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Abstract. Three approaches are proposed for the design of a hybrid railway power substation taking into 

account the control of the storage system over one year. The first one is based on a piecewise linearization 

of the cost function and solved with linear programming. The others decompose the whole problem in two 

levels with lower dimensionality. Collaborative optimization solves it with a double-loop scheme while 

Benders decomposition allows a sequential resolution. This last gives the same solution as linear 

programming in about 5 times more computing time and can be used with a non-linear cost function. 
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INTRODUCTION 

Because of the rail network development, power demand of railway power substation (RPS) becomes 

increasingly important [1]. The integration of renewable energies could compensate this need and it reduces 

pollution. Nevertheless the known intermittency factor of these energies makes it difficult to estimate the amount 

of produced power [2]. By introducing a storage device, the hybrid RPS (HRPS) could ensure a good power quality 

and it reduces total cost [1]. The storage device should be accurately used according to consumed power, produced 

power and evolution of prices fixed by the power supplier [3]. To enhance the design of HRPS, energy 

management strategy should be suitable in the long term. This requirement leads to a very high number of decision 

variables that is 52560 for a time span of one year and measurement every ten minutes. 

This work falls within an emerging and challenging topic in electric engineering where the main issue is 

to design complex systems and networks for which the dimensional and control parameters have to be optimized 

all at once because of their strong interaction [2]-[5]. Renewable energies like photovoltaic panels [2], wind 

turbines [3], and wave energy converters [5] are typically intermittent with variations during the day and the 

seasons. The use of storage systems can balance climatic irregularity but their control along a large operating 

profile, that is typically one year or more, introduces numerous parameters leading to large-scale optimization 

problems. 

Three approaches could be used for the design by optimization of HRPS. The first one is to linearize the 

cost function and solve the energy formulation problem by using linear programming (LP) in order to find an 

approximate solution. If the problem scale is high and the functions are non-linear then decomposition methods 

can be applied to divide the complete problem into sub-problems with lower dimensionality. In this paper, 

collaborative optimization (CO) and Benders decomposition (BD) are investigated to find an exact solution of the 

whole problem. However, the difficulty is in the coordination of sub-optimizations and the convergence to the 

solution of the whole problem. 

In the first and second parts, the model and the optimization problem of HRPS are presented. The third 

part details the assumptions made to linearize the problem and compares the memory required by power and energy 

formulations with linear programming. Collaborative and multilevel optimizations are explained and applied to 

the HRPS problem in parts four and five, respectively. The three approaches are compared in terms of precision 

and computing time in part six. Finally, some conclusions and prospects are given. 

MODEL OF HYBRID RAILWAY POWER SUBSTATION 

The studied HRPS is presented in Fig. 1, it is composed of photovoltaic panels, wind turbines and a 

storage system connected to the substation through an AC bus. Renewable energy productions are illustrated by 

one-way power flows on Fig. 1. 

 



 

 

 

Figure 1. Power flows in hybrid railway power substation and dimensional decision variables. 

Their powers vary over time and depend on the photovoltaic panels surface 𝑆PV, and the swept surface of wind 

turbines 𝑆W: 

(1) 𝑃PV(𝑡) = 𝑆PV 𝑃irr(𝑡)          ∀𝑡 ∈ [0, 𝑇] 

(2) 𝑃W(𝑡) = 𝑘p 𝑆W 𝑣adj
3 (𝑡)      with   𝑣adj(𝑡) = {

𝑣W(𝑡) 0 ≤ 𝑣W(𝑡) < 𝑣rated

𝑣rated 𝑣rated ≤ 𝑣W(𝑡) ≤ 𝑣off

0 𝑣off < 𝑣W(𝑡)
          ∀𝑡 ∈ [0, 𝑇] 

where 𝑇 is the end of time range, 𝑣W(𝑡) is the wind speed in m/s, 𝑃irr(𝑡) is the solar irradiance in W/m2, 𝑣off is 

the turbine cut-off wind speed in m/s, 𝑣rated is the turbine rated wind speed in m/s, and 𝑘p = 𝜌𝑎𝑖𝑟  𝐶𝑝 2⁄  where 

𝜌𝑎𝑖𝑟  is the air density and 𝐶𝑝 the power coefficient of the wind turbine, assumed constant. 

All power flows of this multi-source system have to satisfy the power balance: 

(3) 𝑃load(𝑡) − 𝑃sto(𝑡) − 𝑃PV(𝑡) − 𝑃W(𝑡) − 𝑃grid(𝑡) = 0          ∀𝑡 ∈ [0, 𝑇] 

where 𝑃grid(𝑡) is the power from the grid, 𝑃sto(𝑡) is the power from the storage system, and 𝑃load(𝑡) is the power 

consumption of trains. Given the maximum amount of stored energy and power exchanged between the storage 

system and other substation components, lower and upper bounds apply for 𝑃sto(𝑡) and 𝐸sto(𝑡) as expressed in 

(4)-(5):  

(4) −𝑃max ≤ 𝑃sto(𝑡) ≤ 𝑃max          ∀𝑡 ∈ [0, 𝑇] 

(5) 0 ≤ 𝐸sto(𝑡) ≤ 𝐸max          ∀𝑡 ∈ [0, 𝑇] 

where the maximum amounts of power 𝑃max in W and energy 𝐸max in J define the storage capacity. At the end of 

the time range 𝑇, the amount of energy stored is supposed to return to its initial value 𝐸ini for periodicity: 

(6) 𝐸sto(𝑇) = 𝐸ini 

The power 𝑃sto(𝑡) and the energy 𝐸sto(𝑡) can both express the temporal fluctuation of energy in the 

storage device. The stored energy is computed from the history of 𝑃sto(𝑡) and the initial amount of energy in the 

storage system 𝐸ini assuming that there is no loss in the storage system: 

(7) 𝐸sto(𝑡) = 𝐸ini − ∫ 𝑃sto(𝜏) 𝑑𝜏
𝑡

τ=0
          ∀𝑡 ∈ [0, 𝑇] 

 Reciprocally, the power 𝑃sto(𝑡) can be computed from the derivative of the stored energy 𝐸sto(𝑡): 



 

 

(8) 𝑃sto(𝑡) = −𝑑𝐸sto(𝑡) 𝑑𝑡⁄           ∀𝑡 ∈ [0, 𝑇] 

OPTIMIZATION PROBLEMS 

In equations (1)-(8), the values of the wind speed 𝑣W(𝑡), the solar irradiance 𝑃irr(𝑡), the turbine cut-off 

wind speed  𝑣off, the turbine rated wind speed 𝑣rated, and the power consumption of trains 𝑃load(𝑡) are known. In 

order to solve the optimization problem, the time is discretized with a time step Δ𝑡 resulting in 𝑛t = 𝑇 Δ𝑡⁄  time 

steps. Measurement of the mean power consumption of trains is made every 10 minutes therefore, the time step is 

taken equal to Δ𝑡 = 600 seconds. The wind speed and solar irradiance are measured every hour and interpolations 

are used to compute values every 600 seconds. The time range is considered to be one year as the slowest variation 

is the one of the solar irradiance, resulting in 𝑛t = 52560 time steps. 

Now, it is possible to write the discretized forms of equations (7) and (8): 

(7d) 𝐸sto(𝑡 = 𝑖 𝛥𝑡) = 𝐸sto,i = 𝐸ini − ∆𝑡 ∑ 𝑃sto,j          ∀𝑖 ∈ ⟦1, 𝑛t⟧
i
j=1  

(8d) 𝑃sto(𝑡 = 𝑖 𝛥𝑡) = 𝑃sto,i = [𝐸sto,i−1 − 𝐸sto,i]/∆𝑡         ∀𝑖 ∈ ⟦1, 𝑛t⟧     with     𝐸sto,0 = 𝐸ini 

The objective function is expressed in (9) for 𝑛y = 20 years operating mode, that is the lifespan of 

equipments, by considering investments cost 𝐶inv of all devices and also the non-linear energy cost for purchasing 

or selling electricity. Bold letters are used for vectors. 

(9) OF(𝑆PV, 𝑆W, 𝑃max, 𝐸max, 𝑷𝐠𝐫𝐢𝐝) = 𝐶inv(𝑆PV, 𝑆W, 𝑃max, 𝐸max) + 𝑛y ∑ 𝑐𝑜𝑠𝑡(𝑃grid,i)
nt
i=1  

The decision variables are the photovoltaic panels surface 𝑆PV, the swept surface of wind turbines 𝑆W, the 

maximum amount of power 𝑃max, the maximum amount of energy in the storage system 𝐸max, the initial amount 

of energy in the storage system 𝐸ini, and a high dimension decision variable for the control of the storage system 

that can be the power 𝑷𝐬𝐭𝐨 or the energy 𝑬𝐬𝐭𝐨. Therefore, two optimization problems can be expressed. 

In the first formulation, the decision variables for the control of the storage system are the powers 𝑃sto(𝑡) 

and (7d) is used to rewrite the discretized forms of equations (4)-(6): 

(4d) −𝑃max ≤ 𝑃sto,i ≤ 𝑃max         ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

(10) 0 ≤ 𝐸ini − ∆𝑡 ∑ 𝑃sto,j 
i
j=1 ≤ 𝐸max         ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

(11) ∑ 𝑃sto,j 
nt
j=1 = 0 

Equations (1)-(3) are merged to express the power from the grid: 

(12) 𝑃grid,i = 𝑃load,i − 𝑃sto,i − 𝑆PV 𝑃irr,i − 𝑘p 𝑆W 𝑣adj,i
3          ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

Therefore, the optimization problem with the power formulation is stated as: 

(13) 

min
𝑆PV,𝑆W,𝑃max,𝐸max,𝐸ini,𝑷𝐬𝐭𝐨

OF(
𝑆PV, 𝑆W, 𝑃max, 𝐸max,

𝑷𝐥𝐨𝐚𝐝 − 𝑷𝐬𝐭𝐨 − 𝑆PV 𝑷𝐢𝐫𝐫 − 𝑘p 𝑆𝑊 𝒗𝐚𝐝𝐣
𝟑 )

𝑠. 𝑡. (4d), (10), (11) 

𝑆PV ∈ 𝑅+, 𝑆W ∈ 𝑅+, 𝑃max ∈ 𝑅+, 𝐸max ∈ 𝑅+, 𝐸ini ∈ 𝑅+, 𝑷𝐬𝐭𝐨 ∈ 𝑅nt

 

In the second formulation, the decision variables for the control of the storage system are the energies 

𝐸sto(𝑡) and (8) is used to rewrite equations (4)-(6) and (12): 

(5d) 0 ≤ 𝐸sto,i ≤ 𝐸max        ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

(6d) 𝐸sto,nt
= 𝐸ini 

(14) −𝑃max ∆𝑡 ≤ 𝐸sto,i−1 − 𝐸sto,i ≤ 𝑃max ∆𝑡         ∀𝑖 ∈ ⟦1, 𝑛t⟧       with     𝐸sto,0 = 𝐸ini 

(15) 𝑃grid,i = 𝑃load,i − ∆𝐸sto,i/∆𝑡 − 𝑆PV 𝑃irr,i − 𝑘p 𝑆W 𝑣adj,i
3     ∀𝑖 ∈ ⟦1, 𝑛t⟧   with  ∆𝐸sto,i = 𝐸sto,i−1 − 𝐸sto,i 



 

 

Therefore, the optimization problem with the energy formulation is stated as: 

(16) 

min
𝑆PV,𝑆W,𝑃max,𝐸max,𝐸ini,𝐸sto

OF(
𝑆PV, 𝑆W, 𝑃max, 𝐸max,

𝑷𝐥𝐨𝐚𝐝 − ∆𝑬𝐬𝐭𝐨/∆𝑡 − 𝑆PV 𝑷𝐢𝐫𝐫 − 𝑘p 𝑆W 𝒗𝐚𝐝𝐣
𝟑 )

𝑠. 𝑡. (5d), (6d), (14) 

𝑆PV ∈ 𝑅+, 𝑆W ∈ 𝑅+, 𝑃max ∈ 𝑅+, 𝐸max ∈ 𝑅+, 𝐸ini ∈ 𝑅+, 𝑬𝐬𝐭𝐨 ∈ 𝑅+nt

 

 To summarize, the optimization problems for both formulations include 𝑛t + 5 = 52565 design 

variables, one non-linear objective function, one linear equality constraint, and 4 𝑛t = 210240 linear inequality 

constraints. It is to mention that the left inequality in (5d) for the optimization problem with the energy formulation 

that is 0 ≤ 𝐸sto,i can be ignored since the lower bound of energy is zero. This removes 𝑛t = 52560 inequality 

constraints. 

LINEARIZATION OF COSTS 

Several pricing systems exist in the electricity market. For instance, the energy purchase price may vary 

according to the hour and the month while the selling price of renewable energies is often constant. In this case, 

the energy cost is a piecewise linear function of the power consumption or production according to the hour, date, 

and direction of the power flow. On the other hand, the delivery cost of electricity is a non-linear function that is 

not investigated in this paper but constitutes a challenging prospect. 

The power from the grid 𝑷𝐠𝐫𝐢𝐝 is decomposed in two parts, the power received 𝑷𝐠𝐫𝐢𝐝
+  and the power sent 

𝑷𝐠𝐫𝐢𝐝
−  assuming that at least one of them is equal to zero: 

(17)  𝑃grid,i = 𝑃grid,i
+ + 𝑃grid,i

−          ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

This allows changing the non-linear energy cost function by a piecewise linear function: 

(18) 𝑐𝑜𝑠𝑡(𝑃grid,i) = Δ𝑡 [𝐶grid,i
+  𝑃grid,i

+ + 𝐶grid,i
−  𝑃grid,i

− ]        ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

where 𝑪𝐠𝐫𝐢𝐝
+  and  𝑪𝐠𝐫𝐢𝐝

−  are the costs for purchasing and selling electricity, respectively. They are changing 

according to the hour of the day and the day of the year.  

Moreover, the investment cost is assumed to be a linear function: 

(19) 𝐶inv(𝑆PV, 𝑆W, 𝑃max, 𝐸max) = 𝐶sto
E  𝐸max + 𝐶sto

P  𝑃max + 𝐶PV 𝑆PV + 𝐶W 𝑆W 

As a new degree of freedom is introduced, 𝑷𝐠𝐫𝐢𝐝
+  and 𝑷𝐠𝐫𝐢𝐝

−  cannot be deduced from other power flows as 

before and the power balance expressed in (1)-(3) has to be reintroduced for the power and energy formulations, 

respectively as: 

(20)  𝑃load,i − 𝑃sto,i − 𝑆PV 𝑃irr,i − 𝑘p 𝑆W 𝑣adj,i
3 − 𝑃grid,i

+ − 𝑃grid,i
− = 0         ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

(21)  𝑃load,i − [𝐸sto,i−1 − 𝐸sto,i]/∆𝑡 − 𝑆PV 𝑃irr,i − 𝑘p 𝑆W 𝑣adj,i
3 − 𝑃grid,i

+ − 𝑃grid,i
− = 0        ∀𝑖 ∈ ⟦1, 𝑛t⟧ 

Therefore, the linear optimization problems with the power and energy formulations are respectively 

stated as: 

(22) 

min
𝑆PV,𝑆W,𝑃max,𝐸max,𝐸ini,𝑷𝐬𝐭𝐨,𝑷𝐠𝐫𝐢𝐝

+ ,𝑷𝐠𝐫𝐢𝐝
−

{
𝐶sto

E  𝐸max + 𝐶sto
P  𝑃max + 𝐶PV 𝑆PV + 𝐶W 𝑆W

+𝑛y Δ𝑡 ∑ (𝐶grid,i
+  𝑃grid,i

+ + 𝐶grid,i
−  𝑃grid,i

− )
nt
i=1

}

𝑠. 𝑡. (4d), (10), (11), (20) 

𝑆PV ∈ 𝑅+, 𝑆W ∈ 𝑅+, 𝑃max ∈ 𝑅+, 𝐸max ∈ 𝑅+, 𝐸ini ∈ 𝑅+

𝑷𝐬𝐭𝐨 ∈ 𝑅nt , 𝑷𝐠𝐫𝐢𝐝
+ ∈ 𝑅+nt , 𝑷𝐠𝐫𝐢𝐝

− ∈ 𝑅−nt
 

 

(23) 

min
𝑆PV,𝑆W,𝑃max,𝐸max,𝐸ini,𝑬𝐬𝐭𝐨,𝑷𝐠𝐫𝐢𝐝

+ ,𝑷𝐠𝐫𝐢𝐝
−

{
𝐶sto

E  𝐸max + 𝐶sto
P  𝑃max + 𝐶PV 𝑆PV + 𝐶W 𝑆W

+𝑛y Δ𝑡 ∑ (𝐶grid,i
+  𝑃grid,i

+ + 𝐶grid,i
−  𝑃grid,i

− )
nt
i=1

}

𝑠. 𝑡. (5d), (6d), (14), (21) 

𝑆PV ∈ 𝑅+, 𝑆W ∈ 𝑅+, 𝑃max ∈ 𝑅+, 𝐸max ∈ 𝑅+, 𝐸ini ∈ 𝑅+

𝑬𝐬𝐭𝐨 ∈ 𝑅+nt , 𝑷𝐠𝐫𝐢𝐝
+ ∈ 𝑅+nt , 𝑷𝐠𝐫𝐢𝐝

− ∈ 𝑅−nt
 

 



 

 

 The linearized optimization problems for both formulations include 3 𝑛t + 5 = 157685 decision 

variables, one linear objective function, 𝑛t + 1 = 52561 linear equality constraints, and 4 𝑛t = 210240 linear 

inequality constraints. Table 1 summarizes the decision variables and constraints for both formulations. 

Table 1. Description of both formulations for linearized optimization problem 

Formulation  power energy 

Variables 
common 𝑆PV, 𝑆W, 𝐸max, 𝑃max, 𝐸ini, 𝑷𝐠𝐫𝐢𝐝

+ , 𝑷𝐠𝐫𝐢𝐝
−  

specific 𝑷𝐬𝐭𝐨 𝑬𝐬𝐭𝐨 

Constraints 

energy 
bounds 

0 ≤ 𝐸ini − Δ𝑡 ∑ 𝑃sto,j

i

j=1
≤ 𝐸max  0 ≤ 𝐸sto,i ≤ 𝐸max 

power 
bounds 

−𝑃max ≤ 𝑃sto,i ≤ 𝑃max −𝑃max Δ𝑡 ≤ 𝐸sto,i−1 − 𝐸sto,i ≤ 𝑃max Δ𝑡 

periodicity ∑ 𝑃sto,i = 0 
nt

i=1
 𝐸sto,nt

= 𝐸ini 

Linear programming is used to solve the optimization problem for both formulations. In Matlab 

programming, specific matrices are required to express the equality and inequality constraints. Due to a time step 

of 10 minutes, each temporal variable induces 52560 unknowns for one year cycle thus sparse matrices are 

employed to reduce the memory requirements. In Table 2, both formulations are compared according to the size 

of matrices required to express the equality and inequality constraints such as the amount of memory required to 

store them by using full or sparse matrices. 

Table 2. Comparison of memory requirements for both formulations (𝒏𝐭 = 𝟓𝟐𝟓𝟔𝟎) 

Formulation 
power energy 

Expression Memory Expression Memory 

Size of matrices (5 𝑛t + 1)(3 𝑛t + 5) 309 GB (full) (4 𝑛t + 1)(3 𝑛t + 5) 247 GB (full) 

Number of nonzero 14 𝑛t + 𝑛t
2 62 GB (sparse) 14 𝑛t + 4 17 MB (sparse) 

Fig. 2.a. and Fig. 2.b. present respectively the nonzero elements of equality and inequality matrices for 

power and energy formulations during one day, i.e. 144 time steps. On Fig. 2.a., it can be seen that the power 

formulation induces a higher number of nonzero elements which makes difficult the storage of matrices for a high 

number of decision variables. By employing energy formulation, the memory required is greatly reduced and the 

optimization of HRPS is achievable in about one minute on a laptop computer for a complete year. The 

implementation is made with Matlab 2015b and the dual-simplex algorithm in linprog function from the 

Optimization toolbox. The tolerance has to be reduced to 10−9 to achieve a good precision for a complete year. 

Other options take the default values. 

 

Figure 2. Comparison of matrices for one day. Each column is a variable and each row is a constraint. 

The linearization of costs appears to be a good way to get an approximate solution of the HRPS 

optimization problem but the prospect is to optimize with the real costs that are non-linear functions. Therefore, 

new strategies are required for the non-linear optimization with a high number of decision variables. 
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COLLABORATIVE OPTIMIZATION 

The principle of collaborative optimization is to decompose the complete problem into sub-problems, 

each of them having a lower number of decision variables [6]. Sequential quadratic programming (SQP) and 

active-set, among others, are algorithms able to accurately solve non-linear optimization problems with numerous 

active constraints at optimum in a reduced number of evaluations. Unfortunately, the number of variables is limited 

to hundreds. Interior-point method (IPM) can extend the number of variables to thousands but the precision of the 

solution may decrease because of the barrier method used to handle constraints. Attempts to solve problems (13) 

and (16) by using SQP and IPM have been carried out with an increasing number of time steps (Fig. 3). It appears 

that the convergence of SQP is not achieved in an affordable computing time beyond 432 time steps (3 days) while 

the limit of IPM is 1296 time steps (9 days). For an increasing number of time steps, IPM shows better solution 

and lower computing time compared to SQP. However, only the solution found by SQP for a time range of one 

day is as good as LP. 

  

Figure 3. Comparison of algorithms to solve HRPS complete problem: cost (left) and time (right). The cost is normalized 

with respect to LP value. 

Therefore, the decomposition of the HRPS problem is guided by the number of variables in each sub-

problem. It is proposed to decompose in two levels: year and day. This is shown in Fig. 4 where the year level is 

at the top and the day level at bottom. For the sake of simplicity, the year is reduced to 7 days in this figure. At the 

year level, the design variables are the four dimensional parameters since their values are not time-dependent. At 

the day level, the idea is to decompose the complete year in 𝑛d = 365 days with optimizations made in parallel. 

This is enabled by introducing additional linking variables at the year level that are the amount of energy in the 

storage system at the beginning of each day. Additional constraints are added at the day level to impose the amount 

of energy stored at the beginning and the end of each day. The number of design variables for one day is 𝑛t 𝑛d⁄ =
144, that is also the number of time steps for this period, i.e. 24 hours multiplied by 6 time steps per hour. At the 

year level, the number of design variables is 𝑛d + 4 = 369 corresponding to 𝑛d = 365 linking variables and 4 

dimensional parameters. 

The minimum energy costs (24) at the day level given the values of the dimensional and linking variables 

are found by 𝑛d optimizations in parallel and added as a second member in the objective function (25) at the year 

level. 

(24)  

𝐶ener,d = min
𝑬𝐬𝐭𝐨

∑ 𝑐𝑜𝑠𝑡(𝑃load,i − 𝑃PV,i − 𝑃W,i − [𝐸sto,i−1 − 𝐸sto,i]/∆𝑡)
d nt nd⁄

𝑖=1+(d−1) nt nd⁄

𝑠. 𝑡.   {

𝐸sto,(d−1) nt nd⁄ = 𝐸ini,d 

𝐸sto,d nt nd⁄ = 𝐸ini,d+1

𝑬𝐬𝐭𝐨 ∈ R+nt nd⁄ , (5d), (14)

 

(25) OF(𝑆PV, 𝑆W, 𝑃max, 𝐸max, 𝑬𝐢𝐧𝐢) = 𝐶inv(𝑆PV, 𝑆W, 𝑃max, 𝐸max) + 𝑛y ∑ 𝐶ener,d
nd
d=1  

 



 

 

 

Figure 4. Decomposition of the HRPS in two levels. 

As the objective function at the year level includes the results of optimizations at day level, those lasts 

are nested in the year level model as shown in Fig. 5. This leads to a double-loop approach with high computing 

time and slow convergence. Two cases are considered for the inner-loop. In the first case (CO 1st case), the energy 

cost is a non-linear function and problems (24) are solved with non-linear programming (NLP) and distributed 

computing. In the second case (CO 2nd case), the energy cost is approximated by a piecewise linear function and 

problems (24) are solved with linear programming. For both cases, the outer-loop that minimizes (25) requires 

NLP because the energy cost for all days 𝐶ener,d are implicit functions. The derivatives of 𝐶ener,d relative to the 

variables 𝑆PV, 𝑆W, 𝑃max, 𝐸max, 𝑬𝐢𝐧𝐢 are computed by using the finite difference technique. There is no guaranty of 

convergence for the outer-loop due to the fact that 𝐶ener,d may not be convex. However, all the constraints are 

linear and the feasible space is thus convex. This double-loop approach appears to have unaffordable computing 

time even for a small time range in the first case while the same solution as LP is found in a reasonable computing 

time for few days in the second case (Fig. 6). The collaborative optimization with linear programming in the inner-

loop (2nd case) will be investigated for a complete year in the results part. 

 

 

Figure 5. Collaborative optimization (double-loop) structure. 

𝑆PV, 𝑆W, 𝑃max, 𝐸max, 𝑬𝐢𝐧𝐢 
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𝐸ini,2 𝐸ini,d+1 𝐸ini,1 



 

 

  

Figure 6. Comparison of algorithms to solve HRPS problem with double-loop approaches: cost (left) and time (right). The 

cost is normalized with respect to LP value. 

MULTILEVEL OPTIMIZATION 

The advantage of multilevel optimization is to avoid the nested optimization by using an approach where 

the optimizations are solved sequentially. At the year level, the optimization is performed by using substitute 

models 𝐶ener,d
~  of the result of optimizations at the day level 𝐶ener,d  for each day. This way, the costly 

optimizations at the day level are replaced by fast evaluations of functions at the year level that are usually linear. 

Then, the optimizations are made at the day level and the substitute models are refined. The loop between levels 

stops when the discrepancies between the substitute models and the minimum energy costs are negligible. Figure 

7 gives the flowchart of this approach and the main steps are detailed below. 

 

 

Figure 7. Multilevel optimization (sequential) structure. 

As the objective function 𝐶ener,d = 𝑓(𝐸sto,1+(d−1) nt nd⁄  , ⋯ , 𝐸sto,d nt nd⁄ ) expressed in (24) is an implicit 

function of the design variables at the day level, the difficulty is to build a substitute model �̃�ener,d =

𝑠𝑑(𝐸max, 𝑃max, 𝑆PV, 𝑆W, 𝐸ini,d, 𝐸ini,d+1) that is an explicit function of the design variables at the year level. 

Based on the theory of duality, the Benders decomposition [7], [8] takes advantage of the information on 

the Lagrange multipliers to define a lower bound for the objective function of the sub-problems, as detailed in 

Appendix. When the objective function and the constraints of the sub-problems are linear, and the objective 
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function and the constraints of the master problem (at the year level) are continuous, then Benders decomposition 

converges in a finite number of steps [8]. If the whole problem has a finite optimum solution, Benders 

decomposition converges to an optimum solution. Hence, the application of Benders decomposition on problem 

(22) or (23) gives an optimal solution. If the objective function or the constraints of the sub-problems are no longer 

linear, the problem can be solved using a generalized Benders decomposition [9]. This method is proven to be 

convergent when the sub-problems consist in minimizing a convex function over a convex constraint set [9]. 

In the HRPS optimization problem, the objective functions are the costs of energy for all days. In the sub-

problems, the decision variables 𝐸max, 𝑃max, 𝑆PV, 𝑆W, 𝑬𝐢𝐧𝐢 at the year level are constant. The constraints (5d), (6d), 

(14), and (15) are rewritten such as these variables appear in their RHS: 

(26) 𝐸sto,i ≤ 𝐸max       ∀ 𝑖 ∈ ⟦1 + (𝑑 − 1) 𝑛t 𝑛d⁄ , 𝑑 𝑛t 𝑛d⁄ ⟧ 

(27) −𝐸sto,1+(d−1)nt nd⁄ ≤ 𝑃max ∆𝑡 − 𝐸ini,d 

(28) 𝐸sto,i−1 − 𝐸sto,i ≤ 𝑃max  ∆𝑡        ∀ 𝑖 ∈ ⟦2 + (𝑑 − 1) 𝑛t 𝑛d⁄ , 𝑑 𝑛t 𝑛d⁄ ⟧ 

(29) 𝐸sto,1+(d−1)nt nd⁄ ≤ 𝑃max ∆𝑡 + 𝐸ini,d 

(30) 𝐸sto,i − 𝐸sto,i−1 ≤ 𝑃max  ∆𝑡        ∀ 𝑖 ∈ ⟦2 + (𝑑 − 1) 𝑛t 𝑛d⁄ , 𝑑 𝑛t 𝑛d⁄ ⟧ 

(31)  −𝐸sto,1+(d−1)nt nd⁄ + 𝑃grid,1+(d−1)nt nd⁄ ∆𝑡 = 𝑃load,1+(d−1)nt nd⁄  ∆𝑡 − 𝑆PV 𝑃irr,1+(d−1)nt nd⁄  ∆𝑡 

  −𝑘p 𝑆W 𝑣adj,1+(d−1)nt nd⁄
3  ∆𝑡 − 𝐸ini,d 

(32)  𝐸sto,i−1 − 𝐸sto,i + 𝑃grid,i ∆𝑡 = [𝑃load,i − 𝑆PV 𝑃irr,i − 𝑘p 𝑆W 𝑣adj,i
3 ] ∆𝑡     

    ∀ 𝑖 ∈ ⟦2 + (𝑑 − 1) 𝑛t 𝑛d⁄ , 𝑑 𝑛t 𝑛d⁄ ⟧ 

(33) 𝐸sto,nt nd⁄ = 𝐸ini,d+1 

The algorithm starts with an initial value of the variables at the year level. After solving the sub-problems, 

the Lagrange multipliers are available for all constraints: (𝜆ineq1,i)1+(d−1)nt nd⁄  ≤ i ≤ d nt nd⁄
 for the inequality 

constraint (26), 𝜆ineq2,1+(d−1) nt nd⁄  for (27), (𝜆ineq2,i)2+(d−1)nt nd⁄  ≤ i ≤ d nt nd⁄
 for (28), 𝜆ineq3,1+(d−1) nt nd⁄  for 

(29), (𝜆ineq3,i)2+(d−1)nt nd ⁄ ≤ i ≤ d nt nd⁄
 for (30), 𝜆eq1,1+(d−1)nt nd⁄  for the equality constraint (31), 

(𝜆eq1,i)2+(d−1)nt nd⁄  ≤ i ≤ d nt nd⁄
 for (32), and 𝜆eq2  for (33). The multiplier is a measurement of the expected 

decrease of the energy cost for an increase of the RHS of a constraint in the sub-problem. As all RHS are expressed 

explicitly as linear functions of the variables at the year level, the lower bounds for all energy costs �̃�𝐞𝐧𝐞𝐫 are 

deduced and introduced as additional constraints (34) in the optimization problem at the year level as explained in 

the Appendix. 

(34)  −�̃�ener,d − ∑ 𝜆ineq1,i
d nt nd⁄

i=1+(d−1)nt nd⁄  𝐸max − ∑ (𝜆ineq2,i + 𝜆ineq3,i)
d nt nd⁄

i=1+(d−1)nt nd⁄ 𝑃max ∆𝑡 + 

 (𝜆ineq2,1+(d−1)nt nd⁄ − 𝜆ineq3,1+(d−1)nt nd⁄ + 𝜆eq1,1+(d−1)nt nd⁄ ) 𝐸ini,d − 𝜆eq2 𝐸ini,d+1 

+∆𝑡 [𝜆eq1,1+(d−1)nt nd⁄ ⋯ 𝜆eq1,d nt nd⁄ ] {[

𝑃irr,1+(d−1)nt nd⁄

⋮
𝑃irr,d nt nd⁄

] 𝑆PV + 𝑘p [

𝑣adj,1+(d−1)nt nd⁄
3

⋮
𝑣adj,d nt nd⁄

3
] 𝑆W}

≤ [𝜆eq1,1+(d−1)nt nd⁄ ⋯ 𝜆eq1,d nt nd⁄ ] [

𝑃load,1+(d−1)nt nd⁄

⋮
𝑃load,d nt nd⁄

] ∆𝑡 

The master problem (35) at the year level is then solved with these additional constraints, one for each 

day, and new values for the design variables are deduced such as the values of the expected energy costs for all 

days, �̃�ener,d. At each iteration, 𝑛d new constraints on the energy costs are added. 



 

 

(35) 

min
𝑆PV,𝑆W,𝑃max,𝐸max,𝑬𝐢𝐧𝐢,�̃�𝐞𝐧𝐞𝐫

𝐶inv(𝑆PV, 𝑆W, 𝑃max, 𝐸max) + 𝑛y ∑ 𝐶ener,d
~nd

d=1

𝑠. 𝑡. (34) ∀ 𝑑 ∈ ⟦1, 𝑛d⟧

𝑆PV ∈ 𝑅+, 𝑆W ∈ 𝑅+, 𝑃max ∈ 𝑅+, 𝐸max ∈ 𝑅+, 𝑬𝐢𝐧𝐢 ∈ 𝑅+nd  , 𝑪𝐞𝐧𝐞𝐫
~ ∈ 𝑅nd

 

The algorithm stops if the gap between the sums of energy costs found at both levels is small enough: 

(36) |∑ �̃�ener,d
nd
d=1 − ∑ 𝐶ener,d

nd
d=1 | ≤ 𝜀 

where 𝜀 is the precision chosen equal to 1€ what is about 10−7 relative to the minimum value of the objective 

function.  

RESULTS AND COMPARISON 

As already mentioned, the energy cost is assumed piecewise linear in order to compare the results of 

collaborative optimization and Benders decomposition to the solving of the complete optimization problem with 

linear programming. As expected, this last gives the lower total cost in the shortest time and is considered as the 

reference for comparison. 

Figures 8 show the value of the objective function and the computing time for the three approaches when 

the number of days considered in the problem increases. LP is linear programming, CO is collaborative 

optimization with linear programming for the inner-loop, and BD is the Benders decomposition. The cost is 

normalized with respect to LP value. It can be seen that BD gives the same solution as LP with about 5 times more 

computing time but this ratio decreases as the number of days considered increases. CO fails to find the solution 

when considering more than 120 days. The time required by CO is about one thousand times more than LP. 

  

Figure 8. Comparison of approaches to solve HRPS problem: cost (left) and time (right). 

CONCLUSIONS 

Benders decomposition appears to be very efficient for the optimization of HRPS on a large time range 

taking into account the control of the storage system. For a piecewise linear cost function, the design is performed 

in a few minutes on a laptop computer for a complete year. The solution is the same as the one found with linear 

programming and the computing time is about 5 times higher only. Collaborative optimization fails to find the 

same solution and its computing time is at least one hundred times higher. 

As the energy cost function is not linear in reality, the linear programming cannot be used. Therefore, one 

prospect is to apply Benders decomposition to design the HRPS with a non-linear energy cost function as it is not 

possible to solve this optimization problem as a whole. 
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APPENDIX: BENDERS DECOMPOSITION 

We consider a linear optimization problem with two sets of variables. The complete formulation is: 

(A1)  min
x,y

𝑐t 𝑥 + 𝑑t 𝑦 

(A2)  s.t.  

𝐴 𝑥 + 𝐵 𝑦 ≤ 𝑏
𝐴eq 𝑥 + 𝐵eq 𝑦 = 𝑏eq

𝐷 𝑥 ≤ 𝑒

 

(A3) with 
𝑙𝑏x ≤ 𝑥 ≤ 𝑢𝑏x

𝑙𝑏y ≤ 𝑦 ≤ 𝑢𝑏y
 

In order to perform the Benders decomposition, the variables 𝑥 are assumed to belong to the master 

problem while the variables 𝑦 are in the sub-problem. Classically, the variables in the master problem are integer 

and the ones in the sub-problem are continuous but Benders decomposition can also be applied to problems with 

only continuous variables. 

At the beginning, an initial value 𝑥0 for the variables in the master problem is given. The first iteration 

(𝑘 = 1) starts by solving the sub-problem expressed as: 

(A4)  𝑓k = 𝑚𝑖𝑛
y

𝑑t 𝑦 

(A5)  s.t.  
𝐵 𝑦 ≤ 𝑏 − 𝐴 𝑥k−1

𝐵eq 𝑦 = 𝑏eq − 𝐴eq 𝑥k−1
 

(A6) with 𝑙𝑏y ≤ 𝑦 ≤ 𝑢𝑏y 

After solving the sub-problem (A4)-(A6), a marginal cost or Lagrange multiplier is available for each 

constraint: 𝜆ineq  for inequality constraint, 𝜆eq  for equality constraint, 𝜆ub  for upper bound, and 𝜆lb  for lower 

bound. The multiplier is a measurement of the expected decrease of the objective for an increase of the RHS of 

the constraint. The multiplier for an inequality constraint is positive if the constraint is active else it is equal to 

zero. For equality constraint, the multiplier is positive or negative. 

The range constraint (A6) is transformed in two inequality constraints to standardize the notation: 

(A7) with 
𝑦 ≤ 𝑢𝑏y

−𝑦 ≤ −𝑙𝑏y
 

The second step in the iteration is to solve the master problem expressed as: 

(A8)  [𝑥k, 𝑓k
~] = argmin

x,f~
 𝑐t 𝑥 + 𝑓~ 

(A9)  s.t.  

𝐷 𝑥 ≤ 𝑒

−𝑓~ ≤ [𝜆ineq
t 𝜆eq

t 𝜆ub
t 𝜆lb

t ]

[
 
 
 

𝑏 − 𝐴 𝑥
𝑏eq − 𝐴eq 𝑥

𝑢𝑏y

−𝑙𝑏y ]
 
 
 
 



 

 

(A10) with 𝑙𝑏x ≤ 𝑥 ≤ 𝑢𝑏x 

where 𝑓~ is an additional design variable in the master problem and acts as a substitute of the second member of 

the objective function of the whole problem. This variable is attracted to −∞ since it is added to the objective 

function but the constraint (A9) on 𝑓~ prevents to reach it. This constraint comes from the duality theory. 

 The inequality constraints in (A9) are written in the standardized notation as: 

(A11)  s.t. 
𝐷 𝑥 ≤ 𝑒

−𝑓~ + (𝜆ineq
t  𝐴 + 𝜆eq

t  𝐴eq) 𝑥 ≤ 𝜆ineq
t  𝑏 + 𝜆eq

t  𝑏eq + 𝜆ub
t  𝑢𝑏𝑦 − 𝜆lb

t  𝑙𝑏𝑦
 

The iterations are continued until a stopping criterion is fulfilled. This stopping criterion is usually: 

(A12) |𝑓k − 𝑓k
~| ≤ 𝜀 

where 𝜀 is the requested precision. A new constraint on 𝑓~ is added to the set of inequality constraint at each 

iteration. 


