
Implementation and Evaluation of a
Controller-based Forwarding Scheme for NDN

Elian Aubry∗†, Thomas Silverston‡ and Isabelle Chrisment∗†
∗ Université de Lorraine, LORIA CNRS UMR7503, 54506 Vandoeuvre-lès-Nancy, France

† Inria Nancy – Grand Est, 54600 Villers-lès-Nancy, France
‡ NICT, National Institute of Information and Communications Technology, Tokyo, Japan

Email: elian.aubry@loria.fr, thomas@nict.go.jp, isabelle.chrisment@loria.fr

Abstract—Named-Data Networking (NDN) is a novel clean-
slate architecture for Future Internet. It has been designed to take
into account a new use of the Internet and especially accessing
content for a large number of users, and it integrates several
features such as in-network caching, security or multipath. As
NDN relies on content names instead of host address, it cannot
rely on traditional Internet routing, and it is therefore essential
to propose a routing scheme adapted for NDN. To this end, in
this paper, we present SRSC, our SDN-based Routing Scheme
for CCN/NDN and its implementation. SRSC relies on the SDN
paradigm.A controller is responsible to forward decisions and to
set up rules into NDN nodes. We implement SRSC into NDNx
and we also deploy an NDN testbed within a virtual environment
and real ISP topology in order to evaluate the performances of
our proposal with real-world experiments. We demonstrate the
feasibility of SRSC and its ability to forward Interest messages in
a fully deployed NDN environment, while keeping low overhead
and computation time and high caching performances.

I. INTRODUCTION

Named Data Networking (NDN) [1] is a new networking
architecture proposed to address today’s Internet requirements.
Indeed, the Internet is now mostly used to access content [2],
and the current Internet architecture has not been designed
for this purpose. The NDN clean-slate architecture introduces
a host-to-content communication paradigm and relies on new
features such as in-network caching, data encryption, mobil-
ity support or multipath, and has attracted a huge research
community, providing novel mechanisms for caching [3],
congestion control [4], or deployment [5].

The NDN architecture is a cache network and nodes can
store content for future requests. Content is therefore spread
into the network closer to users. The NDN protocol relies
on two messages: Interest and Data, which are the request
and reply respectively. When a user requests a content, it
sends an Interest into the network, which is forwarded up
to a node having the content. However, the NDN architecture
does not have any scheme to forward Interest messages in
the network. NDN first relies on flooding to forward Interest,
wasting network resources and preventing its deployment at
the Internet scale. Routing schemes such as NLSR [6] have
therefore been proposed but it does not fully benefit from the
potential of caching features.

In this paper, we present our implementation of SRSC,
a SDN-based Routing Scheme for CCN/NDN. SRSC is a
forwarding scheme for NDN, whose originality is to rely on

the SDN paradigm and operate in a native NDN environment
(i.e., without TCP/IP). SDN allows decoupling the control
and data plane, and NDN nodes become forwarding devices
only and the controller is responsible to compute the routing
decision.

We deploy SRSC into a virtual environment through a new
Docker [7] testbed. A virtual testbed is used to evaluate our
routing scheme at large scale within a real ISP topology and
demonstrate the efficiency of our proposal though real-world
experiments. The contributions of this paper are threefold:
• We implement our routing scheme SRSC into NDNx;
• We design a new virtual NDN testbed easily deployable

on all platforms;
• We evaluate SRSC through extensive experiments in areal

testbed environment.
Our controlled-based routing scheme succeeds in forwarding
Interests to closest Content Stores and is a potential candidate
for routing in NDN. The experiments show that the SRSC
controller exhibits a low computation time, while at the same
time traffic overhead of SRSC is limited to 18% and caching
performances remain high-level with 47% of Cache Hits in
our NDN testbed.

The rest of the paper is organized as follows. Section II
provides a general overview of the NDN architecture and
Section III describes the implementation of SRSC into NDNx.
Section IV presents our virtual testbed with Docker and the
experimental deployment. The SRSC implementation is evalu-
ated through real-world experiments in Section V. Section VI
discusses the implementation, and Section VII surveys the
related work. Section VIII concludes the paper and presents
some future works.

II. NAMED-DATA NETWORKING OVERVIEW

The Internet host-to-host communication paradigm based on
TCP/IP is no longer adapted to massive content distribution at
the Internet scale. Users are interested by content and not its
location and the NDN architecture has been proposed to over-
come these limitations. The NDN architecture relies on host-
to-content paradigm where a packet addresses a content names
and not an host location. A content name can for instance be
described with a URL such as /netflix/tv/hd/show.avi. NDN
is also a caching network and each node can store content
for further requests. Thus, content is spread into the network,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132018089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Messages Prefixes Steps Phases
InterestBoot /allNodes/controller/<IdController> Controller Announcement Bootstrapping
InterestDiscover /neighbours/node/<IdNode> Neighbour Discovery Bootstrapping
InterestNeighbours /controller/<IdController>/node/<IdNode>/<Neighbours> Topology Discovery Bootstrapping
InterestNewContent /controller/<IdController>/incache/node/<IdNode>/data/<Data> Content Announcement Forwarding/Bootstrapping
InterestPath /controller/<IdController>/path/node/<IdNode>/data/<Data> Rule Request Forwarding
InterestCreatePath /node/<IdNextNode1>/install/<IdNextNode2>/.../<IdNode2>/data/<Data> Path Establishment Forwarding
InterestDeleteContent /controller/<IdController>/deletecache/node/<IdNode>/data/<Data> Content Removal Forwarding

TABLE I: SRSC Control Interest defined for communication between nodes and controllers. Control Data share the same format and carry
requested information.

closer from users, reducing de-facto the delay to users and
enhancing the users’ Quality of Experience.

For a brief history about the NDN architecture, the Content-
Centric Networking (CCN) architecture has been proposed by
PARC in 2009. Then, it has forked into two different projects
due to copyright issues [8]: the NSF-funded NDN project [1]
and the CCN project (PARC) [9]. The two architectures shared
the same common baseline up to 2013 (CCNx 0.8) and then
evolved independently. The open source NDNx implementa-
tion has now attracted a huge part of the research community.
The NDN/CCN harmonization [10] is however an ongoing
topic at ICN Research group (IRTF).

The NDN protocol relies on two messages: Interest and
Data; Interest is the message to request content, and Data
is the reply message transporting the data. A NDN node’s
architecture is composed of three components: (i) the Content
Store (CS), a memory for storing content; (ii) the Forward
Information Base (FIB), a table with entries (name prefixes
and network interfaces) to forward Interest (e.g., routing table),
and (iii) the Pending Interest Table (PIT), a table keeping track
on which interfaces to forward the data back to requester.

When a user requests a content, it sends an Interest into the
network, which is forwarded up to a node having the content.
This node can be the origin content publisher as well as any
other node that owns the content. When a node receives an
Interest, it checks if the content is in its cache (CS), and if
so, it sends the Data message through the same interface.
Data follows the reverse path up to the requester, and each
node along the delivery path can decide to store the content
according to caching strategy for further requests. Otherwise,
it looks up for a matching entry in its FIB to forward the
Interest into the network.

The NDN architecture does not provide any routing mech-
anisms to forward Interest and it floods the network, wasting
resources and preventing its deployment at the Internet scale.
We have therefore propose SRSC [11], a SDN-based Routing
Scheme for CCN/NDN, as novel mechanism to populate FIB
in order to forward efficiently Interest into NDN network.

III. SDN-BASED ROUTING SCHEME FOR CCN/NDN

The SRSC protocol relies on the SDN paradigm and uses
a controller, which is in charge of the forwarding decisions.
Basically, upon receiving an Interest, a node requests the
forwarding rules to the controller, which sends back the path
toward the content. The node will therefore update its FIB and

forward the Interest through the corresponding interface. The
controller is responsible for a slice of network – such as an
Autonomous System in today’s Internet – and has to discover
the topology, nodes and content in the network.

In the following section, we describe (i) the SRSC Control
Messages exchanged between the controller and nodes, and
(ii) the algorithms we have implemented in NDNx at the
node side and controller side. The NDN Forwarding Daemon
process (NFD), which is responsible to forward messages,
was modified to use SRSC. All other NDNx components are
unchanged (PIT, FIB, CS).

SRSC relies on two distinct phases to achieve its goal:
Bootstrapping and Forwarding. Bootstrapping is for binding
the nodes to their controller; the controller therefore learns the
network topology. Forwarding is the essential step to forward
Interest, i.e., requesting rules to controller, adding rules into
nodes’ FIB and forwarding Interest to the nearest Content
Stores.

A. SRSC Control Messages

In SRSC, nodes contact a controller to obtain forward-
ing information for content. The controller has to acquire
the entire knowledge of the topology, associated nodes and
content, while nodes have to discover their controller and
neighborhood, and announce the available content in their
Content Store. In SRSC, controller and nodes communicate
using NDN messages. To this end, we define specific control
messages (i.e., signaling) to allow nodes to communicate with
controller and exchange information with each other. These
control messages are specific NDN Interest and Data messages
with reserved prefix names, which are presented in Table I.
Some Control Data messages reply to Control Interest as in
NDN communication (e.g., InterestDiscover and InterestPath).

The prefixes of the control messages use fields carrying
valuable information such as <IdController> and <IdNode>,
i.e., identity of controller and nodes: (e.g., serial number).
<Neighbours> is a list of couples <IdNode>/<IdController> to
identify the slice of network (i.e., a single domain managed by
the same controller). <Data> refers to the content name (i.e.,
prefix) requested by users. In our control messages, Control
Data does not transport effective data, but transports instead
forwarding information (e.g., forwarding rules) or information
about neighbours’ identities.



B. SRSC Algorithms

The SRSC protocol has been implemented into two distinct
phases: Bootstrapping and Forwarding.

Bootstrapping: This is the necessary phase for both con-
troller and nodes. As presented in Algorithm 1, in order
to learn the network topology, the controller broadcasts an
InterestBoot message (l 1). Then, all nodes associated with
it respond with an InterestNeighbours, containing a list of
all their neighbours and controllers. The controller can then
update information about the topology (l 3), and it can
detect border nodes, which are nodes from its neighbours’
list that are bound to another controller (l 5). Finally, for
each received InterestNewContent, the controller updates its
content’s location table (l 9).

On the other side, nodes perform Algorithm 2. Upon
receiving the InterestBoot, nodes associate themselves with
the controller and broadcast the message if they are not
already bound to any other controller (l 5), else they drop
it. They also broadcast an InterestDiscover to discover their
neighborhood (l 7), and reply to each other with a Control
Data carrying their identity and their associated controller
(l 15). Each node sends their neighborhood information
to the controller with InterestNeighbours (l 12). During
Bootstrapping, nodes also announce their content to controller
(InterestNewContent) (l 18).

Algorithm 1 SRSC Bootstrapping for Controller

//Start Bootstrapping
1. Controller.broadcast(InterestBoot)
2. For All InterestNeighbours received from Node Ni do:
3. Controller.Update(Topology)
4. If Ni.GetControllerID() != Controller do:
5. Controller.AddBorderNode(Ni)
6. End If
7. End For

//Content Tracking
For All InterestNewContent received from Node Ni do:
9. Controller.AddNewContent(NewContent, Ni)
10. End For

Forwarding: This is the crucial phase of SRSC, as nodes
will learn the forwarding rules toward the content. From a
node’s point of view, the forwarding phase is described in
Algorithm 3. While receiving an Interest, a node checks if
the content is already in its Content Store (l 2), if there is a
PIT entry for the same content (l 4) and if a FIB entry already
exists (l 6). In other cases, the node will request the forwarding
rule from the controller (l 10). While receiving the forwarding
rule from the controller (DataPath), a node gets the entire path
to the content. It first extracts the next hop to forward the
Interest (l 16), updates its FIB and sends InterestCreatePath
(l 19) to the next hop in order to install forwarding rules in
the following nodes on the path. InterestCreathPath will be

Algorithm 2 SRSC Bootstrapping for Node

//Topology discovery
1. Node receives InterestBoot from Controller
2. If Node.AlreadyBindToController() do:
3. Node.drop(InterestBoot)
4. Else
5. Node.BindTo(Controller)
6. Node.broadcast(InterestBoot)
7. Node.Broadcast(InterestDiscover)
8. While Node.NbrDataDiscoverReceived()!=Node.NbrFaces()
do:
9. Node receives DataDiscover from Neighbour
10. Node.AddInNeighboursList(Neighbour)
11. End While
12. Node.Send(Controller,InterestNeighbours(NeighboursList))
13. End If
14. For All InterestDiscover received from Node Ni do:
15. Node.Send(Ni, DataDiscover(Node,Controller))
16. End For

//Content Location
17. For All NewContent available do:
18. Node.Send(Controller,InterestNewContent(Node,NewContent))
19. End For

forwarded hop by hop so that each node on the path does
not have to request the controller again and can immediately
update its FIB, reducing the number of control messages (l 22
to 28). At the end of the process, the first node has therefore
established a route to the destination and can forward the
original Interest message along the path to the Content Store.

Algorithm 4 details the forwarding process on the controller
side. From the bootstrapping phase, controller already knows
the topology and available content. Controller extracts prefix
names from requests (InterestPath) and selects the more ap-
propriate nodes possessing the content (l 3, l 4). Indeed, the
same content can be replicated in several Content Stores and in
our current implementation, the controller chooses the shortest
path to the destination (SRSC chooses the less costly path, but
as we attribute the same weight on all links, the less costly is
also the shortest). If the content is not available in the network,
the controller selects a border node to forward the Interest and
reach another network. Another controller will therefore be
responsible to get the content using the same process. Note
that one could have a controller sending multiple paths for a
same content but we keep this case for future improvement.

IV. DOCKER EXPERIMENTAL TESTBED

In order to evaluate our implementation of SRSC, we deploy
a virtual experiment testbed. Virtualization allows testing the
real implementation of a protocol and its behavior in real-
world scenarios. It is different from simulation experiments
where simulations evaluate a simplified prototype without
taking into account numerous effects arising in real-world



Fig. 1: Architecture of the Docker virtual testbed

Fig. 2: Docker Experiment testbed: SRSC is implemented into NDNx and
deployed on Abilene Topology. Four routing scenarios. Full Routing Scenario
(FRS): messages 1 to 6; Cache Scenario (CS): messages 6 and 7; Close
Routing Scenario (CRS): messages 9 to 13; Direct Forwarding Scenario
(DFS): messages 14 and 15.

Algorithm 3 SRSC Forwarding for Node

//Send Request to Controller
1. For All Interest(Content) received do:
2. If Node.IsInCS(Content) then
3. Node.Send(Content)
4. Else If Node.AlreadyInPIT(Content) do:
5. Node.UpdateEntry(PIT,Content)
6. Else If Node.AlreadyInFIB(Content) do:
7. Node.Send(FIB,Content)
8. Node.AddEntry(PIT,Content)
9. Else
10. Node.Send(Controller,InterestPath(Node,Content))
11. End If
12. End If
13. End If
14. End For

//Receive Path from Controller
15. For All DataPath received from Controller do:
16. NextNode ← Node.ExtractNextNode(DataPath)
17. Content ← NodeExtractContent(DataPath)
18. Node.AddEntry(FIB,Content,NextNode)
19. Node.Send(NextNode,InterestCreatePath)
20. Node.Send(NextNode,Content)
21. End For
22. For All InterestCreatePath received from Ni do:
23. NextNode← Node.ExtractNextNode(InterestCreatePath)
24. Content ← NodeExtractContent(InterestCreatePath)
25. Node.AddEntry(FIB,Content, NextNode)
26. If not Node.IsLastNode(InterestCreatePath) do:
27. Node.Send(NextNode,InterestCreatePath)
28. End If
29. End For

Algorithm 4 SRSC Forwarding for Controller

1. For InterestPath received from Node Ni do:
2. RequestedContent ← ExtractPrefixe(InterestPath)
3. If ContentList.Has(RequestedContent) do:
4. Destination ← GetNode(RequestedContent)
5. Else
6. Destination ← GetBorderNode()
7. End If
8. Path ← Controller.GetPath(Ni, Destination)
9. Controller.Send(Ni, Path)
10. End For

experiments. In addition, the use of virtualization allows
deploying large number of nodes and performing large-scale
experiments while still experimenting in laboratory facilities.
Scalability is indeed an important concern while testing large-
scale networking architecture.

In this context, we rely on Docker [7], a software container-
ization platform. Containers and virtual machines have similar
resource isolation and allocation benefits, but containers are
more portable and efficient. The virtual testbed architecture
is shown on Figure 1, where each node is represented by
a container encapsulating NDNx and our implementation of
SRSC into the NDN Forwarding Daemon. The containers
have also user space, from which user applications generate
requests. The Docker containers are not tied to any specific
infrastructure: they can be run on any computers or hardware,
and in any clouds. Thus, our virtual testbed is portable and can
be deployed on all kind of infrastructures. Then, we can create
any topology where each node is deployed into a container and
has as many interfaces as links in the network. The containers
are built with Ubuntu 12.04 LTS system and our entire testbed



Parameters Values
Topology Abilene
Catalog Size 10,000
Number of Users 11
Requests per user 10,000
Popularity Model Zipf(α=1.1)
Cache Size 1,000
Caching Strategy LCD
Replacement Policy LFU
Metrics Cache Hit, #Messages

TABLE II: Large-scale Experiment Parameters

runs on a single workstation with 32GB of memory and Intel
Xeon(R) CPU E5-1620 v2 with 8 cores at 3.70GHz.

For our experiments, we use the Abilene topology as it
is an Internet-like topology commonly used for evaluating
large-scale networking architecture (Figure 2). On this
topology, we can place a server and its catalogue of content
and users can be located at any nodes of the topology. The
names of a node is the US city in which it is located such
as Los Angeles (LOSA) or Atlanta (ATLA). We also deploy
probes at each node to collect all the traffic.

V. SRSC EVALUATION

A. Scenarios and Experiment parameters

In order to evaluate our SRSC implementation within our
Docker virtual testbed, we have performed two different kinds
of experiments. For the first experiment, we have distinguished
all the actual scenarios for a node to forward an Interest
with SRSC. We therefore evaluate these use cases and thus
the ability of our SRSC proposal to perform routing within
the NDN environment. The second experiment evaluates the
global performances of SRSC in a large-scale scenario, with a
higher number of users, requests and traffic load. We therefore
evaluate the traffic overhead of SRSC and the overall caching
performances with our routing scheme.

With SRSC, we can distinguish four distinct scenarios for a
node to forward Interests. Indeed, on one hand a node can have
to perform the full process and request a rule to the controller;
on the other hand, a node can already have the forwarding rule
in its FIB and can forward an Interest without any request to
the controller. In these following scenarios, a single content is
requested to show the ability of SRSC controller to achieve its
goal and to allow forwarding Interest toward the content. We
therefore measure the total delay for a request and its reply
(i.e., the delay between the sending of an Interest and the
reception of the corresponding Data message).

Use-case scenarios: We distinguish four distinct scenarios
for a node to forward Interest: (i) Full Routing Scenario; (ii)
Cache Scenario; (iii) Close Routing Scenario, and (iv) Direct
Forwarding Scenario. In order to explain these four scenarios,
we consider the case where the server stores a catalogue of
files and is located on node LOSA (Figure 2). Three users are
located on nodes CHIN, NYCM and WASH and the SRSC
controller is connected to node KSCY.

Full Routing Scenario (FRS) is the general case when a
NDN node does not have any rules in its FIB to forward an
Interest, and has to request rules from the controller. Thus, the
user connected to node NYCM requests a content, which is
only stored at the server (step 1 in the figure). Node NYCM
has no information about content in its FIB or its Content
Store and it sends a specific control message InterestPath
to the controller to get rules to reach the content (2); The
controller computes the path between node NYCM and the
server connected to node LOSA and sends its reply (3);
Node NYCM sets up the rules in FIB along the path to the
server (node LOSA) by using a InterestCreatePath (4), and it
forwards the original Interest toward the content (5). Finally,
the server sends the Data back to the user (6).

Cache Scenario (CS) is the case where a requested content
is already present in the node’s Content Store. A user sends
an Interest for a content (7) that has been cached into node
NYCM; the node can therefore satisfy the request and reply
with Data (8). In this case there is no need to contact the
controller and it is the best case that can happen for NDN
where content has been spread close to users.

Close Routing Scenario (CRS) is the case where an
Interest is forwarded up to the nearest Content Stores but
not necessarily the origin server. Indeed, NDN is a caching
network and several replicas of the content can be stored in
different nodes’ Content Stores. For instance, the user at node
CHIN requests a content available in node NYCM (9). As
node CHIN has no rules to reach node NYCM, it contacts
the controller by sending an InterestPath (10). The controller
computes available paths up to the content and sends the
rules to node CHIN (11). Note that two paths are available
(node LOSA and NYCM) and the SRSC controller selects
the shortest path to the content. Upon receiving rules from the
controller, node CHIN sets up the rule in its FIB and forwards
the Interest to NYCM (12), which replies with Data. The CRS
scenario is similar to FRS scenario but content can be found on
closer nodes instead of origin server due to previous requests
in the network.

Direct Forwarding Scenario (DFS) is the case where rules
are already in a node’s FIB, but the content is not available in
Content Stores. It can be due to some replacement strategies
to manage node memory efficiently. A user in node WASH
sends Interest to get content, which is forwarded up to the
server as this rule is set in its FIB (14). The server replies
with Data back to the user (15).

Performances evaluation scenario: Besides the first exper-
iment to evaluate the routing ability of SRSC in all use-case
scenarios, we evaluate the performances of NDN architecture
with our SRSC routing scheme. We measure the traffic over-
head of SRSC and the overall caching performances.

For this experiment, we use a catalogue with 10,000 con-
tents (i.e., files) located on the server on node LOSA; each file
has a size randomly chosen between 1 to 2000 bytes. Each of
the 11 nodes of the Abilene topology has a user, and each user
performs 10,000 requests. The content popularity follows a



FRS CRS DFS CS
Scenarios

0

5000

10000

15000

20000

25000
D
el
ay
 (
m
ic
ro
se
co
n
d
s)

Computation delay with use-cases in the Virtual Testbed

Nodes

Controller

Server

Fig. 3: Computation time with SRSC within Docker NDN testbed
for the four use-case scenarios.

ZipF distribution (α=1.1) commonly used in the literature [3].
Thus, there will be a total of 110,000 requests toward contents
according to their popularity. The NDN nodes have a cache
size of 1,000 contents and use Leave Copy Down (LCD) as
the caching strategy and Least Frequently Used (LFU) as the
replacement policy. Table II summarizes the parameters of this
experiment.

B. Results

The results of the experiments are described in this part.
We first present our results for the routing use-cases in SRSC.
Then we show the overall evaluation of NDN/SRSC in lager-
scale scenario.

Use-case scenarios: For all these scenarios, we evaluate
the processing time to get content at the server, controller and
nodes side. The processing time of the controller corresponds
to the time to look up the content and compute the path.
For nodes, the processing time is to look up the tables (CS,
PIT, FIB), update entries (FIB, PIT) and forward messages.
For the server it corresponds to the time to sign content and
respond to request. In our experiments, we performed 10 runs
of each scenario and show the average value on Figure 3. Each
histogram represents a scenario with the distinct processing
time. We do not take into account link latency as this depends
on the topology, and choose to focus on the performances of
the SRSC implementation.

From all the scenarios, the delay to access content is larger
with FRS (20 ms). Indeed, in this case the full process is
performed and a node contacts the controller, which computes
path up to the server and sets up rules in nodes. More precisely,
the processing time for nodes represents the larger part of
the processing time, as several nodes will be involved in the
process to forward an Interest to the destination. This is the
general case of SRSC, which obviously generates much more
requests (i.e., processing time and traffic overhead).

CRS and DFS show a similar overall processing time (9-
10 ms). However, this processing time is not composed of
the same part. With CRS, an Interest is forwarded up to a

Content Store: there is no processing time at the server and
the controller counts for the larger part of the processing time.
The controller’s processing time in CRS is slightly larger than
the one in FRS as the controller can have to compute more
than a path toward several Content Stores. Nodes processing
time in CRS is also slightly lower than with FRS, as there are
fewer nodes involved in the routing process. Indeed, a path to
a closer Content Store is shorter than path to the origin server
(LOSA). Regarding DFS, as rules are already in nodes’ FIB,
there is no processing time at the controller level and Interest
is forwarded up to the server. The larger part of the delay
is therefore from the server side. The nodes’ processing time
is smaller than with FRS as rules are already in FIB and
there is no look up in PIT or CS or any update. Fewer nodes
are also involved in this scenario. Note that the DFS scenario
could also forward Interest to a closer Content Store instead to
the origin server; this scenario can potentially have a smaller
processing time.

For the CS scenario, the processing time is negligible
(<1 ms) as the closest node already has the content in its
Content Store; neither controller nor server are involved. CS
illustrates the typical case where NDN shows its efficiency:
Content has been spread close to users and requests stay local,
reducing de-facto the overall delay to transport content and
enhancing quality of experience.

This experiment is a proof of concept of the implementation
of our routing scheme SRSC and its deployment into Docker
virtual environment. We have tested all representative scenar-
ios of SRSC and demonstrate the feasibility of our proposal.
With SRSC, the controller and the server represent the largest
part of the processing time (FRS, CRS, DFS). These cases are
necessary steps at the beginning before content is spread into
the network. At steady state, NDN will fulfill its objective to
cache content in the network. Thus, CS will therefore become
the most frequent scenario; closest nodes will therefore satisfy
requests without any messages to the controller, reducing the
SRSC processing time.

Performances evaluation scenario: We evaluate the overall
performance of SRSC in a larger-scale experiment and traffic
load. In Table III, we present the number of messages in
the network, as well as the volume of data transported in
the network. The Cache Hit has been computed and is also
presented.

First, all the requests have been satisfied (110,000 requests),
and there has been no packet loss in the experimental testbed.
The number of Interests (113,874) is larger than the Requests,
as some Interests are duplicated in the NDN network to reach
content. There are also fewer Data messages (75,333), which
are the replies to Interests. Indeed, when nodes have the
requested content in their Content Store (Cache Hit), Data
messages are not spread into the network.

SRSC has also generated 304,575 Control Interests and
44,764 Control Data that are specific messages for the com-
munication between the nodes and the controller. One can
observe that SRSC generates a lot of messages (349,339)
compared with NDN messages (209,207). However, these



control messages count for only 27.3MB of the traffic, and
the NDN messages have generated 152.2MB of traffic (NDN
Interest and Data). Thus, the SRSC overhead represents 18.0%
of the overall traffic, and this is satisfactory for real-world
experiments. However, reducing the overhead is a typical
concern for protocol engineering and we keep this topic for
future work. For instance, nodes communicate periodically
with the controller, and the number of update messages can
be tuned to reduce drastically the number of control messages
in the network.

We also compute the Cache Hit in the network, which is the
probability to find content in cache. This is the most important
metric to evaluate the efficiency of the NDN architecture. In
our experiment, the Cache Hit reaches 47%, which means
that almost half of the requests have found content in nodes’
Content Stores instead of the original server. In other words,
the load at the server has been reduced by a factor two, which
is a very important performance improvement. Reducing the
load at the origin server is one of the NDN objectives and
comes directly from the in-network caching capabilities of
NDN, distributing the load within the network. In addition, our
routing scheme SRSC has also the ability to forward request
up to the closest node and not necessarily on the path up to
the origin server, alleviating the load at server and enhancing
the Cache Hit performance.

To sum up our findings, the originality of our work is to im-
plement and evaluate our routing scheme SRSC into real-world
experiments. We have implemented SRSC into NDNx and
performed experiments to evaluate its performances. We show
that SRSC succeeds in forwarding Interest toward content;
SRSC is therefore a potential candidate for a routing scheme
in a full NDN environment. In SRSC, the processing time
is shared between network entities (controller, server, nodes)
and depends on the use-case to forward Interest. In addition,
SRSC introduces a low traffic overhead, while it maintains a
high-level of caching performances. We have also deployed an
NDN testbed that can be used for further evaluations of new
protocols or applications.

Number of messages MBytes
NDN Interest 133,874 7.8
NDN Data 75,333 144.4
SRSC Control Interest (overhead) 304,575 22.8
SRSC Control Data (overhead) 44,764 4.5

Total NDN 209,207 152.2
Total SRSC (overhead) 349,339 27.3
Traffic Overhead (Ratio) - 18%

Cache Hit Ratio 47% -
#Hit 86,278 -
#Miss 96,683 -

TABLE III: Performance evaluation of SRSC in large-scale experi-
ment scenarios

VI. DISCUSSION

The SRSC protocol relies on controllers and a single
controller cannot store all the information about content and

location. The controller can therefore be distributed into sev-
eral entities [12] as for P2P network. For the P2P analogy, a
controller would be similar to BitTorrent websites that keep
track of the torrents’ information on the Internet but do not
own any content. The scalability of such architecture has been
largely demonstrated with the success of this application on
the Internet.

A controller is also responsible for a domain and if an
Interest cannot be resolved, the controller forwards it to other
domains through border nodes, where other controllers will be
in turn responsible to find rules to the content. This is similar
to the “hot-potato routing” with BGP in today’s internet [13].
Popular content will also be cached locally and inter-domain
communications will remain limited.

From our implementation experience, we have not focused
on reducing the SRSC traffic overhead and keep this topic
for future updates. As this is a common topic in protocol
engineering, the traffic overhead can be largely reduced with
simple improvements. The number of periodic messages can
be tuned, and control messages can be aggregated to reduce
the traffic overhead. For example, instead of sending an In-
terestNewContent for each available content in CS, a message
can aggregate several content announcements.

The size of the FIB should also stay limited as the NDN
nodes have constrained memory resources. Thus, FIB entries
will be deleted if they have not been used for a while upon
expiration of a timer. Entries for popular content will remain
in the FIB and memory will be reallocated for newer requests.

VII. RELATED WORK

Information-Centric Networking and especially Named-
Data Networking has attracted a huge research community,
and there has been a lot of work to improve its architecture
(e.g., caching strategies, congestion control, multipath). More
recently, routing has become an important topic, as it is
essential for future deployment at Internet-scale. At the same
time, several research projects aim at experimenting NDN into
testbed facilities in order to favor future deployment.

Routing in NDN: Hoque et al. propose NLSR [6], one of the
first routing schemes for NDN. NLSR extends OSPFN routing
protocol [14] and is now included into the NDNx distribution.
NSLR does not rely on the IP protocol and uses also Interest
and Data messages to exchanges control information between
nodes. Our proposal SRSC differs from NLSR for several
reasons: (i) SRSC forwards Interest to the closest nodes, while
NLSR forwards Interest up to the origin server. SRSC can
therefore reduce the length of the path to access content;
(ii) NLSR nodes exchange routing information among them,
while SRSC relies on the SDN paradigm and a controller is
responsible to manage all this information.

Differently, Ascigil et al. [15] and Zhang et al. [16] propose
another approach, which consists in forwarding Interest up to
the server or on the paths already taken by Data messages
carrying the same content. In this proposal, each node must
keep track of all Data, increasing the use of memory and CPU
at each node.



Saino et al. [17] use a hash routing scheme in Information
Centric Networks. This solution enables forwarding Interest
using prefixes’ hash and caching content in a single node
defined by this hash. However, this solution does not select
the shortest path to the destination: once a path to content
is set, messages always follow the same path and this can
increase the delay within large networks.

Finally, Rosensweig et al. [18] add new tables in nodes
enabling to monitor incoming traffic and forward Interest
according to these statistics. But tracking all the incoming
traffic in each node without coordination between them can
produce a huge amount of redundancy, and seriously im-
pact the network’s performances with all the memory access
needed.

In our previous work [11], we present the theoretical foun-
dation of our routing scheme SRSC. Our scheme relies on
the SDN paradigm and a controller is responsible to compute
the shortest path to content or one of its replicas in the
network, and to set up forwarding rules into nodes’ FIB.
Besides evaluating a prototype through simulation experiments
with NS-3 and ndnSim, we detail in this paper the full
implementation of our proposal SRSC into NDNx and real-
world experiments performed into a large-scale virtual testbed.

NDN experimental Testbed: There have been several re-
search projects to deploy NDN into testbed for experiments
and evaluation. For instance, the Doctor project [19] uses
virtual tesbted based on Docker and a gateway between the
IP and NDN networks to collect real traffic from users. Vir-
tualization allows experimenting with real implementation on
generic hardware and deploying large-scale testbed at reduced
infrastructure cost.

The Offelia testbed [20] has been built to evaluate Infor-
mation Centric Networking architecture with SDN. However,
it is not a full native NDN environment as Openflow is the
interface between NDN messages and the IP network.

Other testbed initiative also relies on Banana Pi routers [21].
It is therefore more costly to perform any modification of the
experimental platform compared with a virtual environment.

VIII. CONCLUSION

In this paper, we have presented the implementation of our
NDN routing scheme SRSC, which has been implemented
into NDNx and deployed in our Docker virtual testbed. We
have first demonstrated the feasibility of our controlled-based
routing scheme to forward Interest to closest Content Stores.
The computation time is limited for the controller, which can
scale to a large number of nodes and users. We have then
shown that our routing scheme has low overhead (18%) and
still exhibits high caching performances (47% of Cache Hit).
SRSC is therefore a suited solution for a routing scheme in a
full NDN environment.

Future work will extend the evaluation of our routing
scheme with real user traffic such as video streaming, and
compare with other routing protocols such as NLSR. The

calibration of SRSC parameters can also help reducing the
number of control messages in the network and multipath
feature can also be experimented.

ACKNOWLEDGMENTS

This research work has been supported by the French ANR
DOCTOR project (ANR-14-CE28-0001).

REFERENCES

[1] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Named data networking.
In ACM Conext 2009.

[2] Cisco White Paper. Cisco Visual Networking Index: Forecast and
Methodology, 2015–2020. 2015.

[3] Cesar Bernardini, Thomas Silverston, and Olivier Festor. A comparison
of caching strategies for content centric networking. In IEEE Globecom
2015.

[4] Lorenzo Saino, Cosmin Cocora, and George Pavlou. Cctcp: A scalable
receiver-driven congestion control protocol for content centric network-
ing. In IEEE ICC 2013.

[5] Tin Yu Wu, Yu Wei Wu, and Kai Lin Cheng. An efficient ndn-based
load adjustment scheme for reduction of energy consumption. In IEEE
CIT 2014.

[6] A K M Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia
Zhang, and Lan Wang. Nlsr: Named-data link state routing protocol. In
ACM ICN 2013.

[7] Dirk Merkel. Docker: Lightweight linux containers for consistent
development and deployment. Linux J., 2014(239), March 2014.

[8] FAQ Named-Data Project:. https://named-data.net/project/faq/#How_
does_NDN_differ_from_Content-Centric_Networking_CCN.

[9] Priti Goel, Eric Holmberg, Mark Konezny, Ramesh Ayyagari, and Dick
Sillman. Ccnx packet processing on parc router platform. In Proceedings
of the 2Nd ACM Conference on Information-Centric Networking, ACM-
ICN ’15, pages 211–212, New York, NY, USA, 2015. ACM.

[10] Alex Afanasyev and Lixia Zhang. Ndn/ccn harmonization: Identify-
ing ndn/ccnx1.x commonalties and differences. a high-level discussion
summary. IRTF ICNRG, September 2016.

[11] Elian Aubry, Thomas Silverston, and Isabelle Chrisment. SRSC: SDN-
based Routing Scheme for CCN. In IEEE NetSoft 2015.

[12] Kévin Phemius, Mathieu Bouet, and Jérémie Leguay. Disco : Distributed
sdn controllers in a multi-domain environment. In IEEE NOMS 2014.

[13] Renata Teixeira, Aman Shaikh, Timothy G. Griffin, and Jennifer Rex-
ford. Impact of hot-potato routing changes in ip networks. In IEEE/ACM
Transactions on Networking, Vol. 16, Iss. 6 PP. 1295-1307, December
2008.

[14] Lan Wang, AKM Mahmudul Hoque, Cheng Yi, Adam Alyyan, and
Beichuan Zhang. OSPFN: An OSPF Based Routing Protocol for Named
Data Networking. Technical report, Named Data Networking, 2012.

[15] Onur Ascigil, Vasilis Sourlas, Ioannis Psaras, and George Pavlou. Op-
portunistic off-path content discovery in information-centric networks.
In IEEE LANMAN 2016.

[16] Yan Zhang, Tao Huang, Jiang Liu, Jian ya Chen, and Yun jie Liu.
Reverse-trace routing scheme in content centric networking. The Journal
of China Universities of Posts and Telecommunications, 20(5):22 – 29,
2013.

[17] Lorenzo Saino, Ioannis Psaras, and George Pavlou. Hash-routing
schemes for information centric networking. In ACM ICN 2013.

[18] E.J. Rosensweig and J. Kurose. Breadcrumbs: Efficient, best-effort
content location in cache networks. In IEEE INFOCOM 2009, pages
2631–2635, 2009.

[19] ANR DOCTOR project<ANR-14-CE28-000>. http://www.
doctor-project.org/.

[20] Stefano Salsano, Nicola Blefari-Melazzi, Andrea Detti, Giacomo Mora-
bito, and Luca Veltri. Information centric networking over sdn and
openflow: Architectural aspects and experiments on the ofelia testbed.
Comput. Netw., 57(16):3207–3221, November 2013.

[21] Benjamin Rainer, Daniel Posch, Andreas Leibetseder, Sebastian Theuer-
mann, and Hermann Hellwagner. A low-cost ndn testbed on banana pi
routers. Communications Magazine, IEEE, 54(9):6, oct 2016.


