L as in the case of generic proximal algorithms, but only proxG

ζ
is required.

Since G is related to the mixed L1-L2 norm ‖ · ‖X1,2 whose the proximity operator is defined as :

(
proxτ‖·‖X1,2

(v)
)t
i,j

= max(0, ‖Li,jv‖2 − τ)
vt
i,j

‖Li,jv‖2
, (41)

where Li,j : v ∈ X 2k+1 7→ (vt
i,j

)
1≤t≤2k+1

∈ R2k+1 is a linear operator ; by using the Moreau’s identity,
we obtain the closed-form expression of proxζG ? as the following :

(
proxζG ? (v)

)t
i,j

=
vt
i,j

max
(

1,
‖Lijv‖2

λ

) , (42)

which shows that proxζG ? is independent from ζ and moreover it is an pointwise operator. These
properties allow therefore fast and efficient computation by exploiting the intrinsic parallelism of
multicore processors.

12

http://www.cellimagelibrary.org
http://www.cellimagelibrary.org
https://dukespace.lib.duke.edu/dspace/handle/10161/10892
https://dukespace.lib.duke.edu/dspace/handle/10161/10892


Table 1 – Properties of regularizers which are used in the deconvolution experiments.
Regularizer Differentiation Convexity Smoothness

order

Total Variation (TV) 1 Convex Non smooth
Hessian Variation (HV) 2 Convex Non smooth
TV-L1 1 Convex Non smooth
GraphNet (GN) 1 Convex Non smooth
Sparse Variation (SV) 1 Convex Non smooth
Hessian-based SV (HSV) 2 Convex Non smooth

TV Huber (TVH) 1 Convex Smooth
HV Huber (HVH) 2 Convex Smooth
TV-L1 Huber (TV-L1H) 1 Convex Smooth
HV-L1 2 Convex Non smooth
HV-L1 Huber (HV-L1H) 2 Convex Smooth
GraphNet Huber (GNH) 1 Convex Smooth
Hessian-based GN (HGN) 2 Convex Non smooth
HGN Huber (HGNH) 2 Convex Smooth
SV Huber (SVH) 1 Convex Smooth
HSV Huber (HSVH) 2 Convex Smooth

Arigovindan et al. [20] (LHSV) 2 Non convex Smooth

5 Experimental results

To evaluate the performance of the sparse variation (SV) deconvolution approach, we provide
experimental comparisons with classical deconvolution methods [52], that are commonly used in fluo-
rescence microscopy such as the Richarson-Lucy (RL) algorithm, the iterative constrained Tikhonov-
Miller (ICTM) algorithm, and the Gold-Meinel (GM) algorithm, and with recent regularization-
based deconvolution methods, including total variation (TV), Hessian variation (HV), GraphNet
(GN) [53, 54, 55], TV-L1 [56, 57], and specially the non-convex regularizer (14) introduced by
Arigovindan et al. [20]. The latter involves second order differentiation operator and is based on
the logarithm function. It is abbreviated as LHSV (Log-based Hessian Sparse Variation) due to
its similarity with the concept of SV. We recall that GraphNet is the sum of the L1 norm of the
image intensity and the squared L2 norm of the image gradient (i.e. the Tikhonov penalty), whereas
TV-L1 differs from GraphNet by replacing the Tikhonov penalty by TV penalty :

GNρ(u) = ρ‖∇u‖22 + (1− ρ)‖u‖1 , (43)
TVL1ρ(u) = ρ‖∇u‖1,2 + (1− ρ)‖u‖1 . (44)

To enrich the catalog of convex regularizers used in these experiments, by using the Hessian
operator instead of the gradient operator, we consider also an extended version of GraphNet and
TV-L1 which can be named as Hessian-based GraphNet (HGN) and Hessian Variation-L1 (HV-L1)
respectively. Furthermore, Huber-norm-based smooth approximations of non-smooth regularization
functionals, which enable the use of smooth optimization techniques such as gradient-descent-based
methods, are also considered in our study. For these smooth regularization functionals, we use
the projected gradient method to minimize the underlying deconvolution energy. In contrast, a
full-splitting-based primal-dual algorithm [37, 49] is used in the case of non-smooth regularization
functionals.

One important motivation of this work was to investigate the impact of smooth and non-smooth
regularizers for image deconvolution. In Table 1, we summarize the characteristics of the reguralizers
mentioned above. The deconvolution experiments were performed on an image set composed of both
synthetic and real fluorescence)images depicting bright objects over dark backgrounds.
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Table 2 – Information of test images (see Fig. 1).
Image Type Image Pixel Spatial

size size resolution

Actin cytoskeleton Cell 1904× 1900 px 0.04 µm 0.1 µm
Microtubule Cell 1054× 1028 px 0.04 µm 0.1 µm
Tumor Tissue 350× 300 px 1.50 µm 4.4 µm
Muscle Tissue 350× 300 px 1.50 µm 4.4 µm
Adipose Tissue 350× 300 px 1.50 µm 4.4 µm

5.1 Experiments on simulated image

We have selected several SIM (Structured Illumination Microscopy) images to serve as blur-free
and noise-free reference images (i.e. ground-truth) in OUR experiments. SIM imaging allows to
reconstruct very fine details at very high resolutions (up to 100 nm for standard SIM techniques)
while removing noise from raw acquired measurements. These fluorescence images, shown in Fig.
1, were collected from two sources : the Cell Image Library (CIL) database (available at http:
//www.cellimagelibrary.org) and the training dataset used in [51] for the detection of positive
margins in a pre-clinical genetically engineered mouse model of sarcoma. We note that, for the latter
data set, the used SIM technique called widefield SIM is specially developed for tissue imaging which
does not require sub-cellular resolution. For that reason, the resolution is much more smaller than
those of conventional SIM which is approximately 100 nm as in the case of CIL images. In Table 2,
we provide detailed information of all test images, including specimen name, image size and spatial
resolution.

To produce a homogeneous and fair comparison of different methods and to avoid bias induced by
inhomogeneous dynamic ranges between the images, we first normalized the reference images in the
range [0, 1] before all further simulations. The normalized images are then blurred by considering
a Gaussian point spread function with standard deviation σPSF = 2. A Gaussian noise with zero
mean and variance σ2 is also added to these images in order to generate observed noisy and blurry
data. In these experiments, we consider three distinct noise levels corresponding to a standard
deviation σ ∈ {0.02, 0.04, 0.08} respectively. Quantitative evaluation of each deconvolution method
is measured by the Peak Signal-to-Noise Ratio (PSNR) and by the Structural Similarity (SSIM)
index between the deconvolved images and the reference images.

For regularization-based methods which combine penalties on image intensity and on image
differentiation operator (such as SV, TV-L1, GraphNet and their variants), we set the trade-off
parameter ρ = 0.5, implying the equal contribution of each component for simplification purpose.
In the case of the Richardson-Lucy (RL) algorithm which is originally designed to deal with Poisson
noise, the degraded images are re-scaled to the original dynamics of the underlying reference images
by multiplying by a normalization factor. The RL deconvolution results are then re-normalized
for a fair comparison with those obtained by the other methods. Before applying the Gold-Meinel
algorithm, the noisy images are smoothed with a Gaussian filter as pre-processing step because this
algorithm assumes that the noise is negligible.

Quantitative evaluation

In Table 3, we provide the comparative results of the proposed SV deconvolution with the tested
methods for the set of fluorescence images shown in Fig. 1, for different degradation conditions. Note
that the deconvolution outcome of each method was obtained using parameters which were tuned
in the way that produce the best PSNR performance. Using these fine-tuned parameters, the SSIM
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score is computed for an additional quantitative criterion to evaluate the effectiveness of considered
deconvolution methods.

According to the results reported in Table 3, we notice that the non-regularization methods
such as RL and GM algorithms perform poorly, irrespectively of the images and the noise levels,
showing their non-competitiveness when compared with regularization-based methods. The poor
performance of these methods is mainly due to the lack of regularization on the solution, leading
to noise amplification in deconvolved images. Among the regularization-based methods, the itera-
tive constrained Tikhonov-Miller (ICTM) algorithm, based on the squared L2 norm of the image
gradient, generally produces encouraging results in terms of PNSR and SSIM performance. In some
cases, it eventually outperforms other competitors. For example, on the image of tumor tissue (see
Fig. 1(c)), ICTM solution achieves the best PSNR and SSIM scores in the case of medium and
high noise levels (corresponding to σ = 0.04 and σ = 0.08 respectively) ; meanwhile, slightly in-
ferior scores are obtained for low noise level (σ = 0.02) but the difference between them and the
corresponding highest values is relatively small.

Regarding non-smooth regularizers, Hessian variation consistently gives superior PSNR scores
than TV, for all considered images and noise levels. In terms of SSIM performance, it produces
better results in most of cases. In comparison to TV that only penalizes image gradient norm, the
TV-L1 approach which introduces additionally the L1 penalty on image intensities, yields slightly
improved PSNR and SSIM values in some few cases. For the remaining cases, the obtained results
using TV and TV-L1 are very similar. The analogous behavior is also noticed when we compare the
couple of HV and HV-L1 regularizers, the second-order extension of TV and TV-L1 respectively.
The experimental results shows furthermore that the second-order regularizers achieve in general
higher PSNR and SSIM scores than the corresponding first-order version. In contrast with first-tier
performance obtained with these TV-based regularizations, GraphNet and its Hessian-based variant
fail to be competitive for many selected images and signal-to-noise ratios. Their PSNR performance
falls behind by more than 2 dB in average and even more than 3 dB in some cases, resulting in
lower SSIM scores when compared to TV-related approaches that consider non-quadratic penalty
on image differential components. Meanwhile, the results provided by sparse variation are almost
comparable to those obtained with TV and HV in terms of both PSNR and SSIM performance.
Specially, in the case of microtubule image (CIL 36147) which represents sparsely distributed fine
filament structures over dark background, SV leaves these two competing regularizers behind on
SSIM benchmark, whereas its PSNR score is higher for two noise levels and slightly lower (only
0.02 dB) than HV for the remaining noise level. In contrast to the supremacy of HV with respect
to TV, Hessian-based sparse variation, the second-order extension of SV, does not achieve higher
performance than its first-order version over half of cases and the difference between results obtained
with these two versions are almost insignificant.

Comparing with these convex but non-smooth regularization functionals, the Huber-norm-based
approximations yield in general satisfying results. In a few cases, the PSNR and SSIM score are
slightly improved by using the smooth approximated version instead of the original counterpart,
but slightly inferior performances are also observed in some other cases. More interestingly, the
improvement is frequently noticed for first-order regularizers including TV Huber, TV-L1 Huber,
GraphNet Huber and SV Huber, whereas, second-order regularizers usually suffer from a lowering
of PSNR score as well as SSIM value. Another smooth regularizer that we wished to investigate
is the so-called LHSV which considers a regularization operator gathering the image intensity and
the Hessian matrix coefficients as Hessian-based SV, but replaces the square root in the L2 norm
by a smooth approximation of the logarithm. Using the logarithm function enables to enforce the
sparsifying effect, LHSV is able to efficiently remove noise in extremely noisy images while preserving
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essential details. In our experiments, this sophisticated approach produces however disappointing
results on artificially degraded images. Indeed, the PSNR and SSIM scores are barely in the same
grade of GraphNet and sharply inferior than those obtained with HV, SV or even TV in most cases.

Visual inspection and assessment

Based on our observations, the PSNR and SSIM benchmark do not yield a consistent ranking on
the performance of each deconvolution approach, and thus it is not possible to definitely conclude
which method works best among the considered methods. Their effectiveness needs to be assessed
visually in local regions. Actually, there are chances that an obtained result with outstanding PSNR
and SSIM scores is unacceptable in terms of visual quality, simply due to over-smoothing which
results in the loss of fine details in deconvolved images or due to over-sharpening which leads
to unrealistic reconstructions. For that reason, we provide in Fig. 2, a comparison showing the
example of deconvolution results obtained with different methods on the microtubule image (CIL
36147) degraded by a Gaussian PSF (σPSF = 2) and an additive Gaussian white noise with standard
deviation σ = 0.04. The original image, showing microtubule structures on a Drosophila S2 cell,
was acquired by a Zeiss Elyra Super-resolution microscope equipped with SIM imaging technique
and is collected as part of the Marine Biological Laboratory Neurobiology Course in summer 2011.

First, Fig. 2(c) and 2(d) clearly show that the GM and RL algorithms give very poor results. The
ICTM algorithm produces, in contrast, more pleasant visual results, but it tends to over-smooth
(blur) important structural details in the images (see Fig. 2(e)) due to the quadratic form of the
Tikhonov regularizer. Comparing with the blurred ICTM solution, the deconvolved imaged obtained
with LHSV has sharper details over an uniform background (see Fig. 2(n)). However, noise is not
sufficiently removed, especially in non-background regions. It not only disturbs the visual effect but
also makes the detection of fine details more difficult.

Meanwhile, the result provided by TV in Fig. 2(f), is visually unrealistic in spite of its compe-
titive PSNR and SSIM scores against other regularizers. As expected, it suffers from undesirable
staircasing effect characterized by sharp edges and contiguous flat regions (also known as piecewise
constant image). The staircasing artifacts can be easily observed in bright regions, notably those
corresponding to filament structures which represent smooth changes of intensities. A particular
consequence of staircasing effect that we want to figure out in the case of TV, is the presence of
number of light-shaded spots with constant intensity over relatively darker surrounding areas. Most
of these spots correspond generally to high peaks of noise in the blurred image background and
do not represent any relevant structure of the original image. A deconvolved image with more ho-
mogeneous background is obtained using the TV-L1 regularization that combines TV with the L1

norm of the image intensity to prevent pixels having intensity smaller than a certain threshold, and
controlled by the weight ρ and the regularization parameter λ. This thresholding which imposes
vanishing of low-intensity regions is also known as the feature selection property the TV-L1 model
as reported in [56]. However, this model does not remove staircasing artifacts related to TV re-
gularization. In comparison with the latter, GraphNet addresses both staircasing and light-shaded
spot issues by combining the quadratic Tikhonov functional with the L1 penalty. The deconvolved
image has indeed an uniform background (with less light-shaded spots) and a foreground with no
apparent contiguous regions of constant intensity, as shown in Fig. 2(h). It is visually more plea-
sant than TV and TV-L1 solutions. It however produces slightly blurred image details due to the
Tikhonov penalty which promotes smooth changes of intensities. However, it does not suffer from
over-smoothing as in the ICTM solution due to the L1 penalty which prevents nearly-zero intensity
pixels, and hence enhances the contrast between bright objects and darker background. This is
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(a) Original (b) Blurred and noisy

(c) RL (PNSR = 23.11) (d) GM (PNSR = 24.82) (e) ICTM (PNSR = 27.98)

(f) TV (PSNR = 27.88) (g) TV-L1 (PSNR = 27.93) (h) GN (PSNR = 28.26)

(i) HV (PSNR = 28.57) (j) HV-L1 (PSNR = 28.61) (k) HGN (PSNR = 28.35)

(l) SV (PSNR = 28.82) (m) HSV (PSNR = 28.89) (n) LHSV (PNSR = 27.78)

Figure 2 – Deconvolution results on the microtubule image obtained with different
methods in comparison to the proposed SV-based approach. The original image (available
at http://www.cellimagelibrary.org/ with identifier CIL 36147) is degraded by a Gaussian PSF
with standard deviation σPSF = 2 and a additive Gaussian noise with zero mean and standard
deviation σ = 0.04. Zoom on filament details is shown in order to compare the performance of each
method. The SV and Hessian-based SV solutions are very competitive when compared to those
obtained with the other methods.
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(a) Original (b) TV (c) TV-L1

(d) GN (e) SV (f) HV

Figure 3 – Gradient magnitude of deconvolution results obtained with several convex
regularizers. The “hot” colors correspond to high gradients and “cold” colors to low gradients.

consistent with the high PSNR and SSIM values. In the particular example of microtubule image,
GraphNet outperforms the ICTM, TV and TV-L1 algorithms.

By examining the comparative results reported in Fig. 2, it turns out that SV gives similar results
to GraphNet and outperforms all other regularizers which are first-order, convex and non-smooth,
in terms of visual quality. The effectiveness of SV approach for fluorescence images, especially in
the case of the microtubule image, can be justified by the way that this regularization affects the
form of obtained solutions. In contrast with TV (penalty on image gradients), or with TV-L1 and
GraphNet that simply sum two penalties acting separately, one on image intensities and the other
on image gradients, SV penalizes jointly image intensities and gradients by introducing structured
sparsity on a specific linear transform which maps each pixel to an unique vector composed of its
intensity and its directional derivatives in order to favor the co-localization of non-zero pixels and
gradients. Therefore, it allows to obtain non-zero regions of eventually high-magnitude gradients, in
opposition to relatively small-magnitude gradients in the case of GraphNet or vanishing gradients
for TV and TV-L1. This behavior results in better reconstruction of the image foreground, in which
large intensity variation between pixels at the object boundaries and those in the middle, as well
as sharp contrast between different objects may occur, while avoiding undesirable over-smoothing
or over-sharpening effect. As an alternative, HV based on the norm of second-order differentiation
operator leading to piecewise linear solutions, also permits the reconstruction of high-magnitude
gradients not only at the edge of the objects but also inside objects. HV solution shown in Fig. 2(i),
is able to restore smooth intensity variations of filament structures and is visually comparable to the
GraphNet and SV solutions. The background with some visible light-shaded spots is however non-
homogeneous, as expected. Hence, in the example of microtubule image, SV represents so far the
best deconvolution result with well-restored fine details and homogeneous background in comparison
with existing regularizers including TV, TV-L1, GraphNet and HV.

To better appreciate the behavior of the regularization approaches, Fig. 3 depicts the gradient
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(a) Original (b) SVH (PSNR = 28.70) (c) HSVH (PSNR = 28.47)

(d) TVH (PSNR = 28.35) (e) TV-L1H (PSNR = 28.41) (f) GNH (PSNR = 27.45)

(g) HVH (PSNR = 28.32) (h) HV-L1H (PSNR = 28.38) (i) HGNH (PSNR = 27.84)

Figure 4 – Deconvolution results on the microtubule image obtained with Huber-
based smooth approximation of some convex regularizers. The original image (available at
http://www.cellimagelibrary.org/ with identifier CIL 36147) is degraded by a Gaussian PSF
with standard deviation σPSF = 2 and an additive zero-mean Gaussian noise (σ = 0.04). Zoom on
filament details is shown in order to compare the performance of each method.

magnitude of several deconvolution results shown in Fig. 2. We can clearly notice that, in the case
of TV and TV-L1 solution (see Figs. 3(b) and 3(c) respectively), the gradient vanishes for most
of pixels except along object edges, thus implying blocking artifacts. The gradient of HV solution
shown in Fig. 3(f) possesses piecewise constant magnitude, or in other words, HV pushes the well-
known staircasing effect to the image first-order differentials instead of the image itself. Unlike
these regularizers, SV approach, which produces results with smoothly varied gradients as depicted
in Fig. 3(e), allows to handle smooth intensity changes and then restore a wider class of images
than piecewise constant or piecewise linear images. In comparison, the spatial gradient of GraphNet
solution (see Fig. 3(d)) is rather similar to SV, but the magnitude is slightly smaller at some points,
resulting in slightly more blurred details.

Regarding second-order regularization, HV-L1 solution shown in Fig. 2(j) is visually similar to
HV, but with less light-shaded spots when compared to TV and TV-L1. Hessian-based GraphNet
produces quasi-identical results to those obtained with its first-order version (see Figs. 2(k) and
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Figure 5 – Three-color fluorescence image of 8 tissue microarray cores. A region of
interest of 4.7 × 2.8 mm2 was scanned using the fluorescence scanner named InnoScan 1100AL
equipped with three excitation wavelengths (488 nm, 532 nm and 635 nm) at the spatial resolution
0.5 µm/ pixel, corresponding to an image of 9544 × 4704 pixels. Two areas which are bordered by
blue and yellow box are selected for comparison in details. First row : full size image. Second and
third rows : zoom-in views of two selected areas ; from left to right : 3 colors at the same time, red
(488 nm), green (532 nm) and blue (635 nm) channels displayed separately.
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2(h) respectively). This is probably due to the quadratic nature of the squared norms (the L2 norm
for GraphNet and the Frobenius norm for the Hessian-based variant), regardless of the order of
considered differentiation operator. In addition, insignificantly different results are also observed in
the case of sparse variation and its Hessian-based version (see Figs. 2(l) for SV solution and 2(m)
for those obtained with HSV). We note that the difference between them in terms of quantitative
evaluation is negligible : only 0.07 dB of difference between the PSNR scores and 0.001 for their
SSIM performances.

Finally, we compare the original non-smooth regularizers with the corresponding Huber-norm-
based smooth approximation. Figure 4 shows the deconvolution results obtained with these smooth
regularization functionals on the microtubule image CIL 36147 degraded by Gaussian PSF (σPSF =
2) and additive Gaussian noise (σ = 0.04). As depicted in Fig. 4(c), TV-Huber prevents blocking
artifact and provides visibly better result than the original TV model, as expected. The main
drawback is the light-shaded spot issue that we have previously observed in the case of TV, TV-
L1 and HV solution (see Figs. 2(f), 2(g), and 2(i) respectively). In comparison, the TV-L1 Huber
solution shown in Fig. 4(d), is indistinguishable from those obtained with TV-Huber in terms of fine
detail reconstruction as well as non-homogeneous background. We notice that this regularization
does not preserve the feature selection property of TV-L1, maybe because the Huber norm disables
the sparsity induced by the L1 norm. Concerning second-order approaches, HV-Huber and HV-L1

Huber give results (see Figs. 4(f) and 4(g) respectively) which are visually similar to their first-order
versions. Nevertheless, they tend to worsen the problem of light-shaded spots by making these spots
more pronounced. Similarly, undesirable light-shaded spots are also observed in the case of SV-Huber
and HSV-Huber solution (see Figs. 4(b) and 4(c)). It degrades sharply the visual quality of these
deconvolution results although fine details, such as filament structures are adequately restored.
Solutions obtained with GraphNet-Huber and its Hessian-based variant (Figs. 4(e) and 4(h)) do
not severely suffer from light-shaded spot issue and have more homogeneous background. However,
they can not be considered as reliable solution due to the noisy reconstruction of relevant details in
the image foreground. In our opinion, the Huber-norm-based approximation of convex non-smooth
regularizers may improve deconvolution results in some aspects as we have observed, but it also
modifies the properties of its corresponding original version.

To sum up, the proposed SV-based deconvolution approach yields better results in overall in
comparison to those obtained with the tested methods. Not only achieving competitive PSNR and
SSIM performance in most of cases, the SV and HV solutions are also very encouraging in terms
of visual quality. According to our observations, they avoid in general over-smoothing and over-
sharpening effect arising when using other regularizers, while being able to well restore image details
with smooth changes of intensities and to efficiently eliminate strong noise from the background.

5.2 Application to real large fluorescence images

We present in this section the deconvolution results obtained with our method on real fluores-
cence images of tissue microarray (TMA) These TMA images, shown in Fig. 5 and 7, are acquired
using dedicated scanner called InnoScan 1100AL 2. Equipped with three excitation lasers with corres-
ponding wavelength 488 nm (red), 532 nm (green) and 635 nm (blue) respectively, this fluorescence
scanner is able to provide single-color as well as multi-color (up to three color) images at very high
resolutions. The highest resolution can reach to 0.5 µm per pixel (or a 20X objective equivalently)
for normal users and eventually 0.2 µm per pixel in advanced mode for developers.

2. InnoScan 1100AL is developed and commercialized by Innopsys Inc., see https://www.innopsys.com/en/
lifesciences-products/microarrays/innoscan/innoscan-1100-al for more technical details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6 – Deconvolution results on the three-color TMA image obtained with different
regularizers. Zoom-in view on two selected areas are displayed for comparison purposes. (a) and
(c) : original acquired image ; (b) and (d) : dejittered image ; (e) and (g) : TV solution ; (f) and (h) :
HV solution ; (i) and (k) : SV solution ; (j) and (l) : LHSV solution.
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According to the scanner design, the acquisition on each color channel is performed pixel by
pixel, by moving the excitation laser beam with respect to a programmed scanning trajectory
and collecting re-emitted light at specific positions on the scanning trajectory. Due to the beam
divergence, the intensity of a pixel does not measure the emitted fluorescence signals at its spatial
positions but the integral of signals over a wider area defined by the laser pattern which has in
theory the shape of an isotropic Gaussian spot. Given that, the diameter of laser spots configured
for this fluorescence scanner is typically set to more than 1 µm, in the case of high-precision scanning
which requires sub-micrometer pixel size, the optical resolution (in the sense of the shortest distance
between two points that can still be distinguished) is then limited by the laser spot size, resulting in
blurred details on acquired images. If the image pixels are correctly positioned, each channel of an
acquired image can be modeled as the convolution product of the underlying fluorescently-tagged
specimen and the corresponding laser spot. The latter is therefore called the PSF of the associated
color channel. Due to its Gaussian nature, this PSF can be parametrized by its FWHM (Full Width
at Half Maximum) value which is usually empirically measured during the scanner calibration
process. The relation between the FWHM and the standard deviation σPSF of a Gaussian PSF is
given by FWHM = 2σPSF

√
2 log 2 .

As depicted in the second and third rows of Fig. 5, we notice that the acquired TMA images for
this experiment suffer not only from blur, but also from rolling effect (jitter) in vertical direction
due to the bad positioning of pixels. A dejittering step is thus required as pre-processing in order
to re-align jagged shapes and produce less jittered input images for deconvolution step. To that
end, we utilized the algorithm described in [58] to compensate the specific jitter arising on these
fluorescence images. In Figs. 6(b) and 6(d), we provide zoom-in views of two selected areas on
result obtained with this dejittering algorithm on the three-color TMA image shown in Fig. 5 for
illustration purpose. We can clearly see that the rolling effect is significantly reduced when compared
to the original jittered images.

Comparison with existing regularizers

We visually compared the results obtained with SV to those obtained with existing state-of-the-
art regularizers such as TV, TV-L1, GraphNet, HV, and LHSV on a fluorescence image showing
eight tissue microarray cores (see Fig. 5). The considered TMA image, saved in 16-bit-TIFF format,
was acquired in three colors at the resolution of 0.5 µm per pixel with a total size of 9544 × 4704
pixels. Since we notice that the vertical rolling effect is not the same on the three color channels, as
shown in the two bottom rows of Fig. 5, the experiment is performed as the following. Each channel
is first dejittered separately for an appropriate removal of the jitter arising on it. Second, the
dejittered outcome on each channel served as the input image for deconvolution. The deconvolution
results are finally merged to produce a three-color image as the original image for comparison
purposes. According to the scanner calibration, the measured FWHM value of the Gaussian laser
spot is approximately 0.703 µm for all three channels, corresponding to a standard deviation σPSF '
0.5971 µm which is slightly larger than the image pixel size.

The deconvolution results are shown in Fig. 6 (zoom-in view) on two selected areas for com-
parison in details. The regularization parameter for each regularization approach is tuned to get
the most pleasant visual effect. As shown in Figs. 6(e) and 6(g), TV produces piecewise constant
reconstruction which wipes out details in areas with small changes of intensities and over-sharpens
the transition between contiguous regions. The restored images look like cartoon images and are
not natural visually. HV is able to restore better these fine details with smooth variations while
preserving the contrast between structures in the foreground and the background (see Figs. 6(f) and
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6(h)). The resulting image seems however slightly blurred when comparing with the SV and LHSV
solution. Up to our knowledge, it may be due to the piecewise linear nature of the HV solution
which does not fit the smooth nature of structures on the underlying image.

Both LHSV and SV which penalize jointly image intensities and image differential components,
provide sharper reconstruction than HV based on the second-order differentiation operator. Because
of this joint penalization concept, they also tend to unfortunately over-sparsify the distribution of
non-zero pixels, resulting in vanishing nearly-zero-intensity details, as noticeable in Fig. 6(i) and
6(j) where several green color features are nearly disappeared. We remark that the over-sparsifying
effect on LHSV solution is slightly stronger than those obtained with SV. In our opinion, it is mainly
due to the combination of the logarithm function and the squared L2 norm in the LHSV functional
in comparison to the L2 norm in the case of SV. Note that the jittering was not completely removed
on the example shown in Figs. 6(b) and 6(d), but SV handles these imperfect input images and
produces nearly jitter-free solutions (see Figs. 6(i), and 6(k)). It was not possible to get such a result
with LHSV (see Figs. 6(j), and 6(l)).

Sensitivity to PSF parameters

As previously reported, when the PSF of the imaging system is known, SV approach appears
to be the best solution for deconvolution of real fluorescence images. There is unfortunately a small
chance that the PSF is known with a very high precision. In practice, the PSF is rather estimated
by direct estimation on acquired images or by calibration using small point-like objects to get
PSF measures at different location. In fluorescence microscopy, one usually considers microbeads to
estimate the PSF of the underlying microscope. However, this estimation may in some cases suffer
from severe errors due to the measurement conditions and can lead to poor deconvolution results if
the used deconvolution method is too sensitive to errors in the estimation of the PSF.

Consequently, our interest here is to evaluate the sensitivity of SV deconvolution to the PSF
parameters. To that end, we consider a TMA image, shown in Fig. 7, which was acquired on the
green channel (532 nm) at the resolution of 0.2 µm per pixel using InnoScan 1100AL scanner. In
this experiment, we note that the PSF of the scanner was not measured before acquisition. In Fig.
8, we provide then comparative results obtained on this single-color image with different PSFs to
better appreciate the impact of PSF change on the deconvolution results. In this particular study,
it has been experimentally established that the PSF can be approximated by an isotropic Gaussian
function. Hence, we generated several Gaussian PSFs by varying the FWHM value in the range of
{0.6, 0.7, 0.8, 0.9, 1.0} (in µm). Regarding the regularization parameter λ, we selected four typical
values to control the regularization level : λ ∈ {0.002, 0.003, 0.005, 0.008}.

In Fig. 8, we remark first that, for all the considered FWHM values and regularization parame-
ters, our algorithm produced encouraging deconvolution results in terms of visual quality. However,
we realize that some results still suffer from vertical rolling effect because jitter is not completely
removed after pre-processing, as shown in the first row of Fig. 8. This effect is typically observed
on deconvolved images obtained with low FWHM values. In the special case where FWHM = 0.6,
all the four deconvolved images are concerned (see the second row of Fig. 8). The jittering artifacts
are less visible with larger FWHM or when increasing the regularization parameters. The setting
FWHM = 1.0 and λ = 0.008 yields the best visual results in comparison to those obtained with
the other combinations of parameters. Although, very similar results are obtained for FWHM >
0.08, irrespectively to the choice of λ. This experiments revealed that the SV-based deconvolution
method is not sensitive to small errors in PSF estimation and to non-stationarities induced by mixed
Poisson-Gaussian noise.
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Figure 7 – Single-color fluorescence TMA image. Image of a TMA core is acquired on
the green channel (532 nm) at the resolution 0.2 µm per pixel. The size of the acquired image
is 7580 × 6870 pixels. A region (bordered by rex box) is selected for comparison in details of
deconvolution results obtained with different PSFs.
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Figure 8 – Comparison of deconvolution results obtained on the single-color TMA
image with different PSFs and regularization parameters. Zoom-in view on the selec-
ted area (bordered by red box in Fig. 7) to compare in details before/after deconvolution dif-
ferences as well as results obtained with different parameters. We consider Gaussian PSFs with
FWHM values varying in the range {0.6, 0.7, 0.8, 0.9, 1.0} and several regularization parameters
λ ∈ {0.002, 0.003, 0.005, 0.008}. The two values, FWHM = 1.0 and λ = 0.008, yield the best result
in terms of visual quality compared to the other combinations of parameters.

27



In terms of computational performance, the proposed SV-based deconvolution algorithm takes
only 0.5-0.7 second, for both first-order and second-order variants, on a standard image of 512×512
pixels. This processing time is comparable to TV with about 0.6 second and is much more faster
than HV with more than 1.3 seconds. Regarding LHSV approach, the computational time can
reach more than 2.4 seconds, due to the non-convex nature of the regularization functional. The
method was applied to large fluorescence images (7590 × 6870 pixels) and the computation time
was about 80 seconds with an unoptimized implementation (no patch decomposition, no threading
implementation) of our method in Matlab. The experiments were performed on a Macbook Pro
equipped with 2.7 Ghz Intel Core i7, 16 Gb of RAM and the Mac OS X v.10.12.4 operating system.
All the tested algorithms were implemented in Matlab and we exploited the intrinsic parallelism of
the CPU to deal with large-scale inverse problems.

6 Conclusion

In this paper, we have presented a deconvolution method for 2D fluorescence imaging using
a novel family of convex regularizers. The proposed regularization functionals are based from the
concept of sparse variation, that consists in penalizing jointly the image intensity and gradient at
each pixel to favor the co-localization of non-zero intensities and gradients, by considering even-
tually higher-order differentiation operators. By construction, these regularizers possess interesting
mathematical properties, namely convexity, invariance to scale, rotation, and translation as the well-
known total variation regularization approach. It allows therefore to design efficient algorithms to
solve the underlying deconvolution problem which is in general large-scale in the context of fluores-
cence microscopy. We reformulated the deconvolution as a minimization problem of a convex energy
function composed of a quadratic data fidelity term and a sparse-variation-based regularity term
under the constrain of positivity and maximum intensity value. In order to minimize this energy, we
considered a primal-dual (proximal) algorithm based on the full-splitting technique which only in-
volves first-order operators to cope with the large-scale nature of the problem. Experimental results
on both synthetic and real fluorescence images demonstrated that our proposed method was able
to produce very competitive deconvolution results when compared to several competing methods in
terms of quantitative performance as well as visual quality and computational time.

7 Adjoint operators of discrete directional derivatives

Let L : X → X be a linear operator defined on the vector space X = RMN , its adjoint operator
L> satisfies the equation 〈Lu,w〉X = 〈u, L>w〉X , ∀ (u,w) ∈ X × X . If we consider the discrete
directional derivatives defined in (25a)-(25e), their corresponding adjoint is therefore given by :

[(D(1)

1 )>w]i,j =


wi,j if i = 1
wi,j − wi−1,j if 1 < i < M
−wi−1,j if i = M

[(D(1)

2 )>w]i,j =


wi,j if j = 1
wi,j − wi,j−1 if 1 < j ≤ N
−wi,j−1 if j = N
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and

[(D(2)

1, 1)
>w]i,j =

{
wi+1,j − 2wi,j − wi−1,j if 1 < i < M
0 otherwise

[(D(2)

2, 2)
>w]i,j =

{
wi,j+1 − 2wi,j − wi,j−1 if 1 < j < N
0 otherwise

[(D(2)

1, 2)
>w]i,j = [(D(2)

2, 1)
>w]i,j

=



wi,j if i = 1, j = 1;
wi,j − wi,j−1 if i = 1,

1 < j < N ;
−wi,j−1 if i = 1, j = N ;
wi,j − wi−1,j if 1 < i < M,

j = 1;
wi,j − wi−1,j − wi,j−1 + wi−1,j−1 if 1 < i < M,

1 < j < N ;
−wi,j−1 + wi−1,j−1 if 1 < i < M,

j = N ;
−wi−1,j if i = M, j = 1;
−wi−1,j + wi−1,j−1 if i = M,

1 < j < N ;
wi−1,j−1 if i = M, j = N.
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primal-dual optimization methods in image recovery,” in 2014 IEEE International Conference
on Image Processing (ICIP), Oct 2014, pp. 4141–4145.

[44] B. Mercier, Lectures on Topics in Finite Element Solution of Elliptic Problems. Springer-Verlag
Berlin Heidelberg, 1979.

[45] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators,” Mathematical Programming, vol. 55, no. 1,
pp. 293–318, 1992. [Online]. Available : http://dx.doi.org/10.1007/BF01581204

[46] P. L. Combettes, “Solving monotone inclusions via compositions of nonexpansive averaged
operators,” Optimization, vol. 53, pp. 475–504, 2004.

[47] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,”
SIAM Multiscale Modeling and Simulation, vol. 4, no. 4, pp. 1168–1200, 2005. [Online].
Available : https://doi.org/10.1137/050626090

[48] P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods in Signal Processing.
New York, NY : Springer New York, 2011, pp. 185–212. [Online]. Available :
http://dx.doi.org/10.1007/978-1-4419-9569-8_10

[49] L. Condat, “A generic proximal algorithm for convex optimization – application to total varia-
tion minimization,” IEEE Signal Processing Letters, vol. 21, no. 8, pp. 985–989, Aug 2014.

[50] J. J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bulletin de la
Société Mathématique de France, vol. 93, pp. 273–299, 1965. [Online]. Available :
http://www.numdam.org/item?id=BSMF_1965__93__273_0

32

http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10957-012-0245-9
http://dx.doi.org/10.1007/s10957-012-0245-9
http://epubs.siam.org/doi/abs/10.1137/1.9781611970999
http://epubs.siam.org/doi/abs/10.1137/1.9781611970999
http://www.sciencedirect.com/science/article/pii/S0022247X11002137
http://dx.doi.org/10.1007/BF01581204
https://doi.org/10.1137/050626090
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://www.numdam.org/item?id=BSMF_1965__93__273_0


[51] H. L. Fu, J. L. Mueller, M. J. Whitley, D. M. Cardona, R. M. Willett, D. G. Kirsch, J. Q.
Brown, and N. Ramanujam, “Structured illumination microscopy and a quantitative image
analysis for the detection of positive margins in a pre-clinical genetically engineered mouse
model of sarcoma,” PLOS ONE, vol. 11, no. 1, pp. 1–19, 01 2016. [Online]. Available :
https://doi.org/10.1371/journal.pone.0147006

[52] D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Un-
ser, “DeconvolutionLab2 : an open-source software for deconvolution microscopy,” Methods, vol.
115, pp. 28–41, 2017.

[53] B. Ng, A. Vahdat, G. Hamarneh, and R. Abugharbieh, “Generalized sparse classifiers for
decoding cognitive states in fMRI,” in Proceedings of the First International Workshop
on Machine Learning in Medical Imaging : (MLMI 2010), Held in Conjunction with
MICCAI 2010, Beijing, China,, F. Wang, P. Yan, K. Suzuki, and D. Shen, Eds.
Berlin, Heidelberg : Springer Berlin Heidelberg, 2010, pp. 108–115. [Online]. Available :
https://doi.org/10.1007/978-3-642-15948-0_14

[54] B. M. Kandel, D. A. Wolk, J. C. Gee, and B. Avants, “Predicting cognitive data from
medical images using sparse linear regression,” in Proceedings of the 23rd International
Conference on Information Processing in Medical Imaging (IPMI 2013), Asilomar,
CA, USA,, J. C. Gee, S. Joshi, K. M. Pohl, W. M. Wells, and L. Zöllei, Eds.
Berlin, Heidelberg : Springer Berlin Heidelberg, 2013, pp. 86–97. [Online]. Available :
https://doi.org/10.1007/978-3-642-38868-2_8

[55] L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. E. Taylor, “Interpretable
whole-brain prediction analysis with GraphNet,” NeuroImage, vol. 72, pp. 304–321, 2013.
[Online]. Available : http://www.sciencedirect.com/science/article/pii/S1053811912012487

[56] T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function
approximation,” SIAM Journal on Applied Mathematics, vol. 65, no. 5, pp. 1817–1837, 2005.
[Online]. Available : https://doi.org/10.1137/040604297

[57] V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, “Total variation regularization
for fMRI-based prediction of behavior,” IEEE Transactions on Medical Imaging, vol. 30, no. 7,
pp. 1328–1340, July 2011.

[58] H.-N. Nguyen, V. Paveau, C. Cauchois, and C. Kervrann, “A variational method for
dejittering large fluorescence line scanner images ,” Aug. 2017, working paper or preprint.
[Online]. Available : https://hal.inria.fr/hal-01577139

33

https://doi.org/10.1371/journal.pone.0147006
https://doi.org/10.1007/978-3-642-15948-0_14
https://doi.org/10.1007/978-3-642-38868-2_8
http://www.sciencedirect.com/science/article/pii/S1053811912012487
https://doi.org/10.1137/040604297
https://hal.inria.fr/hal-01577139

	Introduction
	Related works for deconvolution of fluorescence images
	Norm-based regularization
	Differential norm regularizers
	Generalized sparse variation

	Variational image deconvolution
	Continuous framework
	Discrete formulation
	Minimization of the proposed energy

	Experimental results
	Experiments on simulated image
	Application to real large fluorescence images

	Conclusion
	Adjoint operators of discrete directional derivatives

