
HAL Id: hal-01617658
https://hal.inria.fr/hal-01617658

Submitted on 16 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keeping up with storage: Decentralized, write-enabled
dynamic geo-replication

Pierre Matri, María S. Pérez, Alexandru Costan, Luc Bougé, Gabriel Antoniu

To cite this version:
Pierre Matri, María S. Pérez, Alexandru Costan, Luc Bougé, Gabriel Antoniu. Keeping up with
storage: Decentralized, write-enabled dynamic geo-replication. Future Generation Computer Systems,
Elsevier, 2018, 86, pp.1093-1105. �10.1016/j.future.2017.06.009�. �hal-01617658�

https://hal.inria.fr/hal-01617658
https://hal.archives-ouvertes.fr

Keeping up with Storage:
Decentralized, Write-Enabled Dynamic Geo-Replication

Pierre Matria, Marı́a S. Péreza, Alexandru Costanc, Luc Bougé1, Gabriel Antoniud

aOntology Engineering Group, Universidad Politécnica de Madrid, Spain
bIRISA / INSA Rennes, France
cIRISA / ENS Rennes, France

dINRIA Rennes, France

Abstract

Large-scale applications are ever-increasingly geo-distributed. Maintaining the highest possible data locality is crucial
to ensure high performance of such applications. Dynamic replication addresses this problem by dynamically creating
replicas of frequently accessed data close to the clients. This data is often stored in decentralized storage systems such
as Dynamo or Voldemort, which offer support for mutable data. However, existing approaches to dynamic replication
for such mutable data remain centralized, thus incompatible with these systems. In this paper we introduce a write-
enabled dynamic replication scheme that leverages the decentralized architecture of such storage systems. We propose
an algorithm enabling clients to locate tentatively the closest data replica without prior request to any metadata node.
Large-scale experiments on various workloads show a read latency decrease of up to 42% compared to other state-of-
the-art, caching-based solutions.

Keywords: cloud, replication, geo-replication, storage, fault-tolerance, consistency, database, key-value store

1. Introduction

Large-scale applications such as social networks are
being increasingly deployed over multiple, geograph-
ically distributed datacenters (or sites). Such geo-
distribution provides fast data access for end-users
worldwide while improving fault-tolerance, disaster-
recovery and minimizing bandwidth costs. Today’s
cloud computing services [1, 2] allow a wider range of
applications to benefit from these advantages as well.
However, designing geo-distributed applications is dif-
ficult due to the high and often unpredictable latency
between sites [3].

Such geo-distributed applications span a large range
of specific use-cases. For instance, cientific applications
such as the MonALISA [4] monitoring system for the
CERN LHC Alice experiment [5]. This application col-
lects and aggregates monitoring data from 300+ sites
distributed across the world, that must be delivered to

Email addresses: pmatri@fi.upm.es (Pierre Matri),
mperez@fi.upm.es (Marı́a S. Pérez),
alexandru.costan@irisa.fr (Alexandru Costan),
luc.bouge@ens.ens-rennes.fr (Luc Bougé),
gabriel.antoniu@inria.fr (Gabriel Antoniu)

scientists worldwide in real-time. The users of com-
mercial applications, such as Facebook, ever-increasing
amounts of data that needs to be accessible worldwide.
Ensuring the lowest possible access time for users is
crucial for the user experience.

A key factor impacting the performance of such ap-
plications is data locality, i.e. the location of the data
relatively to the application. Accessing remote data
is orders of magnitude slower than using local data.
Although such remote accesses may be acceptable for
rarely-accessed data (cold data), they hinder applica-
tion performance for frequently-used data (hot data).
For instance, in a social network application, popular
profiles should be replicated at all sites whereas oth-
ers can remain located at fewer locations. Finding the
right balance between replication and storage is criti-
cal: replicating too many profiles wastes costly memory
and bandwidth, while failing to replicate popular ones
results in degraded application performance.

Dynamic replication [6] proposes to solve this issue
by dynamically replicating hot data as close as possible
to the applications that access it. This technique is lever-
aged in Content Delivery Networks (CDN) to cache im-
mutable data close to the final user [7, 8]. Similarily, it

is used in storage systems such as GFS [9] or HDFS [10]
to replicate mutable data, by relying on the centralized
metadata management of these systems [11, 12]. Yet,
such an approach contradicts the design principles of
decentralized storage systems such as Dynamo [13] or
Voldemort [14], which aim to enable clients to locate
data without exchanges with dedicated metadata nodes.

Furthermore, handling mutable objects in the con-
text is difficult. Indeed, the dynamic replicas have to
be kept synchronized with the origin data, without im-
pacting the consistency guarantees of the underlying
system. To the best of our knowledge, no decentral-
ized, write-enabled dynamic replica location and man-
agement method exists in the literature today. Reach-
ing this goal while providing predictable overhead and
guaranteed accuracy is not trivial. In this paper we
demonstrate that this objective can be reached by com-
bining the architecture of this systems with deceptively
simple algorithms from the literature. We make these
contributions, which substantially revise and extend the
early principles we previously introduced in [15]:

• After briefly introducing the applications we target
(Section 2), the related work (Section 3) and the
storage systems we target (Section 4), we char-
acterize the challenges of decentralizing write-
enabled dynamic data replication (Section 5).

• We address these challenges with a decentral-
ized data popularity measurement scheme (Sec-
tion 6), which leverages existing state-of-the-art
storage system architecture to identify hot data
cluster-wide dynamically.

• Based on these popularity measurements, we de-
scribe a dynamic data replication algorithm
which dynamically creates and manages replicas
of hot data as close as possible to the applications
(Section 7).

• We enable clients to locate the closest of such
data replicas using an approximate object loca-
tion method (Section 8), which minimizes storage
latency by avoiding communication with any ded-
icated metadata node.

• We develop a prototype implementation leverag-
ing the above contributions, integrated with the
Voldemort distributed key-value store (Section 9),
and prove the effectiveness of our approach with
a large-scale experimental study on the Amazon
Cloud (Section 10). We observe a read latency de-
crease of up to 42% compared to other state-of-the-
art, caching-based algorithms.

We discuss the effectiveness and applicability of our
contribution (Section 11), and conclude on future work
that further enhances our proposal (Section 12).

2. Large-scale, data-intensive applications

In this paper we target large-scale applications serv-
ing large amounts of data to users around the world,
while seeking to enable low-latency access for these
users to potentially-mutable data. Examples of such ap-
plications span multiple use-cases, among which:

Scientific system monitoring. Monitoring a geo-
distributed cluster requires collecting potentially
large number of metrics from computers around
the world. This is for example the case for
MonALISA [4], monitoring thousands of servers
distributed in more than 300 sites around the
world. The collected data is aggregated live, and
is used to provide live insights about the system
performance and availability around the world.
To deliver the real-time promise of MonALISA,
ensuring that the monitoring data that is needed by
scientists around the world is located as close as
possible to them is crucial.

Social networks. Business applications such as social
networks ingest overwhelming amounts of data.
Facebook, for example, is expected to react 2 bil-
lion active profiles in the next few weeks [16].
Every single day, it processes 350 million photo
uploads [17] or 6 billion posts [18]. The strong
500:1 read to write ratio [19] calls for large-scale
caching. However, some of this data is muta-
ble by nature. This is for example the case of
user profiles, which are hard to cache while keep-
ing this cache synchronized with the source data,
calling for heavyweight, custom cache invalidation
pipelines [20].

The real-time promise of such applications requires
to keep up-to-date data as close as possible to the end-
user. The global scale of these applications makes this
difficult while keeping costly bandwidth and storage us-
age low. We will detail these challenges in Section 5.
These challenges are independent of the type of plat-
forms such as compute grids for MonALISA or clouds
for Facebook.

3. Related work

In the literature, dynamic replication stands as a topic
of interest for all applications requiring access to shared

2

data from many geo-distributed locations. Most of these
contributions can be classified in two categories:

Immutable data, decentralized management. A
range of applications require to provide their users
with fast and timely access to static resources
such as images or videos. This is the case of most
global internet applications, in which Content
Distribution Networks (CDNs) help provide a
good user experience by creating replicas of static,
immutable data as close as possible to the clients
that access it.

Yet, CDNs are targeted at serving content directly
to the final user. In this paper, we focus on allow-
ing a geo-distributed application to access a geo-
distributed data source with the lowest possible la-
tency.

Kingsy Grace et al. [7] provide an extensive sur-
vey of replica placement and selection algorithms
available in the literature. Among these, Chen et
al. [8] propose a dissemination-tree based replica-
tion algorithm leveraging a peer-to-peer location
service. Dong et al. [21] transform the multiple-
location problem into several classical mathemat-
ical problems with different parameter settings,
for which efficient approximation algorithms ex-
ist. However, they don’t consider the impact of
replication granularity on performance and scala-
bility. Wei et al. [22] address this issue by devel-
oping a model to express availability as a function
of replica number. This approach, however, only
works within a single site, as it assumes uniform
bandwidth and latency, which is not the case with
the geo-distributed workloads that we target. In-
spired by the P2P systems, [23] proposes an adap-
tive decentralized file replication algorithm that
achieves high query efficiency and high replica uti-
lization at a significantly low cost. In [24], Mac-
Cormick et al. enable storage systems to achieve
balanced utilization of storage and network re-
sources in the presence of failures, and skewed
distributions of data size and popularity. Madi et
al. [25] consider a wider usage of parameters in
the context of data grids such as read cost or file
transfer time.

Mutable data, centralized management. However, a
range of applications rely on mutable data. This
is for example the case in MonALISA monitor-
ing of the CERN LHC experiment [4, 5]. In a
web applications, this is observed with social net-
work profile pages, status pages, comments on a

news thread, or more generally services display-
ing publicly user-generated content. In all these
applications, we also observe that the data objects
are mutable (changing aggregates from new mon-
itoring events, user updating their profile, post-
ing new statues or comments). Available geo-
replications solutions available typically either re-
quire the application to explicitly clear modified
objects from distant caches, or leverage a central-
ized replication manager that contradicts the de-
centralized design of most state-of-the-art, geo-
distributed data stores. Dynamic replication en-
ables the geo-distributed storage system to repli-
cate in near real-time the most requested objects
as close as possible to the application instances ac-
cessing them.
Efficiently creating and placing replicas of hot data
is not enough. Indeed, one needs to ensure as well
that those replicas are kept in synchronization with
the original data. This is usually the case of appli-
cations relying on a globally-distributed file sys-
tem. Overall, the proposed solutions in the litera-
ture leverage the centralized metadata management
of certain storage systems such as HDFS [10] or
GFS [9] to allow the clients to locate the closest
available replica of the data they want to access. In
that context, Ananthanarayanan et al. [11] propose
a popularity-based dynamic replication strategy for
HDFS aimed at improving the performance of geo-
distributed Map-Reduce clusters. Jayalakshmi et
al. [12] models a system designed to direct clients
to the most optimal replica available.
Our proposal enables writes to any given object
in a decentralized, large-scale storage system to
be transparently forwarded to the existing dynamic
replicas of that object, without requiring explicit
cache eviction requests from the application. In
contrast, replication strategies adopted in CDNs
such as Dynamic Page Caching [26] have a sub-
stantially different target ; they focus on offering
fine-grained caching based on configured user re-
quest characteristics (cookies, request origin, ...),
while still accessing the origin data replica for dy-
namic, mutable objects.

Replica selection algorithm Targeted work on replica
selection prove that adopting a relevant data loca-
tion algorithm can lead to significant performance
improvements. Mansouri et al. [27] propose a
distributed replication algorithm named Dynamic
Hierarchical Replication Algorithm (DHR), which
selects replica location based on multiple criteria

3

such as data transfer time and request–waiting-
time. Kumar et al. [28] address the problem of
minimizing average query span, i.e. the average
number of machines that are involved in the pro-
cessing of a query through co-location of related
data items. C3 [29] goes even further by dynami-
cally adapting replica selection based on real-time
metrics in an adaptive replica selection mecha-
nism that reduces request tail latency in presence
of service-time fluctuations in the storage system.

However, none of these contributions considers the
case of mutable data stored in decentralized data stores,
such as Cassandra [30] or Voldemort [14]. Facebook,
for example, circumvents the issue by directing all write
requests to a single data center and using a dedicated
protocol to keep the cache consistent across other re-
gions [19]. In this paper, we fill this gap by en-
abling efficient data replication of mutable data in geo-
distributed, decentralized data stores.

4. Background: The systems we target

Let us first briefly describe the key architectural prin-
ciples that drive the design of a number of decentralized
systems. Dynamo [13] has inspired the design of many
of such systems, such as Voldemort [14], Cassandra [30]
or Riak [31]. In this paper we target this family of sys-
tems, which are widely used in the industry today.

Data model. Dynamo is a key-value store, otherwise
called distributed associative array. A key-value
store keeps a collection of values, or data objects.
Each object is stored and retrieved using a key that
uniquely identifies it.

DHT-based data distribution. Objects are distributed
across the cluster using consistent hashing [32]
based on a distributed hash table (DHT), as in
Chord [33]. Given a hash function h(x), the out-
put range [hmin, hmax] of the function is treated as
a circular space (hmin sticking around to hmax), or
ring. Each node is assigned a different random ob-
ject within this range, which represents its position
on the ring. For any given key k, a position on
the ring is determined by the result of h(k). The
primary node holding the primary static replica of
the object is the first one encountered while walk-
ing the ring passed this position. To ensure fault-
tolerance, additional static replicas are created at
the time the object is stored. These are placed on
the next r nodes following the primary node on the

ring, r being the configured replication factor of
the system (usually 2).

P2P cluster state dissemination. The position of each
node on the ring is advertised in the cluster us-
ing a family of peer-to-peer (P2P) protocols: Gos-
sip [34]. Each node periodically disseminates
its status information to a number of randomly-
selected nodes and relays status information re-
ceived from other nodes. This method is also used
to detect and advertise node failures across the
cluster [35].

Client request routing. By placing objects determin-
istically in the cluster, Dynamo obviates the need
for dedicated metadata servers. Clients are able
to perform single-hop reads, i.e. address their re-
quests directly to the nodes holding the data. This
enables a minimal storage operation latency and
higher throughput. Should a client address the re-
quest to a node not holding the requested data, this
node will forward the request directly to the cor-
rect one. This correct node is determined using the
ring state information disseminated throughout the
cluster.

Deterministically placing data objects and dissem-
inating ring status in the cluster enables each node
to route incoming client requests directly to a node
holding the data. Operation latency is further re-
duced by opening cluster state information to the
clients so they can address their requests straight
to the correct node, without any metadata server
involved.

We found our strategy on these design principles,
which allow us to guarantee the correctness of the pro-
posal we describe in this paper. We choose not to mod-
ify the original static replication mechanism, offering
the same data durability as the underlying system. We
also do not change the server-side client routing mecha-
nism, consequently guaranteeing that static replicas are
always reachable. This allows us to focus on develop-
ing an efficient heuristic that maximizes the accuracy of
popular object identification, optimizes the creation and
placement of dynamic replicas of such popular objects,
and helps clients efficiently locating the closest of these
replicas.

5. Our proposal in brief: outline and challenges

In this paper, we demonstrate that it is possible to in-
tegrate dynamic replication with the existing architec-

4

ture of these storage systems, which enables us to lever-
age their existing, built-in algorithms to efficiently han-
dle read and writes in geo-distributed environments.

Such dynamic replication seeks to place new copies
of the hot data in sites as close as possible to the ap-
plication clients that access it. To that end, we permit
the clients to vote for dynamic object replicas to be cre-
ated at a specific site. These votes are collected at each
node and disseminated across the cluster so that the ob-
jects which received the most votes (or popular objects)
are identified by the storage system. Dynamic replicas
of such popular objects are created at sites where they
are popular, and deleted when their popularity drops.
When trying to access an object, clients tentatively de-
termine the location of its closest replica (either static
or dynamic) and address requests directly to the node
holding it. Such approach however raises a number of
challenges.

We acknowledge that using client votes has been
proposed before in the context of replicated relational
databases, specifically to ensure data consistency [36].
Transposing this idea to decentralized storage systems
poses a number of significant challenges that we address
in this paper. Specifically, collecting client votes effi-
ciently without using a centralized process requires us
to propose a novel, fully-decentralized, loosely-coupled
vote collection algorithm. While existing dynamic
replication techniques leverage a centralized repository
to direct client requests to the nearest available replica,
we propose a technique allowing clients to tentatively
locate the closest available replica without any prior re-
quest to any of such repositories.

5.1. Collecting and counting votes

The goal of dynamic replication is to improve storage
operation latency for the clients. Therefore, we need to
design an efficient way to let the clients cast their votes
for objects.
Collecting votes also raises a major challenge. While
determining the most voted-for objects at each node is
straightforward and can be done efficiently, inferring
from this the most popular objects cluster-wide is not
an easy task. This problem is named distributed top-k
monitoring. Sadly, most implementations in the litera-
ture [37, 38, 39, 40] are centralized.

We address both these issues by mixing an approxi-
mate frequency estimation algorithm with the existing,
lightweight Gossip protocol provided by storage system
(Section 6).

5.2. Tunable replication

Determining when to create a new dynamic replica
or delete an existing one based on the previous informa-
tion is also challenging in a distributed setup. Indeed, it
is necessary to bound the number of replicas to be cre-
ated at each site without any node being responsible for
coordinating the replicated items. Consequently, nodes
must synchronize with each other before creating a new
replica of any object. One could consider using a con-
sensus protocol such as Paxos [41]. However, we argue
it would be an overkill for such a simple task as Paxos
is by no means a light protocol [42].

It turns out that the technique we use to solve the vote
collection and counting challenge also provides all the
information we need to solve this issue (Section 7).

5.3. Dynamic replica location

We need to enable clients to locate dynamic replicas
as they do for static replicas. Obviously, such replicas
should also be placed at a predictable, deterministically
chosen node. We achieve this using the DHT-based data
distribution of the storage system (Section 7.1). To ac-
cess the closest available replica, a client also needs to
know whether or not a dynamic replica exists at a given
site. Systematically probing nearby sites for available
replicas would contradict the single-hop read feature of
Dynamo. Also, this would significantly increase stor-
age operation latency, consequently missing the point
of dynamic replication which is precisely to reduce this
latency.

We demonstrate that this issue can be solved us-
ing probabilistic algorithms (Section 8). Our proposal
builds on the solutions we adopt for the two afore-
described challenges.

6. Identifying hot objects with client votes

In this section, we describe how to identify the most
popular objects at each site. This is achieved in three
steps:

1. We describe an efficient way to allow the client to
vote for an object to be replicated dynamically
at a specific location (Section 6.1).

2. We maintain a local count of these votes at each
node to identify the most voted-for objects (Sec-
tion 6.2).

3. We disseminate and merge these votes through-
out the cluster to provide each node with a vision
of the most popular objects for each site, cluster-
wide (Section 6.3).

5

The identification method we describe in this section
addresses the vote collection and counting challenge
above.

6.1. Client vote casting

Clients vote for objects to be replicated dynamically
at sites close to them. We name these sites preferred
sites. This proximity can for instance express network
latency, but also metrics such as bandwidth cost or avail-
able computational power may also be considered. To
this purpose, each client maintains a list of such pre-
ferred sites, ordered by preference.

We argue that existing read queries to the storage sys-
tem provide an ideal base for vote casting, as clients
intuitively vote only for objects they need to read. In
contrast, objects being written-to are not good candi-
dates for dynamic replication because of the synchro-
nization needed to keep dynamic replicas in sync with
static replicas; we discuss write handling in Section 7.3.
For every storage operation on an object, the client in-
dicates in the request message its preferred sites for this
object, i.e. the sites where the client would have pre-
ferred a dynamic replica of the object to exist. Let us
assume a client wants to read the object associated with
the key key. The client sends the request to the closest
node n holding a replica of that object. Say this node
belongs to a site s. We detail the location of this clos-
est node in Section 8. The client piggybacks the re-
quest message with the list of the subset of sites having
a higher preference than s in its list of preferred sites.
Such request is interpreted by n as a vote for this object
to be replicated on these sites.

6.2. Node-local vote collection and hot object identifi-
cation

At each node, we want to know for each site the most
voted-for objects. These are considered as candidates
for dynamic replication. Each time a node receives a
read request for an object identified by key, it records
the vote for this object to be replicated on all sites indi-
cated as preferred by the client. Let us first assume that
we keep one counter per key and per site, which is incre-
mented by 1 for each vote. We name site counters the
set of key counters for a single site, and vote summary
the set of site counters for all sites. In addition, if the
object replica identified by key is a dynamic replica, we
consider that the client implicitly votes for this replica to
be maintained. As such, we also record the vote for key
on the local site of the node receiving the request, i.e.
the site the node belongs to. Algorithm 1 details these
actions by a node receiving a read request from a client.

However, the goal of this scheme is to adapt to fluc-
tuating object popularity by replicating dynamically the
objects having the highest popularity over a recent pe-
riod of time. Consequently, we use successive voting
rounds. We extract at the end of each round the most
voted-for objects for each site, and create a new, empty
vote summary for the subsequent round. The length of
a round is a cluster setting: we discuss its value in Sec-
tion 11.2. We synchronize these rounds across the clus-
ter by using the local clock of each node.

Keeping an exact vote summary for any given round
is memory-intensive. It has a memory complexity of
O(M ∗ S), M being the number of objects voted-for in
this round and S being the number of sites in the cluster.
Such complexity is not tolerable as billions of objects
may exist and be queried in the cluster. Luckily, we do
not need to keep the vote count for all objects: we are
only interested in knowing which are the most voted-for
objects for each site. For each site, finding the k most
frequent occurrences of a key in a stream of data (client
votes) is a problem known as top-k counting. Multiple
approximate, memory-efficient solutions to this prob-
lem exist in the literature. In the context of our system,
such approximate approaches are tolerable as it is not
critical to collect the exact vote count for each object
as long as the estimation of their vote count is precise
enough and the set of objects identified as popular ac-
curately captures the votes expressed by the clients. As
such, we use as vote summaries a set of approximate
top-k estimators, k being a configuration setting whose
value is discussed in Section 11.1. We choose to use
the Space-Saving algorithm [43] as top-k estimator. It
guarantees strict error bounds for approximate counts
of votes, and only uses limited, configurable memory
space. Its memory complexity is O(k). For any given
site, the output of Space-Saving is the approximate list
of the k most voted-for keys, along with an estimation
of the number of votes for each.

Any given node simultaneously maintains |S | active
structures, one for each node in the cluster. Each time
this node receives a request for an object v, for each pre-
ferred site indicated in the request, the key of v is added
to the corresponding active structure. Consequently, at
any time, a node is able to know which are the most fre-
quent replication preferences indicated by a client for
any site over the previous time window.

6.3. Cluster-wide vote summary dissemination
In this section we explain how to obtain the most

voted-for objects across all nodes, starting from local
vote summaries built from user votes (1). We periodi-
cally share the local vote summaries of each node with

6

Algorithm 1 Node-local object vote counting

Input: key: key of an object to read, prefs: list of preferred sites provided by the client.

procedure CountClientVotes(key, prefs)

. Interpret reading a dynamic replica as an implicit vote
let local be the local site of the current node
let replica be the local replica of the object with key key
if the replica is a dynamic replica then

add local to prefs
end if

. Add client votes to the local vote summary
for each preferred site site in pref do

let vs[site] be the site counter structure for site
count one vote for key in vs[site]

end for

end procedure

its peers (2). Merging these peer vote summaries (3)
gives each node a view of the most popular items across
the cluster. Figure 1 illustrates this process.

We organize the process at any given node n in suc-
cessive phases. During a voting round r of duration t,
the local vote summary capturing client votes is named
active summary. When a round ends, the summary tran-
sitions to a merging state: the node sends this sum-
mary to its peers, i.e. every other node in the cluster.
Rounds being synchronized across the cluster, the node
also receives summaries from its peers for the same vot-
ing round, which are merged with the local summary;
merging this local summary with another one received
from a peer n′ gives a summary of the votes received
by both n and n′. When vote summaries for every peer
have been received, the summary is complete, at which
point all votes received by all nodes in the cluster for the
round r are summarized. After a period 2 ∗ t since the
round started, this cluster-wide summary transitions to a
serving state which we detail in Section 7. We illustrate
these successive vote summary phases in Figure 2.

In presence of faults, a summary can reach the serv-
ing state without having received all peer vote sum-
maries in time. This may occur in case of delayed or
lost packets. We qualify such summary as incomplete.

Such an approach is consistent with the class of sys-
tems we target: Dynamo provides an efficient algorithm
for disseminating information across the cluster: Gos-
sip. We use it to share a vote summary with every
other node when it reaches the merging state. This ap-

proach is also compatible with our design choices: the
Space-Saving structure we use is proven to be merge-
able in [44], with a commutative merge operation.

Formally, we name MergeCounters(a, b) the func-
tion outlined in [44] that merges two Space-Saving
structures a and b. MergeSummaries(v, v′) is the func-
tion merging two vote summaries s and s′. These sum-
maries contain site counters, respectively v1, ..., vS and
v′1, ..., v

′
S . S is the total number of sites in the cluster.

This function returns a merged summary v′′ containing
S site counters v′′1 , ..., v

′′
S , such that:

∀a ∈ [1, S], vc′′a = MergeCounters(vca, vc’a) (1)

Considering that MergeCounters is commutative, it is
trivial that MergeSummaries has the same property.

Let us assume a reliable network at this point, with
all peer summaries being received before the local sum-
mary reaches a serving state. Because each node sends
to all its peers the same local vote summary, and because
the MergeSummaries function is commutative, the re-
sulting complete summary after all peer summaries are
merged is identical at each node. When all nodes reach
the complete summary state, they share the same view
of the most voted-for objects for each site. We use it
to perform dynamic object replication in Section 7. We
discuss the memory complexity of the popular object
identification process in Section 11.4.

7

v1 v2 ... vS

Local vote summary

v’1 v’2 ... v’S

Global vote summary

Node n1

Client

(1) Vote

n2 n3 ... nN

(2) Share (3)

(3) Merge

Figure 1: Cluster-wide popular object identification overview. S is the total number of sites in the cluster and N the total number of nodes.

t t t

Active
Merging

Complete

Serving

Clients

(1)

Peer nodes

(2) (3)

Figure 2: Timeline of vote summary states for a voting round length t.

7. Lifecycle of a dynamic replica

We detail in this section how to create and delete dy-
namic replicas using the cluster-wide vote summaries
while handling writes to dynamically-replicated objects.

1. We first explain when to create a new dynamic
replica of an object identified as popular on a site
(Section 7.1).

2. We describe the process of removing those data
replicas when their popularity popularity drops
(Section 7.2).

3. We finally explain the process of forwarding writes
to these dynamic replicas while retaining under-
lying storage system consistency and guarantees
(Section 7.3).

7.1. When and where to create a dynamic replica?
With access to a shared vote summary, deciding when

to create a replica is straightforward. Nodes in the clus-
ter create remote dynamic replicas of the popular ob-
jects they are primary node for. As soon as a vote sum-
mary reaches the complete state, thus summarizing the
votes of all clients across the cluster, the top-k most pop-
ular objects are replicated to sites at which they are pop-
ular. To replicate an object obj identified by a key key

on a remote site s, a node n first informs all nodes hold-
ing static replicas of obj, which store this in their local
state. Upon acknowledgement from these static replica
nodes, the primary node updates its local state as well,
and copies obj to a node at site s. The node on which
this replica is placed is selected deterministically. In the
case of Dynamo, we can use the existing DHT to place
objects at a site in such a deterministic fashion. Starting
on the cluster ring from the position h(key), we walk the
ring until we find a node at s, on which the replica is
placed. Such a method is used today by Cassandra [30]
for rack-aware data placement. Thus, assuming that a
client knows a dynamic replica of an object exists at a
site, it can easily infer which node holds this replica and
address its request directly to it.

Fault-tolerance: No replicas are created based on
incomplete vote summaries. In the presence of failures,
this may result in dynamic replicas of yet popular ob-
jects not being created at the initiative of its primary
node. We handle this case with the replica read process
we outline in Section 8.

8

7.2. When to delete a dynamic replica?

Each node is responsible for the deletion of any dy-
namic replicas it holds. A dynamic replica at a site s can
be deleted if it is not among the top-k items for this site s
in the serving summary for the current time period. We
also want to avoid replica bounces, i.e. object replicas
being repeatedly created and deleted at the same site.
This may happen for objects whose popularity ranking
is around the top-k threshold, and fluctuates above and
under this threshold. We define a grace period g, which
represents the minimum number of consecutive serving
summaries a previously-popular object must be absent
from before its dynamic replica is deleted.

The deletion process is simple. To delete a locally-
held dynamic replica of an object obj, a node flags it as
inactive: subsequent client requests for that replica are
as if it does not exist, which we discuss in Section 8.
The node then informs the static replica nodes of obj
of the deletion of this replica, which they remove from
their local state.

Fault-tolerance: No replicas are deleted based on
incomplete vote summaries. Replicas of objects whose
popularity dropped may not be deleted as they should in
the presence of failures. Yet, this principle ensures that
no replicas of still popular objects are ever deleted, and
remain accessible.

7.3. Handling writes to dynamically replicated objects

Our dynamic replication scheme enables the stor-
age system to handle writes to dynamically-replicated
objects. The afore-detailed dynamic replica creation
makes this process straightforward. Clients address
write requests for any object to one of the static replica
nodes of this object. Based on their local state, these
nodes determine all existing dynamic replicas of that
object and propagate the write to all other replicas, static
and dynamic, using the write protocol of the storage
system.

Correctness: because our replication system does
not modify the write propagation algorithm of the un-
derlying system, writes are propagated to dynamic repli-
cas the same way they are propagated to static repli-
cas. In Voldemort, writes are eventually-consistent by
default, and can optionally be made strongly consis-
tent. Our proposal shows the same consistency char-
acteristics. As such, we only need to ensure that the
creation and deletion of dynamic does not violate these
consistency characteristics. We ensure this by persist-
ing the new dynamic replica list for each object on its

origin nodes before creating and after deleting any dy-
namic replica. This guarantees that writes to dynami-
cally replicated objects are always forwarded to all of
its dynamic replicas.

We prove that this write protocol is correct, i.e. does
not cause dynamic replicas to be out of sync with static
replicas, even in the case of system failures. A dy-
namic replica is created only after successful acknowl-
edgement from all other static replica nodes. These
nodes only are informed of the replica deletion after it is
flagged as inactive. This ensures that writes to an object
are always propagated to the dynamic replicas of that
object, even in the presence of faults.

8. Accessing the closest replica

In this section, we explain how to let clients access a
close replica of objects they want to read, either static
or dynamic, without any communication with any ded-
icated metadata node. In a nutshell, we let the user re-
quest information about dynamic replicas created on its
preferred sites at any given time, and later use this data
to infer the location of the closest replica of any object
and access it directly.

8.1. Locating the closest replica: dynamic replica sum-
maries

We assume a client can know at any time the list of
all active dynamic replicas in its preferred sites. This
assumption greatly eases locating the closest replica:
it is the static or dynamic one located on the site with
its highest preference, or the closest static replica if no
replica exists at any preferred site. We name this list
of dynamic replicas for a site s dynamic replica sum-
mary of s, and detail the closest replica location in Al-
gorithm 2. The client addresses its request to the node
holding this replica on the site indicated by this algo-
rithm using its knowledge of the cluster DHT. The node
receiving this request returns the dynamic replica, if
available. If it is not available locally, it forwards the
request to the closest static replica node, which is guar-
anteed to hold the object.

We near these assumptions by enabling any client to
request from any node such dynamic replica summary
at its preferred sites at the time of the request. Any node
is able to answer this request based on the cluster-wide
vote summary dissemination process. Using its knowl-
edge of the client votes across the cluster given by the
current complete, serving summary, the node knows the
list of all dynamic replicas currently active at any site.
This list is sent to the client for its preferred sites.

9

Algorithm 2 Closest replica site inference

Input: key: key of an object to read, S : preferred sites list

function InferClosestReplicaSite(key)
for each site s in S do

let R[s] be the dynamic replica summary for s
if s is a static site for key or key in R[s] then

return s
end if

end for
return the closest static replica of val

end function

Luckily, the client request routing provided by Dy-
namo enables us to only infer the location of the closest
available replica without jeopardising the read protocol
correctness. In case of inference error, the client will
address its request to a wrong node, but this node will
forward it to a static replica node which is guaranteed to
hold the object. This enables us to use an approximate
structure as a memory-efficient way to represent this list
of dynamic replicas: Bloom filters [45].

8.2. When to refresh dynamic replica summaries?
Intuitively, clients need to periodically refresh dy-

namic replica summaries to account dynamic replicas
being created and deleted. We provide a simple yet ef-
ficient way to let a client decide of the appropriate time
to do so: error indication.

Two different types of errors can be caused by our
closest replica location algorithm: false positives –
when a node is wrongly believed to hold a replica of the
object, and false negatives – when the request is sent to
a non-optimal replica of the object, i.e. when a closer
replica existed according to the preferred sites of the
client. A false positive happens if the replica summary
is outdated and the replica was deleted since its last up-
date, or in case of a false positive caused by the Bloom
filter. A false negative occurs if the replica summary
was last updated before this replica was created.

Nodes in the server are able to indicate to clients such
false positives (if the node being sent a read request does
not hold the requested dynamic replica) or false neg-
atives (based on the latest serving vote summary they
hold) by flagging the response to a request accordingly.
Clients keep a local counter of such inference errors and
decide to refresh their dynamic replica summaries and
reset this counter when it reaches a configured thresh-
old. We discuss its configuration in Section 11.3.

To cope with cases where the configured summary
validity period is too large for some usage patterns, the

client keeps a count of false positives or false negatives.
Should the client address the request to a server not
holding the desired piece of data, the server relays the
query as usual to the correct node but flags the answer as
erroneous. This may happen for instance because it has
been deleted after the client bloom filter has been last
updated. We call this case a false positive. Inversely, if
the client accesses a remote object replica and a closer
one existed, which we call a false negative, the server
responding to the client flags the response message as
well. A counter of wrong assumptions is maintained
by each client, and set to 0 every time the summary is
updated. For each false positive or negative, the client
increments its counter. It updates its bloom filter as soon
as the counter reaches a configurable threshold.

9. Prototype implementation

We implement our approach atop a real-world key-
value store. Voldemort [14] is an open-source clone
of Dynamo [13]. It is developed by LinkedIn and is
extensively used in their software stack [46]. Volde-
mort is a modular Java application, making it a relevant
choice for our experiments. The total of our additions
account for about 2,800 lines of Java code, excluding
open-source Space-Saving and Bloom Filter libraries.
We modify both the server code to handle decentralized
object replication (Section 9.1) and the client code to
perform close replica location (Section 9.2).

9.1. Server-side modifications

Our server-side modifications are designed as a mid-
dleware. We extensively use the native functionality
provided by Voldemort to implement our prototype:
Gossip and local persistent storage interface. Incom-
ing client requests are first processed by this middle-
ware to extract site preference information that is used

10

to update the local popularity measurement structure
(Section 6.2). That structure is disseminated using the
Voldemort gossip protocol (Section 6.3). A background
thread is responsible for maintaining the cluster-wide
popularity measurement structures using the informa-
tion received from other nodes. This information is
used to create or delete remote, dynamic object repli-
cas. Such replicas are stored locally using Voldemort
persistent storage.

The most tricky and challenging part of the imple-
mentation concerns write operations. We have to sub-
stantially modify write handling so that a node holding
a dynamic replica of a data object behaves as if it held
a static replica of that object, forwarding the request to
all other nodes holding replicas of that object according
to its local state as detailed in Section 7.3.

9.2. Client-side changes

Modifications on the client were kept to the mini-
mum. Each client maintains a statically-configured list
of site preferences. Each storage operation request for
any given object is routed according to our replica lo-
cation algorithm outlined in Section 8.1. If no dy-
namic replica for this object can be found in the local
Bloom filter, the request is routed according to Volde-
mort vanilla algorithm. Site preferences are piggy-
backed to the request. Incoming responses are checked
for false positive or false negative flags using a specif-
ically designed middleware in order to update the local
error counter described in Section 8.2.

10. Experimental evaluation

In this section we prove the effectiveness of our ap-
proach using our prototype. We perform this in 4 steps:

1. We first show that our object heat measurement
technique presented in Section 6 is able to prop-
erly identify the hottest objects in the cluster (Sec-
tion 10.1).

2. We demonstrate that the object replication method
described in Section 7 effectively replicates these
hottest objects (Section 10.2).

3. We prove that our object location technique intro-
duced in Section 8 is accurate (Section 10.3).

4. We finally confirm that the combination of these
principles applied to Voldemort efficiently reduces
the average read latency under different workloads
when compared to other caching-based approaches
(Section 10.4).

Experimental platform. We deploy our prototype on
96 nodes of the Amazon EC2 cloud. For all our
experiments, we use t2.large general-purpose in-
stances, evenly distributed over 6 sites spanning
4 continents: California, Virginia, Ireland, Ger-
many, Australia, and Japan. Each virtual ma-
chine has access to 2 CPU cores and 8 GB RAM.
The host server is outfitted with 10 Gigabit eth-
ernet connectivity. Our measurements show the
main bottleneck of these virtual machines to be
the CPU. Single-site experiments on bare-metal
servers show higher throughput than Amazon EC2.

Dataset and workload. The main workloads we target
are dominated by reads, such as the applications
described in the motivation section above. Yet, we
prove that even for write-intensive workloads, our
data replication system increases average read per-
formance at the cost of a slightly increased write
latency due to the added cost for dynamic replica
synchronization. To that extent, we use YCSB [47]
to generate both our initial dataset and storage op-
erations. YCSB is an industry-standard bench-
mark commonly used to evaluate the performance
of key-value stores. We generate 500 million 1 KB
records, that we insert in Voldemort as our initial
data. The workload against the cluster is gener-
ated by two YCSB instances on each site (12 in
total) running in their own virtual machine. Re-
quests are generated according to a Zipfian dis-
tribution, with Zipf parameter ρ = 0.99, drawing
from a set of 20 million keys. Each measurement
is performed 50 times at maximum throughput for
a period of 5 minutes. Bar plots represent averages.
To account for changing hot object set, YCSB in-
stances are restarted in turn – one every 30 sec-
onds. This leads to a varying request distribution
over time. We collect all measurements on a sta-
ble, non-saturated cluster to ensure that our mea-
surements do not suffer from compute resource ex-
haustion on the server. Requests are locally throt-
tled at each node to a maximum of 1,000 concur-
rently running queries.

Experimental configuration. Our prototype uses the
default time window length of 10 seconds, a grace
period of 3, a k value of 10,000, and a client error
threshold of 5%. Client-side site preferences are
identical for every node in the same site. In the
applications we target, both database clients and
servers are located in a well-defined datacenter.
Consequently, the preference list for each client

11

Table 1: Experimental client preferred site settings

Site 1st preference 2nd preference 3rd preference
California (us-west-1) California (0.8 ms) Virginia (72.8 ms) -
Virginia (us-east-1) Virginia (0.8 ms) California (72.8 ms) Ireland (81.2 ms)

Ireland (eu-east-1) Ireland (0.7 ms) Germany (21.4 ms) Virginia (81.2 ms)

Germany (eu-central-1) Germany (0.8 ms) Ireland (21.4 ms) -
Australia (ap-southeast-2) Australia (0.9 ms) - -

Japan (ap-northeast-1) Japan (0.7 ms) - -

0 50 100 150 200 250 300
80

85

90

95

100

105

110

Time (s)

Id
en

tifi
ca

tio
n

pe
rf

or
m

an
ce

[%
] All values Top-10% values

Figure 3: Popular object identification performance.

can be statically configured – showing no signifi-
cant client overhead. Preferred sites are ordered by
average measured round-trip latency, up to a max-
imum of 100 ms. They are configured as indicated
in Table 1 – each site being its own first preference.
We keep Voldemort default configuration settings.

Evaluated cache algorithms. We compare our ap-
proach to cache-based algorithms: Least Recently
Used (LRU), Most Recently Used (MRU), Ran-
dom Replacement (RR), and Adaptive Replace-
ment Cache (ARC) [48]. We implemented these
algorithms in Voldemort, so that each clients con-
tacts the local server that would hold the requested
piece of data (as explained in Section 8) if cached.

10.1. Popular objects identification
We show in this section the behavior of our popular-

ity measurement scheme introduced in Section 6. We
run a read-only workload, as popular objects are only
identified based on client read queries. We log for each
YCSB instance the object keys requested. Collecting
this information from every request generator enables

us to calculate the exact set of k most frequent popular
objects for each site across the cluster at any given time.
We also log on each node the cluster-wide popularity
summaries, at a one-second interval. Combining those
logs with the aforementioned request logs enables us to
derive a key metric: identification performance. Iden-
tification performance corresponds to the proportion of
identified popular objects at any given time compared
to our exact, offline computation. A popular object is
considered identified if it is present in the cluster-wide
object heat summaries of all nodes of the cluster. This
proportion is measured in percents, 100% indicating a
perfect match between theoretical and practical results.

We plot our results in Figure 3. Overall, they show
that more than 95% of the hot couples are identified
by our heat measurement and dissemination scheme.
We can observe a regular identification performance
drop of about 8%, repeated every 30 seconds. Each
of these drops corresponds to one request generator be-
ing restarted, leading to a sudden change of the popu-
lar keys being requested by that generator. For each of
these events, we note that the cluster convergence time

12

0 50 100 150 200 250 300
6

7

8

9

10

11

12

13

14

Time (s)

D
yn

am
ic

re
pl

ic
as

pe
rs

ite
[.1

03] # total dynamic replicas
correct dynamic replicas

Figure 4: Popular object replication performance.

stays in the order of 12 seconds. This specific time is
explained by our popularity measurement time window
configured to 10 seconds, plus the Gossip protocol con-
vergence time for the popularity measurements dissem-
ination cluster-wide, which we measured to take about
two seconds.

We note clear variability in our measurements. This
is caused by the rapid fluctuation of popularity compu-
tations near the limit of the top-k estimator we use in
our popular data identification scheme. We made sure
of this by plotting the identification performance for the
10% most popular objects. We observe that this blue
curve is much more stable than the curve for all val-
ues, meaning that the most popular objects requested by
clients are identified accurately.

We ran the same experiments with object sizes of
100KB, 1 MB, 10 MB. The results is a replication time
increase of respectively 1.2%, 3.8% and 6.2% compared
to 1 KB size, due to the added network bandwidth re-
quired for the data transfers.

It is interesting to note that our measurements show
that our hot object identification scheme never reaches
100% accuracy. This is because of the unstable fre-
quency estimations for keys near the detection limit of
the Space-Saving structure, which changes significantly
faster than the convergence time of the cluster. This also
explains the noticeable variability of our measurements.

10.2. Dynamic replica creation and deletion

In this experiment we show the replication perfor-
mance achieved by the principles we introduced in Sec-
tion 7. As for popular object identification, only read

operations are considered for replication: we run a read-
only workload. We execute it for a duration of 5 minutes
and calculate at each site the number of replicated ob-
jects. We plot the results we obtain in Figure 4, with
95th percentile confidence intervals. The red curve in-
dicates the average number of active replicas per site
at any given time. The blue curve indicates, among all
created dynamic replicas, the average number of repli-
cas which are correct, i.e. for which the object is present
in the offline-computed, theoretical top-k for the corre-
sponding site calculated as in the previous experiment.

We first focus on the correct replica count curve, in
blue. The regular drops are caused by YCSB clients be-
ing restarted at regular intervals, which impact the dis-
tribution of the key requests as previously observed. We
note that this drop is only temporary, and that the cor-
rectness of the replicas returns to normal quickly, after
new replicas are being created, within approximately 12
seconds as in the previous experiment. We show that our
replication technique replicates a little more than 95%
of the actual top-k most popular objects, which is coher-
ent with the popular object identification performance
we could observe in the previous experiment.

We note on the red curve that the count of active dy-
namic replicas is relatively stable at about 10,600 per
site on a stabilized state. This is slightly more than the
configured value of k (10,000) because of the grace pe-
riod of 3, which causes replicas to be deleted with a
slight delay when their popularity drops. We also no-
tice that this curve stays at all times above the con-
figured k, because the top-k items as identified by the
nodes are always replicated. The number of active repli-

13

0 50 100 150 200 250 300
0

2

4

6

8

10

12

Time (s)

C
lie

nt
er

ro
rr

at
e

[%
]

False negative rate
False positive rate

Figure 5: Client location error rates.

cas increases slightly after each YCSB client restart be-
cause of the grace period, which causes a number of
new replicas being created without deleting immedi-
ately the previously-popular objects. Once the grace pe-
riod has elapsed, these dynamic replicas are removed,
which causes the total number of replicas to decrease
after these spikes.

10.3. Replica location

We show the accuracy of our replica location scheme
(Section 8) using a read-only workload. We measure the
afore-mentioned false positive and false negative rates
at the clients. We plot the results in Figure 5.

Let us focus first on the false negative curve, drawn in
red. The spikes observed at regular intervals are caused
by the restart of YCSB clients, which changes the distri-
bution of the requested keys consequently causing new
replicas to be created. Clients are only informed of these
new replicas with error indication from the server nodes,
explaining the rapid increase in false negative rate. As
soon as this rate crosses the set threshold (5%), the
clients update their local summary, causing the number
of false positives to decrease rapidly. The first spike oc-
curs at about 50 seconds, while the first client restart oc-
curs at 30 seconds. This is because of the two 10-second
rounds required for a summary to reach a serving state.

The false positive curve, plotted in green, shows the
same patterns. Spikes are caused by dynamic replicas
being deleted from the cluster, after the end of the grace
period. As with false negatives, error indication enables
clients to detect these errors and update their summaries
within less than 10 seconds.

10.4. Evaluating the whole strategy: latency impact

In this section we evaluate the latency impact of
our solution. To this end, we use two YCSB work-
load patterns to evaluate our scheme: read-heavy (95%
reads – 5% writes) and update-heavy (50% reads – 50%
writes). Due to the lack of dynamic replica place-
ment systems to compare with, we choose to implement
cache-based algorithms at all sites: Least Recently Used
(LRU), Most Recently Used (MRU), and Adaptive Re-
placement Cache (ARC) [48]. Such edge-caching is
one commonly-used solution to improve read latency
of globally-distributed storage systems, as, for example,
at Facebook [19]. We keep unmodified Voldemort as a
baseline. We implemented these algorithms in Volde-
mort, so that each clients contacts the local server that
would hold the requested piece of data (as detailed in
Section 7.1) if cached. We do not implement writes for
these caching algorithms, as they are not designed for
that purpose. Using the original Voldemort algorithm
we simulate writes to different keys than the ones being
read.

We plot in Figure 6 the measured read latency of
all five systems under a sustained read-heavy workload
over time, with 95th percentile confidence intervals. It
can be observed that the read latency achieved without
caching or with MRU caching is stable, and is not af-
fected by the changes in the distribution of requested
keys caused by YCSB client restarts. We note that MRU
causes higher latency than no caching at all. This is ex-
plained by our workload, which is the worst possible
case for that algorithm: the most recent keys are the
more likely to be requested. Yet, such caching prevents

14

0 50 100 150 200 250 300
5

10

15

20

25

30

35

40

Time (s)

R
ea

d
la

te
nc

y
/

cl
ie

nt
[m

s]

None DRep ARC
LRU MRU

Figure 6: Latency over time with a 95% read / 5% write workload.

single-hop reads. Our dynamic replication scheme per-
forms globally better than both ARC and LRU, showing
lower latency spikes at YCSB client restarts. This is be-
cause we enable locating dynamic replicas at close sites
while caching only allows site-local caching. The sim-
ilarity between LRU and ARC curves is related to the
fact that the latter is built atop the former.

Figure 7 shows the impact of the workload on the la-
tency of respectively reads and writes of all systems.
We implemented writes on ARC, LRU and MRU using
asynchronous cache eviction technique as implemented
at Facebook [19]. As a write is received on any given
key, an asynchronous event is triggered and broadcasted
to every datacenter in order to evict this key, if cached,
from the local cache.

On Figure 7a, we show that read latencies tend to
increase as the ratio of reads over writes decreases,
but keep the same relative order. We observe that the
read performance advantage of our method, previously
observed with a 95% / 5% read-to-write ratio is pre-
served even when this ratio decreases. We also note
that unmodified Voldemort and our dynamic replication
method show only marginally increasing latencies as the
read-to-write ratio decreases. This is because of the rel-
atively low overhead of the write protocol, which only
broadcasts the write notifications to datacenters effec-
tively holding a replica of the keys being written to.

Figures 7b details this last point, showing the write la-
tency of our dynamic replication method being slightly
higher than the one of unmodified Voldemort. This is
due to the additional bookkeeping required to keep dy-
namic data replicas synchronized with static replicas.

The latency showed by other caching methods is compa-
rable, as the write protocol is the same for each method.
However, the overhead of broadcasting write events to
every datacenter significantly hinders the write latency.

This demonstrates that although we targeted our geo-
replication method to read-intensive workloads with
rare writes, the read latency is also significantly de-
creased compared to unmodified Voldemort and edge
caching-based approaches for balanced and even write-
intensive workloads, at the cost of a sensible write la-
tency increase.

11. Discussion

11.1. Bounding the number of replicated objects:
choosing k

The number of replicated objects at a site s is strongly
tied to the configuration of k for that site, that we name
ks. This is because all top-ks voted-for objects are repli-
cated dynamically at s. We deduce that, at any time,
there are at least ks elements replicated on site s. Dy-
namic replicas are deleted when their popularity drops
under the top-ks threshold. Assuming that λ such that
0 ≤ λ ≤ 1 is the average replacement ratio of new ele-
ments in the top-k of any round compared to the previ-
ous one, the number Rs of dynamic replicas available at
site s is:

Rs = ks + (ks ∗ λg) (2)

We extract from this equation the value of ks for an
available dynamic replication capacity Cs at site s such
that Rs ≤ Cs:

ks ≤
Cs

λg + 1
(3)

15

95 / 5 65 / 35 50 / 50 35 / 65 5 / 95
0

5

10

15

20

25

30

35

40

45

50

55

Workload (Read % / Write %)

A
vg

.l
at

en
cy

./
re

ad
er

[m
s

/
op

] None DRep
ARC LRU
MRU

(a) Workload read latency impact

95 / 5 65 / 35 50 / 50 35 / 65 5 / 95
0

20

40

60

80

100

120

Workload (Read % / Write %)

A
vg

.l
at

en
cy

./
w

ri
te

r[
m

s
/

op
] None DRep

ARC LRU
MRU

(b) Workload write latency impact

Figure 7: Latency impact of the workload.

16

11.2. Configuration of the round length

The voting round length is an essential parameter for
our replication scheme. It obviously impacts the object
detection latency between the moment when an object
is becoming popular at the clients and the time when
it is identified as such by the cluster and replicated.
The lower the round length, the faster the identifica-
tion. However, two things are crucial to consider when
choosing its value. First, a low value will cause vote
summaries to be disseminated at more regular intervals
between nodes, increasing the network overhead. But
more importantly, the vote round length should be set
to be much higher than the Gossip convergence time of
the cluster. Failing to consider this parameter results in
more frequent incomplete summaries at the nodes be-
cause of delayed network packets, and consequently in
poor replication performance.

11.3. Keeping client errors low: setting the error
threshold

The error threshold is set up as a ratio of errors to the
number of requests processed. It has to be configured
relatively to the performance requirements of the appli-
cation accessing data. The lowest the expected latency,
the lowest this ratio. In our experiments on replica lo-
cation (Section 10.3), we show that a set value of 5%
allows nodes to detect quickly new replicas while not
updating replica summaries too often. Good balance be-
tween these two parameters is essential: setting an error
threshold too low may be counter-productive because
of the additional network overhead and computational
power required by summary refreshes.

11.4. Memory complexity

Hot object identification algorithm The memory
complexity of Space-Saving structures is con-
figurable: O(k). We deduce that the memory
complexity of our popular object identification
algorithm is O(k ∗N ∗ S). Evaluation on a 96-node
cluster gives good results. We plan to further
explore its worst case scenario: thousands of
nodes, or more.

Location algorithm Bloom filters are a memory-
efficient way to test element membership in a list.
It has a configurable error, impacting its accuracy.
We choose an error probability of 0.001. With
k = 10, 000, the size of a dynamic replica summary
for a single site is under 18 KB.

11.5. Bounce period efficiency

In our experiments with a 95% / 5% read/write ra-
tio, we observed that disabling the bouncing period (set-
ting it to 1) increased network traffic by an average of
5%, because of some objects showing a popularity near
the threshold to be unnecessarily, repeatedly created and
deleted ; further increasing the bouncing period leads to
no substantial network traffic reduction.

12. Conclusion

In this paper we present a decentralized dynamic
replication strategy that integrates with the existing ar-
chitecture of existing state-of-the-art storage systems,
which enables us to leverage their existing, built-in al-
gorithms to efficiently handle geo-distributed read and
writes. We allow the clients to efficiently locate a close
dynamic replica of the data without prior communica-
tion with a dedicated metadata server. We deploy a pro-
totype implementation of these methods on 96 nodes
distributed over 6 locations of the Amazon EC2 cloud.
Experiments show a latency improvement of up to 42%
compared to other state-of-the-art, caching-based solu-
tions.

We are working on further enhancing our ap-
proach. This includes designing a write-aware replica-
tion scheme better able to handle balanced read/write
workloads, improving the horizontal scalability of the
popular object identification scheme, and generalizing
it to a variety of different storage systems. Finally, we
want to explore the behavior of our proposal with a
wider range of parameters and workloads, and formal-
ize the configuration trade-offs.

Acknowledgment

This work is part of the BigStorage project, sup-
ported by the European Commission under the Marie
Skłodowska-Curie Actions (H2020-MSCA-ITN-2014-
642963). The authors would like to thank the anony-
mous reviewers whose counsel and expertise greatly
contributed to this research. The experiments presented
in this paper were carried out on the Amazon Web Ser-
vices infrastructure provided by Amazon through the
AWS Cloud Credits for Research program.

References

[1] Microsoft Azure, https://azure.microsoft.com/en-us/
(2016).

[2] Amazon Web Services, https://aws.amazon.com/ (2016).

17

https://azure.microsoft.com/en-us/
https://aws.amazon.com/

[3] K. Bogdanov, M. Peón-Quirós, G. Q. Maguire, Jr., D. Kostić,
The nearest replica can be farther than you think, in: Pro-
ceedings of the Sixth ACM Symposium on Cloud Comput-
ing, SoCC ’15, ACM, New York, NY, USA, 2015, pp. 16–29.
doi:10.1145/2806777.2806939.

[4] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras,
C. Dobre, A. Muraru, A. Costan, M. Dediu, C. Stratan, Monal-
isa: An agent based, dynamic service system to monitor, control
and optimize distributed systems, Computer Physics Communi-
cations 180 (12) (2009) 2472 – 2498, 40 {YEARS} {OF} CPC:
A celebratory issue focused on quality software for high per-
formance, grid and novel computing architectures. doi:http:
//dx.doi.org/10.1016/j.cpc.2009.08.003.

[5] K. Aamodt, et al., The ALICE experiment at the CERN LHC,
JINST 3 (2008) S08002. doi:10.1088/1748-0221/3/08/

S08002.
[6] S. Acharya, S. B. Zdonik, An Efficient Scheme for Dynamic

Data Replication, Tech. rep., Brown University, Providence, RI,
USA (1993).

[7] R. K. Grace, R. Manimegalai, Dynamic replica placement and
selection strategies in data grids— a comprehensive survey,
Journal of Parallel and Distributed Computing 74 (2) (2014)
2099 – 2108. doi:10.1016/j.jpdc.2013.10.009.

[8] Y. Chen, R. H. Katz, J. D. Kubiatowicz, Dynamic Replica Place-
ment for Scalable Content Delivery, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002, pp. 306–318.

[9] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System,
in: Proceedings of the Nineteenth ACM Symposium on Operat-
ing Systems Principles, ACM, New York, NY, USA, 2003, pp.
29–43.

[10] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop
Distributed File System, in: Proceedings of the 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies
(MSST), IEEE Computer Society, Washington, DC, USA, 2010,
pp. 1–10.

[11] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, E. Harris, Scarlett: Coping with skewed
content popularity in mapreduce clusters, in: Proceedings of the
Sixth Conference on Computer Systems, EuroSys ’11, ACM,
New York, NY, USA, 2011, pp. 287–300. doi:10.1145/

1966445.1966472.
[12] D. S. Jayalakshmi, T. P. Rashmi Ranjana, S. Ramaswamy, Dy-

namic Data Replication Across Geo-Distributed Cloud Data
Centres, Springer International Publishing, Cham, 2016, pp.
182–187. doi:10.1007/978-3-319-28034-9_24.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W. Vo-
gels, Dynamo: Amazon’s highly available key-value store,
SIGOPS Oper. Syst. Rev. 41 (6) (2007) 205–220. doi:10.

1145/1323293.1294281.
[14] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, S. Shah,

Serving large-scale batch computed data with project voldemort,
in: Proceedings of the 10th USENIX Conference on File and
Storage Technologies, FAST’12, USENIX Association, Berke-
ley, CA, USA, 2012, pp. 18–18.

[15] P. Matri, A. Costan, G. Antoniu, J. Montes, M. S. Pérez, To-
wards efficient location and placement of dynamic replicas for
geo-distributed data stores, in: Proceedings of the ACM 7th
Workshop on Scientific Cloud Computing, ScienceCloud ’16,
ACM, New York, NY, USA, 2016, pp. 3–9. doi:10.1145/

2913712.2913715.
[16] J. Titcomb, Facebook approaches 2 billion users,

http://www.telegraph.co.uk/technology/2017/05/

03/facebook-approaches-2-billion-users/ (2017).
[17] C. Smith, Facebook users are uploading 350 million new photos

each day, http://www.businessinsider.com/facebook-
350-million-photos-each-day-2013-9 (2013).

[18] G. Carey-Simos, How much data is generated every minute
on social media?, http://wersm.com/how-much-data-is-
generated-every-minute-on-social-media/ (2015).

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, V. Venkataramani, Scaling memcache at facebook,
in: Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13),
USENIX, Lombard, IL, 2013, pp. 385–398.

[20] M. Mihaljevic, Facebbok cache invalidation pipeline, https:
//www.usenix.org/conference/srecon15europe/

program/presentation/mihaljevic (2015).
[21] X. Dong, J. Li, Z. Wu, D. Zhang, J. Xu, On dynamic replica-

tion strategies in data service grids, in: Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE Inter-
national Symposium on, 2008, pp. 155–161. doi:10.1109/

ISORC.2008.66.
[22] Q. Wei, B. Veeravalli, Z. Li, Dynamic replication management

for object-based storage system, in: 2010 IEEE Fifth Interna-
tional Conference on Networking, Architecture, and Storage,
2010, pp. 412–419. doi:10.1109/NAS.2010.24.

[23] H. Shen, Ead: An efficient and adaptive decentralized file repli-
cation algorithm in P2P file sharing systems, in: Peer-to-Peer
Computing , 2008. Eighth International Conference on, 2008,
pp. 99–108. doi:10.1109/P2P.2008.37.

[24] J. MacCormick, N. Murphy, V. Ramasubramanian, U. Wieder,
J. Yang, L. Zhou, Kinesis: A New Approach to Replica Place-
ment in Distributed Storage Systems, Transactions on Storage.

[25] M. K. Madi, Y. Yusof, S. Hassan, Replica placement strategy for
data grid environment, Int. J. Grid High Perform. Comput. 5 (1)
(2013) 70–81. doi:jghpc.2013010105.

[26] Akamai – Dynamic Page Caching, https://blogs.akamai.
com/2015/10/dynamic-page-caching-beyond-static-

content.html (2016).
[27] N. Mansouri, G. H. Dastghaibyfard, A dynamic replica man-

agement strategy in data grid, Journal of Network and Com-
puter Applications 35 (4) (2012) 1297 – 1303, intelligent Al-
gorithms for Data-Centric Sensor Networks. doi:http://dx.
doi.org/10.1016/j.jnca.2012.01.014.

[28] K. A. Kumar, A. Deshpande, S. Khuller, Data placement and
replica selection for improving co-location in distributed envi-
ronments, CoRR abs/1302.4168.

[29] L. Suresh, M. Canini, S. Schmid, A. Feldmann, C3: Cutting
tail latency in cloud data stores via adaptive replica selection,
in: Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI’15, USENIX Asso-
ciation, Berkeley, CA, USA, 2015, pp. 513–527.

[30] A. Lakshman, P. Malik, Cassandra: A decentralized structured
storage system, SIGOPS Oper. Syst. Rev. 44 (2) (2010) 35–40.
doi:10.1145/1773912.1773922.

[31] Riak KV, http://basho.com/products/riak-kv/ (2016).
[32] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,

D. Lewin, Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,
in: Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, ACM, New York, NY,
USA, 1997, pp. 654–663. doi:10.1145/258533.258660.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrish-
nan, Chord: A scalable peer-to-peer lookup service for internet
applications, in: Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’01, ACM, New York, NY,
USA, 2001, pp. 149–160. doi:10.1145/383059.383071.

18

http://dx.doi.org/10.1145/2806777.2806939
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.08.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.08.003
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1016/j.jpdc.2013.10.009
http://dx.doi.org/10.1145/1966445.1966472
http://dx.doi.org/10.1145/1966445.1966472
http://dx.doi.org/10.1007/978-3-319-28034-9_24
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/2913712.2913715
http://dx.doi.org/10.1145/2913712.2913715
http://www.telegraph.co.uk/technology/2017/05/03/facebook-approaches-2-billion-users/
http://www.telegraph.co.uk/technology/2017/05/03/facebook-approaches-2-billion-users/
http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
http://www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
http://wersm.com/how-much-data-is-generated-every-minute-on-social-media/
http://wersm.com/how-much-data-is-generated-every-minute-on-social-media/
https://www.usenix.org/conference/srecon15europe/program/presentation/mihaljevic
https://www.usenix.org/conference/srecon15europe/program/presentation/mihaljevic
https://www.usenix.org/conference/srecon15europe/program/presentation/mihaljevic
http://dx.doi.org/10.1109/ISORC.2008.66
http://dx.doi.org/10.1109/ISORC.2008.66
http://dx.doi.org/10.1109/NAS.2010.24
http://dx.doi.org/10.1109/P2P.2008.37
http://dx.doi.org/jghpc.2013010105
https://blogs.akamai.com/2015/10/dynamic-page-caching-beyond-static-content.html
https://blogs.akamai.com/2015/10/dynamic-page-caching-beyond-static-content.html
https://blogs.akamai.com/2015/10/dynamic-page-caching-beyond-static-content.html
http://dx.doi.org/http://dx.doi.org/10.1016/j.jnca.2012.01.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.jnca.2012.01.014
http://dx.doi.org/10.1145/1773912.1773922
http://basho.com/products/riak-kv/
http://dx.doi.org/10.1145/258533.258660
http://dx.doi.org/10.1145/383059.383071

[34] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, D. Terry, Epidemic algo-
rithms for replicated database maintenance, in: Proceedings of
the Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’87, ACM, New York, NY, USA, 1987, pp.
1–12. doi:10.1145/41840.41841.

[35] N. Hayashibara, X. Defago, R. Yared, T. Katayama, The ϕ ac-
crual failure detector, in: Reliable Distributed Systems, 2004.
Proceedings of the 23rd IEEE International Symposium on,
2004, pp. 66–78. doi:10.1109/RELDIS.2004.1353004.

[36] D. K. Gifford, Weighted voting for replicated data, in: Proceed-
ings of the Seventh ACM Symposium on Operating Systems
Principles, SOSP ’79, ACM, New York, NY, USA, 1979, pp.
150–162. doi:10.1145/800215.806583.

[37] B. Babcock, C. Olston, Distributed top-k monitoring, in: Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, San Diego, California, 2003, pp. 28–39.

[38] M. Wu, J. Xu, X. Tang, W.-C. Lee, Top-k monitoring in wireless
sensor networks, IEEE Trans. on Knowl. and Data Eng. 19 (7)
(2007) 962–976. doi:10.1109/TKDE.2007.1038.

[39] S. Michel, P. Triantafillou, G. Weikum, KLEE: A framework for
distributed top-k query algorithms, in: Proceedings of the 31st
International Conference on Very Large Data Bases, VLDB ’05,
VLDB Endowment, 2005, pp. 637–648.

[40] P. Cao, Z. Wang, Efficient top-k query calculation in distributed
networks, in: Proceedings of the Twenty-third Annual ACM
Symposium on Principles of Distributed Computing, PODC
’04, ACM, New York, NY, USA, 2004, pp. 206–215. doi:

10.1145/1011767.1011798.
[41] M. Pease, R. Shostak, L. Lamport, Reaching agreement in the

presence of faults, J. ACM 27 (2) (1980) 228–234. doi:10.

1145/322186.322188.
[42] R. Van Renesse, D. Altinbuken, Paxos made moderately com-

plex, ACM Comput. Surv. 47 (3) (2015) 42:1–42:36. doi:

10.1145/2673577.
[43] A. Metwally, D. Agrawal, A. El Abbadi, Efficient computation

of frequent and top-k elements in data streams, in: T. Eiter,
L. Libkin (Eds.), Database Theory - ICDT 2005: 10th Interna-
tional Conference, Edinburgh, UK, January 5-7, 2005. Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp.
398–412. doi:10.1007/978-3-540-30570-5_27.

[44] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, K. Yi,
Mergeable summaries (2012) 23–34doi:10.1145/2213556.
2213562.

[45] B. H. Bloom, Space/time trade-offs in hash coding with al-
lowable errors, Commun. ACM 13 (7) (1970) 422–426. doi:

10.1145/362686.362692.
[46] Voldemort at LinkedIn, https://engineering.linkedin.

com/\architecture/brief-history-scaling-

linkedin (2015).
[47] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears,

Benchmarking cloud serving systems with ycsb, in: Proceed-
ings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, ACM, New York, NY, USA, 2010, pp. 143–154. doi:

10.1145/1807128.1807152.
[48] N. Megiddo, D. S. Modha, One Up On LRU, The Magazine of

the USENIX Association 28 (4) (2003) 7–11.

19

http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1109/RELDIS.2004.1353004
http://dx.doi.org/10.1145/800215.806583
http://dx.doi.org/10.1109/TKDE.2007.1038
http://dx.doi.org/10.1145/1011767.1011798
http://dx.doi.org/10.1145/1011767.1011798
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/2673577
http://dx.doi.org/10.1145/2673577
http://dx.doi.org/10.1007/978-3-540-30570-5_27
http://dx.doi.org/10.1145/2213556.2213562
http://dx.doi.org/10.1145/2213556.2213562
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
https://engineering.linkedin.com/\architecture/brief-history-scaling-linkedin
https://engineering.linkedin.com/\architecture/brief-history-scaling-linkedin
https://engineering.linkedin.com/\architecture/brief-history-scaling-linkedin
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152

	Introduction
	Large-scale, data-intensive applications
	Related work
	Background: The systems we target
	Our proposal in brief: outline and challenges
	Collecting and counting votes
	Tunable replication
	Dynamic replica location

	Identifying hot objects with client votes
	Client vote casting
	Node-local vote collection and hot object identification
	Cluster-wide vote summary dissemination

	Lifecycle of a dynamic replica
	When and where to create a dynamic replica?
	When to delete a dynamic replica?
	Handling writes to dynamically replicated objects

	Accessing the closest replica
	Locating the closest replica: dynamic replica summaries
	When to refresh dynamic replica summaries?

	Prototype implementation
	Server-side modifications
	Client-side changes

	Experimental evaluation
	Popular objects identification
	Dynamic replica creation and deletion
	Replica location
	Evaluating the whole strategy: latency impact

	Discussion
	Bounding the number of replicated objects: choosing k
	Configuration of the round length
	Keeping client errors low: setting the error threshold
	Memory complexity
	Bounce period efficiency

	Conclusion

