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Abstract—To meet the food demand of the future,
farmers are turning to the Internet of Things (IoT) for
advanced analytics. In this case, data generated by sensor
nodes and collected by farmers on the field provide a
wealth of information about soil, seeds, crops, plant diseases,
etc. Therefore, the use of high tech farming techniques
and IoT technology offer insights on how to optimize and
increase yield. However, one major challenge that should
be addressed is the huge amount of data generated by the
sensing devices, which make the control of sending useless
data very important.

To face this challenge, we present a Bayesian Inference
Approach (BIA), which allows avoiding the transmission of
high spatio-temporal correlated data. In this paper, BIA is
based on the PEACH project, which aims to predict frost
events in peach orchards by means of dense monitoring
using low-power wireless mesh networking technology. Belief
Propagation algorithm has been chosen for performing an
approximate inference on our model in order to reconstruct
the missing sensing data. According to different scenarios,
BIA is evaluated based on the data collected from real
sensors deployed on the peach orchard. The results show
that our proposed approach reduces drastically the number
of transmitted data and the energy consumption, while
maintaining an acceptable level of data prediction accuracy.

Keywords—Smart Agriculture, Belief Propagation,
Markov Random Fields, Bayesian Communication.

I. INTRODUCTION

According to the UN Food and Agriculture Organi-
zation, in order to feed the growing population of the
Earth, the world will need to produce 70% more food
in 2050 than it did in 2006 [1]. Thanks to the benefits
of IoT technology, such as advanced data collection and
analysis, this food demand can be reached. Technological
innovation in agriculture is already known but IoT was
set to make agriculture smarter. Smart agriculture, some-
times known as precision agriculture, is an integrated
information- and production-based farming system that
is designed to increase long term, site-specific and whole
farm production efficiency, productivity and profitability,
while minimizing unintended impacts on wildlife and the
environment [14]. Nowadays, most of farmers use smart
agriculture, and high-tech farming has rapidly become a
standard thanks to agricultural drones and sensors [7].

A concrete example of smart agriculture is the PEACH
project [13], whose aim is to dramatically increase the

predictability of frost events 1 in peach orchards by means
of dense monitoring using low-power wireless mesh net-
working technology. In three months of operation, the
network produced more than four million data just for
the temperature data collection [4]. If the acquisition of
such a huge amount of data is essential for avoiding frost
damage on time, the data transmission to the network
may affect the energy consumption of sensing devices,
and can also cause network congestion issues. A strong
reduction of massive amount of data generated by these
sensing devices is therefore necessary.

For this aim, and hence to increase the network life-
time, we proposed in [8] an efficient Bayesian Inference
Approach (BIA) in the IoT context. However, the results
and discussions were restricted to indoor environments.
In this paper, we go a step further by applying BIA to
outdoor environments. The goal is to demonstrate that
our approach is efficient also in outdoor environments,
and then we will apply BIA to the PEACH project
mentioned above. Experimental results will assess the
benefits of BIA, mainly expressed in terms of reduction
of transmitted data, and energy consumption.

It should be recalled that BIA approach allows to
remove a great amount of spatio-temporal correlation data
and is based on Pearl’s Belief Propagation (BP) algo-
rithm. BP is an iterative technique mostly used for solving
inference problems [15]. In the IoT context, the belief of
a device is related to the physical quantity measured by
the device sensors. BP infers the measurements of other
neighboring nodes, especially in cases where the data are
missing. In BP-based approaches, each node determines
its belief by merging its local measurement with the
beliefs of its neighboring nodes, and its beliefs obtained
in the past run. BP provides therefore a spatio-temporal
cooperation among several devices. A good correlation
between data is important in such inference problems
since it dictates the accuracy of data inference, and hence
reduces the estimation error of the global information.
The estimation error is then compared to a predefined
threshold, in order to decide if and how much data
information to transmit back.

The main contributions of this paper can be summa-
rized as follows:

• The adoption of BIA approach that allows avoid-
ing the transmission of useless data in smart

1A frost event occurs when ice forms inside the plant tissue and
injures the plant cells plant.



agriculture networks. A BP algorithm has been
chosen to infer the missing data;

• The use of efficient and smart communication
in order to decrease the estimation error in the
remote server. A dual prediction scheme will be
proposed for this aim;

• Performance assessment based on data collected
from sensors installed around the peach orchard.

This paper is organized as follows. Section II briefly
describes our reference PEACH network. Section III
provides some related works on data propagation mech-
anisms in the IoT context. In Section IV, we present the
BIA approach based on BP algorithm for data sharing
in an outdoor scenario related to the PEACH network.
Section V provides the experimental results for the as-
sessment of the proposed BIA technique in different real
scenarios. Finally, conclusions are drawn at the end of the
paper.

II. PEACH NETWORK ARCHITECTURE

In this paper we take into account the network model
proposed in the PEACH project [13]. The PEACH net-
work consists of 21 low-power wireless motes deployed in
a 110×50 m area (peach orchard) in Junin, in the West of
Argentina (see Figure 1). A hierarchy architecture of the
mote devices is used for different connectivity ranges (i.e.,
long, medium and low range motes). The temperature
and humidity sensors built into the motes publish their
value every 30 s. Then, all the measurements are sent to
the network gateway, which is composed of a Raspberry
Pi single-board computer and a DC2274 SmartMesh IP
manager. These two components are connected to each
other via an USB port. The gateway is connected to the
Internet thanks to the solmanager application, which runs
on the Raspberry Pi. All the information received by
the SmartMesh IP Manager are then transmitted by the
solmanager to a remote server located in the Inria-Paris
research center. The server in Paris in turn stores the data
into a database by means of the solserver application.

What we described above is the basic model proposed
in the PEACH project. However, in order to reduce the
huge amount of data generated by the sensor devices, we
need to modify this network model. More in detail, we
have to implement our BIA approach on the remote server
and on the gateway. Figure 2 illustrates the modified
version of the network model, where the gateway (i.e.,
SmartMeshIP Manager) has become “smarter” and able to
send only the useful data. Finally, by using the inference
algorithm, which will be detailed in the next section,
the server application (i.e., solserver) will be able to
reconstitute the missing data.

III. RELATED WORK

In order to clarify the difference about our approach
with those existing in the literature, we classify different
related works according to the fields where they were
treated i.e., (i) in Wireless Sensor Networks (WSNs), and
(ii) IoT domain.

Energy saving is considered as the most important
part in WSNs, since sensors have to operate on extremely
limited energy budget. A good survey of energy saving
in WSNs context was proposed in [2]. Data reduction is

Figure 1: The PEACH network [4].

Figure 2: Modified version of the PEACH network archi-
tecture.

one of the best approaches to achieve energy-efficiency
in data acquisition. Its main goal is the reduction of
the data to be transmitted over the network, such that
the energy spent for communications decreases. Many
data prediction approaches have been proposed in several
works [6], [9], [10].

Even if many approaches have been developed for
data prediction in the WSNs context, all the proposed
approaches deal only with homogeneous data. Therefore,
they neglect the huge amount of heterogeneous data
typical of IoT scenarios. However, the heterogeneity of
IoT devices requires that the employed prediction model
has to be applicable also to a variety of applications with
heterogeneous data. An example of concrete application
is the smart agriculture, where the various agricultural
inputs are collected with different sensor devices that can
collect a variety of data correlated to each others. The
existing methods in WSNs are therefore unsuitable for
the IoT context and for smart agriculture.

One of the most distinguishing aspects of the IoT
is the fact that the data are acquired from a variety
of sources. As far as we know, there exist only three
works that take in account this heterogeneous aspect of
IoT [3], [8] and [11]. In [3], the authors presented a cloud-
based Adaptive Sensing Belief Propagation protocol with
energy-efficient data fusion for IoT applications. Our
work differs from [3] in many aspects. Firstly, we assume
that the correlations between different kind of data (e.g.,
temperature, humidity, light and voltage) are known a
priori, and consequently, we do not need to compute the
correlation matrix each time. Secondly, the knowledge of
the correlation is used only to decide which data have to
be sent or inferred in the remote server. Therefore, in this



work we do not operate the sensor selection optimization.
Finally, we propose a smart gateway concept in order to
decrease the inference error in the remote server. Hence,
we provide a dual prediction scheme i.e., one in the
gateway, and the other in the remote server, based on
the BP algorithm.

Finally, the authors of [11] presented a theoretical
bayesian based approach for data sharing in the IoT con-
text, while in [8] we go a step further by proposing an ex-
tensive experimentation scenario for indoor environments.
In this paper, we will present additional experiments and
discussions in a realistic outdoor environment.

IV. BAYESIAN INFERENCE APPROACH

In this section, we describe our BIA technique. As
mentioned before, our main goal is to avoid sending
useless data, while keeping an acceptable level of data
content accuracy. For this aim, BIA is based on Pearl’s
BP algorithm that will be described below.

As a starting point before any inference procedure, the
design of a graphical model should be provided. Graph-
ical models are schematic representations of probability
distributions. They consist of nodes connected by either
directed or undirected edges. Each node represents a
random variable, and the edges represent probabilistic re-
lationships among variables. Models which are comprised
of directed edges are known as Bayesian networks, whilst
models that are composed of undirected edges are known
as Markov Random Fields (MRF) [12]. In this paper, we
present an inference approach under the hypothesis of
MRF, modeled by means of Factor Graphs. It follows
that our goal is to estimate the state X of the sensed
environment starting from the sets of data collected by
each sensor node. Based on the remarkable Hammersley-
Clifford theorem, the joint distribution PX(x) of an MRF
model is given by the product of all the potential functions
i.e.,

PX(x) =
1

Z

∏
i

ψi(xi)
∏

i,j ∈E
ψij(xi, xj), (1)

where Z is the normalization factor, ψi(xi) is the evi-
dence function, E is the set of edges encoding the
statistical dependencies between two nodes i and j, and
ψij(·) represents the potential function. Note that the
graphical model parameters (i.e., ψi and ψij) can be
estimated from the observed data by using a learning
algorithm like in [5].

Figure 3 illustrates an example of the MRF model.
The filled-in circles represent the observation nodes (i.e.,
Nεi ) and the empty circles represent the hidden nodes
(i.e., xi). The potential functions are associated with the
links between xi whilst the evidence functions are associ-
ated with the links between Nεi and xi. For simplicity, in
this paper, we consider widely used pairwise MRF, i.e.,
MRF with the maximum clique 2 of two nodes.

One of the main goals when dealing with graphical
models is the marginal distribution computation, as shown
in Eq. (2). They are used to predict the most probable
assignment for a variable node. For notation convenience,
let us assume that X and Y are two distinct multivariate
random variables with assignments x ∈ Xm and y ∈ Yn.

2A clique is defined as a fully connected subset of nodes in the graph.

Figure 3: An example of MRF model.

The nodes in Y are called hidden nodes and those in
X are the observed ones. So, given the i-th device in our
network, xi will be the observation of the phenomenon we
intend to share (e.g., temperature) and yi will be associate
to the phenomenon we want to infer, (e.g., humidity)

p(yv|x) =
∑
y1

∑
y2

...
∑
yn

p(y1, y2, y3, ...., yn|x). (2)

Obviously, using (2), the complexity of a complete enu-
meration of all possible assignments to the whole graph
is O(|Y|n−1), which is intractable for most choices of
n. Therefore, we need a faster algorithm like Belief
Propagation 3 for computing the marginal probability. BP
is a well known algorithm for performing inference on
graphical models [15].

Let p(yi) represents the marginal distribution of i-th
node, and BP allows the computation of p(yi) at each
node i by means of a message passing algorithm. The
message from the i-th to the j-th node related to the local
information yi is defined as:

mji(yi) ∝
∫
ψji(yj , yi)ψj(yj)

∏
u∈Γ(j),u 6=i

muj(yj)dyj ,

(3)
where Γ(j) denotes the neighbors of node j and the in-
coming messages from previous iteration are represented
by muj . Notice that (3) will be performed between all
nodes in the model until the convergence or if a maximum
number of iterations Imax will be reached. Thus, the
prediction i.e., the belief at the i-th node, is computed
through all the incoming messages from the neighboring
nodes and the local belief, i.e.:

ŷi = belief(yi) = k · ψi(yi)
∏

u∈Γ(i)

mui(yi), (4)

where k is a normalization constant. Finally, it is worth
to mentioning that the BP is able to compute the exact
marginalization in the case of tree-structured graphical
models.

V. EXPERIMENTAL RESULTS

In this section we provide the experimental results
of our BIA approach. Real data (i.e., temperature and
humidity) collected from sensors deployed in the peach
orchard have been used. Each data collection has been
performed every 30 seconds. In this paper, we focus on

3Only take linear time.



Figure 4: Relationship between humidity and temperature
data.

Scenario #Transmitted
data [Byte]

EC [kJ] MSE ER

s1 8408 1634.5152 - -
s2 4204 817.2576 0.62 0.295
s3 4260 828.144 0.022 0.0066

Table I: Results obtained during eighteen hours of read-
ings for different scenarios.

the data collected between 16 and 17 October 2016. The
collection started at 10pm on October 16th and ended
at 4pm on October 17th (i.e. eighteen hours). Figure 4
illustrates the relationship between data during the sensors
reading. We can notice that there is a good correlation
between temperature and humidity data, so that we can
easily infer the humidity from temperature data, and vice
versa.

In this paper, we infer humidity from temperature. The
temperature is in degrees Celsius, whilst the humidity is
a value ranging from 0 to 100%. We assess our approach
w.r.t. (i) the number of transmitted data, (ii) the energy
consumption, (iii) the average value of the distortion level,
and (iv) the average value of the estimation error.

The number of transmitted data represents the total
number of data transmission performed by all the sensors
during the readings. The inference error is an important
metric for any inference procedure. The goal is to have an
errorless inference approach, i.e. an approach that is able
to estimate the true value of data during all the inference
procedures. However, this is almost never the case but
we want that this error is as low as possible. In addition
to the inference error, computing the distortion level is
also important. This allows to determine the difference
between the real and the estimated value, and can be
expressed using the Mean Squared Error (MSE) metric,
defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi)2, (5)

where ŷi and yi are respectively the predicted and true
value during the n-th reading.

All of our assessments are based on three different
scenarios (i.e., s1, s2, and s3), based on the inference level
provided. In scenario s1, the gateway sends to the remote
server all the temperature and humidity data it receives.
This means that the server application does not perform

any inference (i.e., no inference). In the second scenario
s2, the gateway sends only the temperature data to the re-
mote server, and the cloud in turn infers the corresponding
humidity data by using the BP algorithm (i.e., inference
level via BP). Finally, in the scenario s3, we consider that
the gateways are “smart” devices, meaning that before
sending their data to the remote server, they first compute
the probability Pr(e|T, h) of making an inference error
e on the remote server given the temperature data T ,
and the humidity data h. In this scenario, the inference
level is based on a probabilistic approach. If there is a
strong chance that the error magnitude i.e., |e|, exceeds
a predefined threshold i.e., |e|Max, the gateway sends
both humidity and temperature data to the remote server,
else the gateway sends only the temperature data, and the
humidity value will be inferred in the remote server using
the BP algorithm. This can be expressed mathematically
as the inference error probability higher than a maximum
allowed value |e|Max, and conditioned to the temperature
and humidity measurements i.e., T and h, is lower or at
least equal to a given threshold PMax

e , that is:

Pr {|e| > |e|Max|T, h} 6 PMax
e , (6)

where the computation of Pr(e|T, h) is done by means of
the BP algorithm. It should be noted that this computation
requires the knowledge of the a priori probability of
inference error i.e., Pr(e). Also, the value of the threshold
|e|Max strictly depends on the application context. In
our case, we set this value equal to 1.5. A similar
consideration can be applied to the probability threshold
PMax
e , which has been set to 0.5.

As you may have noticed, with the proposed scenarios
above, removing the redundancy data at the gateway has
not yet a positive effect on the sensing nodes since the
data filter has been made only on the gateway. However,
it is interesting to study the possibility of doing the raw
data filtering in the sensing nodes. By doing that, not only
the large computation and the single point of failure at the
gateways will be avoided but also the energy consumption
of sensing nodes will probably decreased. The energy
costs reported in Table I is therefore the estimated energy
costs assuming that data filtering will be done on the
sensing nodes and the used model is exactly the same as
on the gateways. In our energy consumption evaluations,
we assume that the power consumption for sending each
temperature and humidity value is 3mW. This cost has
been obtained on the SHT-31 used mote.

A. Obtained results

As mentioned before, we evaluate the performance
of our approach in terms of number of transmitted data,
average value of the estimation error (i.e., ER), average
value of the distortion level (i.e., MSE), and energy con-
sumption (i.e., EC). Our approach has been implemented
in C++, and the assessments have been performed with
respect to the ground truth collected on the peach orchard.

Table I illustrates the obtained results during eighteen
hours of readings, for different simulated scenarios. We
can notice that our Bayesian inference approach drasti-
cally reduces the number of transmitted data and the en-
ergy consumption, while maintaining an acceptable level
of prediction accuracy and information quality. We can
notice also that we decrease considerably the estimation
error by using the scenario s3. Indeed, the gateways are



(a)

(b)

Figure 5: Variation of δH in scenario (a) s2, and (b) s3

versus eighteen hours collection time.

smarter in this case i.e., by computing the a posteriori
probability of the inference error, the gateways will be
able to estimate the right moment and the data type
to send in the remote server. However, this increases
the number of transmitted data (and hence the energy
consumption), as compared to scenario s2. This is due to
the fact that in s2, the gateways send only the temperature
data without worrying of the risk of inference error in the
remote server.

Figure 5 shows the variation of δH during eighteen
hours of reading using s2 and s3

4, where δH is the
difference between the true value and the inferred one of
humidity data i.e., δH = ŷi − yi. This metric illustrates
therefore the inference error of our BIA approach during
all the readings. No inference error occurs for δH = 0,
i.e., when ŷi = yi. In s2, for the majority of time we
notice no inference error i.e., the probability of having a
null inference error is Pr(δH = 0) = 70.44%, while we
have Pr(δH = 1) = 19.21%, Pr(δH = 2) = 10%, and
Pr(δH = 3) = 0.3%. Best performances are for scenario
s3, where we observe an error of 1.0 for the 99.31% of
time, Pr(δH = 1) = 0.31%, Pr(δH = 2) = 0.26%, and
Pr(δH = 3) = 0.095%.

VI. CONCLUSIONS

In this paper, we presented an inference-based ap-
proach –namely, BIA– applied to the PEACH network,
with the aim of avoiding useless data transmission. The
strong correlation between temperature and humidity data
was taken into account for this study.

4Of course, in Figure 5 we did not consider the scenario s1 since it
does not use the proposed inference approach.

Through extensive simulations and by using the real
data collected from sensors deployed in a peach orchard,
we have showed that our BIA approach reduces consider-
ably the number of transmitted data and the energy con-
sumption, while keeping an acceptable level of estimation
error and information quality. We have also shown that the
use of smart gateway decreases significantly the inference
error. Future works will explore the possibility of doing
the prediction directly on the sensor nodes.
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