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Using a linear gain to accelerate average consensus over unreliable
networks

Francesco Acciani, Paolo Frasca, Geert Heijenk and Anton Stoorvogel

Abstract— Packet loss is a serious issue in wireless consensus
networks, as even few failures might prevent a network to
converge to the correct value. However, it is possible to com-
pensate for the errors caused by packet collisions, by modifying
the updating weights. Such a modification compensates for the
loss of information in an unreliable network, but results in a
reduced convergence speed. In this paper, we propose a faster
method – based on a suitable gain in the consensus dynamics
– to solve the unreliable average consensus problem. We find
a sufficient condition for the gain to preserve stability of the
network. Simulations are used to discuss the choice of the gain,
and to compare our method with the literature.

I. INTRODUCTION

Achieving average consensus over a wireless-connected
network is a problem that arises in a variety of scenarios,
where a set of agents needs to agree over the value of a
network-shared variable in a distributed manner. Consensus
algorithms form the basis for a large number of distributed
algorithms, such as distributed hypothesis testing [1], dis-
tributed maximum likelihood estimation [2], and distributed
Kalman filtering [3]. Such consensus algorithms have been
studied under a wide variety of conditions including net-
works that have undirected or directed links, time varying
topology [3], [4], and noisy channels [5], [6]. Most average
consensus algorithms, however, are not robust to packet
losses [7], which can be expected to happen when a wireless
communication mechanism is employed.

Several methods exist to deal with packet loss, employing
different strategies: retransmissions [8], additional variables
to be transmitted [9], [10], or memory mechanisms [11],
[12]. It is also possible to preserve consensus using a local
compensation mechanism, which modifies the weights of
the links between the nodes to accomodate the change in
the network topology, as in [7]. In [13] we proposed a
method to compensate the loss of information and guarantee
average consensus and we estimated its convergence speed.
In this paper, we propose a weight-modifying compensation
strategy over networks with unreliable bidirectional links, to
deal specifically with packet collisions. This compensation
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method drives the network to converge to the correct value
despite failures in the communication between nodes. The
compensation mechanism is enhanced with a gain factor:
this allows for a faster network converge.

The rest of the paper is organised as follows. The second
section recalls the consensus problem and discusses the
issues that arise in the presence of packet loss. Section 3
presents our accelerated convergence method and a result to
choose the corresponding gain in order to preserve conver-
gence, whereas the results from simulation, supporting our
theoretical claims, are in Section 4. In the final section our
conclusions are presented.

II. CONSENSUS AND COMPENSATION

A network of n agents can be represented by a graph,
where each vertex represents one agent, and each edge rep-
resents a wireless link between two nodes. The bidirectional
nature of the wireless communication – hypothesis that arises
naturally when the nodes are homogeneous – results in an
undirected (symmetric) graph.

Assume that each agent i is endowed with a state xi
and can communicate with a subset of agents, namely its
neighbourhood Ni. Moreover, each agent updates itself,
computing its state at time k+1 according to an update rule
g(·):

xi(k+1) = gi (x j(k)| j ∈Ni) ,

We assume that every node can access its own state, so
i ∈ Ni. The consensus problem is solved if the network
converges – asymptotically – to the same value, so if:

lim
k→∞

xi(k)− x j(k) = 0 ∀i, j ∈N (1)

where N is the set of agents of the network. Moreover, if

lim
k→∞

xi(k) =
1
n

n

∑
i=1

xi(0) ∀i ∈N (2)

then we say that the system achieves average consensus.
When the updates are synchronous and the communication
links are reliable and fixed, i.e. the topology is time invariant,
an update rule to achieve consensus is:

xi(k+1) =
n

∑
j=1

wi jx j(k), (3)

where wi j 6= 0 ⇐⇒ i and j are connected, which can be
written, assuming x(k) = [x1(k) x2(k) · · · xn(k)]

T , as:

x(k+1) =Wx(k). (4)



The W matrix is the weighted adjacency matrix, associated
with a graph where the nodes are the vertex of the graph.
If the graph associated with the W matrix is connected and
aperiodic – i.e. a path exists between each pair of nodes,
and the lengths of cycles in the graph are coprime integers
– then the network converges in the sense of (1) if W is
stochastic. In the rest of this paper, the graph associated to
the network – in its nominal state, i.e. without losses – is
always assumed to be connected and aperiodic, and the W
matrix is assumed to be symmetric and stochastic, i.e.: W1=
1,W =W T

, and wi j ≥ 0 for all i, j, where 1 denotes a vector
of ones. This double stochasticity assumption implies that the
network converges to the average of the states: if W is only
row-stochastic, the network converges to a weighted average
of the initial conditions instead.

When the links between nodes are not reliable, the dy-
namics (4) changes to a time-dependent one:

x(k+1) =W (k)x(k), (5)

because if the communication between nodes i and j drops
for some instant k̂, then wi j(k̂) = 0. Consequently, the matrix
W (k̂) is not stochastic anymore, and thus either consensus is
lost or, even if consensus is preserved, we might no longer
achieve average consensus. To achieve consensus in the sense
of (2), a compensation mechanism is needed, modifying the
W (k) matrix, as we will do in (6).

Let us consider the case when a packet collision causes a
communication loss. This is the case when two nodes try to
communicate at the same time, creating interference in the
wireless medium, thus making communication impossible in
their neighbourhood: this phenomenon suggests a node-based
failure model, instead of a link-based one. If such a collision
arises, the message broadcasted from one node is lost for ev-
ery neighbour, and then it can be modelled as the transmitting
node failing its communication entirely. The communication
loss can then be described by a failure vector f (k) such that
fi(k) = 1 if the communication from node i to its neighbours
is successful during the kth consensus iteration, 0 otherwise.
We assume that the failure probability is the same for each
agent, and that the failures are independent between each
other. The homogeneity in the failure probability does not
modify the structure of the compensation method, but it
makes it easier to discuss. We denote the failure probability
for each node as:

P[ fi(k) = 0] = p ∀i.

In the aforementioned failures scenario, it is possible to
achieve average consensus if the node i uses its own value,
in place of the missing value from a neighbour j that failed
its transmission, to update its state, and it does not update
its state when it fails its own transmission. The update rule
to implement the compensation is then:

xi(k+1) = fi

(
n

∑
j=1

f jwi jx j(k)+
n

∑
j=1

(1− f j)wi jxi(k)

)
+(1− fi)xi(k)

which reads, after some manipulation:

xi(k+1) = xi(k)+ ∑
j∈Ni

fi(k) f j(k)wi j (x j(k)− xi(k)) . (6)

In (6), the f j term accounts for drop in the incoming
messages, while the fi term represents the compensation:
the node i will neglect incoming messages when it knows
that its last communication was not successful.

When the update rule (6) is used, the dynamics (4)
becomes:

x(k+1) =W (k) x(k), (7)

where the matrix W (k) is:

W (k) = I +F(k)WF(k)−diag(F(k)WF(k)1), (8)

and diag(v) is a diagonal matrix which entries are the
elements of the vector v while F(k) = diag( f (k)).

It is possible to study the convergence properties of the
network, subjected to failures, examining the matrix W (k):
from the properties of a connected and aperiodic graph,
and the stochasticity of the matrix W (k), defined in (8), it
is possible to conclude that the network converges almost
surely to the average of its agents’ initial values, and the
convergence speed is related to the eigenvalues of W (k). This
compensation method has been studied in [13].

III. A FASTER CONVERGENCE METHOD

Using the update rule (6) a node that experienced a failure
will not update itself: such a strategy prevents the node from
introducing errors in the network, but when the probability
of packet loss is high, several nodes might be in an idle-
status, slowing down the network convergence. While those
nodes are idle, however, the nodes that are updating might
speed up the process, e.g. they could update twice, using
the information received during the last successful round,
hopefully going closer to the average. Using this empiric
method leads to a weighted adjacency matrix as follows:

W (k) = I +2F(k)WF(k)−2diag(F(k)WF(k)1)

Simulations show that this approach actually increases the
speed of converge of the network, for high probability of
packet loss, but would lead to instability if the probability of
packet loss is low. Generalising, it is possible to increase the
speed of convergence, using a gain α , modifying the update
rule to:

xi(k+1) = xi(k)+α ∑
j∈Ni

fi(k) f j(k)wi j (x j(k)− xi(k)) .

and then the associated matrix is:

Wα(k) = I +αF(k)WF(k)−α diag(F(k)WF(k)1) (9)

with α > 1.
Modifying the compensation algorithm using the gain α

leads to increase in performance but the new Wα(k) matrix
is not necessarily stochastic anymore: some of its entries
might be negative. However, even if the matrix Wα(k) is not



stochastic for every k anymore, the system converges, faster
than the case when α = 1.

We will now study the relation between the choice of α

and the convergence of the network. To find a condition for
α such that the convergence is guaranteed, it is possible to
study the error dynamics, defined as:

y(k) = x(k)− 1
n
11T x(0), (10)

where n denotes the number of agents in the network, i.e.
the number of vertex in the graph.

From the update rule of x(k) follows that, remembering
that Wα(k)1= 1:

y(k+1) = x(k+1)− 1
n
11T x(0)

=Wα(k)x(k)−
1
n

Wα(k)11T x(0)

=Wα(k)
(

x(k)− 1
n
11T x(0)

)
=Wα(k)y(k).

The analysis of the latter equation allows us to derive the
following theorem:

Theorem 3.1: A system described by x(k + 1) =
Wα(k)x(k), where

Wα(k) = I +αF(k)WF(k)−α diag(F(k)WF(k)1)

converges in mean square sense, i.e.: limk→∞E[(yT (k)y(k)] =
0, where y(k) is defined in (10), if:

α ≤
2wi j

Ξi j

for each i, j such that Ξi j > 0, where:

Ξi j = 2pw2
i j +2(1− p)wi j− (1− p)[W TW ]i j. (11)

Proof: The expected value of the squared error is

E[y(k+1)T y(k+1)|y(k)] = y(k)TE[Wα(k)TWα(k)]y(k),

which leads to:

E[y(k+1)T y(k+1)|y(k)]≤ λ1
(
E[W T

α Wα ]
)

yT (k)y(k),

where λ1 denotes the biggest eigenvalue of E[W T
α Wα ]. Re-

cursively it is possible to get:

E[y(k+1)T y(k+1)]≤ λ
(k+1)
1

(
E[W T

α Wα ]
)
E[y(0)T y(0)].

Then a sufficient condition for limk→∞E[yT (k)y(k)] = 0 is
that the absolute values of all the eigenvalues of E[W T

α Wα ]
are smaller than one, except one equal to one: this happens
if E[W T

α Wα ] is stochastic and if the graph associated with
E[W T

α Wα ] is connected and aperiodic. The time dependence
is dropped, because the matrices W (k) are time independent,
according to the failure independence property described in
the previous section.

The matrix E[W T
α Wα ] can be explicitly computed, as in

[13]:

E[W T
α Wα ] = α

2(1− p)3W TW−
2α

2 p(1− p)2W �W+

2α(1− p)2W −2α
2(1− p)3W+

(α2(1− p)3−2α(1− p)2 +1)I+

2α
2 p(1− p)2 diag(W TW ),

where � denotes the Hadamard – i.e. element-wise – prod-
uct. From the structure of E[W T

α Wα ], we can conclude that it
is connected and aperiodic if W is connected and aperiodic,
which is assumed true. By construction, E[W T

α Wα ]1 = 1,
and then it is stochastic if E[W T

α Wα ]i j ≥ 0∀i, j. The diagonal
elements of E[W TW ] are nonnegative:

E[W T
α Wα ]i,i = E[

n

∑
k=1

wα kiwα ki] = E[
n

∑
k=1

wα
2
ki]≥ 0

and then it is sufficient to find α such that the elements
outside the diagonal of E[W T

α Wα ] are nonnegative.
It is possible to evaluate E[W T

α Wα ] element-wise:

E[W T
α Wα ]i j = α

2(1− p)3[W TW ]i j−2α
2 p(1− p)2w2

i j+

2α(1− p)2wi j−2α
2(1− p)3wi j

= (1− p)2
α (−αΞi j +2wi j) .

where Ξi j is defined in (11).
The condition for the network to converge is then

α (−αΞi j +2wi j)≥ 0. (12)

If Ξi j ≤ 0, then (12) is satisfied, while when Ξi j > 0 then
the condition for E[W T

α Wα ]i j ≥ 0 becomes:

α ≤
2wi j

Ξi j
, (13)

and the proof is completesd.
It should be noticed that Theorem 3.1 can indeed be used

to speed up the convergence in the sense that it is possible to
find an α bigger than one which satisfies the equation (12),
while a value α < 1 would result in a lower convergence
speed. Proving the existence of α > 1 is equivalent to prove
the following:

Lemma 3.2: If 0 < wi j < 1 and Ξi j > 0 then:

2wi j

2pw2
i j +2(1− p)wi j− (1− p)[W TW ]i j

> 1. (14)

Proof: Let us assume that

α

(
−2pw2

i j−2(1− p)wi j +(1− p)[W TW ]i j

)
+2wi j > 0

and 0 < wi j < 1. When those assumptions are not true, there
is no need to study the sign of E[W TW ].

Then assume there exists
(

wi j, [W
TW ]i j

)
such that:

2wi j

2pw2
i j +2(1− p)wi j− (1− p)[W TW ]i j

≤ 1.



The latter assumption implies

2wi j

2pw2
i j +2(1− p)wi j− (1− p)[W TW ]i j

≤ 1⇒

2wi j−2pw2
i j−2(1− p)wi j +(1− p)[W TW ]i j

2pw2
i j +2(1− p)wi j− (1− p)[W TW ]i j

≤ 0⇒

2p(wi j−w2
i j)+(1− p)[W TW ]i j ≤ 0

which is a contradiction, because 0 < wi j < 1, and therefore
(14) is true.

Getting a bound for α allows for an a priori tuning
of the parameter, to ensure convergence when a stochastic
modelling of the network is known. It is possible to pick a
safe αs, which satisfies the inequalities (12), i.e.:

αs = min
i j s.t.Ξi j>0

(
2wi j

2pw2
i j +2(1− p)wi j− (1− p)[W TW ]i j

)
.

An α satisfying the aforementioned set of inequalities, will
secure convergence of the network; moreover the network
will converge to the average of the nodes’ initial conditions:
this can be derived from the double stochasticity of the
E[W T

α Wα ] matrix. However, the choice of the parameter
is not unique: it is possible to pick bigger values for α ,
which might make the network to converge faster, but the
network might instead reach instability, if α exceeds certain
– unknown – threshold. Intuitively, the gain should be one
when the probability of packet loss is equal to 0, and it
should increase when the probability of packet loss increases.
Moreover, it might depend on the size of the network:
small network will experience a lower amount of packet
losses, simply because the number of links in the network is
lower, thus a smaller gain should be employed, because the
number of idled nodes will be lower. From those intuitive
assumptions, it is possible to choose α empirically as:

αh =
1

(1− p)+ p
n
. (15)

Simulations – presented in the next section – suggest that
this value makes the network converge and that convergence
– in some scenarios – is faster than using αs, even though
convergence is not guaranteed by our theoretical results.

IV. SIMULATIONS

In the previous section a bound for α has been found, to
assure network convergence. Our intuition is that the use of a
gain will increase the network convergence’s speed. While it
is possible to find a value for α which assures convergence,
the number of iteration required to converge can not be
computed beforehand, unless we restrict to some special
case: the speed of converge is related to the eigenvalues
of the matrix E[W T

α Wα ], which are generally not known
in a closed-form. Therefore, to evaluate the performance in
different scenarios, we run a set of simulations.

As mentioned in the previous section, the choice of α is
not unique: it is interesting then to check to which degree
the convergence speed can be increased, varying the choice

of α . To provide a meaningful set of results, the simulations
are performed varying several factors:
• the probability of packet loss, p;
• the size of the network, n;
• the ”connectivity probability”, m, defined below.
The networks are generated randomly, without any given

structure. This is done to keep generality in the network: if
there is some structure in the network, it might be possible to
exploit it, to have a better understanding of the eigenvalues –
and thus of the convergence – of the network. The parameter
n is the number of nodes – representing the agents – of
the network. The parameter m defines the connectivity of
the network: for each pair of nodes, there is a connection
between them with probability m. A higher value for m
implies a larger number of connections in the network.
Lastly, during each consensus round, a node transmits a
packet to its neighbours with a probability equal to 1− p.
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Fig. 1. Iterations required to converge, for a network of 81 nodes, without
gain, i.e. α = 1.

We are primarily interested in the performance difference
when a gain is employed, and secondarily we compare
different choices of the gain α . Therefore, the simulations
are conducted using three different values for α:
• α = 1, representing the case when the gain is not used;
• αs, which – according to the Theorem 3.1 – assures

convergence;
• αh, an heuristic value for α , which we expect to increase

the velocity of converge, without proof over the stability
of the system – defined in (15).

To increase readability, the number of iteration required
to converge is shown over only two parameters: p and m,
because the dependence of the number of iterations required
to converge on the size of the network is negligible in
comparison with the dependence on the probability of packet
loss and connectivity of the network. More specifically, for
each triple (p,m,n), 145 simulations are performed and only
the averages are displayed, but all the 145 simulation results
lie in an interval not bigger than 10% of the displayed values.

The number of iterations required to converge, when
α = 1, are depicted in Figure 1. For high probability of
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Fig. 2. Iterations required to converge, for a network of 81 nodes, using
the safe gain αs

packet loss, the number of iterations required to converge
hits the limit of 500 – which was the upper limit imposed
in the simulation – but we can infer that the actual number
of iteration required would be bigger. We can notice two
different trends: the number of iterations required decreases
as the probability of packet loss decreases, and as the
connectivity of the network increases. This result is expected
and intuitive. Figure 2 displays the number of iterations
required to converge when the gain is employed.
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Fig. 3. Iterations required to converge, for a network of 81 nodes, using
the heuristic gain αh

First, we can notice how even for high probability of
packet loss, the algorithm converges in less than 500 it-
erations when a gain is employed. Moreover, the curve is
always below the one in Figure 1: using the gain does
actually increase the convergence speed. However, from
Figure 3, we can notice a unexpected behaviour in the
number of iterations required for the two gain method to
converge: when the gain is αs, for high failure probability and
high matrix connectivity the number of iterations increases,
while this phenomenon is not present when the gain is αh.
This phenomenon may arise from the fact that αs must

satisfy more conditions as m rises, namely O
(

m n(n−1)
2

)
,

which makes it more conservative and might lead to worse
performance when the network connectivity is high.

In Figure 4 it is possible to appreciate a better comparison
between the choice of αs or αh: this plot is obtained
averaging all the simulations, to show only the dependence
of the number of iterations on the probability of packet loss
– which is the principal cause of slower convergence. From
the graph, it is evident that the two choices are substantially
equivalent: the heuristic value of α leads to slightly better
performance than the safe one for lower probability of packet
loss.
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Fig. 4. Iterations required to converge for different values of α , average
over different network sizes n and connectivity degrees m
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The α which satisfies the bound in (12) is not the optimal
one: it is possible to find different values of gain to speed up
the convergence of the network. However, it is interesting to
evaluate how good the value of αs is, and to check wether
this choice is limiting or not. In figure 5 is depicted the
number of iteration required for a network to converge, for
different values of α . The values are normalised over αs, in a
range from 0.5αs to 3αs, to make the plot clearer. Choosing
the safe value – circled in red – is indeed not a limiting



factor: it would be possible to pick a different gain value
to converge faster, but the increase in performance is not
dramatic. Moreover, the value of α that achieves the fastest
convergence is not known a priori, and it can be only be
obtained through trial-and-error, while αs can be computed
beforehand.

Lastly, it is interesting to compare our novel algorithm
with another from the literature, the Hadjicostis algorithm
presented in [11], chosen due to its simplicity of imple-
mentation and its good performance. To simplify the latter
algorithm implementation, a circulant topology has been
chosen: the nodes are organised in a ring, and each node
can communicate with a symmetric set of neighbours, k−1

2
in the clockwise direction and k−1

2 in the counter-clockwise
direction in the ring. This ensures a topology where each
node has the same connectivity, and the knowledge for each
node of its connectivity degree is required by the Hadjicostis
algorithm. Those results are obtained for a network of 80
elements, with the aforementioned circulant topology: a node
i is connected with k nodes, from i− k

2 to i+ k
2 . The matrix

representing this topology has as first row:

W 1, j =


1
m

if j ≤ m−1
2 ∨ j > n− k−1

2

0 otherwise
, (16)

and all the other rows are obtained shifting the first one.

Fig. 6. Iterations required to converge for the algorithm in [11] and the
α-gain one.

The results of this comparison are presented in Figure 6.
It is interesting to notice how the two curves are similar, but
the novel algorithm is faster. However, a more extended set
of simulation must be conducted, in order to derive more
general conclusions.

V. CONCLUSION AND FUTURE WORK

We have shown that it is possible to converge to the
average in presence of packet loss, and the convergence can
be accelerated using a gain. However, the presence of such
gain in the dynamics of the network, might lead to instability:
a value for such a gain has been found, that ensures stability
of the network, and increases its performance. The value of

αs is found such that E[W T
αsWαs ] is stochastic, which implies

that all its eigenvalues are less or equal than one. As future
work, it is possible to investigate whether there are other
conditions, less restrictive than stochasticity, for E[W T

α Wα ]
to be a contraction. This would allow for a broader range
of stabilising α , possibly allowing faster convergence. An
interesting question is the rigorous study of the heuristic
value αh, which apparently preserves the stability of the
system, and can achieve faster convergence. However, the
safe αs is close to the optimal one – found a posteriori for
specific instances of the problem.

Moreover, the analysis of performance and the design of
the gain are made without taking into account the differences
in the nodes: a value of α is found, and it is the same for
each node. It would be possible to find a set of different
gains, one for each node, stabilising the network. This would
relax the Theorem 3.1, allowing for faster convergence with
guaranteed stability. Finally we observe that our analysis is
done for general networks. The presence of a structure in
the network topology might allow for better performance: if
the eigenvalues computation is feasible, a tighter bound for
α can be found.
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