
HAL Id: hal-01621480
https://hal.inria.fr/hal-01621480

Preprint submitted on 23 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SPARQLGX System for Distributed Evaluation of
SPARQL Queries

Damien Graux, Louis Jachiet, Pierre Genevès, Nabil Layaïda

To cite this version:
Damien Graux, Louis Jachiet, Pierre Genevès, Nabil Layaïda. The SPARQLGX System for Dis-
tributed Evaluation of SPARQL Queries. 2017. �hal-01621480�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132013807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01621480
https://hal.archives-ouvertes.fr

1

The SPARQLGX System for Distributed
Evaluation of SPARQL Queries
Damien Graux, Louis Jachiet, Pierre Genevès, and Nabil Layaı̈da

Abstract—SPARQL is the W3C standard query language for querying data expressed in the Resource Description Framework (RDF).
The increasing amounts of data available in the RDF format raise a major need and research interest in building efficient and scalable
distributed SPARQL query evaluators. In this context, we propose SPARQLGX: an implementation of a distributed RDF datastore based
on Apache Spark. SPARQLGX is designed to leverage existing Hadoop infrastructures for evaluating SPARQL queries efficiently.
SPARQLGX relies on an automated translation of SPARQL queries into optimized executable Spark code. We show that SPARQLGX

makes it possible to evaluate SPARQL queries on billions of triples distributed across multiple nodes, while providing attractive
performance figures. We report on experiments which show how SPARQLGX compares to state-of-the-art implementations and we
show that our approach scales better than other systems in terms of supported dataset size. With its simple design, SPARQLGX

represents an interesting alternative in several scenarios.

Improvements— A preliminary version of this work was presented at the ISWC 2016 conference [1]. Since then, the SPARQLGX

system has been improved in many aspects. Compared to [1], the present article provides two notable additions: (i) a detailed
presentation of the system architecture with its most important concepts i.e. the various adopted storage strategies and their benefits,
the supported SPARQL fragment (which has been extended with general disjunctions, safe optionals and safe conjunctions), the query
translation process including examples, and (ii) an extensive experimental analysis where SPARQLGX is systematically compared with a
panel of nine third-party state-of-the-art systems.

Index Terms—RDF, SPARQL evaluation, distributed systems, comparative evaluation.

F

1 INTRODUCTION

SPARQL is the standard query language for retrieving and
manipulating data represented in the Resource Description
Framework (RDF) [2]. SPARQL constitutes one key technol-
ogy of the semantic web and has become very popular since
it became a W3C recommendation [3].

The construction of efficient SPARQL query evaluators
faces several challenges. First, RDF datasets are increasingly
large, with some already containing more than a billion
triples. For querying efficiently such amounts of data, eval-
uators need to be distributed and to scale. Furthermore,
semantic data might exhibit a dynamic nature, as they are
subject to change. Thus being able to answer quickly after
a change in the input data also constitutes an interesting
property for a SPARQL evaluator. In this context, we pro-
pose SPARQLGX: an engine designed to evaluate SPARQL
queries efficiently on large distributed RDF datasets. SPAR-
QLGX relies on a compiler of SPARQL conjunctive queries
into optimized Scala code that is executed by the Apache
Spark [4] backend. SPARQLGX is open-source and available
from: https://github.com/tyrex-team/sparqlgx

This article is organized as follows: we first introduce
some required preliminary knowledge in Section 2. Then,
in Section 3, we describe the most important concepts used
in the design and implementation of SPARQLGX. Section 4

• Authors’ affiliations: Inria, LIG, CNRS, Université Grenoble Alpes.

• This study has been partially supported by the Datalyse and CLEAR
projects.

Manuscript sent: October 23, 2017.

reports on our experimental evaluation where we compare
our implementation with other open source HDFS-based RDF
systems. Finally, we review related works in Section 5 and
conclude in Section 6.

2 BACKGROUND

The Resource Description Framework (RDF) is a language
standardized by W3C to express structured information on
the Web as graphs [2]. It models knowledge about arbitrary
resources using Unique Resource Identifiers (URIs), Blank
Nodes and Literals. RDF data is structured in sentences –
or triples– written (s p o), each one having a subject s, a
predicate p and an object o.

Hadoop is a framework for distributed system based
on the Map-Reduce paradigm [5], it is used by numerous
evaluators. Hadoop consists of two main parts: the Hadoop
distributed file system (HDFS) [6] and a MapReduce library
for distributed processing. Hadoop consists of a number
of different daemons/servers: NameNode, DataNode, and
Secondary NameNode for managing HDFS, and JobTracker
and TaskTracker for performing MapReduce. Technically,
Files in HDFS are split into a number of large blocks (usually
a multiple of 64MB) which are stored on DataNodes. A file is
typically distributed over a number of DataNodes in order
to facilitate high bandwidth and parallel processing. In or-
der to improve reliability, data blocks in HDFS are replicated
and stored on three (default parameter) machines, with one
of the replicas in a different rack for increasing availability
further. The maintenance of file metadata is handled by
a separate NameNode. Such metadata includes mapping

https://github.com/tyrex-team/sparqlgx

2

from file to block and location (DataNode) of block. The
NameNode periodically communicates its metadata to a
Secondary NameNode which can be configured to do the
task of the NameNode in case of the latters failure.

Apache Spark [4] is a MapReduce-like data-parallel
framework designed for large-scale data processing running
on top of the JVM. Spark can be set up to use HDFS.

3 SPARQLGX MAIN CONCEPTS

In this Section, we present the main design concepts and im-
plementation techniques used in SPARQLGX. We first review
design choices made in representing and storing the data
model. We then present important optimizations for im-
proving the performance of the data loading phase. Finally
we explain how we translate queries from the supported
SPARQL query language fragment into optimized lower-
level Scala code [7] which is directly executed with the Spark
API.

3.1 Data Storage Model: Vertical Partitioning

From a “raw” storage (e.g. a file in the N-Triples standard [8]
which is a simple list of all triples) to complex schemes
(e.g. involving indexes or B-trees), there are many ways
to store RDF data. Any storage choice is a compromise
between (1) the time required for converting origin data
into the target format, (2) the total disk-space needed, (3) the
possible response time improvement induced.

RDF triples have very specific semantics. In a RDF triple
(s p o), the predicate p represents the “semantic relationship”
between the subject s and the object o. Thus, there are often
relatively few distinct predicates compared to the number
of distinct subjects or objects. The vertically partitioned
architecture introduced by Abadi et al. in [9] takes advantage
of this observation by storing the triple (s p o) in a file named
p whose contents keeps only s and o entries. This approach
has the following advantages and characteristics:

(1) Converting RDF data into a vertically partitioned
dataset does not involve complex computation: each triple
is read once and the pair (subject, object) is appended to the
predicate file.

(2) For large datasets with only a few predicates, two
values (a value is a URI or a blank node or a literal) are
stored instead of three which reduce the memory footprint
compared with the input dataset.

(3) Having vertically partitioned data reduces evaluation
time of triple patterns whose predicate is a constant (i.e.
not a variable): searches are limited to the relevant files. In
practice, one can observe that most SPARQL queries have
triple patterns with a constant predicate. [10] showed that
graph patterns where all predicates are constant represent
77.81% of the queries asked to DBpedia [11] and 98.08% of
the ones asked to SWDF.

We consider that vertical partitionning is very well
suited in the context of distributed evaluation over RDF data
without reasoning: it implies a pass over the data but with
only simple computations, it reduces the size of the dataset
and provides an indexation. This is the storage model that
we adopt on HDFS, and with which we make RDF datasets
available to Apache Spark.

3.2 Loading Optimizations
3.2.1 Compression
In the vertical partitioning scheme, we have to store for each
triple pattern (TP) a subject and an object. In real datasets,
URIs are strings of 20 to 100 characters and are heavily re-
dundant. It seems therefore rather natural to compress these
URIs. RDF datasets are prone to efficient compression [12].
Yet, while applying an efficient text compression algorithm
on the whole dataset would be very effective in terms of
compression ratio, it would be less effective for the query
evaluation process.

If we compress the subjects and objects, we have several
benefits: data take up less disk space and reading the dataset
takes less time during the evaluation. In addition, if we can
also leave these URIs compressed during the evaluation, the
data exchanged for the join computations would also be
compressed which means faster shuffles and in the case of
large output, this also means faster output.

Most standard compression schemes usually operate by
building some kind of frequency table while reading the in-
put and thus have very bad compression ratio if we simply
apply them on small strings (such as URIs). In SPARQLGX we
rely on a double-step compression: prefix compression and
gzip compression.

3.2.2 Prefix compression
The first step is a simple yet efficient and very fast scheme.
Given a dataset, we compute a set of prefixes P = p1, . . . , pn
and given a URI < u > we find the longest pi such that
u = piu

′ and replace < u > with i : u′. When such a prefix
does not exist, < u > is left unchanged.

We compute P using two parameters (see Algorithm 1):
U controls the maximum size allowed for a prefix, and
k controls the total number of prefixes. P is computed
iteratively in log2(U) map-reduce steps. At each step we
compute a new set P ′ of prefixes such that each element of
P ′ is the longest prefix (among P ′) of at least k URIs. The
size of P ′ is thus bounded by the number of URIs L divided
by k. P is the union of the P ′ therefore P contains in the
worst case L× log2(U)/k elements. However, since at each
step we only keep prefixes such that there are L/k elements
with this prefix, we can expect on real data to have much
less prefixes (around k at most).

3.2.3 Gzip compression
The second step is done when the data is about to be stored
on disk, in plain files containing pairs of subject-object.
When Hadoop stores larges files, it splits them into chunks,
we compress each of those chunks using gzip. While gzip is
not the best compression algorithm (in terms of compression
ratio) it is standard and has a very fast decompression
speed; which means reading the input will not be CPU
bounded.

3.2.4 HDFS Optimization
Data are stored by HDFS as gzipped files. With HDFS, we
pay a little overhead for each chunk of each file. Further-
more, for gzip to compress efficiently, we also need the
chunks to have a reasonable size. For these reasons we
control the number of chunks so that each predicate gets

3

Algorithm 1 Computation of prefixes
L← list of URIs
U ← maximum size of a prefix
K ← number of URIs per prefix

function STEP(P , L, u)
count← empty map
for l ∈ L do

prefix← longest p ∈ P prefix of l
if |l| ≥ |prefix|+ u then

newPrefix← substring(l, |prefix|+ u)
count[newPrefix]+ = 1

end for
res← {v ∈ key(count) | count[v] ≥ K}
return res

end function

function COMPUTEPREFIX(L, U , K)
p← {“”}
u← U/2
while u 6= 0 do

p← p ∪ step(p, u)
u/ = 2

end while
return p

end function

a number of chunks proportional to the number of triples it
corresponds to.

3.3 Respective Optimizations in Practice

It is worthwhile to comment on the combined effect of the
aforementioned design choices and optimizations in prac-
tice. We thus review the respective gains brought by their
successive application on three popular datasets: WatDiv
[13], LUBM [14] and DBpedia [15].

In our tests, we choose U = 128 and k = 5000. Choosing
U = 128 seems a good fit: we set U to be a power of 2 (since
the algorithm always runs in dlog2(U)emap reduce phases)
and most URIs contains less then 128 characters (thus U ≤
128) but many contains more than 64 characters. Choosing
k = 5000 is more arbitrary: as k increases, we add to the
set of prefixes new real prefixes (such as domain names),
but if k is big enough our method arrives at a point where
the new prefixes it discovers share long common prefixes
and increasing k leads to very small benefits in terms of
compression.

For instance, DBpedia [15] stores many
of its object using URIs of the form
http://wikidata.dbpedia.org/resource/Q<id>.
Ideally our method would just add the .../Q part as
the <id> are already in a thigh representation (decimal
numbers) but in practice our method will add ...Q1
to ...Q9 and if k increases it will add Q10 to Q99, etc.
Notice that, as k increases, the set will continue to be more
and more compressed but the marginal gain will tend
to zero while the computational cost will increase. With
k = 5000 our method find 2135 prefixes starting with
http://wikidata.dbpedia.org/resource/Q. That is

why we set k = 5000, high enough so that datasets are well
compressed, but low enough for the prefix file to be very
small (133 KB for DBpedia with k = 5000 which is less than
a millisecond of transfer time in a gigabit world).

The absolute theoretical maximal number of prefixes is
k × log(U) = 35000 but, as expected, we have much less
prefixes in practice: 2319 for Lubm10k, 1764 for WatDiv10k
and 3119 for DBpedia.

Table 1 reports on the overall effect of each compression
mechanism. We see that on WatDiv the prefixing part of
our compression scheme compresses the data a lot despite a
relatively low number of prefixes: we attribute this compres-
sion to the shape of the generated data. On Lubm, it is quite
the opposite, the generated URIs start in many different
ways; for the gzip-ped version, it is the most compressed
dataset, which is because the data is redundant. DBpedia
is the least compressed, it is because there are 2149 different
predicates in DBpedia, many of them corresponding to a few
triples patterns and the gzip-ping of small files is not very
efficient.

Finally, even for a real-world dataset like DBpedia, we
end up storing around one tenth of the original dataset on
disk and our prefixization reduces the size of the data that
we manipulate during query evaluation by approximately
63% on average.

Datasets Initial VP VP+Prefixed VP+Prefixed+Gz
WatDiv10k 149 GB 102 GB 68% 21 GB 14% 11GB 7%
Lubm10k 232 GB 150 GB 65% 71 GB 31% 12 GB 5%
DBpedia 181 GB 125 GB 69% 45 GB 25% 19 GB 10%

TABLE 1: Respective dataset sizes after the successive ap-
plication of SPARQLGX’s data representation and loading
techniques.

3.4 Supported SPARQL Fragment
SPARQLGX supports the SELECT fragment of the SPARQL
query language with modifiers (see section 3.5.6) and where
the graph pattern is a query composed of triple patterns,
conjunctions, disjunctions and optionals but where conjunc-
tions (resp. optionals) are restricted to safe conjunctions
(resp. safe optionals). A formal semantics of the SPARQL
language is given in [16]. The syntax of the supported graph
patterns is given in Figure 1 and we now define the safe
criterion.

A query contains variables and a query solution is a
mapping from some of the query variables towards values.
Some of query variables must appear in all the solutions
while others might be present or not. For each variable we
can determine whether it must appear in all solutions or
whether it might appear only in some of the solutions.

A conjunction (resp. an optional) between two sub-
queries A and B is safe when all the query variables that
might appear in a solution of A and in a solution of B must
appear in all solutions of A and B.

See figure 2 for a formal definition of variable that must
or might appear and of safe JOINs and OPTIONALs.

Notice when a term contains no disjunction nor optional
all its variables are sure to appear. Our fragment thus
contains the Basic Graph Pattern (BGP) fragment of SPARQL
(conjunction of TP), extensively studied in the literature. The

4

Query :=
— TP
— Query JOIN Query
— Query OPTIONAL Query
— Query UNION Query

TP := UV UV UV

UV :=
— ?variable
— <uri>
— ”litteral”

Fig. 1: Syntax of supported SPARQL queries.

must(Q1 JOIN Q2) := must(Q1) ∪must(Q2)
must(Q1 OPTIONAL Q2) := must(Q1)

must(Q1 UNION Q2) := must(Q1) ∩must(Q2)
must(TP) := vars(TP)

might(Q1 JOIN Q2) := might(Q1) ∪might(Q2)
might(Q1 OPTIONAL Q2) := might(Q1) ∪might(Q2)

might(Q1 UNION Q2) := might(Q1) ∪might(Q2)
might(TP) := vars(TP)

safe(Q1 OPTIONAL Q2) = safe(Q1 JOIN Q2) =(
might(Q1) ∩might(Q2) = must(Q1) ∩must(Q2)

)
Fig. 2: Safe terms.

optional of BGPs is also comprised in our fragment. Given
two queries in our fragment, their union is always in our
fragment as union does not need to be safe.

3.5 SPARQL Fragment Translation

We now review the main principles with which SPARQL
queries are compiled into executable Spark code. A query
is translated recursively into Spark code which is in charge
of computing query solutions. We now present how to
translate the various elements of our language.

3.5.1 Storage of partial solutions

The partial solutions to a query Q are stored as a list (an RDD
in Spark terminology) of n-uplets where n is the number of
variables that might appear in Q. These RDDs are eventually
partitioned along a key and given two RDDs partitioned by
keys, we can efficiently compute the join (or the left-join) on
their keys.

From Spark point of view, RDDs are just n-uplets (with
eventually a key that is another k-uplet). During the com-
pilation we thus maintain an association between the i-th
component of an n-uplet and the variable it corresponds to.

Since partial solutions are all n-uplets but might not have
all the variables that might appear, we use the empty string
(i.e. "") for the value of a variable that is not bound.

3.5.2 Triple Patterns
To compute the solutions for a unique TP: when the predi-
cate is a constant, the relevant HDFS file is simply opened
with a call to Spark’s textFile method; otherwise, we
have to open all predicate files. Then, using the constants
of the TP, we use a filter to keep only the pairs (sub-
ject,object) corresponding to matching triples and map to
keep only the parts of TPs corresponding to variables. For
instance, the TP {?s age 21 .} matching people that are 21
years old is translated into:

val tp=sc.textFile("age.txt")
.filter{case(s,obj)=>obj==21}
.map{case (s,obj) => s}

3.5.3 Conjunctions
In order to translate a conjunction of two subqueries Q1 and
Q2, each Qi is first translated. Since conjunctions are all safe
(see Section 3.4), the set of common variables between two
mappings of Q1 and Q2 is known at compile time. Therefore
the conjunction can be performed using a classic join using
their common variables as a key.

When needed, we can use keyBy in Spark to repartition
both partial solutions along their common variables. The
materialization of the conjunction is realized with the join
keyword. After the join the resulting RDD is a triple of
the key used, the columns from Q1 and the columns from
Q2. We reshape the RDD using the keyword mapValues to
inform spark that the partitioning is not invalidated since
we only changed the values.

For example the TPs {?s age 21 . ?s gender ?g .} are
translated into:

val tp1=sc.textFile("age.txt")
.filter{case(s,obj)=>obj==21}
.map{case (s,obj) => s}
.keyBy{case s=>s}

val tp2=sc.textFile("gender.txt")
.keyBy{case(s,g)=>s}

val bgp=tp2.join(tp1)
.mapValues{
case((tp2s,tp2g),(tp1s))=>(tp2s,tp2g)

}

A join with no common variables corresponds to a cross
product (cartesian in Spark).

3.5.4 Optionals
A query of the form Q1 OPTIONAL Q2 can be translated
in the following way. Since the optionals are safe (as for
conjunctions) there is a set of common variables. Once
both Qi are translated, we perform a left join between the
translation of Q1 and Q2.

Just like for conjunction we first apply an even-
tual keyBy on the translation of both Qi then we do
a leftOuterJoin and then we need to reshape with
a mapValues. However contrary to the joins in the
mapValues we need to account for columns that are present
multiple times but also for the fact that the Q2 might be
missing.

The query {?s age 21 OPTIONAL ?s gender ?g .}, for
example, is translated into:

5

val opt=tp1.leftOuterJoin(tp2)
.mapValues{
case((tp1s),None)=>(tp1s,"")
case(tp1s,Some((tp2s,tp2g)))=>(tp1s,tp2g)

}

3.5.5 Disjunctions

For disjunctions, we need to first translate both subqueries,
discard the keys if they don’t match, extend (with the value
"") and re-order the set of columns of each subquery so they
have the same set of columns in the same order and finally
return the union using the keyword union.

The query {?s age 21 UNION ?s gender ?g .}, for
example, is translated into:

val extended_tp1 = tp1.map{case s => (s,"")}
val uni = extended_tp1.union(tp2)

3.5.6 Modifiers

Once the query is translated, we use a map to retain only
the desired fields (i.e. the distinguished variables) of the
query. At that stage, we can also modify results according to
the SPARQL solution modifiers [3] (e.g. removing duplicates
with distinct, sorting with sortByKey, returning only
few lines with take, etc.)

The obtained translation (the Scala/Spark code) thus
depends on the initial order of TPs since the joins will be
performed in the same order. This is prone to optimizations
based on join commutativity which we now present.

3.6 Optimized Join Order With Statistics

The evaluation process (using Spark) first evaluates TPs
and then joins these subsets according to their common
variables; thus, minimizing the intermediate set sizes in-
volved in the join process reduces evaluation time (since
communication time between workers is reduced). Thereby,
statistics on data and information on intermediate results
sizes provide useful information that we exploit for optimi-
sation purposes.

Given an RDF dataset D having T triples, and given a
place in an RDF sentence k ∈ {subj, pred, obj}, we define
the selectivity in D of an element e located at k as: (1) the
occurrence number of e as k in D if e is a constant; (2) T
if e is a variable. We note it selkD(e). Similarly, we define
the selectivity of a TP (a b c .) over an RDF dataset D as:
SELD(a, b, c) = min(selsubjD (a) , selpredD (b) , selobjD (c)).

Thereby, to rank each TP, we compute statistics on
datasets counting all the distinct subjects, predicates and
objects. This is implemented in a compile-time module that
sorts TPs in ascending order of their selectivities before they
are translated.

Finally, we also want to avoid cartesian products. Given
an ordered list l of TPs we compute a new list l′ by repeating
the following procedure: remove from l and append to l′ the
first TP that shares a variable with a TP of l′. If no such TP
exists, we take the first.

Before translating a query, we use an additional module
that implements this idea in order to sort the TPs in ascend-
ing order of their selectivities.

3.7 SDE: SPARQLGX as a Direct Evaluator
Our tool evaluates SPARQL queries using Apache Spark
after preprocessing RDF data. However, in certain situations,
data might be dynamic (e.g. subject to updates) and/or
users might only need to evaluate a single query (e.g. when
evaluation is integrated into a pipeline of transformations).
In such cases, it is interesting to limit as much as possible
both the preprocessing time and the query evaluation time.

To take the original triple file as source, we only have to
modify in our translation process the way we treat TPs to
change our storage model. Instead of searching in predicate
files, we directly use the initial file; and the rest of the
translation process remains the same. We call this variant
of our evaluator the “direct evaluator” or SDE.

4 EXTENDED EVALUATION

In this Section, we report on extensive practical experiments
made with SPARQLGX, and provide a detailed comparative
analysis with other state-of-the-art evaluators. This provides
a fresh perspective on distributed SPARQL evaluators, based
on a multi-criteria ranking obtained through extensive ex-
periments. Specifically, we propose a set of five principal
features (namely velocity, immediacy, dynamicity and re-
siliency) which we use to rank evaluators. Each system
exhibits a particular combination of rankings accross these
features.

Our suggested set of features provides a more compre-
hensive description of the behavior of a distributed evalua-
tor when compared to traditional performance metrics. We
show how it helps in more accurately evaluating to which
extent a given system is appropriate for a given use case.
For this purpose, we systematically benchmarked a panel of
10 state-of-the-art implementations. We ranked them using
this reading grid to pinpoint the advantages and limitations
of SPARQLGX and the current competing SPARQL evaluation
systems.

4.1 Methodology For Experiments
For studying how well the distribution techniques perform,
we tested the 10 systems presented in Section 4.2 with
queries from two popular benchmarks (LUBM and WatDiv),
which we evaluated on several datasets of varying size.
We precisely monitored the behavior of each system using
several metrics encompassing e.g. total time spent, CPU and
RAM usage, as well as network traffic. In this Section, we
describe our experimental methodology in further details.

4.1.1 Datasets and Queries
As introduced in Section 3.4, we focus here on the Basic
Graph Pattern (BGP) fragment which is composed of the
set of conjunctive queries. It is also the common fragment
supported by all tested stores and thus provides a fair and
common basis of comparison.

Also for a fair comparison of the systems introduced in
Section 4.2, we decided to rely on third-party benchmarks.
The literature about benchmarks is also abundant (see e.g.
[17] for a recent survey). For the purpose of this study,
we selected benchmarks according to two conditions: (1)
queries should focus on testing the BGP fragment and (2)

6

the benchmark must be popular enough in order to allow
for further comparisons with other related studies and em-
pirical evaluations (such as [18] for instance). In this spirit,
we retained the LUBM benchmark1 [14] and the WatDiv
benchmark2 [13].

LUBM is composed of two tools: a determinist para-
metric RDF triples generator and a set of fourteen queries.
Similarly, WatDiv offers a determinist data generator which
creates richer datasets than the LUBM one in the sens of the
number of classes and predicates, in addition, it also comes
with a query generator and a set of twenty query templates.
We used several standard LUBM and WatDiv datasets with
varying sizes to test the scalability of the compared RDF
datastores. Table 2 presents the characteristics of datasets
we used. We selected in particular these three ones because
they are gradually RAM-limiting: the WatDiv1k dataset can
be held in memory of one single VM, the Lubm1k dataset
becomes too large and Lubm10k is larger than the whole
available RAM of our cluster.

Datasets Number of Triples Size
WatDiv1k 109 million 15 GB
Lubm1k 134 million 23 GB
Lubm10k 1.38 billion 232 GB

TABLE 2: Size of sample datasets.

We evaluated on these datasets the provided LUBM
queries and generated the WatDiv queries according to the
provided templates. LUBM queries (Q1-Q14) were made
to represent real-world queries while remaining in the BGP
fragment of SPARQL and with a small data complexity (the
size of the answer for a query is always almost linear in
the size of the dataset). In addition, in the LUBM query
set, we notice that one query is challenging: Q2 since it
involves large intermediate results and implies a complex
join pattern called “triangular”. WatDiv queries compared
with LUBM ones involved more predicates and classes.
Furthermore, WatDiv developers already group query tem-
plates according to four categories: linear queries (L1-L5),
star queries (S1-S7), snowflake-shaped queries (F1-F5) and
complex queries (C1-C3).

In addition, we can represent a BGP query by a graph
where each node corresponds to a triple pattern and where
edges between nodes represent a common variable. As
presented respectively in Tables 3 & 4, LUBM and WatDiv
queries can be grouped according to their variable graphs.
Moreover, the WatDiv query graphs (Table 4) show alternate
grouping methods – i.e. C3, F2 and F4 are all variations
around an hexagonal graph – than the one presented in [13].

4.1.2 Metrics
During our tests we monitored each task by measuring not
only time spent but a broader set of indicators:

1) Time (Seconds): simply measures the time taken by
the system to complete a task.

2) Disk footprint (Bytes): measures the use of disks
for a given dataset size including indices and any
auxiliary data structures.

1. http://swat.cse.lehigh.edu/projects/lubm/
2. http://dsg.uwaterloo.ca/watdiv/

Q6,Q14 • Q1,Q3,Q5,Q10,Q11,Q13 • •

Q7,Q12

• ••

• Q8

• ••

••

Q2,Q9

• •

••

• • Q4

•

•
•

•
•

TABLE 3: Variable graphs associated to LUBM queries.

L3,L4 • • L1,L2,L5 • • • S6,S7 •

•

•

S2,S3,S4,S5 •

•

•

•

F1,F3,F5 •

•

•

••

• C1 •

•

•

••

••

•

C3

•

••

•

• • F2

•

••

•

• •

•

• F4

•

••

•

• •

•

••

S1

•
••

•

•

• •
•

•

C2

• • • • • •

• •

•

•

TABLE 4: Variable graphs associated to WatDiv queries.

3) Disk activity (Bytes/second): measures at each instant
the amount of bytes written on and read from the
disks during processes.

4) Network traffic (Bytes/second): measures how much
data is exchanged between nodes in the cluster.

5) CPU usage (percentage): measures how much the CPU
is active during the computation.

6) RAM usage (Bytes): measures how much the RAM is
used by the computation.

7) SWAP usage (Bytes): measures how much SWAP is
used. Such a metric will be particularly measured
when the system runs out of RAM and thus be often
omitted.

4.1.3 Cluster Setup
Our experiments were conducted on a cluster composed of
Virtual Machines (VMs) hosted on two servers. The first
server has two processors Intel(R) Xeon(R) CPU E5-2620
cadenced at 2.10 GHz, 96 GigaBytes (GB) of RAM and hosts
five VMs. The second server has two processors Intel(R)
Xeon(R) CPU E5-2650 cadenced at 2.60GHz with 130 GB
of RAM and hosts 6 VMs: 5 dedicated to the computation
(like the 5 VM of the first server) plus one special VM
that orchestrates the computation. Each VM has dedicated
2 physical cores (thus 4 logical cores), 17 GB of RAM and
6 TeraBytes (TB) of disk. The network allows two VMs to
communicate at 125 MegaBytes per Seconds (MB/s) but the
total link between the two servers is limited at 110 MB/s.
The read and write speeds are 150 MB/s and 40 MB/s
shared between the VM on the first server and 115 MB/s
and 12 MB/s shared between the VM of the second server.

4.1.4 Extensive Experimental Results
We made our extensive experimental results openly avail-
able online3 with more detailed information. In particular,
for reproducibily purposes, we wrote tutorials on how to

3. http://tyrex.inria.fr/sparql-comparative/home.html

7

install and configure the various tested evaluators and re-
port all the versions of the systems we used. We also share
measurements and graphs for all the considered metrics and
for each node.

In the rest of the paper, we focus on summarizing and
discussing the essence of the lessons that we learned from
our experiments. In Section 4.3 we report on the overall be-
havior of each system pushed to the limits during the tests.
In Section 4.4 we further discuss and develop a comparative
analysis guided by practical features that imply different
requirements.

4.2 Benchmarked datastores
In addition to the evaluators we proposed (i.e. SPARQLGX
and SDE in their first version), we also benchmarked several
popular evaluators that we briefly describe here focusing on
their particularities for supporting RDF querying.

We used several criteria in the selection of the SPARQL
evaluators tested. First, we choose to focus on distributed
evaluators so that we can consider datasets of more than
1 billion triples which is larger than the typical memory
of a single node in a commodity cluster. Furthermore, we
retained systems that support at least a minimal fragment
of SPARQL composed of conjunctive queries and called the
BGP fragment (further detailed in Section 3.4). We focused
on open-source systems. We wanted to include some widely
used systems to have a well-known basis of comparison,
as well as more recent research implementations. We also
wanted our candidates to represent the variery and the
richness of underlying frameworks, storage layouts, and
techniques found – see e.g. taxonomies of [19] and [20] –, so
that we can compare them on a common ground. We finally
selected a panel of 10 candidate implementations, presented
in Table 5.

Table 5 also summarizes the characteristics of the sys-
tems we used in our tests. We split our panel of 10 im-
plementations into subcategories. The first category, called
standalone systems, gathers systems that distribute data using
their own custom methods. In contrast, all the other systems
use the well-known HDFS distributed file system [6] for this
purpose. HDFS handles the distribution of data across the
cluster and its replication. It is a tool included in the Apache
Hadoop4 project which is a framework for distributed sys-
tems based on the MapReduce paradigm [5].

We further subdivide the HDFS-based systems into two
categories: the preprocessing-based evaluators and the direct
SPARQL evaluators. The first category requires some prepro-
cessing whereas direct SPARQL evaluators use distributed
data without preprocessing. We first summarize some re-
quired background on SPARQL and then further review the
candidates of each category below.

4.2.1 Standalone Datastores
4store: 4store5 is a native RDF solution introduced

in [21]. 4store has an index to translate URIs to identifiers,
which allows a space-efficient representation of triples. For
each predicate it uses two indexes (subject to object and
object to subject) for optimizing query evaluation. 4store

4. http://hadoop.apache.org/
5. http://4store.org/

distinguishes two types of cluster nodes: some nodes only
store data while others are responsible for parsing, commu-
nicating with storage nodes and aggregating the results.

CumulusRDF: CumulusRDF6 [22] relies on Apache
Cassandra7 [23] and mixes two strategies: indexing and
hashing. Each triple is hashed and distributed through
Cassandra. Additionally the CumulusRDF layer computes
indexes to optimize the search of triples satisfying TPs.

CouchBaseRDF: CouchBase8 is not a native RDF solu-
tion but a document-oriented NoSQL database system, well-
known in the NoSQL world. The specificity of this datastore
is that it adopts an in-memory approach where a dataset
is distributed on the main memory of the cluster’s nodes.
This is a limitation because the whole dataset has to fit
inside the global RAM – but this speeds up query evaluation.
Querying is done by MapReduce rounds on CouchBase
controlled by Apache Jena9, which optimizes the execution
plan. CouchBaseRDF [18] transforms CouchBase into an
RDF solution. It maps the RDF triples onto JSON documents,
each document corresponds to a subject and contains two
JSON arrays of the same size: the predicates and the objects.
This encoding is used to optimize the retrieval of triples
when the subject is fixed. Three views are pre-generated to
cover other TPs (when predicate, object or both are fixed
values).

4.2.2 HDFS-based Datastores

RYA: RYA [24] is a native RDF solution leveraging
Apache Accumulo that creates three indexes and stores
them in Accumulo. Accumulo then sorts and partitions
these tables across the nodes, storing data on the HDFS.

S2RDF: S2RDF [25] uses SparkSQL to store RDF
triples. SparkSQL [26] is a library built to leverage relational
data on top of Apache Spark [4]. It allows users to regis-
ter files as tables and then to query them using the SQL
relational query language. It thus offers a way to set up
a distributed relational store, potentially leveraging years
of research in relational database systems. S2RDF adopts
the vertical partitioning [9] to construct its tables and also
computes additional tables based on pre-computation of
possible joins representing co-occurrence of a variable in
two different fields. Before the evaluation, S2RDF translates
SPARQL queries into SQL ones using statistics on orignal data
(generated during the preprocessing phase) to order joins by
selectivity.

CliqueSquare: CliqueSquare [27] is a native RDF solu-
tion. The specificity of CliqueSquare lays in trying to reduce
the response time by flattening execution plans. Specifically,
it implements optimizations whose goal is to minimize the
height of the tree of joins in execution plans. It does so in
the query optimization phase but also in the way it stores
data. Each node is responsible for a set of values storing all
triples containing these values as subject, predicate or object
(a triple is thus stored, at most, thrice).

PigSPARQL: PigSPARQL [28] compiles a SPARQL
fragment to PigLatin [29], which is a programming language

6. http://code.google.com/p/cumulusrdf/
7. http://cassandra.apache.org/
8. http://www.couchbase.com/
9. https://jena.apache.org/

8

Systems Underlying Framework Storage Back-End Storage Layout SPARQL Fragment

Standalone
Datastores

4store — Data Fragments Indexes SPARQL 1.0
CumulusRDF Cassandra Key-Value store 3 hash and sorted indexes SPARQL 1.1

CouchBaseRDF CouchBase Buckets 3 views Basic Graph Pattern

HDFS-based
Datastores with
preprocessing

RYA Accumulo Key-Value store on HDFS 3 sorted indexes Basic Graph Pattern
SPARQLGX Spark Files on HDFS Vertically Partitioned Files Basic Graph Pattern

S2RDF SparkSQL Tables on HDFS Extended Vertically Partitioned Files Basic Graph Pattern
CliqueSquare Hadoop Files on HDFS Indexes Basic Graph Pattern

HDFS-based Direct
Evaluators

PigSPARQL PigLatin Files on HDFS N-Triples Files SPARQL 1.0
RDFHive Hive Relational store on HDFS Three-column Table Basic Graph Pattern

SDE Spark Files on HDFS N-Triples Files Basic Graph Pattern

TABLE 5: Systems used in our tests.

for distributed systems. PigSPARQL has no actual loading
phase. It reads its data directly from the HDFS in the N-
Triples W3C standard [8] (i.e. a plain text file, with one triple
per line with space as the field separator). The PigSPARQL
compilation tries to optimize the execution plan through
basic writing rules. Such programs are then executed by
series of MapReduce jobs.

RDFHive: Apache Hive [30] provides a mechanism
to store structured data using relational tables on-top of the
HDFS. For the needs of this study, we further developed
RDFHive10 to analyze how distributed relational systems
behave with RDF data [1]. To this end, we load N-Triples
RDF files [8] into a triple column table: one column for
each RDF sentence field. Then, to evaluate SPARQL queries,
we translate them into Hive-QL queries (a specific SQL-like
query language) before running them. RDFHive is thereby
an other member of the category of SPARQL direct evalua-
tors.

4.3 Overall Behavior of Systems
In this Section we report on the overall behavior of each
tested systems for the three datasets presented in Table 2,
namely WatDiv1k, Lubm1k and Lubm10k. These datasets
constitute appropriate yardsticks for studying how the
tested systems behave when the dataset size grows, with the
characteristics of the cluster used (cf. Section 4.1.3). Specif-
ically, the WatDiv1k dataset can still be held in memory of
one single VM, while the Lubm1k dataset becomes too large.
Lubm10k is even larger than the whole available RAM of the
cluster.

Figure 3a presents the times spent by each datastore
for preprocessing the datasets11. Figure 3b summarizes the
problematic cases. Figures 3c, 3d & 3e respectively show
the elapsed times for evaluating queries over WatDiv1k,
Lubm1k and Lubm10k.

We further comment on the behavior of each system
pushed to the limits below, and conclude this section with
comparative and more general observations.

4store: 4store achieves to load Lubm1k in around
3 hours (Figure 3a). But it spent nearly three days (69
hours) to ingest the 10 times larger dataset Lubm10k. While
the progression was observed to be linear to load smaller
datasets (i.e. a 2 times larger set was twice longer to load),
4store slowed down with a billion of triples. To execute
the whole set of LUBM queries on Lubm1k (Figure 3d),
4store never spent more than one minute evaluating each

10. http://tyrex.inria.fr/rdfhive/home.html
11. Times reported for the HDFS-based systems do not include the

times required to import the original files on the distributed file system.

query except Q1, Q2 and Q14 (respectively 64, 75 and 109
seconds). Furthermore, it achieves sub-second response time
for WatDiv queries (excepting C2 and C3) with WatDiv1k
(Figure 3c).

CumulusRDF: CumulusRDF is very slow to index
datasets: it took almost a week only to preprocess Lubm1k
(Figure 3a). By loading smaller datasets (e.g. Lubm100 or
Lubm10), we notice that the empirical loading time is pro-
portional to the dataset size. That is why we decided not
to test it on Lubm10k which is 10 times larger. During
the evaluation of the LUBM set of queries on Lubm1k
(Figure 3d), the test of CumulusRDF revealed three points.
(1) Q2 and Q9 which are the most difficult queries of the
benchmark (see Section 4.1.1) took repectively almost 5000
seconds and 2500 seconds. (2) Q14 answered in 1600 seconds
seems to slow CumulusRDF because of its large output. (3)
The remaining queries were all evaluated in less than 20
seconds.

CouchBaseRDF: We recall that CouchBaseRDF is an
in-memory distributed datastore, which means that datasets
are distributed on the main memory of the cluster’s nodes.
As expected, loading Lubm10k, which is larger than the
whole available RAM on the cluster, was impossible. Ac-
tually, it crashed our cluster after more than 16 days i.e. all
the nodes were frozen; and we had to crawl the logs in
order to find that it ran out of RAM and SWAP after only
indexing nearly one third of the dataset. CouchBaseRDF
evaluates quickly queries on Lubm1k (Figure 3d), compared
to the other evaluators; but it fails answering Q2 and Q14
throwing an exception after two minutes. We also show
(Figure 3c) that CouchBaseRDF is slow to evaluate C2 (about
2000 seconds) and fails with an exception evaluating C3.

RYA: RYA achieves to load WatDiv1k and Lubm1k in
less than one hour and preprocesses Lubm10k in less than 10
(Figure 3a). However, we note that it needs more preprocess-
ing time with WatDiv1k (15GB) than with Lubm1k (23GB)
due to the larger number of predicates WatDiv involves.
RYA was not able to answer three queries: C2 & C3 of Wat-
Div and Q2 of LUBM. In these cases, RYA runs indefinitely
without failing or declaring a timeout. To answer the rest
of the queries (Figures 3c & 3d), RYA needs less than 10
seconds for most of the LUBM queries excepting Q1, Q3 and
Q14. With WatDiv1k, RYA has response times varying over
three orders of magnitude e.g. L4 which needs 10 seconds
and F3 needs 10819. Thanks to its sorted tables (on top of
Accumulo), RYA is able to answer quickly queries which
involving small intermediate results; therefore, it needs the
same amount of time with Lubm10k (Figure 3e) than with
Lubm1k (Figure 3d).

9

4store CliqueSquare CouchBaseRDF CumulusRDF PigSPARQL RDFHive RYA S2RDF SDE SPARQLGX

watdiv1k lubm1k lubm10k
103

104

105

Ti
m

e(
s)

(a) Preprocessing Time.

Evaluator WatDiv1k Lubm1k Lubm10k
CliqueSquare F1,2,5 & S2,3,5,6,7 Parser ∅ ∅

CouchBaseRDF C3 Failure Q2,14 Failure Pre-processing Failure
RDFHive ∅ Q2 Timeout Q2 Timeout

RYA C2,3 Timeout Q2 Timeout Q2 Timeout
S2RDF ∅ ∅ Pre-processing Failure

SDE ∅ Q2 Timeout Q2 Timeout

(b) Failure Summary for problematic evaluators.

C1 C2 C3 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7
10−1

100

101

102

103

104

Ti
m

e(
s)

(c) Query Response Time with WatDiv1k.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
100

101

102

103

104

Ti
m

e(
s)

(d) Query Response Time with Lubm1k.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
100

101

102

103

104

Ti
m

e(
s)

(e) Query Response Time with Lubm10k.

Fig. 3: Loading and response time with various datasets.

10

SPARQLGX: Thanks to its data storage model (i.e.
the Vertical Partitioning), SPARQLGX achieved to preprocess
Lubm1k in less than one hour as it does with WatDiv1k
(Figure 3a). SPARQLGX preprocesses Lubm10k in about 11
hours. As shown in Figure 3d, all queries but Q2 and Q9
have been evaluated on this dataset in less than 30 seconds.
Indeed, these two ones took respectively 250 and 36 seconds.
Figure 3c shows that SPARQLGX always answer the WatDiv
queries in less than one minute, and the average response
time is 30 seconds.

S2RDF: While S2RDF was able to preprocess Wat-
Div1k and Lubm1k correctly (Figure 3a), it fails with
Lubm10k throwing a memory space exception. Nonetheless,
we also notice that preprocessing WatDiv1k was about two
times longer than preprocessing Lubm1k; this counterintu-
itive observation can be explained by the vertical partition-
ing extension strategy used by S2RDF. Since it computes ad-
ditional tables based on pre-computation of possible joins,
it has to generate more additional table when the number of
distinct predicate-object combinations increases. To evaluate
WatDiv queries, S2RDF always needs less than 200 seconds
excepting F1 (Figure 3c) and the average response time is
140 seconds. Figure 3d presents the S2RDF results with
Lubm1k, we notice that all queries are aswered in less
than 300 seconds excepting Q2 which exceeds one thousand
seconds due to its large intermediate results that have to be
shuffled across the cluster.

CliqueSquare: CliqueSquare achieves to load Wat-
Div1k, Lubm1k and Lubm10k (Figure 3a). Figures 3d & 3e
show how its storage model impacts its performances com-
pared to the other evaluators. Actually, having a large
number of small files allows CliqueSquare to evaluate the
LUBM queries having small intermediate results in the same
temporal order of magnitude on Lubm10k as the one needed
on Lubm1k (see e.g. Q10). We notice that CliqueSquare
cannot establish a query plan for the WatDiv queries with its
SPARQL parser reporting that the URIs were not “correctly
formated”. We finally succeeded to evaluate some queries
by modifying their syntax as explained in our website. Un-
fortunately, it appears that we cannot hack queries having at
least such a predicate: “<. . . #type>” (i.e. F1, F2, F5, S2, S3,
S5, S6 and S7) unless we modify Cliquesquare’s source code.
Nonetheless, CliqueSquare needs 12 seconds in average to
answer each WatDiv linear query, and spends more than one
minute to evaluate each complex one (Figure 3c).

PigSPARQL: PigSPARQL evaluates directly the
queries after a translation from SPARQL to a PigLatin se-
quence. Thus, there is no preprocessing phase, we just have
to copy the triple file on the HDFS. As shown in Figure 3d,
PigSPARQL needs more than one thousand seconds to
answer queries 2, 7, 8, 9 and 12 on Lubm1k while the
other queries take around 200 seconds. We observe the
same behaviors when evaluating these queries on Lubm10k
(Figure 3e). Similarly, the same order of magnitude applies
with WatDiv1k (Figure 3c).

RDFHive: RDFHive only needs a triple file loaded
on the HDFS to start evaluating queries. It appears that
RDFHive was unable to answer Q2 of LUBM i.e. no matter
the time allowed, it could not finish the evaluation. On
Lubm1k (Figure 3d), we also notice that each remaining
query is evaluated on Lubm1k in a 200 to 450 seconds

period with a 256-second average response time. Similarly
(Figure 3c), RDFHive has 289-second average response time
with WatDiv1k.

SDE: Since SDE is a SPARQL direct evaluator, it does
not need any preprocessing time to ingest datasets. Its aver-
age response times with WatDiv1k, Lubm1k and Lubm10k
(Figures 3c, 3d & 3e) are respectively 60, 51 and 1460
seconds. We observe that the average response time with
Lubm10k is about 28 times larger than the one with Lubm1k
(which is 10 times larger) indeed Q4, Q7, Q8, Q9, Q12 and
Q14 do not perform well because of their large intermediate
results.

General Observations: A first lesson learned is that,
for the same query on the same dataset, elapsed times can
differ very significantly (the time scale being logarithmic)
from one system to another (as shown for instance on
Figure 3d).

Interestingly, we also observe that, even with large
datasets, most queries are not harmful per se, i.e. queries that
incurr long running times with some implementations still
remain in the “comfort zone” for other implementations,
and sometimes even representing a case of demonstration
of efficiency for others. For example, the response times
for Q12 with Lubm1k (see Figure 3d) span more than 3
orders of magnitude. Interestingly and more generally, for
each query, there is at least a difference of one order of
magnitude between the times spent by the fastest and the
slowest evaluators.

These observations gave rise to the further comparative
analysis guided by criteria (and supplemented with addi-
tional metrics) that we present in Section 4.4.

4.4 Comparative Analysis Driven By Features
The variety of RDF application workloads makes it hard to
capture how well a particular system is suited compared
to the others in a way based exclusively on time measure-
ments. For instance, consider these five features that have
different needs and where the main emerging requirement
is not the same:

• Velocity: applications might favour the fastest possi-
ble answers (even if that means storing the whole
dataset in RAM, when possible).

• Immediacy: applications might need to evaluate some
SPARQL queries only once. This is typically the case
of some pipeline extraction applications that have to
extract data cleaned only once.

• Dynamicity: applications might need to deal with
dynamic data, requiring to react to frequent data
updates. In this case a small preprocessing time (or
the capacity to react to updates in an incremental
manner) is important.

• Resiliency: applications that process very large data
sets (spanning accross many machines) with complex
queries (taking e.g. days to complete) might favour
forms of resiliency for trying to avoid as much as
possible to recompute everything when a machine
fails because it is likely to happen.

Since many applications actually combine these require-
ments by affecting more or less importance to each, we be-
lieve that they represent a good basis on which to compare

11

23.5682%
32.3856%

11.8736%

9.0490%

16.9112%

6.2121%

(a) 4store

23.7396%

.1521%.0487%.0236%

76.0108%

.0251%

(b) CumulusRDF

5.9896%

31.8055%

15.0060%

35.5689% 5.1403%

6.4894%

(c) CouchBaseRDF

8.3814%

89.5630% .8128%.4007%.4423%.3994%

(d) RYA

2.8169%

15.3169%

7.7464%4.7535%

62.6760% 6.6901%

Q6 Q14
Q1 Q3 Q5 Q10 Q11 Q13
Q7 Q12
Q8
Q2 Q9
Q4

(e) SPARQLGX

1.8802%

9.0216%
37.2135%

19.1684%

29.8564%

2.8595%

(f) PigSPARQL

10.9712%
40.7973%

16.4568%

10.6115%
12.7398%

8.4232%

(g) RDFHive

8.3209%

37.5928%

18.4249%

10.5497% 12.9271%

12.1842%

(h) SDE

2.7748%
77.3413%

3.3141%.9558%

8.8773%

6.7363%

(i) CliqueSquare

4.7255%

16.9691%

7.8346%4.6472%

59.4464%
6.3769%

Q6 Q14
Q1 Q3 Q5 Q10 Q11 Q13
Q7 Q12
Q8
Q2 Q9
Q4

(j) S2RDF

Fig. 4: Time distributions with Lubm1k.

4store CliqueSquare CouchBaseRDF CumulusRDF PigSPARQL

RDFHive RYA S2RDF SDE SPARQLGX

1 10 20 30 40 50 60 70 80 90 100
102

103

104

105

(a) lubm1k: Q1,Q3,Q5,Q10,Q11,Q13

1 10 20 30 40 50 60 70 80 90 100

103

104

105

106

(b) lubm1k: Q8

1 10 20 30 40 50 60 70 80 90 100
102

104

106

(c) watdiv1k: L1,L2,L3,L4,L5

Fig. 5: Tradeoff between preprocessing and query evaluation times (seconds).

the tested systems. In this Section, we thus further compare
the tested stores by analysing the metrics introduced in
Section 4.1.2 according to the five aforementioned require-
ments. For the sake of brevity, we will directly refer to these
requirements as “velocity”, “immediacy”, “dynamicity” and
“resiliency” in the rest of the paper.

4.4.1 Velocity The Faster, The Better

Figure 3d shows the time per query using Lubm1k as
dataset for each tested store. The logarithmic scale allows
to easily observe the various magnitude orders required
to execute queries. It is then possible to notice significant
differences between e.g. CumulusRDF that needs more than
104 seconds to answer Q2 or Q14 while for instance 4store
always has response times included in [10, 100] seconds.
More generally, it appears that Q2 incurrs the longest re-
sponse times because of its triangular pattern and its large
intermediate results. If we compute the sum of the response
times for all the queries of Lubm1k for each evaluator, we
notice that our candidates have performances spanning over
three orders of magnitude from 568 seconds with SPARQLGX
and 67718 seconds with CumulusRDF. Thereby, to execute
the whole set of 14 LUBM queries, SPARQLGX and 4store
constitute the fastest solutions.

In addition, Figure 3d also shows that some stores seem
to behave similarly (according to the time metric alone) with
some queries e.g. PigSPARQL needs the same order of mag-
nitude for evaluating Q2, Q7, Q8, Q9, Q12. That is why we
group LUBM queries by their graph variables (introduced
in Table 3) in Figure 4 to represent time distributions for
each store, excluding failed queries listed in Figure 3b. For
instance, Figure 4b shows that 99% of the CumulusRDF time
is consumed by the evaluation of Q2, Q9 and Q14. This
representation also allows to notice similarities between
stores, for example we show that because they both rely on
Apache Spark, S2RDF (Figure 4j) and SPARQLGX (Figure 4e)
present the same distributions; indeed, their joining method
is common even if S2RDF uses the SparkSQL layer. The
time distributions also highlight that RDFHive (Figure 4g)
and SDE (Figure 4h) which are both direct evaluators share
similar pies: because (1) they have to read the entire source
file before joining and (2) their join plans are the same since
they do not order triple patterns prior to the execution.
Figure 4f shows that PigSPARQL is essentially slow for
evaluating Q2,Q7,Q8,Q9,Q12 (≈85% of the time); in fact, we
discover that PigSPARQL is slow if there are striclty more
than two joins involved in the query.

More generally, this discussion around the variable
graphs highlights the RDF storage methods implemented

12

by the considered SPARQL evaluators presented in Table 5
and classified in literature in e.g. [20]. SPARQLGX and S2RDF
both share similar pie-charts and vertical partitioning on
top of Apache Spark. The triple table approach adopted by
RDFHive and SDE also provides similar charts since these
evaluators have to read at least once the whole dataset
before starting to join.

4.4.2 Immediacy Preprocessing is Investing
The preprocessing time required before querying can be
seen as an investment i.e. taking time to preprocess data
(load/index) should imply faster query response time, off-
seting the time spent in preprocessing. To illustrate when the
trade-off is really worth, Figure 5 presents the preprocessing
costs for Lubm1k and WatDiv1k in various cases related
to the query types presented in Table 3. In other words,
we draw on a logarithmic time scale for each evaluator the
affine line y = ax + b where a is the average time required
to evaluate one of the considered queries and where b is the
preprocessing time; for instance in Figure 5c, a will represent
the average time to evaluate one WatDiv linear query.

Among competitors, we distinguish the set of “direct
evaluators” (See Table 5) that are capable of evaluating
SPARQL queries at no preprocessing cost (they do not require
any preprocessing of RDF data): PigSPARQL, RDFHive and
SDE. As shown in Figure 5, SDE outperforms all the other
datastores if less than 20 queries are evaluated. Beyond this
threshold, SPARQLGX or RYA become more interesting. In
addition, we also notice that in some cases (for instance
Q8, see Figure 5b) PigSPARQL provide worse performances
than RYA or SPARQLGX all the time.

These statements are also related to RDF storage
approaches; indeed, the more complex it is, the less
immediacy-efficient the evaluator is. As a consequence, we
can rank for this feature the various storage methods from
the best ones: first the schema-carfree triple table of the
direct evaluators, next the vertical partitioning, then the key-
value table (e.g. RYA) and finally the complicated indexing
methods.

4.4.3 Dynamicity Changing Data
We now examine how the tested stores can be set up to react
to frequent data changes. The W3C proposes an extension of
SPARQL to deal with updates12. Instead of re-loading all the
datasets after each single change, some solutions can be set
up to load bulks of updates. To the best of our knowledge,
there is no widely-used benchmark dealing exclusively with
the SPARQL Update extension. That is why we develop
a basic experimental protocol based on both LUBM and
WatDiv benchmarks. It can be divided into three steps: (1)
We load a large dataset i.e. Lubm1k (Table 2) and evaluate
the simple LUBM query Q1 then we measure performances
for preprocessing and query evaluation. (2) We add a few
RDF triples to modify the output of Q1; we run again Q1
and then remove the freshly added triples while measuring
the time for each step. (3) Finally, we reproduce the previous
step with a larger number of triples using WatDiv1 (which
contains about one hundred thousand triples) and querying
with C1. Although simple, our protocol allows testing the

12. https://www.w3.org/Submission/SPARQL-Update/

Systems Lubm1k (GB) WatDiv1k (GB)
S2RDF 13.057 15.150

RYA 16.275 11.027
CumulusRDF 20.325 –

4store 20.551 14.390
CouchBaseRDF 37.941 20.559

SPARQLGX 39.057 23.629
CliqueSquare 55.753 90.608
PigSPARQL 72.044 46.797

RDFHive 72.044 46.797
SDE 72.044 46.797

TABLE 6: Disk Footprints (including replication).

several features such as inserting/deleting a few triples
and a large bulk of triples. The benchmarked datastores
exhibit various behaviors. First, the direct evaluators (e.g.
PigSPARQL, RDFHive and SDE) evaluate queries without
requiring a preprocessing phase. In that case, updating a
dataset boils down to editing a file on the HDFS and retrig-
gering query evaluation. Second, other datastores simply
do not implement any support (even partial) of updates.
This category of stores (e.g. S2RDF, CumulusRDF, Couch-
BaseRDF, RYA or CliqueSquare) thus forces the reprocessing
of the whole dataset. Third, some of the benchmarked data-
stores are able to deal with dynamic datasets i.e. 4store and
SPARQLGX. 4store implements the SPARQL Update extension
whereas SPARQLGX offers a set of primitives to add or delete
sets of triples. Moreover, unlike 4store, SPARQLGX is also
able to delete in one action a large set of triples, whereas
4store needs to execute several “Delete Data”-processes if
the considered set cannot fit in memory.

4.4.4 Resiliency Having Duplicates
Data Resiliency: When an application processes a

very large dataset stored across many machines, it is inter-
esting for the system to implement some level of tolerance in
case a datanode is lost. To implement data resilience, stores
typically replicate data across the cluster which implies a
larger disk footprint. For our experiments, we stick to the
default replication parameters. As a consequence, the HDFS-
based systems have their data replicated twice and provide
some level of data resilience. Table 6 presents the effective
disk footprints (including replication) with Lubm1k and
WatDiv1k where the HDFS-based systems are outlined in
gray. Due to their preprocessing methods, we note that
S2RDF and CliqueSquare need more disk space to store
WatDiv1k than Lubm1k whereas this last one is larger (see
Table 2). Furthermore, counterintuitively, it appears that
evaluators having replicated data can have lighter disk foot-
prints than not-replicated ones e.g S2RDF and RYA versus
CouchBaseRDF.

Computation Resiliency: If an application has to
evaluate complex queries (taking e.g. days), it is interesting
for the system not to be forced to compute everything from
scratch whenever a machine becomes unreachable. This
situation is liketly to happen for a variety of reasons (e.g.
reboot, failure, network latency). The tested systems exhibit
several behaviours when a machine fails during computa-
tion. For stores having no data replication, the loss of any
machine can stop the computation if the lost data fragment
is mandatory; thus some stores fail when a machine is lost:
4store and CumulusRDF; whereas CouchBaseRDF adopts

13

another method waiting seven minutes until the return of
the machine. More generally, the HDFS-based triplestores
cannot lose mandatory fragments of data, thereby RDFHive,
SPARQLGX, SDE, RYA, and CliqueSquare still succeed when
one (or even two) machine fails during computation; how-
ever, PigSPARQL waits indefinitely the return of the lost
partition. For stores having a master/slave structure e.g.
SPARQLGX, the loss of the node hosting the master process
prevents any result to be obtained. From our tests, only
two different methods successfully faced a loss of worker
nodes: (1) waiting for their returns e.g. CouchBaseRDF and
PigSPARQL; (2) using the remaining nodes and benefiting
from data replication e.g. CliqueSquare, RDFHive, RYA,
S2RDF, SDE, SPARQLGX.

5 RELATED WORK

In recent years, many RDF systems capable of evaluating
SPARQL queries have been developed [19]. These stores
can be divided in two categories: centralized systems (e.g.
RDF-3X [31] or Virtuoso [32]) and distributed ones, that
we further review. Distributed RDF stores can in turn be
divided into three categories. (1) The ad-hoc systems that
are specially designed for RDF data and that distribute
and store data across the nodes according to custom ad-
hoc methods (e.g. 4store [21]). (2) Other systems use a
communication layer between centralized systems deployed
across the cluster and then evaluate sub-queries on each
node such as Partout with RDF-3X [33]. (3) Lastly, some RDF
systems [27], [24], [28], [25] are built on top of distributed
Cloud platforms such as Apache Hadoop. One major inter-
est of such platforms relies on their common file systems
(e.g., HDFS): indeed various applications can access data at
the same time and the distribution/replication issues are
transparent. These systems [27], [24], [28], [25], then evaluate
SPARQL conjunctive queries using various tools as presented
in Section 4 (e.g. Accumulo, Hive, Spark, etc.). To set up
appropriate tools for pipeline applications, we choose to
distribute data with a Cloud platform (HDFS) and evaluate
queries using Spark. We compared the performances of
SPARQLGX with the most closely related implementations
in Section 4.

Finally, it is worthwhile to notice that SPARQL is a very
expressive language which offers a rich set of features and
operators. Most evaluators based on Cloud platforms focus
on the restricted SPARQL fragment composed of conjunctive
queries. SPARQLGX also natively supports a slight extension
of this fragment with UNION and OPTIONAL operators at
top level.

The experimental validation part of this work benefited
from the extensive earlier works on benchmarks for RDF
systems. There are many benchmarks designed for eval-
uating RDF systems [34], [35], [36], [14], [37], [38], [13],
[17]. Some of them are particularly popular: LUBM [14],
WatDiv [13], SP2Bench [38], DBpedia Bench [36], BSBM [37],
and RBench [17]. We notably reused LUBM [14] and Wat-
Div [13] for testing the BGP fragment, and because we
wanted deterministic data generators for ensuring repro-
ducibility of our results. Compared to all these works, we
focus on testing distribution techniques by considering a set
of 10 state-of-the-art implementations; see e.g. [19], [20] for

recent surveys about distributed RDF datastores and their
storage approaches. Compared to studies included in the
aforementioned benchmarks, we consider more competing
implementations on a common ground. Furthermore, while
earlier works on RDF benchmarks exclusively focused on
measuring elapsed times (and sometimes disk footprints),
we measure a broader set of indicators encompassing e.g.
network usage. This allows to refine the comparative analy-
sis according to features and requirements from a slightly
higher perspective, as discussed in Section 4.4. This also
allows to more precisely identify the bottlenecks of each
system when they are pushed to the limits. The experi-
mental part of this work was also inspired by the empirical
study carried out by Cudré et al. where five distributed RDF
datastores using various NoSQL backends were evaluated
[18]. It is worthwhile to notice that our work does not
invalidate earlier results but supplement them with more
results. In particular, in the present work, we update the
list of evaluators (we consider more of them, with more
recent ones, not limited to the simple addition of SPARQLGX)
and we also focus on ranking the candidates depending on
various features thanks to the broader set of metrics we
analysed.

6 CONCLUSION

We propose SPARQLGX: a tool for the efficient evaluation of
SPARQL queries on distributed RDF datasets. SPARQL queries
are translated into Spark executable code, which is opti-
mized to leverage the advantages of the Spark platform in
the specific setting of RDF data. SPARQLGX also comes with
a direct evaluator based on the same SPARQL translation
process and called SDE, for situations where preprocessing
time matters at least as much as query evaluation time.

We reported on an experimental evaluation of SPARQLGX
in comparison with 9 state-of-the-art distributed SPARQL
evaluators. By analysing a broad set of metrics, we pushed
the comparison further than traditional experimental eval-
uations that focus only on running times. We considered
five dimensions of comparison that help in clarifying the
limitations and advantages of each SPARQL evaluator ac-
cording to the different requirements met in practical use
cases. Experimental results indicate that SPARQLGX outper-
forms several state-of-the-art Hadoop-reliant systems, while
implementing a simple architecture that is easily deployable
across a cluster.

REFERENCES

[1] D. Graux, L. Jachiet, P. Genevès, and N. Layaı̈da, “SPARQLGX:
Efficient Distributed Evaluation of SPARQL with Apache Spark,”
To appear in ISWC, 2016.

[2] P. Hayes and B. McBride, “RDF semantics,” W3C Rec., 2004.
[3] “SPARQL 1.1 overview,” March 2013,

http://www.w3.org/TR/sparql11-overview/.
[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” NSDI, 2012.

[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

14

[7] M. Odersky, “The scala language specification v 2.9,” 2014.
[8] “RDF 1.1 N-Triples: A line-based syntax for an RDF graph,” 2014,

http://www.w3.org/TR/n-triples/.
[9] Abadi, Marcus, Madden, and Hollenbach, “Scalable semantic web

data management using vertical partitioning,” VLDB, 2007.
[10] M. A. Gallego, J. D. Fernández, M. A. Martı́nez-Prieto, and P. de la

Fuente, “An empirical study of real-world SPARQL queries,” in
1st International Workshop on Usage Analysis and the Web of Data at
the 20th International World Wide Web Conference, 2011.

[11] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives, “DBpedia: A nucleus for a web of open data,” The semantic
web, pp. 722–735, 2007.

[12] J. D. Fernández, C. Gutierrez, and M. A. Martı́nez-Prieto, “RDF
compression: basic approaches,” in Proceedings of the 19th interna-
tional conference on World wide web. ACM, 2010, pp. 1091–1092.

[13] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress
testing of RDF data management systems,” in ISWC. Springer,
2014, pp. 197–212.

[14] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Web Semantics, 2005.

[15] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and
C. Bizer, “DBpedia - A large-scale, multilingual knowledge base
extracted from wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195,
2015. [Online]. Available: https://doi.org/10.3233/SW-140134

[16] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and
complexity of SPARQL,” ACM Trans. Database Syst., vol. 34,
no. 3, pp. 16:1–16:45, Sep. 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1567274.1567278

[17] S. Qiao and Z. M. Özsoyoğlu, “Rbench: Application-specific RDF
benchmarking,” in SIGMOD. ACM, 2015, pp. 1825–1838.

[18] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth,
A. Haque, A. Harth, F. L. Keppmann, D. Miranker, J. F. Sequeda,
and M. Wylot, “NoSQL databases for RDF: An empirical evalua-
tion,” ISWC, pp. 310–325, 2013.

[19] Z. Kaoudi and I. Manolescu, “RDF in the clouds: a survey,” The
VLDB Journal, vol. 24, no. 1, pp. 67–91, 2015.

[20] D. C. Faye, O. Curé, and G. Blin, “A survey of RDF storage
approaches,” Arima Journal, vol. 15, pp. 11–35, 2012.

[21] S. Harris, N. Lamb, and N. Shadbolt, “4store: The design and
implementation of a clustered RDF store,” SSWS, 2009.

[22] G. Ladwig and A. Harth, “CumulusRDF: linked data management
on nested key-value stores,” SSWS 2011, p. 30, 2011.

[23] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[24] R. Punnoose, A. Crainiceanu, and D. Rapp, “RYA: a scalable RDF
triple store for the clouds,” in International Workshop on Cloud
Intelligence. ACM, 2012, p. 4.

[25] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen,
“S2RDF: RDF querying with SPARQL on spark,” VLDB, pp. 804–
815, 2016.

[26] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL:
Relational data processing in spark,” in SIGMOD. ACM, 2015,
pp. 1383–1394.

[27] F. Goasdoué, Z. Kaoudi, I. Manolescu, J.-A. Quiané-Ruiz, and
S. Zampetakis, “Cliquesquare: Flat plans for massively parallel
RDF queries,” in ICDE. IEEE, 2015, pp. 771–782.

[28] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen, “PigSPARQL:
Mapping SPARQL to pig latin,” in Proceedings of the International
Workshop on Semantic Web Information Management. ACM, 2011,
p. 4.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in SIGMOD.
ACM, 2008, pp. 1099–1110.

[30] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution
over a map-reduce framework,” Proceedings of the VLDB Endow-
ment, vol. 2, no. 2, pp. 1626–1629, 2009.

[31] T. Neumann and G. Weikum, “RDF-3X: a RISC-style engine for
RDF,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 647–
659, 2008.

[32] O. Erling and I. Mikhailov, Virtuoso: RDF support in a native
RDBMS. Springer, 2010.

[33] L. Galarraga, K. Hose, and R. Schenkel, “Partout: A distributed
engine for efficient RDF processing,” in Proceedings of the companion

publication of the 23rd international conference on World wide web
companion. International World Wide Web Conferences Steering
Committee, 2014, pp. 267–268.

[34] R. Angles, P. Boncz, J. Larriba-Pey, I. Fundulaki, T. Neumann,
O. Erling, P. Neubauer, N. Martinez-Bazan, V. Kotsev, and I. Toma,
“The linked data benchmark council: a graph and RDF industry
benchmarking effort,” ACM SIGMOD Record, vol. 43, no. 1, pp.
27–31, 2014.

[35] G. Demartini, I. Enchev, M. Wylot, J. Gapany, and P. Cudré-
Mauroux, “Bowlognabench – Benchmarking RDF Analytics,” in
International Symposium on Data-Driven Process Discovery and Anal-
ysis. Springer, 2011, pp. 82–102.

[36] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “DBpedia
SPARQL Benchmark – Performance assessment with real queries
on real data,” ISWC, pp. 454–469, 2011.

[37] C. Bizer and A. Schultz, “The berlin SPARQL benchmark,” IJSWIS,
2009.

[38] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SP2Bench: a
SPARQL performance benchmark,” ICDE, pp. 222–233, 2009.

https://doi.org/10.3233/SW-140134
http://doi.acm.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278

	Introduction
	Background
	SPARQLGX Main concepts
	Data Storage Model: Vertical Partitioning
	Loading Optimizations
	Compression
	Prefix compression
	Gzip compression
	HDFS Optimization

	Respective Optimizations in Practice
	Supported sparql Fragment
	sparql Fragment Translation
	Storage of partial solutions
	Triple Patterns
	Conjunctions
	Optionals
	Disjunctions
	Modifiers

	Optimized Join Order With Statistics
	SDE: sparqlgx as a Direct Evaluator

	Extended Evaluation
	Methodology For Experiments
	Datasets and Queries
	Metrics
	Cluster Setup
	Extensive Experimental Results

	Benchmarked datastores
	Standalone Datastores
	HDFS-based Datastores

	Overall Behavior of Systems
	Comparative Analysis Driven By Features
	Velocity The Faster, The Better
	Immediacy Preprocessing is Investing
	Dynamicity Changing Data
	Resiliency Having Duplicates

	Related Work
	Conclusion
	References

