
HAL Id: hal-01627517
https://hal.inria.fr/hal-01627517

Submitted on 1 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Certified Procedure for RL Verification
Andrei Arusoaie, David Nowak, Vlad Rusu, Dorel Lucanu

To cite this version:
Andrei Arusoaie, David Nowak, Vlad Rusu, Dorel Lucanu. A Certified Procedure for RL Verification.
SYNASC 2017 : 19th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Sep 2017, Timisoara, Romania. pp.8, �10.1109/SYNASC.2017.00031�. �hal-01627517�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132008873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01627517
https://hal.archives-ouvertes.fr


A Certified Procedure for RL Verification
Andrei Arusoaie∗, David Nowak†, Vlad Rusu‡, and Dorel Lucanu∗

∗ Alexandru Ioan Cuza, University of Iaşi
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Abstract—Proving programs correct is hard. During the last
decades computer scientists developed various logics dedicated to
program verification. One such effort is Reachability Logic (RL):
a language-parametric generalisation of Hoare Logic. Recently,
based on RL, an automatic verification procedure was given and
proved sound. In this paper we generalise this procedure and
prove its soundness formally in the Coq proof assistant. For the
formalisation we had to deal with all the minutiae that were
neglected in the paper proof (i.e., an insufficient assumption,
implicit hypotheses, and a missing case in the paper proof).
The Coq formalisation provides us with a certified program-
verification procedure.

I. INTRODUCTION

Proving programs correct is one of the major challenges that
computer scientists have been struggling with during the last
decades. Many techniques have been developed in order to
automate this non-trivial and tedious process. Nowadays there
are many software tools used for proving program correctness,
but proving that the verification tools themselves are correct is
often avoided. In this paper we address this issue for our own
work: more precisely, we present the formalisation in the Coq
proof assistant of the soundness of a procedure for program
verification that we proposed in [9].

In the last decades computer scientists came up with several
logics meant to be used for program verification. Floyd/Hoare
Logic [5], [8], Separation Logic [12], and Dynamic Logic [6]
are probably the most well known logics dedicated to pro-
gram verification. Recently, Matching Logic (ML) [15] and
Reachability Logic (RL) [16], [17], [3] have been proposed
as alternative approaches for dealing with this problem. ML
and RL were inspired from the attempt to use rewrite-based
operational semantics for program verification. Although oper-
ational semantics are considered too low level for verification,
they are much easier to define and have the big advantage
of being executable (and thus testable). For example, several
large and complete operational semantics for real languages
have been formalised with RL using the K framework [18],
[14], [2]: C [4], [7], Java [1], JavaScript [11].

ML is a first-order logic for specifying and reasoning
about program configurations, e.g., code and infrastructure
for executing it (heap, stack, registers, etc.). Intuitively, an
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ML formula ϕ is a configuration template accompanied by a
constraint, and it denotes the set of configurations that match
the template and satisfy the constraint. RL can be used for
both defining operational semantics of programming language
and expressing properties about program executions. An RL
formula is a pair of ML formulas, denoted ϕ⇒ ϕ′, which says
that all terminating executions that start from a configuration
in the set denoted by ϕ, eventually reach a configuration in the
set denoted by ϕ′. A language-independent and sound proof
system, which uses the operational semantics of a language to
derive RL formulas, has been proposed in [3].

One practical disadvantage of the RL proof system [3] is
that the proofs tend to be very low level. Moreover, some
creative user input is required when applying the rules of the
proof system. Those difficulties were addressed in [9], where a
procedure for program verification based on RL was proposed
and the soundness of the procedure was proved. The intent
behind this procedure is to overcome the lack of strategies
for applying the rules of the RL proof system, and implicitly,
move forward to automation. It takes as inputs sets of RL
formulas representing the operational semantics of a language
and the program together with its specification to be proved;
if it terminates, it returns either success or failure. The
soundness property states that if the procedure terminates and
returns success then the program satisfies its specification. Its
proof depends on several assumptions which are not precisely
formalised in [9]. In order to provide additional confidence in
this soundness result, we present in this paper a formalisation
of the soundness proof in Coq.

The paper proof from [9] raised a series of technical difficul-
ties. One difficulty is hidden in an intermediary lemma whose
proof requires intricate inductive reasoning. Then, several
hypotheses and assumptions are added in an ad-hoc manner
just for the proofs to hold. Also, some helper lemmas are not
precisely formulated, i.e., they need additional hypotheses. For
a careful reader all these issues could raise some doubts about
the validity of the paper proof.

A proof in a research paper should keep a good balance
between correctness and clarity. The soundness proof in [9]
is monolithic, i.e., the soundness does not follow from the
soundness of each derivation rule, as it is commonly done in
soundness proofs. Therefore, even if the procedure is recursive,
the nature of the proof is not inductive; the entire execution



of the procedure is needed to prove that the goals are valid.
This makes the proof complex and hence the task of keeping
a good balance between correctness and clarity is difficult. In
order to keep the proof concise, some details are omitted in
[9] but this could have hidden side effects.

Clearly, a proof assistant is the solution here: it has no
problem dealing with every detail because it keeps track
rigorously of all cases, and thus, it ensures that no corner
case is overlooked.

Contributions. The main contribution is a generalisation
of the procedure and a constructive1 formal proof in Coq of
its soundness. We first generalise the procedure by introducing
non-determinism and then encode it as an inductive relation in
Coq. Then, we formally prove that our generalised procedure
is sound. The soundness of the concrete procedure in [9] fol-
lows. Finally, we implement the procedure as a Coq function
which can be used to build a certified prover.

The formalisation led us to discovering a flaw in the paper
proof: it is supposed that a claim holds for a set of RL
formulas, but the claim was proved only for a subset of
formulas. Fortunately, this flaw does not invalidate the final
result, but it makes the proof in [9] incomplete. Moreover,
in order to fix the proof we realised that we need an extra
hypothesis in the soundness theorem. In Coq, we add both the
required hypothesis and an additional case which handles the
RL formulas in question and completes the proof.

Another issue that we discovered and fixed is related to
renaming the free variables in RL formulas. In [9], this is
imprecisely handled using an assumption saying that certain
sets of variables are disjoint, and if they are not, then the free
variables can always be renamed. However, why the variable
renaming is sound is not established in [9]. Here we explicitly
show that free variables in RL formulas can always be renamed
appropriately, and we update the proof accordingly.

During the formalisation in Coq we were able to find
and fix some other imprecisions in lemmas from [9]. In
order to simplify the formalisation we abstract away some
details about ML that were fully stated in [9], but are in
fact not relevant for soundness. Last but not least, the Coq
formalisation provides us with a certified program-verification
procedure. Its use in practice depends on the availability in
Coq of RL-based semantics for languages; such an effort is
already underway in the K team [10].

Related work. The closest related work is the formalisation
in Coq of RL reported in [3]. Previous works [16], [17],
[3] include sound and relatively complete proof systems for
various versions of RL. In [3], the authors also prove the
soundness of such a proof system in Coq. Our initial attempt
to prove the soundness of the procedure from [9] consisted
in reusing the mechanised proof reported in [3]. However, the
soundness of the procedure is not a direct consequence of the
soundness of the RL proof system, because there is no direct
correspondence between the inference steps and the rules of

1We thank the reviewers for pointing it out.

the proof system. This is the reason why we choose to give a
direct proof of the soundness of the procedure. An additional
benefit of a direct proof is that, compared to the RL proof
system, our procedure is closer to an implementation. Thus, by
formalising directly the soundness of the procedure in Coq (vs.
formalising the soundness of a proof system) we bridge the
gap between theory and implementation. In the end we obtain
a function which can be further extracted (using specialised
Coq mechanisms) into a certified prover for RL.

Outline. Section II provides a short overview of ML and RL
based on examples. In Section III we present the verification
procedure proposed in [9], while in Section IV we describe
our formalisation in Coq of the soundness of the procedure.
We conclude in Section V.

II. BACKGROUND

This section provides an overview of ML and RL. For both
logics, we explain their syntax and semantics by means of
simple examples. The precise definitions that we use in Coq
are shown later in Section III. We assume the reader is familiar
with (many-sorted) First-Order Logic (hereafter, FOL).

A. Matching Logic

Matching Logic is a first-order logic for specifying and
reasoning about program configurations, e.g., code and infras-
tructure for executing it (heap, stack, registers, etc.).

We start diving into ML by means of a very simple example:

ϕ′ , 〈x = x + y; y = x - y; x = x - y; | x 7→ x y 7→ y〉∧x+y < 232

For someone familiar with FOL, the formula above may look
strange: what is the content surrounded by ‘〈’ and ‘〉’ and why
is it used in the left hand side of a conjunction? Recall that
ML is designed to specify and reason about program configura-
tions. In ML, the construct 〈x = x + y; y = x - y; x = x - y; | x 7→
x y 7→ y〉 is a formula and represents all the configurations
that match it. For this particular example, the configurations
matched by the formula consist of a program (i.e., the se-
quence of assignments which is supposed to swap two values)
and a state containing mappings from program variables to
their values (here, x and y are variables that can be matched
by values). For real-life languages (like C [4], [7] or Java [1])
configurations typically hold more information.

The formal syntax of ML formulas is shown below. Let Σ
be a many-sorted algebraic signature, Π a set of predicate
symbols, Var a set of (sorted) variables, and Cfg a sort for
program configurations; then, the syntax of ML formulas is:

ϕ ::= π | > | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃V )ϕ,

where π is a Σ-term of sort Cfg with variables (also called
basic pattern)2, p is a predicate symbol in Π, ti are Σ-terms
with variables of appropriate sorts, and V a subset of Var .
As usual, the other known FOL connectives (∨, →, . . . ) and
quantifier ∀ can be expressed using the ones above.

Example 1: Recall the ML formula ϕ′ shown at the begin-
ning of this section. Let π , 〈x = x + y; y = x - y; x = x - y; |

2Here we only consider the “topmost version" of ML from [13], that is, π
is a term of sort Cfg with variables.



x 7→ x y 7→ y〉. Then π is a term of sort Cfg with variables
x and y. The constructor for such terms is 〈_ | _〉, where
the two occurrences of _ are placeholders for terms of a sort
Pgm (corresponding to programs) and terms of a sort Map
(representing the state). Note that x and y are different from
x and y: the former are logical variables included in Var
while the latter are constants representing program variables
(or identifiers) of sort Id. Symbols + and + that occur in
π ∧ x + y < 232 are also different: the first is an
operation symbol over program expressions, while the latter
is the integer addition that applies only to integers. Here we
distinguish them by different font sizes (+ vs. +). All these
operation symbols and their corresponding sorts are included
in Σ, while the predicates (e.g., <) are in Π.

For ML formulas we use the same notion of free variable
as in FOL, which we denote by FV(ϕ) in the paper. The
existential closure of ϕ is denoted by ϕ , (∃ FV(ϕ))ϕ.

Next, let us clarify how ML formulas are interpreted.
Intuitively, an ML formula is a pattern which denotes the set
of concrete configurations that match that pattern.

Example 2: The following term:
γ , 〈x = x + y; y = x - y; x = x - y; | x 7→ 5 y 7→ 10〉

is a configuration that matches the ML formula ϕ′: the
structural part of γ is the same as the one of ϕ′ where variables
x and y are replaced by concrete values 5 and 10; also, for
x = 5 and y = 10 the inequality x+ y < 232 holds.

Formally, the satisfaction relation |=ML of ML is akin to
the satisfaction relation of FOL (denoted |=FOL). Next, we
consider a (Σ,Π)-model M . Then, (γ, ρ) |=ML (∃V )ϕ iff there
is ρ′ : Var → M with ρ′(x) = ρ(x) for all x 6∈ V such
that (γ, ρ′) |=ML ϕ. This is similar to FOL, except that |=ML

is defined over pairs (γ, ρ), where γ is an element in M of
sort Cfg called a concrete configuration, ρ : Var → M is a
valuation, and ML formulas ϕ. In addition to the other FOL
constructs, |=ML includes the ML particular case:

(γ, ρ) |=ML π iff ρ(π) = γ.
Example 3: As already pointed out in Example 2, γ is a

configuration that matches ϕ′. Formally, if ρ : Var → M is a
valuation such that ρ(x) = 5 and ρ(y) = 10, then (γ, ρ) |=ML

ϕ′ holds: first3, ρ(〈x = x + y; y = x - y; x = x - y; | x 7→
x y 7→ y〉) = γ, and second, ρ |=FOL x+ y < 232.

It has been shown in [16] that ML can be encoded in FOL.
We discuss here a variant of this encoding. If ϕ is an ML-
formula then its encoding ϕ=? in FOL is the formula (∃z)ϕ′,
where ϕ′ is obtained from ϕ by replacing each basic pattern
occurrence π with z = π, and z is a variable which does not
appear in the free variables of ϕ. Here are a few examples of
formulas and their encodings:

ϕ ϕ=?

(π1 ∧ φ1) ∨ (π2 ∧ φ2) (∃z)((z = π1 ∧ φ1) ∨ (z = π2 ∧ φ2))
π1 ∧ ¬π2 (∃z)((z = π1) ∧ ¬(z = π2))

The encoding of a formula ϕ has the following property [9]:
for all ρ and ϕ, ρ |=FOL ϕ

=? iff exists γ such that (γ, ρ) |=ML ϕ.

3For simplicity, we apply the valution ρ directly to a Cfg term; instead,
we should have used the homomorphic extension of ρ to terms of sort Cfg .

B. Reachability Logic

We have seen in the previous section that ML formulas
denote sets of program configurations (or states). An RL
formula (also called rule) is a pair of ML formulas, written
ϕ⇒ ϕ′, that expresses reachability relationships between the
two sets of configurations denoted by ϕ and ϕ′. For example:
〈x = x + y; y = x - y; x = x - y; | x 7→ x y 7→ y〉 ∧ x+ y < 232

⇒⇒⇒
〈skip | x 7→ y y 7→ x〉

is an RL formula which expresses the fact that
configurations which satisfy4 〈skip | x 7→ y y 7→ x〉
will be reached from configurations which satisfy
〈x = x + y; y = x - y; x = x - y; | x 7→ x y 7→ y〉 ∧ x+ y < 232.
Informally, the formula expresses the fact that if we execute
the assignments, then the values of program variables x and
y are swapped. For this particular program, this is a desired
property to prove. It is important to note how expressive RL
is: in the left hand side of the RL formula we included the
program and a side condition (which ensures that integer
overflow does not happen for 32 bits architectures); the right
hand side expresses that no code is left to be executed, and
variables x and y hold the swapped initial values.

We extend the FV construct over RL formulas too; by
FV(ϕ⇒ ϕ′) we denote the union FV(ϕ)∪FV(ϕ′). Also, if S
is a set of RL formulas then FV(S) ,

⋃
ϕ⇒ϕ′∈S FV(ϕ⇒ ϕ′).

A set of RL formulas S defines a transition system, denoted
(Cfg ,⇒S), over configurations: we say that γ0 ⇒S γ1 if there
is a rule ϕ0 ⇒ ϕ1 ∈ S and there is a valuation ρ′ : Var → M
such that (γ0, ρ

′) |=ML ϕ0 and (γ1, ρ
′) |=ML ϕ1. We often use

only ⇒S to denote the transition system (Cfg ,⇒S).

Example 4: The set S , {α+, α−, α} of RL formulas
defines a transition system:

α+ , 〈X=Z1 + Z2;Code | Z1 7→ V1 Z2 7→ V2〉 ⇒⇒⇒
〈X=V1 + V2;Code | Z1 7→ V1 Z2 7→ V2〉

α− , 〈X=Z1 - Z2;Code | Z1 7→ V1 Z2 7→ V2〉 ⇒⇒⇒
〈X=V1 − V2;Code | Z1 7→ V1 Z2 7→ V2〉

α , 〈X=V ;Code | (X 7→ V ′) State〉 ⇒ 〈Code | X 7→ V State〉

Here, X , Z1 and Z2 are variables of sort Id; V , V ′, V1, V2
are variables of sort Int which are supposed to match over
integer values; Code is a variable of sort Pgm and State
is a variable of sort Map. Also, recall that + (-) and +
(respectively, −) are different symbols: the first one is used
in the language expressions, while the second is the integer
addition (subtraction). The first two rules are meant to capture
the evaluation of addition and subtraction of expressions
consisting only of program variables. Essentially, the first rule
expresses the fact that if we have to evaluate the program
expression Z1 + Z2, where Z1 and Z2 are variables of sort Id,
then we replace it with the integer expression V1 + V2, where

4It refers to the ML satisfaction relation.



V1 and V2 hold the values of the program variables matched by
Z1 and Z2. The rule α− does the same thing for subtraction.

Finally, α corresponds to the step-by-step execution of
assignments: if X=V ;Code needs to be executed then the
current value of the program variable matched by X in the
state, namely V ′, is replaced (in the state in the right hand
side) by the new integer value V . Also, in the right hand side
Code holds the remaining assignments to be executed. Note
that the rest of the state matched by State remains unchanged.
The set S can be regarded as an operational semantics.

The satisfaction relation |=RL of RL is defined using paths,
which are (possibly infinite) sequences of transitions of the
form γ0 ⇒S γ1 ⇒S γ2 ⇒S · · · .

Example 5: Recall the set S , {α+, α−, α} from
Example 4. The following sequence represents a path:

τ , 〈x = x + y; y = x - y; x = x - y; | x 7→ 5 y 7→ 10〉 ⇒S
〈x =5 + 10; y = x - y; x = x - y; | x 7→ 5 y 7→ 10〉 ⇒S
〈y = x - y; x = x - y; | x 7→ 15 y 7→ 10〉 ⇒S
〈y =15− 10; x = x - y; | x 7→ 15 y 7→ 10〉 ⇒S
〈x = x - y; | x 7→ 15 y 7→ 5〉 ⇒S
〈x =15− 5; | x 7→ 15 y 7→ 5〉 ⇒S
〈skip | x 7→ 10 y 7→ 5〉

Here we considered that skip is the empty sequence; also,
we evaluated the integer expressions in the state. The rules
applied, in order, are: α+, α, α−, α, α−, α.

If none of the rules in S can be applied to a configuration
then we say that the configuration is terminating. For instance,
the last configuration of the path shown in Example 5 is
terminating. Paths can be infinite too. A typical example where
infinite paths can occur are the rules for handling loops in
programs. A path τ is complete if it is either finite and the
last configuration in τ is terminating, or it is infinite. Since
the path shown in Example 5 is finite and terminating then it
is also complete. Moreover, we say that a path τ starts from
from an ML formula ϕ if the first configuration in the path is
matched by ϕ. The path shown in Example 5 starts from:
ϕ′ , 〈x = x + y; y = x - y; x = x - y; | x 7→ x y 7→ y〉∧x+y < 232

In this paper we are only interested in the all-path interpre-
tation [3] of RL formulas: a pair (τ, ρ) satisfies an RL formula
ϕ ⇒ ϕ′, written (τ, ρ) |= ϕ ⇒ ϕ′, iff (τ, ρ) starts from ϕ
(recall that τ , γ0 ⇒S γ1 ⇒S γ2 ⇒S · · · ), and either there
exists i ≥ 0 such that (γi, ρ) |=ML ϕ

′, or τ is infinite.
Example 6: Consider τ the path shown in Example 5 and

ϕ′ the ML formula shown above. Then, (τ, ρ) |= ϕ′ ⇒
〈skip | x 7→ y y 7→ x〉, with valuation ρ chosen such that
ρ(x) = 5 and ρ(y) = 10. Clearly, γ0 (i.e., the first config-
uration of τ ) is an instance of ϕ′ (as shown in Example 2).
Also, there is an i = 6, such that γi , 〈skip | x 7→ 10 y 7→ 5〉
is matched by 〈skip | x 7→ y y 7→ x〉, using the same ρ.

Finally, we say that ⇒S satisfies ϕ⇒ ϕ′, written ⇒S |=RL

ϕ ⇒ ϕ′, iff (τ, ρ) |=RL ϕ ⇒ ϕ′ for all (τ, ρ) starting from ϕ
with τ complete. We often write S |=RL ϕ ⇒ ϕ′ instead of
⇒S |=RL ϕ⇒ ϕ′.

C. Derivatives of an ML (and RL) formula

A notion introduced in [9] is that of derivative of an ML
(and RL) formula. If ϕ is an ML formula and S is a set of RL
formulas, then the derivative of ϕ with S is defined as follows:
∆S(ϕ) , {(∃FV(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr | ϕl ⇒ ϕr ∈ S}.

If ϕ⇒ ϕ′ is an RL formula then
∆S(ϕ⇒ ϕ′) , {ϕ1 ⇒ ϕ′ | ϕ1 ∈ ∆S(ϕ)}.

Intuitively, the derivative of an ML formula ϕ encodes the
concrete successors by ⇒S of configurations matching ϕ.
Derivatives can be computed for sets of RL formulas G too:

∆S(G) ,
⋃

ϕ⇒ϕ′∈G
∆S(ϕ⇒ ϕ′).

Example 7: We extend the set S , {α+, α−, α} shown in
Example 4 with the following rules:
αt , 〈while (R>=B){S};Code | State B 7→b R 7→r〉 ∧ r ≥ b ⇒

〈S ; while (R>B){S};Code | State B 7→ b R 7→ r〉
αf , 〈while (R>=B){S};Code | State B 7→b R 7→r〉 ∧ r < b⇒

〈Code | State B 7→ b R 7→ r〉
These rules simulate the behavior of a very particular while
loop, where conditions are of the form R >= B. The rule
αt essentially says that if the values r and b corresponding
to variables R and B satisfy r ≥ b, then we execute the
loop body S once, and then again the loop. On the other
hand, when r < b, the loop is not executed and the execution
continues with Code as stated by αf . We consider the
following patterns:
ϕ,〈while (r>=b){d=d+1; r=r-b}|a 7→a b 7→b d 7→d r 7→r〉∧

a = b ∗ d+ r∧ a ≥ 0∧ b > 0

ϕ′ , 〈skip | a 7→ a b 7→ b d 7→ a/b r 7→ a%b〉
Here / and % represent the integer division and the remainder
operations. Let G0 , {ϕ ⇒ ϕ′}. The set of derivatives
computed for G0 is ∆S(G0) = {ϕ1 ⇒ ϕ′, ϕ2 ⇒ ϕ′}, where:

ϕ1,〈d=d+1; r=r-b; while (r>=d){d=d+1; r=r-b}|
a 7→a b 7→b d 7→d r 7→r〉∧a = b∗d+r∧r ≥ b∧a ≥ 0∧b > 0

ϕ2,〈skip|a 7→a b 7→b d 7→d r 7→a〉∧a=b∗d+r∧r<b∧a≥0∧b>0

Both ϕ1 and ϕ2 are in fact the symbolic successors of ϕ using
S. Moreover, the configurations that match ϕ1 and ϕ2 are the
concrete successors by ⇒S of configurations matching ϕ.

III. A PROCEDURE FOR VERIFYING RL PROPERTIES

A procedure for verifying RL formulas (Figure 1), called
prove, was introduced in [9], and is meant to overcome the
lack of strategies for applying the rules of the RL proof system
from [3], and implicitly, to move forward towards automation.
As the RL proof system, the procedure has a coinductive
nature. Intuitively, given an RL formula ϕ ⇒ ϕ′, one can
symbolically execute ϕ and check whether every leaf node
of the obtained symbolic execution tree implies ϕ′. The pro-
cedure uses derivatives to compute symbolic execution paths.
An obvious problem of this approach is that the symbolic
execution tree can be infinite due to loops or recursion. To
overcome this problem, RL allows the use of helper formulas
called circularities, which generalise the notion of invariant.



Instead of proving a single formula, prove attempts to prove
a set of formulas (goals). The procedure checks first whether
a helper formula can be used (e.g., an RL formula specifying
a loop) to discharge the current goal, rather than performing
symbolic execution blindly. A goal can be used in the proof
of a different goal or in its own proof, provided that at least
one symbolic step has been performed from it.

The procedure takes as input three sets of RL formulas: the
operational semantics S, a set of (initial) goals G0, and a recur-
sive argument G whose initial value is ∆S(G0); and it returns
either success or failure. At each recursive call, a goal
from G is either eliminated and/or replaced by other goals. If
ϕ⇒ ϕ′ ∈ G is the current goal then it is processed as follows:
if M |=ML ϕ → ϕ′ then the goal is eliminated from G; else,
the procedure checks whether there is a circularity available
in G0 which is used to generate a new goal that replaces the
current one; if no circularity is found, but ϕ is S-derivable,
then ϕ ⇒ ϕ′ is replaced by a set of goals consisting in its
symbolic successors; otherwise, prove returns failure. The
procedure succeeds when all the goals in ∆S(G0) together
with those generated during the execution are eliminated. If
the procedure does not terminate or it returns failure then
it means that G0 does not contain enough information to
prove the goals. This problem is similar to finding appropriate
invariants for loops in imperative programs.

Example 8: Recall the rules S = {α+, α−, α, αt, αf} from
Examples 7 and 4. Also, recall the set G0 = {ϕ ⇒ ϕ′} and
patterns ϕ1 and ϕ2 from Example 7. We pass to prove the
sets S, G0, and G = ∆S(G0) = {ϕ1 ⇒ ϕ′, ϕ1 ⇒ ϕ′}. The
procedure picks a goal to be proved from G, say ϕ2 ⇒ ϕ′ and
checks whether M |=ML ϕ2 → ϕ′. In this case, the implication
holds, since a = b ∗ d + r ∧ r < b ∧ a ≥ 0 ∧ b > 0 implies
a/b = d and r = a%b; thus, the values of d and r in the state
are correct. This goal is now eliminated from G.

Next, the only goal left to prove is ϕ1 ⇒ ϕ′. Since the im-
plication M |=ML ϕ1 → ϕ′ does not hold, and no circularities
ϕc ⇒ ϕ′c are available in G0 such that M |=ML ϕ1 → ϕc,
then prove computes the next successor using α+:

ϕ′1,〈r=r-b; while (r>=d){d=d+1; r=r-b}|
a 7→a b 7→b d 7→d+1 r 7→r〉∧a = b∗d+r∧r ≥ b∧a ≥ 0∧b > 0

The same case for ϕ′1 ⇒ ϕ′: the implication and circularity
tests fail, and α− is used to get the next successor:

ϕ′′1 ,〈while (r>=d){d=d+1; r=r-b}|a 7→a b 7→b

d 7→d+1 r 7→r− b〉∧a = b∗d+r∧r ≥ b∧a ≥ 0∧ b > 0

Now, prove reaches a point where the circularity ϕ ⇒ ϕ′

can be applied, since M |=ML ϕ
′′
1 → ϕ. This is because a =

b∗d+r∧r ≥ b∧a ≥ 0∧b > 0 implies a = b∗(d+1)+(r−b)∧
a ≥ 0∧b > 0. Therefore, the circularity is applied and prove
eliminates the last goal from G’ and returns success.

IV. A FORMAL PROOF OF SOUNDNESS IN COQ

In this section we generalise the procedure (Figure 1)
by introducing non-determinism and then encode it as an
inductive relation in Coq. In spite of this generalisation, the
formal proof of soundness follows the same pattern as the

procedure prove(S, G0, G)
1: if G = ∅ then return success
2: else choose ϕ⇒ ϕ′ ∈ G
3: if M |=ML ϕ→ ϕ′ then return prove(S, G0, G \ {ϕ⇒ ϕ′})
4: else if there is ϕc ⇒ ϕ′c ∈ G0

s. t. M |=ML ϕ→ ϕc then
5: return prove(S, G0, G\{ϕ⇒ ϕ′}∪∆ϕc⇒ϕ′

c
(ϕ⇒ ϕ′))

6: else if ϕ is S-derivable then
7: return prove(S, G0, G \ {ϕ⇒ ϕ′} ∪∆S(ϕ⇒ ϕ′))
8: else return failure.

Fig. 1. RL verification procedure. ϕc denotes (∃FV(ϕc))ϕc.

paper proof in [9]. Using Coq, we were able to find a flaw in
the paper proof: a claim about the goals in G0 does not hold.
This flaw does not invalidate the final result, but it makes
the proof incomplete: an additional case is needed to prove
the conclusion of an important lemma for the goals in G0.
Note that, in the proof of the soundness theorem, the goals
(of interest) for which we apply that lemma are exactly those
from G0. During the formalisation, we also realised that we
need an extra hypothesis in the soundness theorem to fix the
proof. All these issues are fixed in the Coq formalisation.

Unlike in [9], in the Coq proof we explicitly handle the
renaming of variables in RL formulas. Also, we reformulate
several lemmas from [9] (Lemmas 5, 7, and 8) such that they
are self contained, and we update their proofs accordingly.

The theoretical results shown in this section are fully
formalized in the Coq proof assistant.

A. ML in Coq

A definition of ML such as in [9] would require us to
formalise many things (algebraic specifications, FOL, etc.). All
these details are in fact a complete language definition, i.e., a
triple ((Σ,Π,Cfg),M ,S). However, for the soundness of the
verification procedure all these details are irrelevant. Moreover,
we want our procedure to remain language parametric. For
this, we introduce a set of axioms that capture only what
is needed in the soundness proof: variables, conjunction(∧),
implication (→), the existential quantifier (∃), a model M
together with valuations, a set of rules S, and the ML satis-
faction relation. When all these axioms are instantiated (i.e., a
particular language is provided), the procedure remains sound.

Variables (Var), program configurations (State), models
(Model), and valuations (Valuation) are all parameters in Coq.
From the ML syntax we only keep →, ∧, and ∃, together with
the corresponding axioms of the ML satisfaction relation |=ML.
To avoid ambiguities, we distinguish the logical connectives
and quantifiers of ML ( ∧, →, ∃, . . . ) from those of Coq by
using bold font for the latter (∧∧∧,→→→, ∃∃∃, . . . ).The validity of an
ML formula ϕ in model M is denoted by |=M

ML
5.

To collect the free variables of an ML formula we use a
function called FV. In Coq, FV is a parameter and needs an
implementation when the ML constructs are instantiated.

In the proofs of our lemmas we often have to build new
valuations from existing ones. For this we use a function %′

which exhibits the following behaviour: %(ρ, ρ′, x) returns a
new valuation which applied to variable x produces the same

5These details are shown in the Appendix.



result as valuation ρ′ applied to x; for all the other variables
z( 6= x) the valuation %(ρ, ρ′, z) is equal to ρ. We also use the
function % which is an extension of %′ to sets of variables.
The corresponding Coq definitions and lemmas (which are
proved in Coq) are shown below:
Definition %′ (ρ ρ′:Valuation)(x : Var) : Valuation :=

fun z => if (x = z) then ρ′(x) else ρ(z).

Fixpoint % (ρ ρ′:Valuation)(V : list Var) : Valuation :=
match V with

| [] => ρ
| v :: vs => %′(%(ρ, ρ′, v), ρ′, V )

end.

Lemma % 6∈ : ∀∀∀x ρ ρ′ V . x 6∈ V →→→ %(ρ, ρ′, V )(x) = ρ(x)
Lemma %∈ : ∀∀∀x ρ ρ′ V . x ∈ V →→→ %(ρ, ρ′, V )(x) = ρ′(x)

If an ML formula ϕ is satisfied by a pair (γ, ρ), and
none of its free variables are in V , then for any ρ′, the pair
(γ, %(ρ, ρ′, V )) also satisfies ϕ, because on those variables
%(ρ, ρ′, V ) has the same effect as ρ. Conversely, if ϕ is
satisfied by a pair (γ, ρ′), and all its free variables are
included in V , then for any ρ, the pair (γ, %(ρ, ρ′, V )) also
satisfies ϕ. Since the full definition of |=ML is abstract here,
these properties are given as axioms:

Axiom |=6⊆% : ∀∀∀ ϕ γ ρ ρ′ V. (∀∀∀x . x ∈ FV(ϕ)→→→ x 6∈ V )∧∧∧
(γ, ρ) |=ML ϕ→→→ (γ, %(ρ, ρ′, V )) |=ML ϕ

Axiom |=⊆% : ∀∀∀ ϕ γ ρ ρ′ V. FV(ϕ) ⊆ V∧∧∧
(γ, ρ′) |=ML ϕ→→→ (γ, %(ρ, ρ′, V )) |=ML ϕ

Another property which depends on |=ML is the encoding
of ML formulas into FOL: for all ρ and ϕ, ρ |=FOL ϕ=?

iff there is γ such that (γ, ρ) |=ML ϕ. Here we do not
define FOL, but we use the fact that any FOL formula is
also an ML formula. Hence, the encoding will transform an
ordinary ML formula into an ML formula without patterns
(i.e., a FOL formula), and the property above is axiomatised as:

Parameter ϕ=? : MLFormula → MLFormula
Axiom |==? : ∀∀∀ γ′ ρ ϕ. (γ′, ρ) |=ML ϕ

=?↔↔↔ (∃∃∃γ)(γ, ρ) |=ML ϕ

B. RL and derivatives

By definition, an RL formula is just a pair of ML formulas:
Definition RLFormula := (MLFormula ∗ MLFormula)

For simplicity, in Coq we use the notation ϕ⇒ ϕ′ instead of
the pair notation (ϕ,ϕ′).

In [9] the following assumption is made: for any RL
formula ϕ ⇒ ϕ′ the condition FV(ϕ′) ⊆ FV(ϕ) holds. In
Coq we introduce the notion of well-formed RL formula:

Definition wf (ϕ⇒ ϕ′) := FV(ϕ′) ⊆ FV(ϕ)

As shown in Section II-B, a set of RL formulas S defines a
transition system over states. We assume a given set of RL
formulas S and we define the transition relation ⇒S as:
Variable S : list RLFormula
Definition γ ⇒S γ′ := ∃∃∃ϕ ϕ′ ρ . ϕ⇒ ϕ′ ∈ S ∧∧∧

(γ, ρ) |=ML ϕ∧∧∧ (γ′, ρ) |=ML ϕ
′

Definition total(S) := ∀∀∀γ ρ ϕ . (γ, ρ) |=ML ϕ→→→ ∃∃∃γ′.γ ⇒S γ′

The satisfaction relation |=RL of RL is defined over execution
paths τ , which could be either finite or infinite. Because of
that, we formalise them as functions from nat to option State
(where option State is the extension of State with an extra

element None). The ith element of a path τ is τ(i) and can
be either a state γi or None. The subpath of τ which starts at
position i is denoted τ |i. Also, a path is well-formed, written
wfPath(τ), if every two consecutive states (say γi and γi+1)
are in the transition relation given by S (γi ⇒S γi+1), and for
all i and j such that i < j, if τ(i) = None then τ(j) = None.

A path τ is infinite, written infinite(τ), if for all i,
τ(i) 6= None. A configuration γ is terminating, denoted
as terminating(γ), if there is no γ′ such that γ ⇒S γ′. A
well-formed path τ is complete and has n transitions, written
complete(τ, n) if τ is finite and terminating(τ(n)). Also, a
well-formed path τ is complete, denoted by complete(τ), if
infinite(τ) or complete(τ, n) for some natural number n. Note
that, if the path τ is complete and well-formed then for all
i (if τ is finite then i ≤ n) the subpath τ |i is also complete
and well-formed. This statement is assumed in [9] but in Coq
we prove it explicitly. Finally, we say that (τ, ρ) startsFrom ϕ
if (τ(0), ρ) |=ML ϕ. All these are defined in Coq as follows:
Definition Path := nat → option State
Definition wfPath(τ ):= ∀∀∀ i j.(i<j→→→τ(i)=None→→→τ(j)=None)∧∧∧

∀∀∀ i. (τ(i) 6= None∧∧∧ τ(i+ 1) 6= None)
→→→ ∃∃∃ γ γ′. (τ(i) = γ ∧∧∧ τ(i+ 1) = γ′ ∧ γ ⇒S γ′)

Definition infinite(τ ) := wfPath(τ)∧∧∧ (∀∀∀i)τ(i) 6= None
Definition hasLen(τ, n) := wfPath(τ)∧∧∧¬¬¬infinite(τ)∧∧∧

∃∃∃ n γ. τ(n) = γ ∧∧∧ τ(n+ 1)=None

Definition terminating(γ) := (∀∀∀γ′)¬¬¬(γ ⇒S γ′)
Definition complete(τ, n) := infinite(τ)∨∨∨ (hasLen(τ, n)∧∧∧

terminating(τ(n)))

The satisfaction relation of RL is defined for complete
paths τ : (τ, ρ) |=RL ϕ⇒ ϕ′ iff (τ, ρ) startsFrom ϕ and, either
there is i ≥ 0 such that (τ(i), ρ) |=ML ϕ

′ or infinite(τ). Also,
⇒S |=RL ϕ ⇒ ϕ′ iff (τ, ρ) |=RL ϕ ⇒ ϕ′ for all pairs (τ, ρ)
starting from ϕ with τ complete. The exact definitions are:
Definition startsFrom(τ, ρ, ϕ⇒ ϕ′) :=∃∃∃ γ.τ(1)=γ∧∧∧(γ, ρ)|=MLϕ
Definition (τ, ρ) |=RL ϕ⇒ ϕ′:= (τ, ρ) startsFrom ϕ ∧∧∧

((∃∃∃ i n γ′. i ≤ n∧∧∧ complete(τ, n) ∧∧∧ τ(i) = γ′ ∧∧∧ (γ′, ρ) |=ML ϕ
′)

∨∨∨ infinite(τ))

Definition ⇒S |=RL ϕ⇒ ϕ′:=∀∀∀ τ ρ. wfPath(τ) ∧∧∧ complete(τ) ∧∧∧
(τ, ρ) startsFrom ϕ∧∧∧ (τ, ρ) |=RL ϕ⇒ ϕ′

Definition ⇒S |=RLG :=∀∀∀ϕ⇒ ϕ′. ϕ⇒ ϕ′ ∈ G→→→⇒S |=RLϕ⇒ ϕ′

An ML formula ϕ is S-derivable if there are γ, ρ, and γ′

such that (γ, ρ) |=ML ϕ and γ ⇒S γ′. The S-derivability
of an ML formula must not be confused with the notion of
S-derivative (discussed in Section II-C). To compute the S-
derivative of an ML formula in Coq, we use the function:

Definition ∆ϕl⇒ϕr (ϕ) := ∃ FV(ϕl).(ϕl ∧ ϕ)=? ∧ ϕr

Note that, unlike in the definition of derivatives from Sec-
tion II-C, here we quantify only the variables of ϕl since
wf(ϕl ⇒ ϕr), that is, FV(ϕr) ⊆ FV(ϕl). We use a similar
function for RL formulas:
Definition∆ϕl⇒ϕr (ϕ⇒ ϕ′):=∃ FV(ϕl).(ϕl ∧ ϕ)=?∧ϕr ⇒ ϕ′,
which returns the list of S-derivatives of ϕ ⇒ ϕ′, and is
defined using ∆ϕl⇒ϕr

(ϕ⇒ ϕ′) for each rule in ϕl ⇒ ϕr ∈ S.
Next, we introduce two relations ≈ and ∼, where the former

is over RL formulas, and the latter is over pairs of ML formulas
and valuations. The relation ≈ is used to handle the renaming



of free variables in RL formulas which is required when
computing derivatives. More precisely, instead of computing
∆ϕl⇒ϕr (ϕ ⇒ ϕ′) we compute ∆ϕl′⇒ϕr′ (ϕ ⇒ ϕ′), where
ϕl′ ⇒ ϕr′ is ϕl ⇒ ϕr with renamed free variables such
that FV(ϕl′) ∩ FV(ϕ) = ∅. This disjointness condition is
needed for technical reasons and it is essential for computing
derivatives; briefly, if this condition is not met, then there is
no guarantee that the derivative above encodes the successors
of configurations matching ϕ. We express the fact that the RL
formula ϕl′ ⇒ ϕr′ is a renamed version of ϕl ⇒ ϕr using
≈: ϕl′ ⇒ ϕr′ ≈ ϕl ⇒ ϕr. If two RL formulas are related
by ≈ then they denote the same set of transitions between
configurations, but with different valuations.

To express the fact that two RL formulas in relation ≈
denote the same transitions between configuration, but with
different valuations, we use the relation ∼:

Definition (ϕ, ρ) ∼ (ϕ′, ρ′):=∀∀∀ γ.(γ, ρ) |=ML ϕ↔↔↔ (γ, ρ′) |=ML ϕ
′,

Essentially, if ϕ ∼ ϕ′ then both ϕ and ϕ′ match over the
same set of configurations. Next, we use an axiom to establish
the link between relations ∼ and ≈:
Axiom ≈∼:∀∀∀ ϕ0 ϕ

′
0 ϕ1 ϕ

′
1. ϕ0 ⇒ ϕ′0 ≈ ϕ1 ⇒ ϕ′1 →

∀∀∀ ρ. ∃ ρ′. (ϕ0, ρ) ∼ (ϕ1, ρ
′)∧∧∧ (ϕ′0, ρ) ∼ (ϕ′1, ρ

′)

C. The procedure as a relation

The procedure shown in Figure 1 might not terminate.
Because all Coq functions are terminating, the procedure
cannot be encoded as a Coq function. Also, the procedure
operates with a set of goals instead of a single goal. In our
formalisation, we adapt the inference steps above to work with
lists of goals, since in Coq it is more convenient to work with
lists rather than sets. One could claim that working with lists
might restrict the generality of the procedure, but our encoding
does not rely on list-specific features. Moreover, in our Coq
formalisation we use the relation ≈ defined in Section IV-B
in order to handle variable renaming explicitly.

In Coq, we introduce non-determinism by encoding the
procedure as an inductive relation:

ϕ⇒ ϕ′ ∈ G M |=ML ϕ→ ϕ′

step(G,G \ {ϕ⇒ ϕ′}) [IMPL]

ϕ⇒ ϕ′ ∈ G
ϕc ⇒ ϕ′c ∈ G0 ϕc ⇒ ϕ′c ≈ ϕc′ ⇒ ϕ′c′

M |=ML ϕ→ ϕc FV(ϕc′) ∩ FV(ϕ) = ∅
step(G,G \ {ϕ⇒ ϕ′} ∪ {∆ϕc′⇒ϕ′

c′
(ϕ⇒ ϕ′)}) [CIRC]

ϕ⇒ ϕ′ ∈ G ϕ is S−derivable
S ≈ S ′

FV(ϕ) ∩ FV(S ′) = ∅
step(G,G \ {ϕ⇒ ϕ′} ∪∆S′(ϕ⇒ ϕ′))

[SYMB]

Here, FV(S ′) denotes the list of free variables that occur in
all the RL formulas in S ′. G, G0, S, and S ′ are all lists of
RL formulas. By abuse of notation we write ϕ ⇒ ϕ′ ∈ G
to denote the fact that ϕ ⇒ ϕ′ is in list G. Intuitively, step
relates two lists of goals G and G′, where G contains the
current goal ϕ ⇒ ϕ′, and G′ contains the remaining goals
from G \ {ϕ ⇒ ϕ′} and possibly the new goals generated
by [CIRC] and [SYMB]. At each step, only a single goal is

removed from G, but zero, one, or more goals can be added.
Note that, like in the original procedure (Figure 1) which uses
sets, it does not matter which goal is chosen from the list G,
we only require that ϕ⇒ ϕ′ ∈ G. Also, note that derivatives
are always computed using equivalent (w.r.t. ≈) RL formulas
whose variables are conveniently renamed.

A successful execution of the non-deterministic version of
the procedure is defined using steps:

steps(∅)
[BASE]

step(G,G′) steps(G′)

steps(G)
[STEPS]

Intuitively, given a set of initial goals G, step is applied
multiple times until the goals in G and the intermediary ones
generated by [CIRC] and [SYMB], are all eliminated by [IMPL].

In [9], for a successful run of the procedure the set
F , G0 ∪

⋃
iGi is defined, where G0 is the initial set of

goals, G1 = ∆S(G0), and Gi (i > 1) are the sets of goals
generated by each recursive call. In Coq, we define the
following relation (which says when a goal g is in F):

g ∈ G0

g ∈ F [IN-G0]
step(G,G′) g ∈ G\G′ G′ ⊆ F

g ∈ F [IN-STEP]

A goal g ∈ F if it is either in G0, or there is step where g was
eliminated (i.e., step(G,G′) with g ∈ G\G′) and the remaining
goals, including the ones introduced by this step, are also in
F . To ensure that this definition is consistent with the one
in [9], we prove in Coq the following technical lemma:

Lemma 1: For all lists of goals G, if steps(G) then G ⊆ F .

D. Helper lemmas

In this section we present two helper lemmas that have been
also proved in [9], but here we reformulate them more pre-
cisely. We also identify and explain the differences w.r.t. [9].

The first lemma states that every goal which is generated
by a successful execution is either eliminated by [IMPL], or its
left hand side is S-derivable. Unlike in [9], we disentangle the
precise hypotheses and formulate it as a stand-alone lemma:

Lemma 2: For all RL formulas ϕ ⇒ ϕ′ ∈ F , if S is total,
all goals in G0 are S-derivable, and there are γ and ρ such
that (γ, ρ) |=ML ϕ then M |=ML ϕ→ ϕ′ or ϕ is S-derivable.
The main difference between Lemma 2 and the corresponding
one from [9] is that here we explicitly provide in the hypoth-
esis a configuration γ and a valuation ρ which satisfy ϕ. The
existence of (γ, ρ) is crucial in the soundness proof.

The second lemma states that for every transition γ ⇒S γ′
which starts from ϕ there is a symbolic successor ϕ′ of ϕ such
that γ′ is an instance of ϕ′. This lemma is also generalised
to paths in Coq, and we prove that for a concrete execution
path there is a symbolic one which covers it. There are two
additional conditions required by this lemma (w.r.t. [9]): all
rules from S have distinct free variables from variables in ϕ
and all formulas from S and G0 are well-formed.

Lemma 3: For all transitions γ ⇒S γ′, for all valuations ρ,
and for all formulas ϕ, if (γ, ρ) |=ML ϕ, f ∈ S ∪ G0 implies
wf(f), and FV(S) ∩ FV(ϕ) = ∅, then there are α ∈ S and
ϕ′ , ∆α(ϕ) such that (γ′, ρ) |=ML ϕ

′.



E. The soundness for finite paths

The proof of the soundness theorem depends on an interme-
diate technical lemma. In this section we formulate the lemma
by adding all the hypotheses needed by its proof so that it does
not rely on hidden assumptions as in [9]. The lemma can be
thought of as a version of soundness for finite paths. We prove
it in Coq by induction on the number of transitions in τ .

Lemma 4: For all finite and complete paths τ , for all
valuations ρ, and for all formulas ϕ ⇒ ϕ′ ∈ F , if (τ, ρ)
startsFrom ϕ, G0 6= ∅, wfPath(τ), steps(∆S(G0)), S is total,
the left hand sides of goals in G0 are S-derivable, all formulas
in S ∪ G0 are well formed, and FV(S) ∩ FV(G0) = ∅, then
(τ, ρ) |=RL ϕ⇒ ϕ′.

With respect to [9], there are several significant differences.
First, the proof takes into account the fact that derivatives are
computed with renamed RL formulas. Second, we find and
fix the flaw from the proof in [9], where a false assumption
about the goals in F is made: given a successful execution
of the procedure starting with ∆S(G0), all the goals in F are
eliminated by a step of the procedure. This cannot be true,
since F includes G0, but the procedure only processes goals
starting with ∆S(G0). The assumption does not invalidate the
result from [9], but it makes the proof incomplete. In fact, the
goals in G0, which are of interest in the soundness theorem,
are not handled. This flaw was detected only when formalising
the proof in Coq. To fix it, we add a new hypothesis: the free
variables that occur in rules in S and those that occur in rules
in G0 constitute disjoint sets (i.e., FV(S) ∩ FV(G0) = ∅).

F. The soundness theorem

In this section we formulate the soundness theorem. Several
assumptions from [9] become hypotheses: all formulas in S
and G0 are well formed and for all the goals ϕ ⇒ ϕ′ in G0

ϕ is S-derivable. Moreover, we add the additional hypothesis
required by LEMMA 4: FV(S) ∩ FV(G0) = ∅. The theorem
below is fully formalised and proved in Coq:

Theorem 1: If S is total, all formulas in S ∪ G0 are well-
formed, the left hand sides of goals in G0 are S-derivable,
FV(S) ∩ FV(G0) = ∅, and steps(∆S(G0)) then ⇒S |=RL G0.

V. CONCLUSIONS

The formal proof of the soundness of the procedure was de-
veloped using version 8.4pl5 of the Coq proof assistant. The
Coq code6 is organized as follows: the main file, sound.v,
contains the definitions for step and steps, the main lemmas and
the soundness theorem, all shown in Section IV. The axioms
that we use for ML (Section IV-A) can be found in ml.v. The
definition of RL, derivatives, and the other related notions from
Section IV-B are located in rl.v and derivatives.v.

The Coq code has over 1600 lines and the proof includes
24 lemmas, 15 axioms (all needed to preserve the language
parametric feature) and 1 theorem. It took 5 months for one
person to improve the proof in [9] and encode it in Coq.

6Zip archive: https://profs.info.uaic.ro/~arusoaie.andrei/soundness-proof.zip

In terms of future work, we are interested in extracting a
certified OCaml program from the procedure, and then use it
for verification within the K framework. This requires RL-
based semantics of languages in OCaml, which could be
extracted from corresponding semantics in Coq.
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[4] Chucky Ellison and Grigore Roşu. An executable formal semantics of C
with applications. In Proceedings of the 39th Symposium on Principles
of Programming Languages (POPL’12), pages 533–544. ACM, 2012.

[5] Robert W. Floyd. Assigning meanings to programs. Proceedings of
Symposium on Applied Mathematics, 19:19–32, 1967.

[6] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. SIGACT
News, 32(1):66–69, 2001.

[7] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the unde-
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