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Abstract

Several statistical approaches based on reproducing kernels have been proposed to detect abrupt

changes arising in the full distribution of the observations and not only in the mean or variance.

Some of these approaches enjoy good statistical properties (oracle inequality, . . . ). Nonetheless,

they have a high computational cost both in terms of time and memory. This makes their appli-

cation difficult even for small and medium sample sizes (n < 104). This computational issue is

addressed by first describing a new efficient and exact algorithm for kernel multiple change-point

detection with an improved worst-case complexity that is quadratic in time and linear in space.

It allows dealing with medium size signals (up to n ≈ 105). Second, a faster but approximation

algorithm is described. It is based on a low-rank approximation to the Gram matrix. It is linear

in time and space. This approximation algorithm can be applied to large-scale signals (n ≥ 106).

These exact and approximation algorithms have been implemented in R and C for various ker-

nels. The computational and statistical performances of these new algorithms have been assessed

through empirical experiments. The runtime of the new algorithms is observed to be faster than

that of other considered procedures.

Finally, simulations confirmed the higher statistical accuracy of kernel-based approaches to

detect changes that are not only in the mean. These simulations also illustrate the flexibility of

kernel-based approaches to analyze complex biological profiles made of DNA copy number and

allele B frequencies.

An R package implementing the approach will be made available on github.

Keywords: Kernel method, Gram matrix, nonparametric change-point detection, model

selection, algorithms, dynamic programming, DNA copy number, allele B fraction

1. Introduction

In this paper we consider the multiple change-point detection problem [13] where the goal is to

recover abrupt changes arising in the distribution of a sequence of n independent random variables

X1, . . . , Xn observed at respective time t1 < t2 < . . . < tn.

Preprint submitted to Elsevier October 12, 2017



State-of-the-art. Many parametric models (Normal, Poisson,. . . ) have been proposed [29, 47, 17].

These models allow detecting different types of changes: in the mean, in the variance and in

both the mean and variance (see also [29, 33, 44]). Efficient algorithms and heuristics have been

proposed for these models. Some of them scale in O(n log(n)) or even in O(n). In practice, these

parametric approaches have proven to be successful for various application fields (see for example

[31, 15]). However one of their main drawbacks is their lack of flexibility. For instance, any change

of distributional assumption requires the development of a new dedicated inference scheme.

By contrast, the recently proposed kernel change-point detection approach [28, 3] is more

generic. It has the potential to detect any change arising in the distribution, which is not easily

captured by standard parametric models. More precisely in this approach, the observations are

first mapped into a Reproducing Kernel Hilbert Space (RKHS) through a kernel function [4]. The

difficult problem of detecting changes in the distribution is then recast as simply detecting changes

in the mean element of observations in the RKHS, which is made possible using the well-known

kernel trick.

One practical limitation of this kernel-based approach is its considerable computational cost

owing to the use of a n × n Gram matrix combined with a dynamic programming algorithm [6].

More precisely [28] described a dynamic programming algorithm to recover the best segmentation

from 1 to Dmax segments. They claim that their algorithm has a O(Dmaxn
2) time complexity.

However, the latter is not described in full details and its straightforward implementation is not

efficient. First, it requires the storage of a n × n cost matrix (personal communication with the

first author of [28] who was kind enough to send us his code). Thus the algorithm has a O(n2)

space complexity, which is a severe limitation with nowadays sample sizes. For instance analyzing

a signal of length n = 105 requires storing a 105 × 105 matrix of doubles, which takes 80 GB.

Second, computing the cost matrix is not straightforward. In fact simply using formula (8) of [28]

to compute each term of this cost matrix leads to an O(n4) time complexity.

Contributions. The present paper contains several contributions to the computational aspects and

the statistical performance of the kernel change-point procedure introduced by [3].

The first one is to describe a new algorithm to simultaneously perform the dynamic program-

ming step of [28] and also compute the required elements of the cost matrix on the fly. On the

one hand, this algorithm has a complexity of order O(Dmaxn
2) in time and O(Dmaxn) in space

(including both the dynamic programming and the cost matrix computation). We also emphasize

that this improved space complexity comes without an increased time complexity. This is a great

algorithmic improvement upon the change-point detection approach described by [3] since it allows

the efficient analysis of signals with up to n = 105 data-points in a matter of a few minutes on a

standard laptop.

On the other hand, our approach is generic in the sense that it works for any positive semidefinite

kernels. Importantly one cannot expect to exactly recover the best segmentations from 1 to Dmax

segments in less than O(Dmaxn
2) without additional specific assumptions on the kernel. Indeed,
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computing the cost of a given segmentation has already a time complexity of order O(n2).

It is also noticeable that our algorithm can be applied to other existing strategies such as the

so-called ECP [40]. To be specific, we show that the divisive clustering algorithm it is based on

and that provides an approximate solution with a complexity of order O(n2) in time and space

can be replaced by our algorithm that provides the exact solution with the same time complexity

and reduced memory complexity.

Our second contribution is a new algorithm dealing with larger signals (n > 105) based on a

low-rank approximation to the Gram matrix. This computational improvement is possible at the

price of an approximation. It returns approximate best segmentations from 1 to Dmax segments

with a complexity of order O(Dmaxp
2n) in time and O((Dmax + p)n) in space, where p is the rank

of the approximation.

The last contribution of the paper is the empirical assessment of the statistical performance

of the KCP procedure introduced by [3]. This empirical analysis is carried out in the biological

context of detecting abrupt changes from a two-dimensional signal made of DNA copy numbers

and allele B fractions [35]. The assessment is done by comparing our approach to state-of-the-art

alternatives on resampled real DNA copy number data [45, 40]. This illustrates the versatility of

the kernel-based approach. To be specific this approach allows the detection of changes in the

distribution of such complex signals without explicitly modeling the type of change we are looking

for.

The remainder of the paper is organized as follows. In Section 2, we describe our kernel-based

framework and detail the connection between detecting abrupt changes in the distribution and

model selection as described in [3]. A slight generalization of the KCP procedure [3] is also derived

in Section 2.5 by introducing a new parameter ` encoding an additional constraint on the minimal

length of any candidate segment. This turns out to be particularly useful in low signal-to-noise

ratio settings. The versatility of this kernel-based framework is emphasized in Section 2.6 where it

is shown how the ECP approach [40] can be rephrased in terms of kernels. Our main algorithmic

improvements are detailed and justified in Section 3. We empirically illustrate the improved run-

time of our algorithm and compare it to the ones of ECP and RBS in Section 3.1.3. In Section 3.2

we detail our faster (but approximate) algorithm used to analyze larger profiles (n > 105). It is

based on the combination of a low-rank approximation to the Gram matrix and the binary seg-

mentation heuristic [53]. An empirical comparison of the runtimes of the exact and approximate

algorithms is provided in Section 3.2.3. Finally, Section 4 illustrates the statistical performance

of our kernel-based change-point procedure in comparison with state-of-the-art alternatives in the

context of biological signals such as DNA copy numbers and allele B fractions [35].

2. Kernel framework

In this section we recall the framework of [28] where detecting changes in the distribution of a

complex signal is rephrased as detecting changes of the mean element of a sequence of points in a
3



Hilbert space. Then we detail the so-called KCP (Kernel Change-point Procedure) [3], which has

been proved to be optimal in terms of an oracle inequality.

2.1. Notation

Let X1, X2, . . . , Xn ∈ X be a time-series of n independent random variables, where X denotes

any set assumed to be separable [19] throughout the paper. Let k : X ×X → R denote a symmetric

positive semi-definite kernel [4], and H be the associated reproducing kernel Hilbert space (RKHS).

We refer to [11] for an extensive presentation about kernels and RKHS. Let us also introduce the

canonical feature map Φ : X → H defined by Φ(x) = k(x, ·) ∈ H, for every x ∈ X . This canonical

feature map allows to define the inner product on H from the kernel k, by

∀x, y ∈ X , 〈Φ(x),Φ(y)〉H = k(x, y). (1)

The asset of kernels. One main advantage of kernels is to enable dealing with complex data of any

type provided a kernel can be defined. In particular no vector space structure is required on X .

For instance X can be a set of DNA sequences, a set of graphs or a set of distributions to name

but a few examples (see [24] for various instances of X and related kernels). Therefore, as long as

a kernel k can be defined on X , any element x ∈ X is mapped, through the canonical feature map

Φ, to an element of the Hilbert space H. This provides a unified way to deal with different types

of (simple or complex) data. Then for every index 1 ≤ t ≤ n, let us note

Yt = Φ(Xt) ∈ H. (2)

From now on, we will only consider the following sequence Y1, . . . , Yn ∈ H of independent Hilbert-

valued random vectors.

The kernel trick. As a space of functions from X to R, the RKHS H can be infinite dimensional.

From a computational perspective one could be worried that manipulating such objects is com-

putationally prohibitive. However this is not the case and our algorithm relies on the so-called

kernel trick, which consists in translating any inner product in H in terms of the kernel k by use

of Eq. (1). For every 1 ≤ i, j ≤ n, it results

〈Yi, Yj〉H = k(Xi, Xj) = Ki,j ,

where Ki,j denotes the (i, j)-th coefficient of the n× n Gram matrix K = [ k(Xi, Xj) ]1≤i,j≤n.

2.2. Detecting changes in the distribution using kernels

Let us consider the model introduced by [3], which connects every Yt to its “mean” µ?t ∈ H by

∀ 1 ≤ t ≤ n, Yt = Φ(Xt) = µ?t + εt ∈ H, (3)

where µ?t denotes the mean element associated with the distribution PXt of Xt, and εt = Yt − µ?t .

Let us also recall [38] that if X is separable and E [ k(Xt, Xt) ] < +∞, then µ?t exists and is defined

as the unique element in H such that

∀ f ∈ H, 〈µ?t , f〉H = E 〈Φ(Xt), f〉H . (4)
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For characteristic kernels [50], a change in the distribution of Xt implies a change in the mean

element µ?t , that is

∀ 1 ≤ i 6= j ≤ n, PXi 6= PXj ⇒ µ?i 6= µ?j , (5)

the converse implication being true by definition of µ?t in Eq. (4). The idea behind kernel change-

point detection [3] is to translate the problem of detecting changes in the distribution into detecting

changes in the mean of Hilbert-valued vectors.

Remark 1. When considering X ⊂ Rq for some integer q > 0, several classical kernels are

characteristic. For instance,

• The Gaussian kernel: k(x, y) = e−‖x−y‖
2/δ, with x, y ∈ Rq and δ > 0,

• The Laplace kernel: k(x, y) = e−‖x−y‖/δ, with x, y ∈ Rq and δ > 0,

• The exponential kernel: k(x, y) = e−〈x,y〉q/δ, with x, y ∈ Rq and δ > 0,

where ‖·‖ and 〈·, ·〉q respectively denote the usual Euclidean norm and inner product in Rq. The

energy-based kernel discussed in Section 2.6 is also a characteristic kernel (see Lemma 1 in [41]).

However, with more general sets X , building a characteristic kernel is challenging as illustrated by

[50] and [14].

Let us also notice that the procedure developed by [3] can be seen as a “kernelized version” of

the procedure proposed by [37], which was originally designed to detect changes in the mean of

real-valued variables.

2.3. Statistical framework

From Eq. (5) it results that any sequence of abrupt changes in the distribution along the

time corresponds to a sequence of D∗ true change-points 1 = τ∗1 < τ∗2 < . . . < τ∗D∗ ≤ n (with

τ∗D∗+1 = n+ 1 by convention) such that

µ∗1 = . . . = µ∗τ∗1−1 6= µ∗τ∗1 = . . . = µ∗τ∗2−1 6= . . . 6= µ∗τ∗
D∗

= . . . = µ∗n.

In other words we get that µ∗ = (µ∗1, . . . , µ
∗
n)′ ∈ Hn is piecewise constant.

From a set of D candidate change-points 1 = τ1 < . . . < τD ≤ n, let τ be defined by

τ = (τ1, τ2, . . . , τD−1, τD) ,

with the convention τ1 = 1 and τD+1 = n + 1. With a slight abuse of notation, we also call τ

the segmentation of {1, . . . , n} associated with the change-points 1 = τ1 < . . . < τD ≤ n. The

estimator µ̂τ = (µ̂τ1 , . . . , µ̂
τ
n)
′ ∈ Hn of µ∗ = (µ∗1, . . . , µ

∗
n)
′

proposed by [3] is defined by

∀ 1 ≤ i ≤ D, ∀ t ∈ {τi, . . . , τi+1 − 1} , µ̂τt =
1

τi+1 − τi

τi+1−1∑
t′=τi

Yt′ .

The performance of µ̂τ is measured by the quadratic risk:

R(µ̂τ ) = E
[
‖µ∗ − µ̂τ‖2H,n

]
= E

[
n∑
i=1

‖µ∗i − µ̂τi ‖
2
H

]
,

where ‖·‖H denotes the norm in the Hilbert space H.
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2.4. Model selection

If the signal-to-noise ratio is small, [3] emphasized that all true change-points cannot be recov-

ered without including false change-points. This leads them to define the best segmentation τ∗

(for a finite sample size) as

τ∗ = arg min
τ∈Tn

‖µ∗ − µ̂τ‖H,n ,

where Tn denotes the collection of all possible segmentations τ of {1, . . . , n} with at most Dmax

segments. When the signal-to-noise ratio is large enough, τ∗ coincides with the true segmentation.

As a surrogate to the previous unknown criterion, [3] optimize the following penalized criterion

τ̂ = arg min
τ∈Tn

{
‖Y − µ̂τ‖2H,n + pen(τ)

}
, with pen(τ) = c1Dτ + c2 log

(
n− 1

D − 1

)
, (6)

where Y = (Y1, . . . , Yn)> ∈ Rn, c1, c2 > 0 are constants to be fixed, and Dτ denotes the number of

segments of the segmentation τ . Since this penalty only depends on τ through Dτ , optimizing (6)

can be formulated as a two-step procedure. The first step consists in solving:

∀ 1 ≤ D ≤ Dmax, τ̂D = arg min
τ∈TD

‖Y − µ̂τ‖2H,n , (7)

where TD denotes the set of segmentations with D segments. This optimization problem, which is

usually solved by dynamic programming [6, 47], is computationally hard since the cardinality of

TD is
(
n−1
D−1

)
. The second step is to straightforwardly optimize:

D̂ = arg min
1≤D≤Dmax

{
‖Y − µ̂τ̂D‖

2
H,n + pen(τ̂D)

}
and τ̂ = τ̂D̂. (8)

The right-most term in the penalty (6) accounts for the number of candidate segmentations

with D segments (see the comments of Theorem 2 in [3]). Intuitively this term balances the trend

of the estimator (7) to overfit because of the large number of candidate segmentations.

Remark 2. It is important to notice that the above two-step procedure depends on the hyper-

parameter Dmax, which is the maximum number of segments of the candidate segmentations.

In fact choosing an appropriate Dmax is related to the calibration of constants c1 and c2 in the

penalty term of (6). Since the optimal values of c1 and c2 depend (at least) on the variance of the

signal at hand, they have to be calibrated in a data-driven way. Here they have been calibrated by

using the so-called slope heuristic technique described in [3] (see also the numerical experiments in

Section 4 for more details). In particular Dmax has to be chosen large enough to make the slope

heuristic work well. Given some prior knowledge of an adequate range of values for D taking Dmax

to be 10 to 20 times larger than that seems to work well in practice. Typically for copy number

data (see Section 4.1.1) one rarely expect more than 10 change-points per chromosome and taking

Dmax ≈ 100 or 200 often make sense.

From a theoretical point of view, this model selection procedure has been proved to be optimal

in terms of an oracle inequality by [3]. This is the usual non-asymptotic optimality result for model
6



selection procedures [12]. This procedure has also been proved to provide consistent estimates of

the change-points [23]. However, from a computational point of view, the first step (i.e. solving

Eq. (7)) remains challenging. Indeed existing dynamic programming algorithms are time and

space consuming when used in the kernel framework as it will be clarified in Section 3.1.1. The

main purpose of the present paper is to provide a new computationally efficient algorithm to solve

Eq. (7). Our new algorithm has a reduced space and time complexity and allows the analysis of

signals larger than n = 104.

2.5. Low signal-to-noise and minimal length of a segment

In settings where the signal-to-noise ratio is weak (see for instance Figure 4 where the tumor

percentage is low) change-point detection procedures are more likely to put changes in noisy regions.

This results in overfitting and meaningless small segments [1]. A common solution is to include a

constraint on the minimum length ` of segments. For instance by default ECP enforces that the

estimated segmentation has segments with at least ` = 30 points [32].

One important side effect of this constraint on ` is that the total number of candidate seg-

mentations with D segments quickly decreases with `. Therefore the penalty in (6) has to be

modified.

The following lemma gives the cardinality of this set of segmentations.

Lemme 1. Let T `n (D) denote the set of segmentations of (1, . . . , n) in exactly D ≥ 1 segments

such that the length of each segment is at least ` ≥ 1. Then the cardinality of T `n (D) satisfies

Card
(
T `n (D)

)
=

(
n−D(`− 1)− 1

D − 1

)
.

Let us notice that if ` = 1, one recovers the usual cardinality that is used in the penalty (see

Eq. (6)). As an illustration of the influence of the constraint on `, let us consider the set-up where

n = 100, D = 10, and ` = 10. Then the size of the unconstrained set of segmentations with 10

segments T100(10) = T 1
100(10) is Card (T100(10)) ≈ 1.7 · 1012, whereas the constrained set T 10

100(10)

is smaller since its cardinality is equal to 1.

Proof of Lemma 1. The proof consists in showing that there is a one-to-one mapping between the

set T `n (D) of segmentations of (1, . . . , n) with D segments of length at least ` ≥ 1, and the set

S`n(D) of segmentations of (1, . . . , n−D(`− 1)) with D (non-empty) segments.

Let us consider one segmentation τ ∈ T `n (D). Since each segment of τ is of length at least

`, let us remove ` − 1 points from the left edge of each of the D segments. Then the resulting

segmentation belongs to S`n(D).

Conversely, take one segmentation τ ∈ S`n(D). Then each segment of τ contains at least one

point. Adding ` − 1 points to each segment (from the left edge) clearly provides a segmentation

with D segments of length at least `. This allows to conclude.

This leads to the following generalized change-points detection procedure involving a constraint

on the minimum length ` ≥ 1 of each segment.
7



Step 1: Solve

∀ 1 ≤ D ≤ Dmax, τ̂ `D = arg min
τ∈T `n(D)

‖Y − µ̂τ‖2H,n , (9)

where T `n (D) denotes the set of segmentations with D segments of length at least ` ≥ 1.

Step 2: Find

D̂` = arg min
D

{∥∥∥Y − µ̂τ̂`D∥∥∥2
H,n

+ pen`(τ̂
`
D)

}
and τ̂ ` = τ̂ `

D̂`
, (10)

where pen`(τ) = c1Dτ + c2 log
(
n−Dτ (`−1)−1

Dτ−1
)
.

Let us emphasize that this generalized procedure, including this additional parameter ` ≥ 1,

is very similar the previous one. The optimization step of Eq. (9) is performed by dynamic

programming up to a minor change of implementation. The optimization of the second step (10)

remains unchanged except it involves a slightly different penalty shape. The tuning of the constant

c1 and c2 is still made by the slope heuristic (see Section 4).

2.6. A link between kernels and energy-based distances

Note that the kernel-based framework developed in Sections 2.1–2.3 is very general. Various

existing procedures can be rephrased in this framework by use of a particular kernel. For example

the procedure of [37], which is devoted to the detection of changes in the mean of a one-dimensional

real-valued signal, reduces to ours by use of the linear kernel. More interestingly the procedure

called ECP developed by [40] and that relies on an energy-based distance to detect changes in

multivariate distributions, can also be integrated into our framework using a particular kernel as

explained in what follows.

For every α ∈ (0, 2), let us define ρα(x, y) = ‖x− y‖α, where x, y ∈ Rq and ‖·‖ denotes the

Euclidean norm on Rq. Then ρα is a semimetric of negative type [10], and for any independent

random variables X,X ′, Y, Y ′ ∈ Rd with respective probability distributions satisfying PX = PX′

and PY = PY ′ , [40] introduce the energy-based distance:

E(X,Y ;α) = 2E [ ρα(X,Y ) ]− E [ ρα(X,X ′) ]− E [ ρα(Y, Y ′) ] , (11)

with the assumption that max (E [ ρα(X,X ′) ] , E [ ρα(X,Y ) ] , E [ ρα(Y, Y ′) ]) < +∞. Then follow-

ing [48] and for every x0 ∈ Rd, we define

kx0
α (x, y) =

1

2
[ ρα(x, x0) + ρα(y, x0)− ρα(x, y) ] , (12)

which is a positive semi-definite kernel leading to an RKHS H0
α. Plugging this in Eq. (11), one
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can easily check that

E(X,Y ;α) = 2E [ ρα(X,x0) + ρα(Y, x0)− 2kx0
α (X,Y ) ]

− E [ ρα(X,x0) + ρα(X ′, x0)− 2kx0
α (X,X ′) ]

− E [ ρα(Y, x0) + ρα(Y ′, x0)− 2kx0
α (Y, Y ′) ]

= 2E [ kx0
α (X,X ′) + kx0

α (Y, Y ′)− 2kx0
α (X,Y ) ]

= 2
∥∥µαPX − µαPY ∥∥2H0

α
,

where µαPX , µ
α
PY
∈ H0

α respectively denote the mean elements of the distributions PX and PY , and

‖·‖H0
α

is the norm in H0
α.

An important consequence of this derivation is that the exact and approximation algorithms

described in Section 3 immediately apply to procedures relying on the optimization of the energy-

based distance E(X,Y ;α). This is all the more noticeable as our exact algorithm has a lower

memory complexity than the approximate optimization algorithm of ECP (with a similar time

complexity). Therefore, for the same computational time, our exact optimization algorithm could

replace the approximate algorithm used in ECP. One can also emphasize that our approximate

algorithm which is even faster could also be used (see its description in Section 3.2). This par-

ticular energy-based kernel, which is a characteristic kernel, has been involved in our simulation

experiments as well (Section 4.2.1).

3. New algorithms

In this section we first show how to avoid the preliminary calculation of the cost matrix required

by [28] to apply dynamic programming. The key idea is to compute the elements of the cost matrix

on the fly when they are required by the dynamic programming algorithm. Roughly, this can be

efficiently done by reordering the loops involved in Algorithm 1 proposed in [28]. This leads to the

new exact Algorithm 3. It has a reduced space complexity of order O(n) compared to O(n2) for

the one used in [28]. Note that including the constraint (introduced in Section 2.5) on the segment

sizes mostly change the index of the for loops in Algorithm 3. We choose to describe the algorithm

in the unconstrained version (7) to ease the understanding.

Second, we provide a faster but approximation algorithm (Section 3.2), which enjoys a smaller

complexity of order O(Dmaxn) in time. It combines a low-rank approximation to the Gram matrix

and the use of the binary segmentation heuristic (Section 3.2.2). This approximation algorithm

allows the analysis of very large signals (n ≥ 106).

3.1. New efficient algorithm to recover the best segmentation from the Gram matrix

As exposed in Section 2.4, the main computational cost of the change-point detection procedure

results from Eq. (7), that is recovering the best segmentation with 1 ≤ D ≤ Dmax segments and

9



solving

LD,n+1 = min
τ∈TD

‖Y − µ̂τ‖2H,n (best fit to the data)

m̂D = arg min
τ∈TD

‖Y − µ̂τ‖2H,n (best segmentation) (13)

for every 1 ≤ D ≤ Dmax, where TD denotes the collection of segmentations of {1, . . . , n} with D

segments. This challenging step involves the use of dynamic programming [9, 7], which provides

the exact solution to the optimization problem (13). Let us first provide some details on the usual

way dynamic programming is implemented.

3.1.1. Limitations of the standard dynamic programming algorithm for kernels

Let τ denote a segmentation in D segments (with the convention that τ1 = 1 and τD+1 = n+1).

For any 1 ≤ d ≤ D, the segment {τd, . . . , τd+1 − 1} of the segmentation τ has a cost that is equal

to

Cτd,τd+1
=

τd+1−1∑
i=τd

k(Xi, Xi) −
1

τd+1 − τd

τd+1−1∑
i=τd

τd+1−1∑
j=τd

k(Xi, Xj). (14)

Then the cost of the segmentation τ is given by

‖Y − µ̂τ‖2H,n =

D∑
d=1

Cτd,τd+1
,

which is clearly segment additive [28, 3].

Dynamic programming solves (13) for all 1 ≤ D ≤ Dmax by applying the following update rules

∀ 2 ≤ D ≤ Dmax, LD,n+1 = min
τ≤n
{ LD−1,τ + Cτ,n+1 }, (15)

which exploits the property that the optimal segmentation in D segments over {1, . . . , n} can

be computed from optimal ones with D − 1 segments over {1, . . . , τ} (τ ≤ n). Making the key

assumption that the cost matrix {Ci,j}1≤i,j≤n+1 has been stored, we can compute LD,n+1 with

Algorithm 1.

Algorithm 1 Basic use of Dynamic Programming

1: for D = 2 to Dmax do

2: for τ ′ = D to n do

3: LD,τ ′+1 = minτ≤τ ′{ LD−1,τ + Cτ,τ ′+1 }

4: end for

5: end for

This algorithm is used by [28] and suffers two main limitations. First it assumes that the

Cτ,τ ′ have been already computed, and does not take into account the computational cost of its

calculation. Second, it stores all Cτ,τ ′ in a O(n2) matrix, which is memory expensive.

A quick inspection of the algorithm reveals that the main step at Line 3 requires O(τ ′) opera-

tions (assuming the Ci,js have been already computed). Therefore, with the two for loops we get
10



a complexity of O(Dmaxn
2) in time. Note that without any particular assumption on the kernel

k(·, ·), computing ‖Y − µ̂τ‖2H,n for a given segmentation τ is already of order O(n2) in time since it

involves summing over a quadratic number of terms of the Gram matrix (see Eq. (14)). Therefore,

there is no hope to solve (13) exactly in less than quadratic time without additional assumptions

on the kernel.

From Eq. (14) let us also remark that computing each Ci,j (1 ≤ i < j ≤ n) naively requires itself

a quadratic number of operations. Computing the whole cost matrix would require a complexity

O(n4) in time. Taking this into account, the dynamic programming step (Line 3 of Algorithm 1)

is not the limiting factor and the overall time complexity of Agorithm 1 is O(n4).

Finally, let us emphasize that this high computational burden is not specific of detecting change-

points with kernels. It is rather representative of most learning procedures based on reproducing

kernels and the associated Gram matrix [8].

3.1.2. Improved use of dynamic programming for kernel methods

Reducing space complexity. From Algorithm 1, let us first remark that each Cτ,τ ′ is used several

times along the algorithm. A simple idea to avoid that is to swap the two for loops in Algorithm 1.

This leads to the following modified Algorithm 2, where each column C·,τ ′+1 of the cost matrix is

only used once unlike in Algorithm 1.

Algorithm 2 Improved space complexity

1: for τ ′ = 2 to n do

2: for D = 2 to min(τ ′, Dmax) do

3: LD,τ ′+1 = minτ≤τ ′{ LD−1,τ + Cτ,τ ′+1 }

4: end for

5: end for

Importantly swapping the two for loop does not change the output of the algorithm and does

not induce any additional calculations. Furthermore, at step τ ′ of the first for loop we do not need

the whole n × n cost matrix to be stored, but only the column C·,τ ′+1 of the cost matrix. This

column is of size at most O(n).

Algorithm 2 finally requires storing coefficients {Ld,τ}1≤d≤D, 2≤τ≤n that are computed along

the algorithm as well as successive column vectors {C·,τ}2≤τ≤n (of size at most n) of the cost

matrix. This leads to an overall complexity of O(Dmaxn) in space. The only remaining problem is

to compute these successive column vectors efficiently. Let us recall that a naive implementation

is prohibitive: each coefficient of the column vector can be computed in O(n2), which would lead

to O(n3) to get the entire column.

Iterative computation of the columns of the cost matrix. The last ingredient of our final exact

algorithm is the efficient computation of each column vector {C·,τ}2≤τ≤n. Let us explain how to

iteratively compute each vector in linear time.

11



First it can be easily observed that Eq. (14) can be rephrased as follows

Cτ,τ ′ =

τ ′−1∑
i=τ

(
k (Xi, Xi)−

Ai,τ ′

τ ′ − τ

)
= Dτ,τ ′ −

1

τ ′ − τ

τ ′−1∑
i=τ

Ai,τ ′ ,

where Dτ,τ ′ =
∑τ ′−1
i=τ k (Xi, Xi) and

Ai,τ ′ = −k(Xi, Xi) + 2

τ ′−1∑
j=i

k(Xi, Xj).

Second, both Dτ,τ ′ and {Ai,τ ′}i≤τ ′ can be iteratively computed from τ ′ to τ ′+ 1 by use of the two

following equations:

Dτ,τ ′+1 = Dτ,τ ′ + k(Xτ ′ , Xτ ′), and Ai,τ ′+1 = Ai,τ ′ + 2k(Xτ ′ , Xτ ′), ∀i ≤ τ ′,

with Aτ ′+1,τ ′+1 = −k(Xτ ′+1, Xτ ′+1). Therefore, as long as computing k(xi, xj) requires O(1)

operations, updating from τ ′ to τ ′ + 1 requires O (τ ′) operations.

Remark 3. Note that for many classical kernels, computing k(xi, xj) is indeed O(1) in time. If

xi ∈ Rq with q a positive integer being negligible with respect to other influential quantities such as

Dmax and n, several kernels such as the Gaussian, Laplace, or χ2 ones lead to a O(q) = O(1) time

complexity for evaluating k(xi, xj). By contrast in case where q is no longer negligible, the resulting

time complexity is multiplied by a factor q, which corroborates the intuition that the computational

complexity increases with the “complexity” of the objects in X .

This update rule leads us to the following Algorithm 3, where each column C·,τ ′+1 in the first

for loop is computed only once:

Algorithm 3 Improved space and time complexity (Kernseg)

1: for τ ′ = 2 to n do

2: Compute the (τ ′ + 1)-th column C·,τ ′+1 from C·,τ ′

3: for D = 2 to min(τ ′, Dmax) do

4: LD,τ ′+1 = minτ≤τ ′{LD−1,τ + Cτ,τ ′+1}

5: end for

6: end for

From a computational point of view, each step of the first for loop in Algorithm 3 requires

O(τ ′) operations to compute C·,τ ′+1 and at most O(Dmaxτ
′) additional operations to perform the

dynamic programming step at Line 4. Then the overall complexity is O(Dmaxn
2) in time and

O(Dmaxn) in space. This should be compared to the O(Dmaxn
4) time complexity of the naive

calculation of the cost matrix and to the O(n2) space complexity of the standard Algorithm 1 from

[28].

12



3.1.3. Runtimes comparison to other implementations

The purpose of the present section is to perform the comparison between Algorithm 3 and other

competitors to illustrate their performances as the sample size increases with Dmax = 100.

The first comparison has been carried out between Algorithm 3 and the naive quartic com-

putation of the cost matrix (Algorithm 1). These two algorithms have been implemented in C

and packaged in R. Results for these algorithms are reported in Figure 1 (Left). Unsurprisingly,

our quadratic algorithm (called Kernseg) is faster than a quartic computation of the cost matrix

(called KCP) even for very small sample sizes (n < 320).

Second, we also compared the runtime of Kernseg (Algorithm 3) with that of ECP discussed

in Section 2.6 implemented in the R-package [32] (see the middle panel of Figure 1). Since ECP

is based on the binary segmentation heuristic applied to an energy-based distance, its worst-case

complexity is at most O(Dmaxn
2) in time, which is the same as that of Kernseg . Note also that the

native implementation of ECP involves an additional procedure relying on permutations to choose

the number of change-points. If B denotes the number of permutations, the induced complexity

is then O(BDmaxn
2) in time. To be fair, we compared our approach and ECP with and without

the permutation layer. Finally it is also necessary to emphasize that unlike Kernseg , ECP does

not provide the exact but only an approximate solution to the optimization problem (13). Results

are summarized in Figure 1 (Middle). It illustrates that our exact algorithm (Kernseg) has a

quadratic complexity similar to that of ECP with and without permutations. Our algorithm is

the overall fastest one even for small sample size (n < 1 000). Although this probably results from

implementation differences, it is still noteworthy since Kernseg is exact unlike ECP.

Finally, Figure 1 (Right) illustrates the worse memory use of ECP (with and without any

permutations) as compared to that of the exact KS.Gau (Kernseg used with the Gaussian kernel).

ECP has an O(n2) space complexity, while KS.Gau is O(n). For n larger than 104 the quadratic

space complexity of ECP is a clear limitation since several Gb of RAM are required.

3.2. Approximating the Gram matrix to speed up the algorithm

In Section 3.1.2, we described an improved algorithm called Kernseg , which carefully combines

dynamic programming with the computation of the cost matrix elements. This new algorithm

(Algorithm 3) provides the exact solution to the optimization problem given by Eq. (13). However

without any further assumption on the underlying reproducing kernel, this algorithm only achieves

the complexity O(n2) in time, which is a clear limitation with large scale signals (n ≥ 105). Note

also that this limitation results from the use of general positive semi-definite kernels (and related

Gram matrices) and cannot be improved by existing algorithms to the best of our knowledge. For

instance, the binary segmentation heuristic [22], which is known to be computationally efficient for

parametric models, suffers the same O(n2) time complexity when used in the reproducing kernel

framework (see Section 3.2.2).

Let us remark however that for some particular kernels it is possible to reduce this time com-

plexity. For example for the linear one k(x, y) = 〈x, y〉Rd , x, y ∈ Rd, one can use the following
13
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Figure 1: (Left) Runtime in seconds of Algorithm 3 as a function of the length of the signal (n) for Dmax = 100.

(1-red) and a quartic computation of the cost matrix (2-violet). (Middle) Runtime in seconds of Algorithm 3 as

a function of the length of the signal (1-red) and of ECP without permutation (2-blue) and ECP with the default

number of permutations (3-green). (Right) Memory in mega-octet of Algorithm 3 as a function of the length of

the signal (1-red) and of ECP without permutation (2-blue) and ECP with the default number of permutations

(3-green). The performances of ECP with or without permutation are exactly the same.

trick

∑
1≤i6=j≤n

k(Xi, Xj) =
∑

1≤i≤n

〈
Xi,

n∑
j=1

Xj −Xi

〉
=

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

−
n∑
i=1

‖Xi‖2 , (16)

where ‖·‖ denotes the Euclidean norm in Rd.

The purpose of the present section is to describe a versatile strategy (i.e applicable to any kernel)

relying on a low-rank approximation to the Gram matrix [52, 49, 21]. This approximation allows

to considerably reduce the computation time by exploiting (16). Note however that the resulting

procedure achieves this lower time complexity at the price of only providing an approximation to

the exact solution to (13) (unlike the algorithm described in Section 3.1.2).

3.2.1. Low-rank approximation to the Gram matrix

The main idea is to follow the same strategy as the one described by [20] to derive a low-rank

approximation to the Gram matrix K = {Ki,j}1≤i,j≤n, where Ki,j = k(Xi, Xj).

Assuming K has rank rk(K)� n, we could be tempted to compute the best rank approximation

to K by computing the rk(K) largest eigenvalues (and corresponding eigenvectors) of K. However

such computations induce a O(n3) time complexity which is prohibitive.

Instead, [20] suggest applying this idea on a square sub-matrix of K with size p� n. For any

subsets I, J ⊂ {1, . . . , n}, let KI,J denote the sub-Gram matrix with respectively row and column

indices in I and J . Let Jp ⊂ {1, . . . , n} denote such a subset with cardinality p, and consider

the sub-Gram matrix KJp,Jp which is of rank r ≤ p. Further assuming r = p, the best rank p

approximation to KJp,Jp is KJp,Jp itself. This leads to the final approximation to the Gram Matrix
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K [20, 8] by

K̃ = KIn,Jp K+
Jp,Jp

KJp,In ,

where In = {1, . . . , n}, and K+
Jp,Jp

denotes the pseudo-inverse of KJp,Jp . Further considering the

SVD decomposition of KJp,Jp = U′ΛU, for an orthonormal matrix U, we can rewrite

K̃ = Z′Z, with Z = Λ−1/2U KJp,In ∈Mp,n(R).

Note that the resulting time complexity is O(p2n), which is smaller than the former O(n3) as long

as p = o(
√
n). This way, columns {Zi}1≤i≤n of Z act as new p-dimensional observations, and each

K̃i,j can be seen as the inner product between two vectors of Rp, that is

K̃i,j = Z ′iZj . (17)

The main interest of this approximation is that, using Eq. (16), computing the cost of a segment

of length t has a complexity O(t) in time unlike the usual O(t2) that holds with general kernels.

Interestingly such an approximation to the Gram matrix can be also built from a set of deter-

ministic points in X . This remark has been exploited to compute our low-rank approximation for

instance in the simulation experiments as explained in Section 4.4.5.

Note that choosing the set Jp of columns/rows leading to the approximation K̃ is of great

interest in itself for at least two reasons. First from a computational point of view, the p columns

have to be selected following a process that does not require to compute the n possible columns

beforehand (which would induce an O(n2) time complexity otherwise). Second, the quality of K̃ to

approximate K crucially depends on the rank of K̃ that has to be as close as possible to that of K,

which remains unknown for computational reasons. However such questions are out of scope of the

present paper, and we refer interested readers to [52, 20, 8] where this point has been extensively

discussed.

3.2.2. Binary segmentation heuristic

Since the low-rank approximation to the Gram matrix detailed in Section 3.2.1 leads to fi-

nite dimensional vectors in Rp (17), the change-point detection problem described in Section 2.3

amounts to recover abrupt changes of the mean of a p-dimensional time-series. Therefore any ex-

isting algorithm usually used to solve this problem in the p-dimensional framework can be applied.

An exhaustive review of such algorithms is out of the scope of the present paper. However we

will mention only a few of them to highlight their drawbacks and motivate our choice. Let us also

recall that our purpose is to provide an efficient algorithm allowing: (i) to (approximately) solve

Eq. (13) for each 1 ≤ D ≤ Dmax and (ii) to deal with large sample sizes (n ≥ 106).

The first algorithm is the usual version of constrained dynamic programming [7]. Although

it has been recently revisited with p = 1 by [46, 16, 39], it has a O(n2) time complexity with

p > 1 , which excludes dealing with large sample sizes. Another version of regularized dynamic
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programming has been explored by [34] who designed the PELT procedure. It provides the best

segmentation over all segmentations with a penalty of λ per change-point with an O(n) complexity

in time if the number of change-points is linear in n. Importantly, the complexity of the pruning

inside PELT depends on the true number of change-points. For only a few change-points, the

PELT complexity remains quadratic in time. With PELT, it is not straightforward to efficiently

solve Eq. (13) for each 1 ≤ D ≤ Dmax, which is precisely the goal we pursue. Note however that

it would still be possible to recover some of those segmentations by exploring a range of λ values

like in CROPS [30].

A second possible algorithm is the so-called binary segmentation [43, 53, 22] that is a standard

heuristic for approximately solving Eq. (13) for each 1 ≤ D ≤ Dmax. This iterative algorithm

computes the new segmentation τ̃ (D + 1) with D+1 segments from τ̃ (D) by splitting one segment

of τ̃ (D) into two new ones without modifying other segments. More precisely considering the set

of change-points τ̃ (D) = {τ1, . . . , τD+1}, binary segmentation provides

τ̃ (D + 1) = arg min
τ∈TD+1|τ∩τ̃(D)=τ̃(D)

{
‖Y − µ̂τ‖2H,n

}
.

Since only one segment of the previous segmentation is divided into two new segments at each step,

the binary segmentation algorithm provides a simple (but only approximate) solution to Eq. (13)

for each 1 ≤ D ≤ Dmax.

We provide some pseudo-code for binary segmentation in Algorithm 5. It uses a sub-routine

described by Algorithm 4 to compute the best split of any segment [τ, τ ′[ of the data. To be specific,

this BestSplit routine outputs four things: (1) the reduction in cost of spliting the segment [τ, τ ′[,

(2) the best change to split (3) the resulting left segment and (4) the resulting right segment.

In the binary segmentation algorithm candidate splits are stored and handled using a binary

heap data structure [18] using the reduction in cost as a key. This data structure allows to efficiently

insert new splits and extract the best split in O(log(Dmax)) at every time step. Without such a

structure inserting splits and extracting the best split would typically be in O(Dmax) and for large

Dmax the binary segmentation heuristic is at best O(n2). Note that the RBS procedure [45], which

is involved in our simulation experiments (Section 4.2.3), also uses this heuristic.

Algorithm 4 BestSplit of segment [τ, τ ′[

1: m̂ = min
τ<t<τ ′

{Cτ,t + Ct,τ ′} and t̂ = arg min
τ<t<τ ′

{Cτ,t + Ct,τ ′}

2: Output four things (1) Cτ,t − m̂, (2) t̂ , (3) [τ, t̂[ and (4) [t̂, τ ′[
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Algorithm 5 Binary Segmentation

1: Segs = {[1, n+ 1[}

2: Changes = ∅

3: CandidateSplit = ∅ [a binary heap]

4: for Dmax iteration do

5: for aseg ∈ Segs do

6: Insert BestSplit(aseg) in CandidateSplit

7: end for

8: Extract the best split of CandidateSplit and recover: t̂, [τ, t̂[ and = [t̂, τ ′[

9: Add t̂ in Changes

10: Set Segs to { [τ, t̂[, [t̂, τ ′[ }

11: end for

Assuming the best split of any segment is linear in its length the overall time complexity of

binary segmentation for recovering approximate solutions to (13) for all 1 ≤ D ≤ Dmax is around

O (log(Dmax)n) in practice. The worst case time complexity is O (Dmaxn). A typical setting where

it is achieved is with the linear kernel when i 7→ Xi = exp(i) for instance. At the i-th iteration of

the binary segmentation algorithm, the best split of a segment of length n− i+ 1 corresponds to

one segment of length 1 and another one of length n− i.

An important remark is that binary segmentation only achieves this reduced O (log(Dmax)n)

time complexity provided that recovering the best split of any segment is linear in its length. This

is precisely what has been allowed by the low-rank matrix approximation summarized by Eq. (17).

Indeed with the low-rank approximation, computing the best split of any segment is linear in n and

p. The resulting time complexity of binary segmentation is thus O (p log(Dmax)n), which reduces

to O (log(Dmax)n) as long as p is small compared to n. By contrast without the approximation

recovering the best split is typically quadratic in the length of the segment and binary segmentation

would suffer an overall time complexity of order O(log(Dmax)n2) or O(Dmaxn
2).

3.2.3. Implementation and runtimes of the approximate solution

The approximation algorithm we recommend is the combination of the low-rank approximation

step detailed in Section 3.2.1 and of the binary segmentation discussed in Section 3.2.2. The

resulting time complexity is then O(p2n + p log(Dmax)n), which allows dealing with large sample

sizes (n ≥ 106).

From this time complexity it arises that an influential parameter is the number p of columns of

the matrix used to build the low-rank approximation. In particular this low-rank approximation

remains computationally attractive as long as p = o(
√
n). Figure 2 illustrates the actual time

complexity of this fast algorithm (implemented in C) with respect to n for various values of p: (i)

a constant value of p and (ii) p =
√
n. To ease the comparison, we also plotted the runtime of the

exact algorithm (Algorithm 3) detailed in Section 3.1.2 and RBS that uses binary segmentation
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Figure 2: Runtime as a function of n (length of the signal) for Dmax = 100. Runtime of our approximation algorithm

with p = 100 (1-black) and p =
√
n (2-orange), RBS (3-cyan), exact Algorithm 3 (4-red)

(see Section 4.2.3).

Our fast approximation algorithm (ApKS ) recovers a quadratic complexity if p =
√
n. However

its overhead is much smaller than that of the exact algorithm, which makes it more applicable than

the latter with large signals in practice. Note also that Figure 2 illustrates that ApKS returns the

solution in a matter of seconds with a sample size of n = 105, which is much faster than Kernseg

(based on dynamic programming) that requires a few minutes. The RBS implementation involves

preliminary calculations which make it slower than ApKS with n ≤ 2 · 103. However for larger

values (n ≥ 104) RBS is as fast as ApKS with p = 10.

4. Segmentation assessment

From a statistical point of view Kernseg provides the same performance as that of [3]. However

it greatly improves on the latter in terms of computational complexity as proved in Section 3.1.

In their simulation experiments [3] mainly focus on detecting change-points in the distribution of

R-valued data as well as of more structured objects such as histograms. Here we rather investigate

the performance of the kernel change-point procedure on specific two-dimensional biological data:

the DNA copy number and the BAF profiles (see Section 4.1.1). More precisely our experiments

highlight two main assets of applying reproducing kernels to these biological data: (i) reasonable

kernels avoid the need for modeling the type of change-points we are interested in and improve

upon state-of-the-art approaches in this biological context, and (ii) the high flexibility of kernels

facilitates data fusion, that is allows to combine different data-types and get more power to detect

true change-points.

In the following we first briefly introduce the type of data we are looking at, and describe our
18



simulation experiments obtained by resampling from a set of real annotated DNA profiles. Second,

we provide details about the change-point procedures involved in our comparison. We also define

the criteria used to assess the performance of the estimated segmentations. Finally, we report and

discuss the results of these experiments.

4.1. Data description

4.1.1. DNA copy number data

DNA copy number alterations are a hallmark of cancer cells [27]. The accurate detection and

interpretation of such changes are two important steps toward improved diagnosis and treatment.

Normal cells have two copies of DNA, inherited from each biological parent of the individual. In

tumor cells, parts of a chromosome of various sizes (from kilobases to a chromosome arm) can

be deleted, or copied several times. As a result, DNA copy numbers in tumor cells are piecewise

constant along the genome. Copy numbers can be measured using microarray or sequencing exper-

iments. Figure 3 displays an example of copy number profiles that can be obtained from SNP-array

data [42].

The left panel (denoted by TCN) represents estimates of the total copy number (TCN). The

right panel (denoted by BAF) represents estimates of allele B fractions (BAF) using only homozy-

gous position. We refer to [42] for an explanation of how these estimates are obtained. In the

normal region [0-2200], TCN is centered around two copies and BAF has three modes at 0, 1/2

and 1.

On top of Figure 3, numbers (a, b) represent each parental copy number in the corresponding

segment. For instance (0, 2) means that the total number of copies in the segment is 2. But a copy

from one of the two parents is missing while the other copy has been duplicated. Importantly any
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Figure 3: SNP array data. Total copy numbers (TCN), allelic ratios (BAF) along 10,000 genomic loci. Red

vertical lines represent change-points, and red horizontal lines represent estimated mean signal levels between two

change-points.

change in only one of the parental copy numbers is reflected in both TCN and BAF. Therefore it

makes sense to jointly analyze both dimensions to ease the identification of change-points.
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Importantly in the following, allelic ratios (BAF) are always symmetrized (or folded)– that

is we consider |BAF − 0.5|–to facilitate the segmentation task. This is common practice in the

field [51].

4.1.2. Generated data

Realistic DNA profiles with known truth (similar to that of Figure 3) have been generated

using the acnr package [45]. The constituted benchmark consists of profiles with 5, 000 positions

of heterozygous SNPs and exactly K = 10 change-points. As in [45] we only consider four biological

states for the segments. The acnr package allows to vary the difficulty level by adding normal cell

contamination, thus degrading tumor percentage. Three levels of difficulty have been considered

by varying tumor percentage: 100% (easy case), 70%, and 50% (difficult case). Figure 4 displays

three examples of simulated profiles (one for each tumor purity level).
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Figure 4: Benchmark 1: Profiles simulated with the acnr package. Each line corresponds to a tumor percentage

(100%, 70% and 50%). The first column correspond to copy number (TCN) and the second to the allele B fraction

(BAF).

For each level, N = 50 profiles (with the same segment states and change-points) are generated

making a total of 150 simulated profiles both for BAF and TCN.
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4.2. Competing procedures

4.2.1. Kernseg and ApKS

The implemented exact algorithm Kernseg (corresponding to Algorithm 3) and its fast ap-

proximation ApKS (based on binary segmentation) are applicable with any kernel (Gaussian,

exponential, polynomial, . . . ).

In our simulation experiments we consider three kernels.

• The first one is the so-called linear kernel defined by k(x, y) = 〈x, y〉, where x, y ∈ R. It is

used as a benchmark since Kernseg with this kernel reduces to the procedure of [37]. The

corresponding procedure is denoted by KS.Lin.

• The second one is the Gaussian kernel defined for every x, y ∈ R by

kδ(x, y) = exp

[
− |x− y|2

δ

]
, ∀δ > 0.

Since it belongs to the class of characteristic kernels [50], it is a natural choice to detect any

abrupt changes arising in the full distribution [3]. We call this procedure KS.Gau.

• The third one is the kernel associated with the energy-based distance introduced in Eq. (12)

with α = 1 and x0 = 0. This particular choice is the prescribed value in the ECP package

[32]. We call this procedure KS.ECP.

These three kernels allow to (i) illustrate the interest of characteristic kernels compared to non char-

acteristic ones, and (ii) assess the performances of change-point detection with kernels (Kernseg)

compared to other approaches (ECP, RBS). However other characteristic kernels such as the

Laplace or exponential ones (see Section 2.2) could have been considered as well.

For all kernels we considered Dmax = 100. Note also that for all approaches and for both TCN

and BAF profiles we first scaled the data using a difference based estimator of the variance. To

be specific we get an estimator of the variances by dividing by
√

2 the median absolute deviation

of disjoint successive differences. This is common practice in the change-point literature (see for

example [22]). Such estimators are less sensitive to any shift in the mean than the classical ones.

For the Gaussian kernel we then used δ = 1.

As mentioned earlier, one main asset of kernels is that they allow to easily perform data

fusion, which consists here in combining several data profiles to increase the power of detecting

small changes arising at the same location in several of them. Here the joint segmentation of the

two-dimensional signal (TCN, BAF) is carried out by defining a new kernel as the sum of two

coordinate-wise kernels [5], that is

k(x1, x2) = k(c1, c2) + k(b1, b2) (18)

with x1 = (c1, b1) and x2 = (c2, b2) where the first coordinates of x1 and x2 refer to TCN and the

second ones to BAF.
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Remark 4. Let us point out that many alternative ways exist to build such a “joint kernel”, using

the standard machinery of reproducing kernels exposed in [5, 24].

For instance replacing the sum in Eq. (18) by a product of kernels is possible. With the Gaussian

kernel, this amounts to consider one Gaussian kernel applied to a mixture of squared norms where

each coordinate receives a different weight depending on its influence. Another promising direction

is to exploit some available side information about the importance of each coordinate in detecting

change-points. This can be done by considering a convex sum of kernels where the weights reflect

this a priori knowledge.

Finally let us mention that designing the optimal kernel for a learning task is a widely open

problem in the literature even if some attempts exist (see Section 7.2 in [2] for a thorough discussion,

and [26] for a first partial answer with two-sample tests).

4.2.2. ECP

The ECP procedure [40] (earlier discussed in Section 2.6) has been also introduced in our

comparison since it allows us to detect changes in the distribution of multivariate observations.

We used the implementation provided by the authors in the R-package [32]. We used the

default parameters α = 1 and ` = 30 (minimum length of any segment). Let us notice that, unlike

our kernel-based procedures relying on efficiently minimizing a prescribed penalized criterion, ECP

chooses the number of segments by iteratively testing each new candidate change-point by means

of a permutation test, which makes it highly time-consuming on large profiles (around 15 minutes

per profiles for n = 5000 compared to 5 seconds for KS.Gau).

4.2.3. Recursive Binary Segmentation (RBS)

In the recent paper by [45], it has been shown that for a known number of change-points the Re-

cursive Binary Segmentation (RBS) [25] is a state-of-the-art change-point procedure for analyzing

(TCN, BAF) profiles. RBS is a two-step procedure. In a first step it uses the binary segmentation

heuristic (described in Section 3.2.2) on the (TCN) or (TCN,BAF) profile. In a second step it

uses dynamic programming on the set of changes identified by the binary segmentation heuristic.

We refer interested readers to [45] for a discussion as to why RBS can outperform a pure dynamic

programming strategy despite the fact that it provides only an approximation to the targeted

optimization problem.

Since the present biological context is the same as that of [45], we therefore decided to carry

out the comparison between our kernel-based procedures and RBS.

From a computational perspective RBS relies on the binary segmentation algorithm described

in Algorithm 5. The final segmentation output by RBS is then an approximate solution to the

optimization problem (in the same way as ApKS ), while being efficiently computed as illustrated

by Figure 2.
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4.3. Performance assessment

The quality of the resulting segmentations is quantified in two ways. First we infer the ability of

the procedure to provide a reliable estimate of the regression function by computing the quadratic

risk of the estimator based on the TCN profile (Section 4.3.1). Second, we also assess the quality

of the estimated segmentations by measuring the discrepancy between the true and estimated

change-points using the Frobenius distance (Section 4.3.2).

4.3.1. Risk of a segmentation

From a practical point of view, there is no hope to recover true change-points in regions where

the signal-to-noise ratio is too low without including false positives, which we would like to avoid.

In such non-asymptotic settings, the quality of the estimated segmentation τ can be measured by

the risk R(f̂τ ) which measures the gap between the regression function f = (f1, . . . , fn) ∈ Rn and

its piecewise-constant estimator based on τ , that is f̂τ =
(
f̂τ1 , . . . , f̂

τ
n

)
∈ Rn. This risk is defined

by

R(f̂τ ) =
1

n

n∑
i=1

E

[(
fi − f̂τi

)2 ]
.

In the following simulation results, the risks of all segmentations are always computed with respect

to the regression function of the corresponding TCN profile.

4.3.2. Frobenius distance

We also quantify the gap between a segmentation τ and the true segmentation τ∗ by us-

ing the Frobenius distance [36] between matrices as follows. First, for any segmentation τ =

(τ1, τ2, . . . , τD), let us introduce a matrix Mτ =
{
Mτ
i,j

}
1≤i,j≤n such that

Mτ
i,j =

D∑
k=1

1(τk≤i,j<τk+1)

τk+1 − τk
, (with τ1 = 1 and τD+1 = n+ 1 by convention)

where 1(τk≤i,j<τk+1) = 1, if i, j ∈ [τk, τk+1[∩N, and 0 otherwise. Note that Mτ
i,j 6= 0 if and only

if i, j are in the same segment of τ , which leads to a block-diagonal matrix with D blocks (whose

squared Frobenius norm is equal to D). The idea behind the value in each block of this matrix is to

define a one-to-one mapping between the set of segmentations in D segments and matrices whose

squared Frobenius norm is D.

Let us now consider the matrix Mτ? defined from the true segmentation τ∗ in the same way.

Then, the Frobenius distance between segmentations τ and τ∗ is given, through the distance

between matrices Mτ and Mτ? , by

dF (τ, τ?) =
∥∥∥Mτ −Mτ?

∥∥∥
F

=

√√√√ n∑
i,j=1

(
Mτ
i,j −Mτ?

i,j

)2
.
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4.4. Results

In our experiments, we successively considered two types of signals: (i) the total copy number

profiles (TCN) and (ii) the joint profiles in R2 made of (TCN,BAF).

4.4.1. Comparison with KS.Lin and ECP for a high tumor percentage (easy case)

First we compare all approaches in the simple case where the tumor percentage is equal to 100%.

The performances, using only the TCN or the (TCN,BAF) profiles, are reported in Figure 5 and

measured in terms of accuracy (Left) and risk (Right).
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Figure 5: Accuracy (left) and Risk (right) on TCN and (TCN,BAF) profiles with a tumor percentage of 100%.

Boxplots of RBS, ECP, KS.Lin, KS.Gau and KS.ECP for their selected number of change-points (D̂) are shown.

In all these experiments RBS clearly performs badly. We believe this is mostly due to the poor

estimation of the number of segments made by RBS. Indeed the performances of RBS are closer

to the ones of other approaches when considering the true number of segments (results not shown

here).

We then compare KS.Lin to KS.Gau, KS.ECP, and ECP. With TCN data, KS.Lin has a small

advantage over KS.Gau (with an average accuracy difference of 0.03 and a p-value of 0.012) and

ECP (with an average accuracy difference of 0.1 and p-values of 0.007). This is also true when

considering the risk. KS.ECP has a slightly better empirical average accuracy than KS.Lin but this

difference is not significant. Let us also mention that none of the differences are found significant

with the (TCN, BAF) profiles. It is our opinion that in this simple scenario all true change-

points arise mostly in the mean of the distribution. Thus it is noticeable that the performances

of approaches also looking for changes in the whole distribution (like ECP, KS.Gau, KS.ECP) are

(almost) on par with those specifically looking for change-points in the mean (like KS.Lin and RBS

for the true number of change-points D?).

We also compared ECP to KS.Gau and KS.ECP. We found no differences except between ECP

and KS.ECP for TCN profiles. In that case KS.ECP has significantly better accuracy and risk

than ECP. But this difference remains small as can be seen on Figure 5.

Note that for all approaches, performances on (TCN,BAF) profiles are slightly better than

those with TCN profiles (p-values smaller than 10−4).
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Figure 6: Performances of KS.Lin, KS.Gau and KS.ECP for the true number of changepoints D? = 10 with or

without a constraint on the minimal size of segments (left: ` ≥ 1, right: ` ≥ 30). The results for RBS and ECP for

D? = 10 are also reported. RBS does not include a constraint while ECP has a default minimal size of 30.

.

4.4.2. Constraint on the segment sizes for a low tumor percentage (difficult case)

We then turn to the more difficult case where the tumor percentage is equal to 50%. In this

scenario excluding segments with less than 30 points (as is done by default in ECP) is beneficial.

Figure 6 illustrates this strong improvement when adding this constraint to KS.Lin, KS.Gau and

KS.ECP and when considering the true number of change-points D? = 10 (p-values of respectively

(8.10−9, 9.10−3 and 10−4). More generally it is our experience that such a constraint can greatly

improve performances when the signal-to-noise ratio is low. For this reason, in the remainder of

our experiments and for a tumor percentage of 50%, we will report results including the constraint

on the segment sizes (` = 30). Let us also mention that for higher tumor percentages adding the

constraint does not change the segmentation in D? segments recovered by KS.Lin, KS.Gau and

KS.ECP.

4.4.3. Comparison with KS.Lin and ECP for a low tumor percentage (difficult case)

We compared KS.Lin to KS.Gau, KS.ECP, and ECP for a tumor percentage of 50%. The

accuracy of all these approaches is reported in Figure 7. The minimum length of any segment is

fixed at ` = 30 for all approaches (except RBS as it is not possible) and the number of segments

is estimated.

In all these experiments RBS performs badly. We believe this is because it poorly selects the

number of segments and also because it does not include a constraint on segment sizes.

We compared KS.Lin to KS.Gau, KS.ECP, and ECP. For both TCN and (TCN,BAF) profiles

KS.Lin performs worse than KS.Gau, KS.ECP, and ECP in terms of accuracy and risk (all p-
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Figure 7: Accuracy (left) and Risk (right) on TCN and (TCN,BAF) profiles with a tumor percentage of 50%.

Boxplots of RBS, ECP, KS.Lin, KS.Gau and KS.ECP for their selected number of changepoints (D̂) are shown.

values are smaller than 2.10−4). In this more difficult scenario, changes do not arise only in the

mean of the distribution, which gives an advantage to approaches looking for changes in the whole

distribution and not only in the mean as KS.Lin does.

We then compare ECP to KS.Gau and KS.ECP. First, KS.Gau seems to have a slightly better

accuracy and risk than ECP for both TCN and (TCN,BAF) profiles. Two of these differences are

found significant with a cut-off of 5% and none with a cut-off of 1%. This leads us to conclude

that ECP and KS.Gau have similar performances in the present experiments. Second, KS.ECP

has a slightly better accuracy and risk than ECP in TCN for both TCN and (TCN,BAF) profiles.

All of these differences are found significant (for the accuracy in (TCN,BAF) p = 0.0076, in TCN

p = 0.015, for the risk in (TCN,BAF) p = 0.0081 and in TCN p = 0.00016). Although significant

these differences remain small (about three times smaller than the differences between KS.Lin and

ECP).

Finally it should be noted that KS.ECP is faster than ECP for a profile of n = 5000 (5 seconds

against 15 minutes). All of this leads to conclude that, in our simulation experiments, KS.Gau

and KS.ECP are the best change-point detection procedures among the considered ones since they

perform as well as ECP while being by far less memory and time consuming.

4.4.4. Estimation of the number of segments including the minimum length constraint

Let us now assess the behaviour of the model selection procedure derived in Section 2.5 by

taking into account the new constraint on the minimal length of the candidate segments.

From Figure 8 it can be seen that whatever the kernel the performances of the Kernseg pro-

cedure at the estimated number of segments are worse than those at D?. But this difference

remains very small. This empirically validates the use of our modified penalty taking into account

a constraint on the size of the segments. We recall that adding this constraint is important in

low-signal-to-noise settings, which are common in practice.
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Figure 8: Accuracy of KS.Lin, KS.Gau and KS.ECP on (TCN,BAF) for a tumor percentage of 50% for D∗ (left)

and D̂ (right).

4.4.5. Quality of the approximation

The purpose of the present section is to illustrate the behaviour of ApKS (in terms of statistical

precision) as an alternative to Kernseg (which is more time consuming). Since we do not provide

any theoretical warranty on the model selection performances of ApKS , we only show its results

for several values of p ∈ {4, 10, 40, 80, 160} at the true number of segments D?. For each value

of p and each of the TCN and BAF profiles, we compute the approximation by: (i) evaluating

the smallest and largest observed value (respectively denoted by m and M), (ii) using an equally

spaced grid of p deterministic values between m and M and (iii) use those p values to perform the

approximation of the Gram matrix.

From Figure 9 it clearly appears that the number of points used to build the low-rank approx-

imation to the Gram matrix is an influential parameter that has to be carefully fixed. However

as long as p is chosen large enough, the approximation seems to provide very similar results. This

suggests that one should find a trade-off between the statistical performances and the computation

cost. Indeed from a statistical point of view increasing p is beneficial (or at least not detrimental).

In contrast from a computationnal point of view increasing p is detrimental and increases the

complexity in time (O(p2n)).

Let us finally emphasize that for large enough p the performances of ApKS are very close to

those of KS.Gau. Given the low time complexity of ApKS compared to KS.Gau we argue that for

large profiles (n� 105) ApKS could be an interesting alternative to KS.Gau.

Nevertheless several questions related to the use of ApKS remain open. For instance, the

optimal way to build the low-rank approximation of the Gram matrix is a challenging question

which can be embedded in the more general problem of choosing the optimal kernel. Designing a

theoretically grounded penalized criterion to perform model selection with ApKS is also a crucial

problem which remains to be addressed.
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Figure 9: Accuracy of ApKS with the Gaussian Kernel and for various p and of KS.Gau on (TCN,BAF) for a

tumor percentage of 50% for D∗.

5. Conclusion

Existing nonparametric change-point detection procedures such as that of [3] exhibit promising

statistical performances. Yet their high computational costs (time and memory) are severe limita-

tions that often make it difficult to use for practitioners. Therefore an important task is to develop

computationally efficient algorithms (leading to exact or approximate solutions) reducing the time

and memory costs of these statistically effective procedures.

In this paper we focus on the multiple change-points detection framework with reproducing

kernels. We have detailed a versatile (i.e. applicable to any kernel) exact algorithm which is

quadratic in time and linear in space. We also provided a versatile approximation algorithm which

is linear both in time and space and allows to deal with very large signals (n ≥ 106) on a standard

laptop. The computational efficiency in time and space of these two new algorithms has been

illustrated on empirical simulation experiments showing that the new algorithms is more efficient

than its direct competitor ECP. The statistical accuracy of our kernel-based procedures has been

empirically assessed in the setting of DNA copy numbers and allele B fraction profiles. In particular,

results illustrate that characteristic kernels (enabling the detection of changes in any moment of

the distribution) can lead to better performances than procedures dedicated to detecting changes

arising only in the mean.
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