
HAL Id: hal-01629288
https://hal.inria.fr/hal-01629288

Submitted on 8 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Work In Progress: Toward a Coq-certified Tool for the
Schedulability Analysis of Tasks with Offsets

Xiaojie Guo, Sophie Quinton, Pascal Fradet, Jean-François Monin

To cite this version:
Xiaojie Guo, Sophie Quinton, Pascal Fradet, Jean-François Monin. Work In Progress: Toward a Coq-
certified Tool for the Schedulability Analysis of Tasks with Offsets. RTSS 2017 - IEEE Real-Time
Systems Symposium, Dec 2017, Paris, France. pp.1-3. �hal-01629288�

https://hal.inria.fr/hal-01629288
https://hal.archives-ouvertes.fr

Work In Progress: Toward a Coq-certified Tool
for the Schedulability Analysis of Tasks with Offsets

Xiaojie Guo1,2, Sophie Quinton1, Pascal Fradet1 and Jean-François Monin2

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, F-38000 Grenoble France ∗

ABSTRACT
This paper presents the first steps toward a formally proven
tool for schedulability analysis of tasks with offsets. We
formalize and verify the seminal response time analysis of
Tindell by extending the Prosa proof library, which is based
on the Coq proof assistant. Thanks to Coq’s extraction
capabilities, this will allow us to easily obtain a certified an-
alyzer. Additionally, we want to build a Coq certifier that
can verify the correctness of results obtained using related
(but uncertified), already existing analyzers. Our objective
is to investigate the advantages and drawbacks of both ap-
proaches, namely the certified analysis and the certifier. The
work described in this paper as well as its continuation is in-
tended to enrich the Prosa library.

1. INTRODUCTION
For hard real-time systems used in application domains

such as avionics, missing a deadline may have catastrophic
consequences. Schedulability analysis, which aims to guar-
antee the absence of any deadline miss, is therefore of the
utmost importance in the verification of such critical sys-
tems. Schedulability analysis has been the subject of in-
tensive research over the past decades and many different
techniques have been implemented into tools, including sev-
eral commercial analyzers such as NETCAR-Analyzer [2],
SymTA/S [3], etc. There is, however, no guarantee that the
results provided by these tools are correct, for two reasons:

1. The theory that they build upon may be flawed, as in
the original schedulability analysis for CAN messages [5];

2. They may contain undetected bugs and thus return
erroneous results.

Our general objective is to provide schedulability analysis
tools with formal guarantees using the Coq [4] proof assis-
tant. We aim to investigate two options:

1. Write the entire analyzer and its correctness proof in

∗This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01).

Coq and extract from it a certified1 Caml implementation;
2. Write in Coq a program that can guarantee that a given

result is correct, in contrast to computing that result — for
example verifying that a given value is indeed a fixed point
rather than computing such a fixed point. The extracted
Caml tool would then have to be used together with an
existing schedulability analysis tool.
Which option will prove the best compromise in terms of
computational complexity, implementation effort, acceptance
from industry is still an open question.

As a first step, we focus on the schedulability analysis
of uniprocessor systems of tasks with offsets dispatched ac-
cording to the Fixed Priority Preemptive (FPP) scheduling
policy. Schedulability analysis in presence of offsets is a non-
trivial problem with a high computational complexity. In
contrast to the traditional (offset oblivious) analysis, many
scenarios must be tested and compared to identify which one
represents the worst-case scenario.

In this paper, we formalize and prove in Coq an analy-
sis technique presented in [6] and [7] to bound the response
time of tasks with offsets, and thus decide on the schedu-
lability of a system. In addition to paving the way toward
a Coq-certified tool for schedulability analysis of task sets
with offsets, our formalization effort underlines implicit as-
sumptions made by the author in [6] and eases the general-
ization of the verified analysis. Our formalization is based
on Prosa [1], a library of definitions and proofs for real-time
schedulability analysis.

The rest of this paper is laid out as follows: Section 2
presents the system model; in Section 3, we present our for-
malization of the existing analysis. Section 4 discusses the
Coq proof; finally, we present future work in Section 5.

2. SYSTEM MODEL
The system model considered in this paper is the one pre-

sented by Tindell in [6]. It consists of a set of periodic tasks
running on a uniprocessor using FPP scheduling. A system
S is a set of transactions

S := {Tr1,Tr2, . . . ,Trm}

where each transaction is a set of tasks Tr i := {. . . , τi,k, . . .}
sharing the same period Ti. A task is described as a tuple
τi,k := {Ci,k, Oi,k, Di,k, Ti} where k denotes its priority (a
greater k means a higher priority), Ci,k its worst-case execu-
tion time and Di,k its deadline. There is no global synchro-
nization between transactions so there is an indefinite time

1Certified in this context means formally verified in Coq.

shift between any two transactions. Within a transaction
Tr i, however, there is a fixed and known relation between
task activations: an instance of a task τi,k is activated Oi,k
time after each release of Tr i, where Oi,k is called an offset.

In hard real-time systems, the duration between the ac-
tivation and the completion of any instance of a task must
be less than its deadline. The j-th instance (or job) of a
task τi,k is characterized by its activation time acti,k(j), its
finishing time endi,k(j) and its computation time ci,k(j) —
with ci,k(j) ≤ Ci,k. Its response time RTi,k(j) is defined as
endi,k(j) − acti,k(j). The worst-case response time of task
τi,k, denoted wcrti,k, is the largest possible response time
among all instances of task τi,k.

Figure 1 shows an example with two transactions and four
tasks. Black upward arrows indicate task activations, black
downward arrows show task finishing times while red upward
arrows represent the periodic release of transactions. Grey
boxes indicate time intervals during which a task is executing
and white boxes intervals during which a task is delayed by
a higher priority task. Note that task τ1,8, for example,
is always activated one time unit after task τ1,10, but the
alignment between activations of τ1,8 and τi,9 is unknown
and may vary.

τi,k

τi,9
Tr i

τ1,8

τ1,10

Tr1

BWk BWk

Figure 1: A system with 2 transactions and 4 tasks (k < 8).

The analysis considered in this paper relies on the follow-
ing hypotheses (we discuss this further in the conclusion):

1. Tasks in the same transaction have the same period.
Therefore, a task activation can be associated with a unique
transaction release, and conversely.

2. (Restricted offsets) The offset of a task is strictly less
than its period: ∀τi,k, Oi,k < Ti.

3. (Implicit deadlines) The deadline of a task is equal to
its period: ∀τi,k, Di,k = Ti.

The analysis relies heavily on the concept of busy window
which we explain now. An instant t is said to be a level-k
quiet time if all tasks of priority higher than or equal to k
released strictly before t have completed at t. A level-k busy
window is a time interval [t1, t2[in which:

1. a task with a priority higher than or equal to k is acti-
vated at t1;

2. t1 and t2 are level-k quiet times;
3. there is no other level-k quiet time between t1 and t2.

In Figure 1, two level-k busy windows are shown using or-
ange boxes marked with BW k.

3. RESPONSE TIME ANALYSIS (RTA)
In this section, we reformulate the approximate RTA tech-

nique presented in [6]. We discuss in Section 4 how it relates

τi,k
t1 t2

φi θi,k

?

Oi,k

BWk

(a) (Oi,k ≥ φi).

τi,k
t1 t2

φi θi,k

? ?

Oi,k

BWj

(b) (Oi,k < φi).

Figure 2: Relation between Oi,k and φi (with ? = acti,k).

to the original proof. From now on, we focus on a task τi,k
and analyze its worst-case response time.

Assume that there exists a level-k busy window [t1, t2[in
which the j-th instance of τi,k is released2. This job finishes
at the latest at t2, so the response time of this instance can
be bounded by:

RTi,k(j) ≤ t2 − acti,k(j) (1)

which, with the notation BWk := t2 − t1, is the same as

RTi,k(j) ≤ BWk + t1 − acti,k(j) (2)

The key to the analysis is to show that the response time
is maximized when: (1) all jobs in the busy window take
their worst-case execution time to complete; and (2) t1 is
aligned with an activation of each transaction.

The definition of a busy window implies that BWk is the
least fixed point of wl t1 :

BWk = wl t1(BWk) (3)

where wl t1(∆) is the workload of priority higher than or
equal to k that arrives between t1 and t1 +∆. This workload
is computed by adding up the execution times of all jobs of
tasks with a priority higher than or equal to k which are
activated between t1 and t1 + ∆.

In order to bound RTi,k(j), we first focus on upper bound-
ing wl t1 and then reason about fixed points to bound BWk.
Let φi denote the duration between t1 and the latest release
of Tr i that precedes it:

φi = t1 mod Ti (4)

Then, the duration θi,k between t1 and the first activation
of τi,k in BWk is:

θi,k = (Ti +Oi,k − φi) mod Ti (5)

Note that this definition holds in the two cases shown in
Figure 2.

Lemma 1.

wl t1 ≤
∑

Trj∈S

wl+
j,t1

(6)

where wl+
j,t1

(∆) :=
∑

τj,l∈Trj
k≤l

d∆− θj,l
Tj

e × Cj,l (7)

with θj,l = (Tj +Oj,l − φj) mod Tj with φj = t1 mod Tj.

Proof sketch. wl+
j,t1

(∆) upper bounds the actual workload
wl j,t1(∆) induced by tasks of priority higher or equal to k
in Tr j between t1 and t1 +∆ by assuming all jobs take their

2Note that if the utilization is below 100%, it is always pos-
sible to compute that busy window.

worst-case execution time to finish. d∆−θj,l
Tj
e is the number

of activations of τj,l in [t1, t1 + ∆[, knowing that the first
activation is at t1 + θj,l.

The principle of the approximate analysis is to maximize
the workload induced by each transaction in isolation. This
may introduce an overapproximation in the obtained bound
but it greatly reduces the computational complexity of the
analysis compared to the exact solution.

Lemma 2. For Tr j ∈ S,

wl+
j,t1
≤ wl∗j (8)

where
wl∗j := max

O∈Oj

{wl+j,O}

Oj := {Oj,l | τj,l ∈ Tr j ∧ k ≤ l}

wl+
j,O(∆) :=

∑
τj,l∈Trj
k≤l

d
∆− θOj,l
Tj

e × Cj,l

with θOj,l = (Tj +Oj,l −O) mod Tj.

Proof sketch. Let Ot1 = (Ot11 , . . . , O
t1
m) be such that Ot1j is

the offset of the first task of priority higher than or equal to
k in Tr j that is activated after t1. It is fairly easy to prove
that:

wl+
j,t1

(∆) ≤ wl+

j,O
t1
j

(∆)

We now differentiate Tr i from the others and obtain:

wl t1(∆) ≤ wl+

i,O
t1
i

(∆) +
∑

Trj∈S
j 6=i

wl∗j (∆) (9)

Let BW ∗
O

t1
i

be the least fixed point of the above func-

tion upper bounding wl t1 . Using properties of fixed point
iteration, we can prove that BWk ≤ BW ∗

O
t1
i

and thus:

RTi,k(j) ≤ BW ∗
O

t1
i

+ t1 − acti,k(j) (10)

We then prove that acti,k(j)−t1 ≥ (Ti+Oi,k−Ot1i) mod Ti,
so:

RTi,k(j) ≤ BW ∗
O

t1
i

− (Ti +Oi,k −Ot1i) mod Ti (11)

The main theorem follows:

Theorem 1.

wcrti,k ≤ max
O∈Oi

{BW ∗O − (Ti +Oi,k −O) mod Ti} (12)

4. FORMAL PROOFS IN COQ
We have formalized in Coq the system model described

in Section 2 and proved the correctness of the analysis pre-
sented in Section 3. Coq is acknowledged as a very reli-
able (and rich) interactive environment to develop and ver-
ify proofs. To be convinced, an external reader only has
to understand the problem specification and the main cor-
rectness theorem. Coq also allows the extraction of certified
tools. Our development made use of the Prosa library where
FPP, busy windows, workload and associated properties are
mostly already defined (but Equation (3), for example, was
not available). However, periodic tasks with offsets and re-
lated analyses are not considered. Our work will be used to
enrich Prosa.

The interested reader can access the proofs sources at
https://team.inria.fr/spades/coq-proofs-offsets. The Coq
code follows the content of the previous sections.

Compared to Tindell’s informal proof, we had to prove in
Lemma 1 that the worst-case response time is achieved when
all execution times are equal to their worst-case execution
time — this property is not even mentioned in [6]. Also,
Tindell does not prove that the worst case happens within a
busy window starting with an activation of each transaction.
This led us to prove several nontrivial auxiliary properties
about fixed point iterations.

The proof, as it is presented in Section 3 and formalized in
Coq, looks quite different from the original paper. We used
φ, BW and θ instead of W , w and Ô respectively (these
notations are used in other offset-related papers). The main
result, however, is of course very similar.

5. CONCLUSION AND FUTURE WORK
In this short paper, we presented the formalization of a

response time analysis for tasks with offsets and its correct-
ness proof using Coq. We defined and proved generic lemmas
that can be reused in other proofs. Some hypotheses can be
removed to generalize our results. For example, the implicit
deadline assumption is not used, while the restricted offsets
assumption does not seem to be critical in our proofs. We
will investigate some extensions and expect their correctness
proof to be very lightweight, as we can build on top of the
current proof.

Clearly, this work is in progress. The next steps are:
1. Use the Coq extraction feature to generate a certified

schedulability analysis tool (in OCaml). This step should
not involve much work.

2. Design a Coq certifier for a standard tool (e.g., py-
CPA). The certifier should ensure the correctness of results
of an uncertified analyzer. This task is more involved and
could require further research (e.g., the analyzer might need
to be instrumented to produce additional information for
the certifier).

3. Compare the runtimes and effort required by the cer-
tified analyzer and the certifier. Checking a fixed point is
faster than computing it: the respective efficiency of both
tools should depend on how much time is spent in fixed point
computations.

6. REFERENCES
[1] A Library for formally proven schedulability analysis.

http://prosa.mpi-sws.org/.
[2] NETCAR-Analyzer: the RTaW-Sim plugin for worst-case

timing analysis on Controller Area Network.
http://www.realtimeatwork.com/software/netcar-analyzer/.

[3] SymTA/S: Model-based timing analysis and optimization.
https://auto.luxoft.com/uth/timing-analysis-tools/.

[4] The Coq proof assistant. http://coq.inria.fr.
[5] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien.

Controller Area Network (CAN) schedulability analysis:
Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, 2007.

[6] K. Tindell. Using offset information to analyse static
priority pre-emptively scheduled task sets. Technical report
YCS 182. University of York, Department of Computer
Science, 1992.

[7] K. Tindell. Adding time-offsets to schedulability analysis.
University of York, Department of Computer Science, 1994.

