
HAL Id: hal-01617851
https://hal.inria.fr/hal-01617851

Submitted on 17 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generative model for sparse, evolving digraphs
Georgios Papoudakis, Philippe Preux, Martin Monperrus

To cite this version:
Georgios Papoudakis, Philippe Preux, Martin Monperrus. A generative model for sparse, evolving
digraphs. 6th International Conference on Complex Networks and their Applications, Nov 2017, Lyon,
France. pp.531-542, �10.1007/978-3-319-72150-7_43�. �hal-01617851�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132016778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01617851
https://hal.archives-ouvertes.fr

A generative model for sparse, evolving digraphs

Georgios Papoudakis and Philippe Preux and Martin Monperrus

Abstract Generating graphs that are similar to real ones is an open problem, while

the similarity notion is quite elusive and hard to formalize. In this paper, we focus

on sparse digraphs and propose SDG, an algorithm that aims at generating graphs

similar to real ones. Since real graphs are evolving and this evolution is important

to study in order to understand the underlying dynamical system, we tackle the

problem of generating series of graphs. We propose SEDGE, an algorithm meant to

generate series of graphs similar to a real series. SEDGE is an extension of SDG. We

consider graphs that are representations of software programs and show experimen-

tally that our approach outperforms other existing approaches. Experiments show

the performance of both algorithms.

1 Introduction

We wish to generate artificial graphs that are similar to real ones: by “real”, we

mean a graph that is observed in the real world; as we know, there is ample evidence

that graphs coming from the real world are not Gilbert, or Erdös-Rényi graphs, but

exhibit more structure. The motivations range from pure intellectual curiosity to,

for instance, being able to test ideas on a set of graphs when only one is available

(the WWW, a social network), or understanding which are the key properties of a

graph. This paper is considering directed, un-looped, un-weighted, sparse graphs

of moderate sizes (number of nodes ranging from 100 to a couple of thousands of

nodes); by sparse, we mean that the number of edges is of the order of the number

of vertices, and typically scales like aN, with a very small with regards to N (say

Georgios Papoudakis e-mail: giwrpapoud@gmail.com

Philippe Preux e-mail: firstname.lastname@inria.fr

Université de Lille, CRIStAL & Inria, Villeneuve d’Ascq, France.

Martin Monperrus

KTH Royal Institute of Technology, Sweden e-mail: firstname.lastname@csc.kth.se

1

2 Georgios Papoudakis and Philippe Preux and Martin Monperrus

a≤ 10 to give an idea of its value). We assume weak connectivity of the graph. As a

case study, we experiment with graphs extracted from software programs; beyond a

better understanding of software programs, such graphs may be used e.g. to improve

software development and track the sources of bugs [8, 7].

To generate a graph in this context, one may use an algorithm that builds a graph

given the degree distribution of the real graph (see [5] and followers), or its adja-

cency matrix [3], or some other structure (see [11] and references therein). As we

wish to understand and model the creation of the graph, and as real graphs are often

dynamic, we are more interested in a second type of algorithms that build a graph

incrementally. Another motivation is that we do not want to generate graphs that

have the exact same number of vertices, or the exact same degree distribution, or

anything identical to the real one. A reason for this is that if we consider the degree

distribution, two graphs having the same degree distribution may be very different

regarding their other properties; in the other way around, two graphs that have more

or less slightly different degree distribution, may have very similar properties. The

properties we are interested in are of various natures: connectivity, diameter, average

path length, transitivity, modularity, assortativity, spectral properties, degree distri-

bution. Furthermore, when considering degree distribution or spectral properties, it

is not clear how to meaningfully measure the difference between two degree distri-

butions: mean squared distance, Kolmogorov-Smirnov statistics, Kullback-Leibler

divergence, Jensen-Shannon distance. Finally, an important property of the genera-

tor is its stability. We identify two types of stability: the first is that for a given set

of parameters, the graphs that are generated should have approximately the same

characteristics; the other is that the graphs generated by a set of parameters should

not change too much when the value of the parameters change a bit (sort of con-

tinuity of the properties of the generated graphs in the space of parameters of the

generator).

Modeling and generating static graphs is important, but we are really interested

in modeling the evolution of a graph. Though some works exist [4], the issues men-

tioned above take yet another aspect when considering the evolution of a graph. We

see the evolution of a graph as time series of graphs, that is a set of couples {(t,g)}.
We wish to generate the whole series of graphs with a single algorithm. Succeed-

ing in this endeavor, we would access to general properties of the graph and the

evolution process, as well as being able to predict the next graphs.

The content of this paper is as follows: in section 2, we propose the Sparse Di-

graph Generator (SDG) which is an algorithm that generates graphs that fit our

requirements; we then show that the degree distribution follows a power law dis-

tribution; we also show that the in-degree and the out-degree distributions are not

identical, something often observed in real digraphs. Then, we put SDG to the test:

we introduce the real graphs we work with and show how our generator performs.

As we are interested in the modeling of the evolution of a dynamic graph, we intro-

duce Sparse Evolving Digraph GEnerator (SEDGE) which is an incremental version

of SDG in section 4 and put it to the test in section 5. Then, we conclude and draw

some final remarks.

A generative model for sparse, evolving digraphs 3

For the sake of reproducible research, all the experiments may be reproduced

with the material freely available at https://github.com/papoudakis/

sparse-digraph-generator.

2 The Sparse Digraph Generator: SDG

We present a novel algorithm that aims at generating sparse digraphs. It is outlined

in algorithm 1. SDG starts by creating a digraph made of N isolated nodes and then,

at each iteration, it adds a link between two nodes. To add a link, SDG selects two

nodes, one as output, and the other as an input node. The selection of either node is

performed either at random or following a preferential attachment rule.

Algorithm 1 Outline of SDG

1: Input: Number of nodes: N

2: Input: Number of edges: E (assumed to be≪ N2)

3: Input: Parameters e1 and e2, both in the range [0,1]
4: Output: Generated graph G

5: G← DiGraph (with N nodes and no edge)

6: for t ∈ {1, ...,E} do

7: ⊲ Selection of the node that the edge will start from

8: With probability e1: out← select a node uniformly at random()

9: Otherwise: out← select a node by preferential attachment

10: ⊲ Selection of the node that the edge will end to

11: With probability e2: in← select a node of in-degree 0()

12: Otherwise: in← select a node by preferential attachment

13: G.add edge(out, in)
return G

We consider sparse digraphs in which the number of edges E is aN, where a ∈
(1,10). Such digraphs are quite common in applications and they are quite specific

with regards to their properties: for instance, there is usually a very small number

of paths to navigate from one node to another. It is often the case that the in-degree

and the out-degree distributions do not have the same shape. SDG achieves this: is

e1 6= e2, the parameters of the power law of in-degree and out-degree distributions

are different.

The selection of a node to connect to or from is either uniformly at random

(among all nodes at line 8, among nodes of in-degree 0 at line 11), or with a prob-

ability proportional to the degree of the node, that is we use a linear preferential

attachment rule.

In the rest of this section, we derive the form of the in-degree and out-degree

distributions resulting from SDG. We show that both distributions follow a power

law, though of different parameters.

4 Georgios Papoudakis and Philippe Preux and Martin Monperrus

2.1 The in-degree distribution

After the completion of the t th iteration of SDG, the graph is made of t edges. So, the

probability for a node of degree k to be selected by linear preferential attachment is
k
t
. Additionally, we assume that e2 <

N
E

, so the expected number of nodes that have

in-degree 0 is bigger than 0, E[N− e2E]> 0

Let Dk(t) be the number of nodes with in-degree k at timestep t. For k > 1, Dk(t)
decreases at timestep t only if a node with in-degree k is selected due to preferential

attachment (line 12). So the probability that Dk decreases at iteration t is:

(1− e2)
︸ ︷︷ ︸

probability of selecting a node by preferential attachment

k

t
︸︷︷︸

probability of choosing a degree k node

Dk(t) (1)

Similarly, Dk(t) increases only if a node with in-degree k− 1 is selected due to

preferential attachment. So the probability that Dk increases at iteration t is:

(1− e2)
(k− 1)

t
Dk−1(t) (2)

Let dk(t) = E[Dk(t)]. It follows that the expected change in the number of nodes

of degree k at iteration t is:

dk(t + 1)− dk(t) = (1− e2)
(k− 1)dk−1(t)− kdk(t)

t
(3)

We set c2 = 1− e2 and we assume that dk(t) = pkt so we get:

pk = c2((k− 1)pk−1− kpk) (4)

pk =

(

1−
(1+ c2)/c2

1/c2 + k

)

pk−1 (5)

Assuming that k≫ 1
c2

and using the binomial approximation we come up with:

pk ≈

(

1−
(1+ c2)/c2

k

)

pk−1 ≈

(
k− 1

k

) 1+c2
c2

pk−1 (6)

Finally, we calculate the values of p0 and p1 and we iterate the equation until k = 2.

pk ≈

(
k− 1

k

) 1+c2
c2

(
k− 2

k− 1

) 1+c2
c2

...

(
1

2

) 1+c2
c2

p1 (7)

pk ≈ p1k
−

1+c2
c2 (8)

A generative model for sparse, evolving digraphs 5

2.2 The out-degree distribution

In this section, Dk(t) is the number of nodes with out-degree k at iteration t. Starting

with the same assumptions as before, we can write that the number of nodes with

out-degree distribution k decreases if a node with out-degree k is selected due to

preferential attachment with probability 1− e1 or if such a node is selected from a

uniform distribution with probability e1. This second possibility is different from the

analysis we did for the in-degree distribution. So, the probability that Dk decreases

at iteration t is:

e1
Dk(t)

n
+(1− e1)k

Dk(t)

t
(9)

Similarly, Dk(t) increases with probability:

e1
Dk−1(t)

n
+(1− e1)(k− 1)

Dk−1(t)

t
(10)

After following the same steps as before we end up with:

dk(t + 1)− dk(t) = (1− e1)
(k− 1)dk−1(t)− kdk(t)

t
+ e1

dk−1(t)− dk(t)

N
(11)

Assuming that the solution is like dk(t) = pkt and by setting c1 = 1− e1, we can

prove that at the final timestep t = E:

pk ≈ p1(k+
(1− c1)

c1

E

N
)
−

1+c1
c1 (12)

2.3 Discussion & Related Work

We have shown that the in-degree and the out-degree distributions of the graphs

generated by SDG exhibit a power law. This may come as a surprise to the reader,

well aware of earlier works, such as [1]. Indeed, our graph is not growing, keeping a

set of N nodes, connecting them along the iterations of the algorithm. However, the

departure from a power law is expected when the number of iterations is approxi-

mately N2, that is when the graph gets dense. However, as we emphasized it earlier,

we only consider sparse graphs, and the number of iterations, hence the number of

edges, remains O(N), hence much less than N2.

It is worth noting that the power law coefficients of graphs generated by SDG

are the same as those of graphs produced by Bollobas et al., though the algorithms

are slightly different. Actually Bollobas et al. results come as special cases of our

analysis.

SDG departs from the usual Barabasi-Albert type of algorithms because it gener-

ates directed graphs. Strictly speaking, our algorithm generates a variant of a Price

6 Georgios Papoudakis and Philippe Preux and Martin Monperrus

graph [9] and setting e1 to 0, e2 to 1, a kind of Price’s algorithm which adds one

edge at a time is recovered. SDG comes very close to the one studied by Bollobas

et al. [2] though only SDG is able to add two vertices at once, in a single iteration.

3 Experimental study of SDG

In this experimental section, we mainly study two questions:

• which algorithm performs the best to produce graphs that are similar to some real

graphs?

• the stability of SDG with regards to its parameters.

We compare our algorithm with GDGNC [6] where it is shown to be the best

graph generator available in the context of software graphs. We also compare our

model with Bollobas et al.’s since they are quite similar: it is interesting to check

how the small difference in these 2 algorithms convert into difference of perfor-

mance. We have compared SDG with other algorithms (Kronecker graphs, ...) but

since they perform poorly and due to space limitations, we do not report them. The

experiments are performed with 10 major software programs taken from the maven

dataset [10]. Table 1 summarizes the basic features of our dataset.

Software (version) Nodes Edges Edges/Nodes Diameter

ant (1.5.1) 266 1427 5.36 6

findbugs (0.6.4) 56 183 3.27 5

freemarker (1.5.3) 76 358 4.71 7

hibernate (1.2) 365 1916 5.25 7

htmlunit (1.10) 219 934 4.26 7

jasperreports (3.1.2) 1139 7460 6.54 7

jparsec (0.2.2) 75 203 2.71 5

ojb (0.5.200) 179 766 4.28 6

pmd jdk14 (4.1.1) 521 3049 5.85 8

spring core (1.0.1) 112 337 3.01 7

Table 1 Statistics of the dataset used in the experiments reported in section 3.

In the literature, the measure of similarity between two graphs is not very well

defined. In this paper, we measure the similarity between the generated graph (gg)

and the original graph (go) using the following set of metrics:

• The Kolmogorov-Smirnov statistic (KS) of the in-degree and out-degree distri-

butions. Let CDFg denote the cumulative degree distribution function of a graph

g, so that CDFg(k) = ∑i≤k Dk where Dk is the degree distribution of graph g.

Then, KS = maxk |CDFgg(k)−CDFgo(k)|. We denote KSin (resp. KSout) the KS

statistics regarding in-degree (resp. out-degree) distribution.

• The mean squared distance (MSD) of the sorted in-degree and out-degree distri-

butions. For each generated graphs g we consider the in-degree and out-degree

A generative model for sparse, evolving digraphs 7

of each node, sort these two lists to obtain din,g and dout,g. Then: MSDin =
∑i (din,gg(i)−din,go(i))

2

N
and MSDout =

∑i (dout,gg(i)−dout,go(i))
2

N
.

The MSD can only be used for SDG and GDGNC because they generate the

same number of nodes as the original graph. On the contrary, Bollobas et al.’

model does not necessarily produce graphs with the same number of nodes.

We perform a grid search in order to determine the parameters of each model that

best fit for each graph. SDG and GDGNC are optimized to minimize the maximum

value between MSDin and the MSDout : minimize{max(MSDin,MSDout)}. As MSDin

and MSDout are irrelevant for it, Bollobas et al. model is optimized to minimize the

KS statistic. This may be seen as a caveat in our experiments, but we provide ample

observations below to convince the reader that if we were tuning the parameters of

the 3 models with the same metrics, the conclusions of the experiments would not

change much. The experiments presented in table 2 below are performed with the

optimal parameters for each software, averaged over 100 generated graphs. Table 2

provides the average value of KS and MSD for each model and each software.

KSin KSout MSDin MSDout

Software SDG GDGNC Bollobas SDG GDGNC Bollobas SDG GDGNC SDG GDGNC

ant 0.26 0.24 0.39 0.16 0.17 0.34 17.4 30.45 1.89 2.58

findbugs 0.29 0.41 0.37 0.33 0.35 0.37 2.32 3.74 1.24 2.65

freemarker 0.23 0.23 0.4 0.48 0.49 0.38 3.11 6.14 4.89 6.76

hibernate 0.38 0.41 0.33 0.22 0.32 0.32 14.38 21.87 3.14 9.23

htmlunit 0.37 0.37 0.42 0.31 0.36 0.44 12.67 20.68 3.92 8.45

jasperreports 0.24 0.24 0.28 0.35 0.43 0.29 32.37 97.72 16.1 37.43

jparsec 0.22 0.22 0.41 0.36 0.47 0.42 0.69 2.72 4.6 9.98

ojb 0.26 0.25 0.44 0.21 0.27 0.4 3.6 6.36 0.77 3.41

pmd jdk14 0.27 0.28 0.28 0.5 0.56 0.41 14.92 114.9 32.08 54.54

spring core 0.36 0.4 0.4 0.23 0.34 0.3 2.54 4.67 1.2 3.72

Table 2 Comparison of SDG with GDGNC and Bollobas et al. in terms of MSD and KS for 10

Java software graphs. Bold faces indicate best results.

We can clearly see that SDG performs better than both GDGNC and Bollobas

et al. model. Additionally, SDG is much more stable than the other models. That

means that given the parameters of the generator the graphs that are produced are

similar. In table 3, we give the average of the standard deviation for the experiments

that appear in table 2.

Model KSin KSout MSDin MSDout

SDG 0.093± 0.012 0.084± 0.023 3.94± 2.55 1.33± 1.07

GDGNC 0.091± 0.01 0.081± 0.013 19.78± 26.6 4.01± 3.89

Bollobas 0.102± 0.029 0.099± 0.025

Table 3 Mean and standard deviation of standard deviation values of MSD and KS on 10 Java

software graphs.

8 Georgios Papoudakis and Philippe Preux and Martin Monperrus

From table 3 we can see the standard deviation values of SDG are on the same

level or smaller than both GDGNC and Bollobas et al. But the most important prop-

erty of SDG is that it can create graphs similar to the original one without the pa-

rameter optimization process, that both other models require in order to perform

decently. For each software, we generate 100 graphs and we compute the average

KSin, KSout , MSDin, and MSDout . All the experiments are performed with the same

values e1 = 0.45 and e2 =
N
E
−0.05 for all software graphs; these values result from

our experiments. Table 4 provides the results; in ()’s, we report the ratio between

the SDG without and with tuning: e.g., 0.14(0.9) is the first row of column KSout

means that KSout is 0.14 without tuning, and 0.14/0.9 with tuning. The value of

KS without tuning may be smaller than with tuning because the parameter tuning is

performed to minimize MSD.

Software KSin KSout MSDin MSDout

ant 0.25 (1.0) 0.14 (0.9) 20.54 (1.2) 0.89 (0.5)

findbugs 0.3 (1.0) 0.34 (1.0) 2.66 (1.1) 1.34 (1.1)

freemarker 0.24 (1.0) 0.46 (1.0) 3.43 (1.1) 5.31 (1.1)

hibernate 0.29 (0.8) 0.3 (1.4) 27.16 (1.9) 13.27 (4.2)

htmlunit 0.33 (0.9) 0.29 (0.9) 12.84 (1.0) 5.24 (1.3)

jasperreports 0.21 (0.9) 0.43 (1.2) 119.42 (3.6) 49.16 (3)

jparsec 0.25 (1.1) 0.42 (1.2) 1.52 (2.2) 8.41 (1.8)

ojb 0.33 (1.3) 0.27 (1.3) 13.47 (3.7) 2.36 (3.1)

pmd jdk14 0.33 (1.2) 0.54 (1.1) 61.67 (4.1) 45.43 (1.4)

spring core 0.3 (0.8) 0.25 (1.1) 2.63 (1.0) 2.43 (2.0)

Table 4 MSD and KS without tuning parameters: numbers in ()’s gives the ratio between the

measurement without tuning and the measurement with tuning.

From table 4 we see that in most cases, SDG, without parameter tuning, performs

better than both GDGNC and Bollobas et al. model after parameter tuning. Another

very nice property is that the performance does not change very much as the value

of a parameter is changing: there is some sort of continuity of the performance of

SDG with regards to the value of parameters. This is a very nice property, as this

implies that to tune the parameters of SDG, a coarse grid search is enough and

computationally cheaper.

Figure 1 provides a graphical illustration of these measurements: we plot the

in-degree distribution, the out-degree distribution, and the spectra of the adjacency

matrix for the real graph and for the graphs generated by each algorithm we compare

to.

To conclude this part, let us stress that SDG uses two pieces of information: the

number of nodes N and the number of edges E . We have shown that SDG produces

graphs which degree distributions follow power laws. When we want to generate

graphs similar to a real one, both N and E are available, and we have shown that e1

and e2, the parameters of SDG, are not that important to obtain satisfying graphs.

A generative model for sparse, evolving digraphs 9

100 101 102 103 104

In degree

10 3

10 2

10 1

100

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
c
y

In-degree distribution of ant

100 101 102 103 104

Out degree

10 3

10 2

10 1

100

C
u
m

u
la

ti
v
e
 f

re
q
u
e
n
c
y

Out-degree distribution of ant

0 5� 100 15� 200 25�

Eigenvalue index

20

10

0

10

20

30

E
ig

e
n
v
a
lu

e

Sorted spectrum of ant

Fig. 1 In-degree distribution, out-degree distribution, and spectrum for the real graph and the gen-

erated graphs.

Another point is that the occasional addition of 2 nodes instead of 1 seems beneficial

since this is the only difference between SDG and Bollobas et al. approach.

Finally, it is important to refer to the metrics we use to compare graphs and

the metrics we use to optimize the parameters of the algorithm. As said earlier,

it is not known how to assess the similarity of two graphs using a single metric;

instead, we use a series of metrics (and more may be used) to formalize the idea of

similarity between two graphs. The metrics we use are recognized as very important

to characterize a graph: the degree distribution, and the spectrum. We have found

that optimizing using the degree distributions leads to better results. We see that as a

primary observation, other spectral information might be used, and other properties

may be used too. Furthermore, a combination of metrics may be optimized or used

to judge the similarity: this is left as future work.

4 SEDGE: modeling the evolution of a graph

We consider a model of evolution of the real graph that is version-oriented. As

the real graphs we consider are software, considering a sequence of versions of a

software, the graphs along this sequence evolve by part: by that, we mean that the

set of nodes and the set of edges evolve by chunks: from one graph to the next one

(one version of a software to the next one), a set of nodes are added, some nodes are

removed, and it is the same for the edges. So, we consider an algorithm that takes a

graph as input, and then adds a set of nodes and a set of edges, possibly removing

some existing nodes and edges.

We propose the “Sparse Evolving Digraph GEnerator” SEDGE (see algorithm 2),

a model to capture the evolution of software graphs based on the generative model

that we proposed in section 2. SEDGE is an extension of SDG. It distinguishes

existing nodes from new nodes. At each timestep, SEDGE chooses two nodes to

connect, sampling them from either set of nodes, based on 2 parameters that act as

probabilities α and β .

10 Georgios Papoudakis and Philippe Preux and Martin Monperrus

Algorithm 2 SEDGE: a generative model for sparse digraph evolution. The SAM-

PLE A NODE samples nodes in exactly the same way algorithm 1 does. new nodes

refers to the N new nodes that are added to the current graph. all nodes refers to all

nodes of the new graph.

1: Input: Number of nodes to add N new

2: Input: Number of edges to add E new

3: Input: Parameters α,β ,e1,e2, all in the range [0,1]
4: Input: Current graph G cur

5: Output: Generated graph G new

6: function SAMPLE A NODE(so, si, e1, e2)

7: With probability e1: out← select a node uniformly at random(so)

8: Otherwise: out← select a node by preferential attachment (so)

9: With probability e2: in← select a node of in-degree 0(si)

10: Otherwise: in← select a node by preferential attachment (si)

11: return (in, out)

12: End function

13: G new← G cur.add nodes(N new)

14: for t ∈ {1, ...,E new} do

15: With probability α: (in, out) ← SAMPLE A NODE(all nodes, new nodes,

e1, e2)

16: With probability β : (in, out) ← SAMPLE A NODE(new nodes, all nodes,

e1, e2)

17: Otherwise: (in, out)← SAMPLE A NODE(all nodes, all nodes, e1, e2)

18: G new.add edge(out, in)
return G new

5 Experimental study of SEDGE

In this section, we evaluate the ability of SEDGE to capture the software evolution.

For the experiments, we use 10 pairs of consecutive versions of software graphs1

from the maven dataset. With the term “first graph”, we refer to the first version of

the software and with the term “second graph” to the second version. In each pair

of these graphs, the second graph has at least 20% more nodes than the first graph.

The degree distributions and the spectrum of the graphs of two successive ver-

sions are close. For this reason, in order to perform a better evaluation of SEDGE

we compute KS and MSD only for the new nodes: doing so, we amplify the differ-

ence between the two versions. In table 5, we report on the values of KS and MSD

averaged over 100 experiments, for each real graph, given the optimal parameters

of the model.

1 (ant.1.4.1→ant.1.5), (commons collections.20030418.083655→commons collections.20031027.

000000), (hibernate.2.0.3→hibernate.2.1.1), (jasperreports.0.6.7→jasperreports.1.0.0), (jasperre-

ports.1.0.3→jasperreports.1.1.0), (ojb.0.8.375→ojb.0.9), (ojb.0.9.5→ojb.0.9.6), (spring.1.0

→spring.1.1), (wicket.1.0.3→wicket.1.1), (wicket.1.1.1→ wicket.1.2)

A generative model for sparse, evolving digraphs 11

First Software Nnew Enew KSin KSout MSDin MSDout

ant.1.4.1 116 665 0.29 (0.8) 0.4 (1.1) 5.57 (2.9) 2.37 (0.6)

commons.20030418 118 385 0.41 (1.1) 0.39 (0.9) 0.99 (1.5) 1.05 (0.9)

hibernate.2.0.3 92 853 0.39 (0.6) 0.29 (1.0) 3.52 (12.4) 3.22 (1.0)

jasperreports.0.6.7 170 1100 0.23 (1.1) 0.2 (1.2) 15.39 (1.2) 6.08 (1.8)

jasperreports.1.0.3 117 1214 0.19 (0.9) 0.25 (1.0) 22.1 (2.7) 9.2 (0.9)

ojb.0.8.375 100 555 0.31 (0.9) 0.39 (1.0) 5.72 (1.6) 1.27 (1.0)

ojb.0.9.5 120 586 0.47 (1.0) 0.36 (1.0) 1.51 (0.6) 2.4 (3.5)

spring.1.0 199 830 0.36 (1.0) 0.4 (0.8) 2.66 (3.7) 1.17 (3.2)

wicket.1.0.3 96 569 0.36 (0.9) 0.32 (1.0) 1.21 (26.4) 1.93 (1.4)

wicket.1.1.1 235 1800 0.25 (1.0) 0.2 (1.1) 4.92 (1.0) 2.75 (2.8)

Table 5 MSD and KS for 10 evolutions of software graphs of SEDGE, averaged over 100 runs

for each software. We also run the same experiments without tuning parameters: numbers in ()’s

gives the ratio between the measurement without tuning and the measurement with tuning: a value

below 1 means that it is better without tuning, above 1 that it is worse.

SEDGE has the same fundamental property SDG has: it can capture the structure

of the evolved network without tuning its parameters. As in table 4, the values in ()’s

in table 5 gives the ratio between tuning and no tuning. We use α = 0.5, β = 0.4,

e1 = 0.45 and e2 =
N
E
− 0.05 in the non tuned parameters experiment.

6 Conclusion and future work

In this paper, we consider the problem of generating graphs that are similar to real,

sparse digraphs. We propose SDG which generates such graphs, exhibiting power

law in their degree distributions. We show that SDG performs very well experi-

mentally; furthermore, SDG is stable in terms of parameter tuning: we show that it

behaves very well even if we do not perform parameter tuning. Then, we propose

an extension named SEDGE which aims at generating series of sparse digraphs that

is similar to a series of real graphs. The similarity between two graphs is not well

defined; we have used different ways to measure it and we have discussed the in-

fluence on the final result of the generator. Other metrics can also be used and will

be investigated in the future. We have used SDG and SEDGE with a type of graphs

in mind; we have not defined these algorithms using any knowledge on the graphs

being modeled: we have designed the algorithms, tested them on some real graphs,

and observed the results. We think they may be used for many types of real graphs.

More importantly, considering series of graphs is a very important aspect of our

work. As real graphs are evolving, we think that we have to use dynamic models

to deal with them to really capture something about the evolution of the real graph,

and the understanding of the process underneath.

12 Georgios Papoudakis and Philippe Preux and Martin Monperrus

Acknowledgements

This work was partially supported by CPER Nord-Pas de Calais/FEDER DATA

Advanced data science and technologies 2015-2020, and the French Ministry of

Higher Education and Research. We also wish to acknowledge the continual support

of Inria, and the stimulating environment provided by the SequeL Inria project-team.

References

1. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286 (1999)

2. Bollobas, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proc. SODA,

pp. 132–139 (2003)

3. Carstens, C.J., Berger, A., Strona, G.: Curveball: a new generation of sampling algorithms for

graphs with fixed degree sequence (2016). Arxiv.org, 1609.05137

4. Holme, P.: Modern temporal network theory: a colloquium. The European Physical Journal B

88(9) (2015)

5. Kleitman, D., Wang, D.: Algorithms for constructing graphs and digraphs with given valences

and factors. Discrete Math. 6(1), 79–88 (1973)

6. Musco, V., Monperrus, M., Preux, P.: A generative model of software dependency graphs to

better understand software evolution (2015). Arxiv, 1410.7921

7. Musco, V., Monperrus, M., Preux, P.: Mutation-based graph inference for fault localization.

In: Proc. SCAM, pp. 97–106 (2016)

8. Musco, V., Monperrus, M., Preux, P.: A large-scale study of call graph-based impact prediction

using mutation testing. Software Quality Journal 25(3), 921–950 (2017)

9. Newman, M.: The structure and function of complex networks. SIAM Review 45(2), 167–256

(2003)

10. Raemaekers, S., Deursen, A.v., Visser, J.: The maven repository dataset of metrics, changes,

and dependencies. In: Proc MSR, pp. 221–224. IEEE Press (2013)

11. Staudt, C.L., Hamann, M., Safro, I., Gutfraind, A., Meyerhenke, H.: Generating Scaled Repli-

cas of Real-World Complex Networks, pp. 17–28. Springer International Publishing (2017)

