
HAL Id: hal-01629187
https://hal.inria.fr/hal-01629187

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A set-valued nested sliding-mode controller
Felix Miranda-Villatoro, Fernando Castaños, Bernard Brogliato

To cite this version:
Felix Miranda-Villatoro, Fernando Castaños, Bernard Brogliato. A set-valued nested sliding-mode
controller. IFAC 2017 - The 20th World Congress of the International Federation of Automatic
Control, Jul 2017, Toulouse, France. pp.2971 - 2976, �10.1016/j.ifacol.2017.08.662�. �hal-01629187�

https://hal.inria.fr/hal-01629187
https://hal.archives-ouvertes.fr


A set-valued nested sliding-mode controller

Félix A. Miranda-Villatoro ∗ Fernando Castaños ∗

Bernard Brogliato ∗∗

∗ Automatic Control Department, Cinvestav-IPN, Av. Instituto
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Abstract: We propose a set-valued controller with a signum multifunction nested inside another
one. We prove that the controller is well-posed and achieves robust ultimate boundedness in
the presence of mismatched, non-vanishing disturbances. Even more, the selected output can be
made arbitrarily small. Also, by applying the implicit Euler scheme introduced by Acary and
Brogliato [2010], Acary et al. [2012] for matched disturbances, we derive a selection strategy
for the discrete-time implementation of the set-valued control law. The discrete-time scheme
diminishes chattering substantially.
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1. INTRODUCTION

Since its appearance, sliding-mode control has been stud-
ied in detail because of its robustness against parametric
and matched disturbances [Utkin et al. 2009, Slotine and
Sastry 1983, Levant 2003, Young et al. 1999]. However, this
kind of controllers is known to be fragile in the presence of
mismatched disturbances, that is, disturbances that affect
the system through a channel not shared by the control
input, and which in consequence cannot be eliminated by
applying the conventional methods [Utkin et al. 2009].

A distinctive feature of first-order sliding-mode control is
the finite-time convergence of the state towards the so-
called sliding surface. However, if the sliding surface is
linear, the state will approach the origin only exponentially
fast, even while in the sliding regime. To achieve finite-time
convergence to the origin, terminal sliding-mode control
was proposed [Venkataraman and Gulati 1993, Zhihong
et al. 1994]. For a system of the form (4) below, without
mismatched perturbations, i.e., when w1(t, x) ≡ 0, one
defines a sliding variable s(x) = x2 + |x1|p sgnx1 with
0 < p < 1. It is not difficult to verify that, along the sliding
surface {x ∈ R

2 | s(x) = 0}, the state converges indeed to
the origin in finite time. In this paper we study the limiting
case p = 0, which results in a controller with a signum
function nested inside another one. The controlled system
is studied under a differential inclusions perspective.

The paper by Adhami-Mirhosseini and Yazdanpanah
[2005] is also closely related to our work. The authors con-
sider the case p = 0, but with a sigmoidal approximation in
place of the true signum multifunction. In this regard, our
work can also be understood as a limiting case of the con-
troller proposed in Adhami-Mirhosseini and Yazdanpanah
[2005], which is designed from a backstepping algorithm.

The main results are presented in two stages. First, we
prove the well-posedness (existence of solutions) of the
nested sliding-mode control algorithm by using a set-
valued framework. The main result in this part is the
ultimate boundedness of the closed-loop system in the
presence of mismatched disturbances. In the second stage
we present a methodology for the selection of the values
of the control law which significantly alleviates the chat-
tering effect by using an implicit Euler discretization in
combination with a backstepping-like algorithm.

The paper is organized as follows: Section 2 recalls some
results of stability theory in the nonsmooth setting. Sec-
tion 3 is dedicated to the well-posedness as well as sta-
bility issues of the closed-loop system in continuous-time,
whereas Section 4 studies the discrete-time counterpart of
the nested controller. In Section 5 we present numerical
results and the comparison of the implicit discretization
against explicit techniques. Finally, the paper ends with
the conclusions and possible future work.

2. PRELIMINARIES

Along all this paper we deal with set-valued maps, that is,
maps that take a subset of the range for each point in their
domain. Let F : Rn

⇒ R
n be a set-valued map, the graph

of F is given as GraphF = {(x, y) ∈ R
n × R

n|y ∈ F(x)}.
Let S1 ⊂ R

n and S2 ⊂ R
n be two sets. The sum S1 + S2

is the set {σ ∈ R
n|σ = σ1 + σ2, σ1 ∈ S1, σ2 ∈ S2}. The

set-valued function Sgn : R ⇒ R is given by

Sgn(x) :=

{

sgn(x) if x 6= 0

[−1, 1] otherwise
,

whereas the single-valued function sgn : R \ {0} → R is
defined as



sgn(x) :=

{

−1 if x < 0

1 if x > 0
.

Note that this single-valued signum function is undefined
at x = 0.

Definition 1. A set-valued map F : X ⇒ Y is called
upper semi-continuous (usc) at x0 ∈ X if, for any open
neighborhood M of F(x0), there exists a neighborhood N
of x0 such that F(N) ⊂ M . The set-valued map F is upper
semi-continuous if it is so at every x0 ∈ X .

Proposition 2. [Aubin and Cellina 1984] Let F : X ⇒ Y
and G : Z ⇒ X be two set-valued usc maps. Then, the
composition map F ◦G : Z ⇒ Y such that

F ◦G(x) := ∪y∈G(x)F(y). (1)

is also usc.

Let V : Rn → R be a Lipschitz continuous function and
consider the following differential inclusion,

ẋ ∈ F(x), x(0) = x0, (2)

where F : Rn
⇒ R

n is a set-valued upper semi-continuous
map. The set-valued derivative of V along the trajectories
of (2) is defined as [Bacciotti and Ceragioli 1999]

LFV (x) := {a ∈ R | ∃ v ∈ F(x) such that,

〈p, v〉 = a, for all p ∈ ∂V (x)} , (3)

where the term ∂V (x) refers to Clarke’s subdifferential of
the function V at the point x (see e.g., [Clarke et al. 1998,
Theorem 8.1, p. 93]).

Theorem 3. [Bacciotti and Ceragioli 1999, Theorem 2]
Let V : R

n → R+ be a locally Lipschitz, regular (in
Clarke’s sense, see, e.g., [Clarke et al. 1998, Section 2.4])
and positive definite function such that for all x ∈ R

n,
max {LFV (x)} ≤ 0. Then, the origin of ẋ ∈ F(x) is stable.

The following nonsmooth chain rule, adapted from [Clarke
1990, Theorem 2.3.9], will be useful in the computation of
Clarke’s subdifferential

Proposition 4. Let f : R
n → R be given as f = g ◦ h,

where h : Rn → R is a Lipschitz continuous function and
g : R → R is continuously differentiable. Then,

∂f(x) = ∇g(h(x))∂h(x).

3. CONTINUOUS-TIME NESTED SET-VALUED
CONTROL

Consider the system






ẋ1 = x2 + w1(t, x1)

ẋ2 = u+ w2(t, x)

y = x1

, (4)

where xi ∈ R represents the states of the system, wi ∈ R

accounts for external disturbances and unmodeled dynam-
ics, i = 1, 2, and u, y ∈ R are the control input and desired
output, respectively.

Along all this note we make the following assumption.

Assumption 5. The disturbance terms wi, i = 1, 2, are lo-
cally Lipschitz continuous with respect to x and uniformly
bounded in the L∞ sense by positive constants Wi, that
is, ‖wi‖L∞

≤ Wi for all x.

Remark 6. Under the appropriate conditions on the sys-
tem relative degree, the form (4) can be obtained by apply-
ing input–output linearization on a more general system

{

ż = f(z) + g(z)v + p(z)ξ(t, z)

y = h(z)

with state z ∈ R
2, control input v ∈ R and disturbance

ξ ∈ R, cf. [Sastry 1999, (9.91) p. 418].

Objective: To regulate the output y = x1 to a neigh-
borhood of the origin in the presence of disturbances wi,
i = 1, 2.

Note that, even for this simple plant, the task of regulating
the output is a challenging problem because of the presence
the unmatched disturbance w1. In order to achieve the
robust regulation of y to a neighborhood of the origin, we
propose the control law

u(x) ∈ −γ2Ξ(x) − γ3 Sgn(Ξ(x)), (5)

where Ξ : R
2
⇒ R is the set valued map x 7→ {x2} +

γ1 Sgn(x1) and the gains γi, i = 1, 2, 3, are positive
and constant. The composed multifunction Sgn(x2 +
γ1 Sgn(x1)) is computed from (1) as

Sgn(Ξ(x)) =







sgn(ξ(x)) if x1 6= 0, 0 /∈ Ξ(x)

sgn(x2) if x1 = 0, 0 /∈ Ξ(x)

[−1, 1] if x1 ∈ R, 0 ∈ Ξ(x)

,

where ξ : {x ∈ R
2 | x1 6= 0} → R is a singled-

valued map given as ξ(x) = x2 + γ1 sgn(x1). With the
interconnection of (5) and (4), the closed-loop system
becomes the differential inclusion







ẋ1 = x2 + w1

ẋ2 ∈ −γ2Ξ(x) − γ3 Sgn (Ξ(x)) + w2

y = x1

. (6)

The well-posedness of the closed-loop system (6) is now
immediate in view of [Smirnov 2002, Corollary 4.4] and
Proposition 2 (and the fact that the sum of two usc
operators is also usc), that is, for any initial condition
x = x0 there exists (at least) one absolutely continuous
function x : R+ → R

n such that (6) holds almost every-
where. However, uniqueness of solutions requires further
properties which we do not investigate here, keeping in
mind that the stability proofs in the sequel accommodate
non-uniqueness of solutions.

It is also important to remark that, because of the pres-
ence of the persistent mismatched uncertain terms, it is
impossible to drive the whole state to the origin. Thus, we
aim for stability of a set rather than just a point.

3.1 Ultimate boundedness of the closed-loop

We start with some concepts from the theory of monotone
operators that will be used along this section.

Definition 7. Let F : Rn
⇒ R

n be a set-valued map. Then,
F is monotone if for any (x1, y1) ∈ GraphF and any
(x2, y2) ∈ GraphF, 〈y2 − y1, x2 − x1〉 ≥ 0. A monotone
operator F is called maximal if its graph is not strictly
contained in the graph of any other monotone operator.

There are two single-valued Lipschitz continuous maps
associated with a maximal monotone operator: the map



Jε
F
called the resolvent of F and the Yosida approximation

of F denoted as Fε. More specifically,

Jε
F := (I + εF)

−1
(7)

Fε :=
1

ε
(I − Jε

F) , (8)

where I is the identity operator. The following fact is taken
from Aubin and Cellina [1984].

Proposition 8. Let F : R
n

⇒ R
n be a maximal mono-

tone operator. Then, the Yosida approximation Fε is a
Lipschitz continuous map with constant 1/ε, whereas the
resolvent Jε

F
is non-expansive. Additionally, for all x ∈ R

n,
Fε(x) ∈ F(Jε

F
(x)).

From Definition 7 it is easily seen that the set-valued map
Sgn is in fact maximal monotone. Let us define the set-
valued maximal monotone operator S := Sgn. Then we
have

Jε
S
(x) =

{

x− ε sgn(x) if |x| ≥ ε

0 if |x| < ε
(9)

Sε(x) =

{

sgn(x) if |x| ≥ ε
x

ε
if |x| < ε

. (10)

Note that εSε(x) = Proj(x, [−ε, ε]), where Proj(x, C)
refers to the projection operator (see, e.g., [Hiriart-Urruty
and Lemaréchal 1993, Section III.3]). It is worth remarking
that, in general, neither the composition nor the sum
of two set-valued maximal monotone maps is maximal
monotone. In particular, the operator Sgn(x2+γ1 Sgn(x1))
is not maximal monotone.

Now we are ready to formulate the ultimate boundedness
of solutions of the closed-loop system (6).

Theorem 9. Consider the closed-loop (6). Then, the set
Q := [−ε, ε] × [−γ1, γ1] is globally asymptotically stable,
whenever

γ1 > W1, (11a)

γ2 >
γ1
ε
, (11b)

γ3 ≥ W2 +max

{

1, γ1

(

γ2 +
1

ε
W2

)}

, (11c)

where ε > 0 is fixed.

Proof. Consider the following nonsmooth, Lipschitz con-
tinuous, positive function:

V (x1, x2) = dist(x1, [−ε, ε]) +
1

2
(x2 + γ1Sε(x1))

2
, (12)

where the function dist(·, C) : R
n → R+ refers to the

distance function from a point to a set C. Next, we will use
the function V for proving the stability of the set [−ε, ε]×
[−γ1, γ1]. Therefore, following the nonsmooth chain rule
in Proposition 4 along with [Burke et al. 1992, Theorem
1], we obtain

∂V (x) =















(

sgn(x1), ξ(x)
)

if |x1| > ε
(

[0, 1](sgn(x1) +
γ1
ε
ξ(x)), ξ(x)

)

if |x1| = ε
(γ1
ε

(

x2 +
γ1
ε
x1

)

, x2 +
γ1
ε
x1

)

if |x1| < ε

.

(13)
In order to compute the set-valued derivative of V along
the trajectories of (6) we set

F(x) :=

[

x2 + w1

−γ2Ξ(x)− γ3 Sgn (Ξ(x)) + w2

]

.

We split the analysis in three cases. For space limitations
we sketch only the first case, the remaining two are
developed in a similar fashion.

Case 1 (|x1| > ε). From (3) together with (13) we obtain

LFV (x) = {a ∈ R | a = sgn(x1) (x2 + w1)

+ξ(x) (−γ2ξ(x)− γ3ζ + w2) , ζ ∈ Sgn(ξ(x))} .
Hence, it follows that

max {LFV (x)} ≤ −(γ1−W1)−γ2ξ(x)
2−(γ3−W2−1)|ξ(x)|

which is strictly negative whenever γ1 > W1, γ2 > 0 and
γ3 > 1 +W2.

By taking the cases where |x1| = ε and |x1| < ε with |x2| >
γ1, after some standard computations we conclude that the
set-valued derivative of V is strictly negative everywhere
outside the rectangleQ, which yields the global stability of
C and the ultimate boundedness of the trajectories of (6).

4. DISCRETE-TIME NESTED SET-VALUED
CONTROL

In this section we study the discrete-time counterpart of
the nested controller introduced in Section 3. It has been
shown in Acary and Brogliato [2010], Acary et al. [2012],
Huber et al. [2016a,b], Miranda-Villatoro et al. [2017, 2016]
that the adequate selection of the values of a set-valued
controller can substantially reduce the chattering effect.
The main contributions of the aforementioned works rely
on an implicit discretization scheme which, by using a
nominal model of the closed-loop, makes the selection of
the values of the controller such that (matched) distur-
bances are compensated.

Roughly speaking, we will exploit the triangular structure
structure (4) by applying a backstepping-like algorithm.
The algorithms reported in Acary and Brogliato [2010],
Huber et al. [2016a], Miranda-Villatoro et al. [2016] will
be then used to yield a suitable discrete-time control
law that exhibits drastically lower chattering than the
‘conventional’ explicit Euler discretization.

After applying an implicit Euler discretization to (4) we
obtain the discrete-time version of the disturbed double-
integrator,







x1,k+1 = x1,k + h (x2,k+1 + w1,k) (14a)

x2,k+1 = x2,k + h(uk + w2,k) (14b)

yk = x1,k, (14c)

where h = tk+1 − tk > 0 represents the sampling period
(considered fixed), and the notation fi,k stands for fi(tk).
Now we go one step through the backstepping-like algo-
rithm: We consider the virtual system

x1,k+1 = x1,k + hνk + hw1,k

with virtual control input νk and we consider its nominal
version

x̃1,k+1 = x1,k + hνk. (15)

We know that the set-valued control law

νk ∈ −γ1 Sgn(x̃1,k+1) (16)

is well-posed, that is, it allows for a suitable selection
strategy, achieves the robust regulation of the virtual state



x̃1,k to the origin in finite time for γ1 > 0 sufficiently
large and admits the Lyapunov function V1 = |x1,k| (see,
e.g., Acary and Brogliato [2010], Huber et al. [2016a],
Miranda-Villatoro et al. [2016]). It is worth recalling that
steering x̃1,k towards the origin implies that |x1,k| ≤ hW1.
Then we have the limit x1,k → 0 as h → 0.

Next, we go one step further into the backstepping algo-
rithm by considering the whole system (14) and the control
law

uk = −γ2(x2,k − νk) + ηk, (17)

where νk is as in (15)-(16) and

ηk ∈ −γ3 Sgn (x̃2,k+1 − νk) (18)

x̃2,k+1 = x2,k + huk. (19)

We see that uk in (17) is a particular discretization of u(x)
in (5) with mixed explicit and implicit terms as:

uk ∈ −γ2 (x2,k + γ1 Sgn(x̃1,k+1))

− γ3 Sgn(x̃2,k+1 + γ1 Sgn(x̃1,k+1)),

where the set-valued parts are implicitly discretized.

The rest of the section is dedicated to the well-posedness
and stability analysis of the closed-loop system (14)-(19).

It is worth noting that the use of the backstepping-like
approach allows us to overcome the maximal monotonicity
assumption by splitting the selection process in two steps.
Namely, we first compute the selection of the values of νk
by using (15)-(16). After that, we use (18)-(19) to compute
the selection of ηk, considering νk fixed. The following
lemma formalizes this.

Lemma 10. The closed-loop system (14)-(19) is well-posed
in the sense that, for any time tk, k ∈ N, there exists a
unique selection of the control value. Such value depends
on the current state x(tk) only. Moreover, we have

x̃1,k+1 = Jhγ1

S
(x1,k) (20a)

x̃2,k+1 − νk = Jhγ3

S
((1− hγ2)(x2,k − νk)) (20b)

which in fact implies

νk = −γ1Shγ1(x1,k) (21a)

ηk = −γ3Shγ3 ((1− hγ2)(x2,k − νk)) . (21b)

Proof. Consider the subsystem described by (15)-(16).
It can be rewritten as x1,k ∈ (I + hγ1 Sgn) (x̃1,k+1).
Recalling the definition of the resolvent of a maximal
monotone operator given by (7), it becomes evident that

x̃1,k+1 = Jhγ1

S
(x1,k). It follows from (15) that Jhγ1

S
(x1,k) =

x1,k + hνk, from where we easily infer (21a) with the aid
of (8). Equations (20b) and (21b) follow mutatis mutandis
by starting the argument with subsystem (18)-(19).

The following technical result will be useful in the upcom-
ing discussion.

Proposition 11. Let F : Rn
⇒ R

n be a set-valued maximal
monotone operator. Assume that there exists ρ > 0 such
that ρBn ⊆ F(0), where Bn := {ξ ∈ R

n|‖ξ‖ ≤ 1}. Let
x ∈ R

n, then, x ∈ εF(0) if and only if, Jε
F
(x) = 0.

Moreover, if x is such that x /∈ εF(0), then

‖Jε
F(x)‖ ≤ ‖x‖ − ερ.

Proof. The first statement follows directly from (7). On
the other hand, assume x /∈ εF(0) which in turn implies

ερx/‖x‖ ∈ εF(0). Now, using the non-expansiveness of the
resolvent and the previous property, we arrive at

‖Jε
F(x)‖ =

∥

∥

∥

∥

Jε
F(x) − Jε

F

(

ερ
x

‖x‖

)
∥

∥

∥

∥

≤ ‖x‖ − ερ.

Once the well-posedness of the closed-loop has been estab-
lished, we turn to the study of the existence of an invariant
region.

Lemma 12. Consider the closed-loop system (14)-(19).
The set

R :=

{

x ∈ R
2 | |x1,k| ≤ hγ1, |x2,k − νk| ≤

hγ3
1− hγ2

}

=
{

x ∈ R
2 | x̃1,k+1 = 0, x̃2,k+1 − νk = 0

}

(22)

is robustly positively invariant, i.e., it is invariant in the
presence of the disturbances wi,k, whenever there exist
gains γi > 0, i = 1, 2, 3, and a fixed sampling time h > 0
such that

γ1 ≥ W1 + hW2 (23a)

β − 1

βh
≥ γ2 ≥ 1− αh

h
(23b)

γ3 ≥ α(γ1 +W1 + 2hW2) (23c)

for some 0 < α < 1
h
and β > 1

αh
> 1 pre-specified and

considered fixed.

Proof. First, notice that (22) holds as a consequence of
applying Proposition 11 to (20) and setting ρ = 1. We
proceed with the proof by showing the positive invariance
of R. To this end, assume that k > 0 is such that
x̃1,k+1 = 0 and x̃2,k+1 − νk = 0. According to (22), we
have to prove that, for all n0 ≥ 1, |x1,k+n0

| ≤ hγ1 and
(1 − hγ2)|x2,k+n0

− νk+n0
| ≤ hγ3. From (14a), (15) and

(19) we get

|x1,k+1| = |x̃1,k+1 + h(x̃2,k+1 − νk) + hw1,k + h2w2,k|
≤ h(W1 + hW2) ≤ hγ1, (24)

where we have made use of the assumptions x̃1,k+1 = 0
and x̃2,k+1 − νk = 0 together with (23a). On the other
hand, from (14b) and (19) it follows that

|x2,k+1 − νk+1| ≤ γ1|Shγ1(x1,k)− Shγ1(x1,k+1)|+ hW2,

where we have made use of (21a) in the last inequality.
Using Proposition 8 together with (14a) and (19) we can
establish the bound

|x2,k+1 − νk+1| ≤ γ1 +W1 + 2hW2.

Hence, by noticing that (23b) can be rewritten as 1/β ≤
1− hγ2 ≤ αh and taking into account (23c) we obtain

(1− hγ2)|x2,k+1 − νk| ≤ αh (γ1 +W1 + 2hW2)

≤ hγ3. (25)

Finally, it follows from (24) and (25) that x̃1,k+2 =
x̃2,k+2 − νk+1 = 0, and the results follows by induction.

We callR the discrete-time sliding region, and when x ∈ R
we say that the system is in a discrete-time sliding regime
(or phase), see Huber et al. [2016a].

Remark 13. Eventhough the dependence between the gain
γ2 and the sampling time h is such that γ2 → +∞ as
h → 0, the control input (17) remains uniformly bounded
with respect to the sampling time h, whenever x ∈ R.
Indeed, given a fixed 0 < α < 1

h
and β > 1

αh
> 1, and



making use of (23b), (21) and Proposition 8, we arrive at
the conclusion that the control input satisfies

|uk| ≤ γ2|x2,k − νk|+ |ηk| ≤ βγ3.

The next results shows that the selection proposed above
using the backstepping-like approach makes sense.

Theorem 14. Consider the closed-loop dynamics given by
(14)-(19). Let all the assumptions of Lemma 12 hold.
Then, the region R in (22) is finite-time stable, that is,
for any initial condition x(0) ∈ R

2, the closed-loop system
trajectories converge to R in a finite number of steps.

Proof. Let us start considering the Lyapunov-function
candidate

V (k, xk) = |x̃1,k+1|+ |x̃2,k+1 − νk|.
Notice that proving x̃1,k+1 → 0 and x̃2,k+1 − νk → 0 is
equivalent to proving (x1,k, x2,k) → R. Computation of
the difference ∆Vk(x) := V (k + 1, xk+1)− V (k, xk) gives

∆Vk(x) = |Jhγ1

S
(x1,k+1)| − |x̃1,k+1|

+ |Jhγ3

S
((1− hγ2)(x2,k+1 − νk+1)) | − |x̃2,k+1 − νk| (26)

We consider several cases.

Case 1
(

|x1,k+1| ≥ hγ1, |x2,k+1 − νk+1| ≥ hγ3

1−hγ2

)

. Direct

application of Proposition 11 to (20) yields

|Jhγ1

S
(x1,k+1)| ≤ |x1,k+1| − hγ1 (27a)

|Jhγ3

S
((1− hγ2)(x2,k+1 − νk+1)) | ≤

(1− hγ2)|x2,k+1 − νk+1| − hγ3. (27b)

By substituting (27) into (26) and after some straight-
forward manipulations involving (14), (15) and (19) one
obtains

∆Vk(x) ≤ −h (γ1 −W1 − hW2)−h (γ2 − 1) |x̃2,k+1−νk|
+ (1− hγ2)(hW2 + |νk − νk+1|)− hγ3. (28)

Recall that νk is given by (21a) and that Sε is Lipschitz
continuous (Proposition 8). Thus, (28) transforms into

∆Vk(x) ≤ −h(γ2−1−α)|x̃2,k+1−νk|−h(γ1−W1−hW2)

− h (γ3 − α(γ1 +W1 + hW2)) < 0. (29)

Case 2
(

|x1,k+1| ≥ hγ1, |x2,k+1 − νk+1| < hγ3

1−hγ2

)

. Equa-

tion (27a) still holds and, because of Proposition 11, we

have Jhγ3

S
((1− hγ2)(x2,k+1 − νk+1)) = 0. Hence, equa-

tion (26) results in

∆Vk(x) ≤ |Jhγ1

S
(x1,k+1)| − |x̃1,k+1| − |x̃2,k+1 − νk|

≤ −h (γ1 −W1 − hW2)

− (1 − h)|x̃2,k+1 − νk| < 0. (30)

Case 3
(

|x1,k+1| < hγ1, |x2,k+1 − νk+1| ≥ hγ3

1−hγ2

)

. Equa-

tion (27b) holds and Jhγ1

S
(x1,k+1) = 0. Hence, equation

(26) satisfies

∆Vk(x) ≤ −|x̃1,k+1|+ (1− hγ2)|x2,k+1 − νk+1| − hγ3
− |x̃2,k+1 − νk|

≤ −|x̃1,k+1| − h(γ2 − α)|x̃2,k+1 − νk|
− h (γ3 − α(γ1 +W1 + 2hW2)) < 0. (31)

Case 4
(

|x1,k+1| < hγ1, |x2,k+1 − νk+1| < hγ3

1−hγ2

)

. Both

resolvents are zero, that is, Jhγ1

S
(x1,k+1) = 0 and

Jhγ3

S
((1− hγ2)(x2,k+1 − νk+1)) = 0. Hence,

∆Vk(x) = −|x̃1,k+1| − |x̃2,k+1 − νk| ≤ 0. (32)

It is now clear that, for any x̃k /∈ R, the Lyapunov
function is strictly decreasing, allowing us to reach the
conclusion on asymptotic stability of R. Moreover, the set
R is attained in finite-time. Namely, since ∆Vk is strictly
negative outside R, there exists a finite k∗ > 0 such that
Case 4 holds and x̃1,k∗+2 = 0 and x̃2,k∗+2 − νk∗+1 = 0
because of Proposition 11.

5. NUMERICAL EXAMPLE

In this section we present the performance of the controller
with a numerical example. The performance is assessed
by simulations under the assumption that the discrete-
time dynamics (14) is a suitable approximation of the
continuous-time plant (4) for values of h sufficiently small.
The simulations of the closed-loop system (4), (17) were
carried out using a zero-order hold as interface between the
discrete-time controller and the continuous-time plant.

In all the forthcoming simulations, we set the disturbances
as w1(t) = 2 sin(3t) cos(

√
2t) sin(

√
5t − π/3) and w2 =

sin(
√
2t). Hence, W1 = 2 and W2 = 1. Let h = 5 ms,

and α = 10. Satisfaction of (23) requires

γ1 ≥ 2.005, 200 > γ2 ≥ 150, γ3 ≥ 10γ1 + 20.1 . (33)

Note that, with this setup we need β ≥ 20, with the
actual value depending on γ2. The initial condition was
set to x0 = [15,−15]⊤ and the gains as γ1 = 3, γ2 = 150
and γ3 = 50.1. Figure 1 shows the time evolution of
the system state together with the control input and the
virtual nominal state x̃k. The peak in the control happens
one instant before the arrival of x to R, which occurs at
4.7 s approximately. The plots are produced by linearly
interpolating the sampled signals, this is the reason why
the controls do not show the expected stepwise nature.
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Fig. 1. Time evolution of the system trajectories and
the control selection of (4), (17) using the implicit
discretization and the backstepping-like algorithm
described in Section 4. Gains were set as γ1 = 3,
γ2 = 150 and γ3 = 50.1.

The same plant, without any change in the parameters,
was simulated using the explicit discretization

ûk = −γ2 (x2,k + γ1 sgn(x1,k))

− γ3 sgn (x2,k + γ1 sgn(x1,k)) . (34)

The simulation results are shown in Figure 2. Equa-
tion (34) lacks a selection strategy based on the informa-
tion available at time tk, which explains the noticeable
increase in chattering. The reader familiar with sliding
mode control theory could argue that the control law
(34) can yield roughly the ‘same level’ of chattering as
the implicit scheme by properly regularizing the signum
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Fig. 2. Time evolution of the system trajectories and
control input of the closed loop (4), (34) using the
explicit discretization with gains γ1 = 3, γ2 = 150
and γ3 = 50.1.

function. This argument is only partially true, because a
regularized control does not guarantee the reduction of
chattering [Young et al. 1999]. Namely, the smoothness
of the control law will depend on the required precision
and the sampling period and, to the best of the authors’
knowledge, there is no systematic procedure for choosing
the appropriate regularization based on these parameters,
just trial and error by simulation, (see Huber et al. [2016b]
for an example).

6. CONCLUSIONS AND FURTHER WORK

A set-valued nested controller was proposed. The con-
troller ensures the robust regulation of the output in the
presence of non-vanishing mismatched disturbances. The
implemented controller uses an implicit discretization to-
gether with a backstepping-like algorithm for the selection
of the control values. The proposed selection strategy
exhibits a better performance when compared with the
explicit discretization.

A possible future direction is the study of integral nested
controllers which would eliminate the reaching phase, i.e.,
the period of time taking place before the state enters R.
This would avoid the large initial peaks displayed by the
control input. Also, the methodology can be extended to
more general classes of systems with order larger than 2.
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