
HAL Id: hal-01629475
https://hal.archives-ouvertes.fr/hal-01629475

Submitted on 9 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Consistency for Distributed Collaborative
Modeling
Gerson Sunyé

To cite this version:
Gerson Sunyé. Model Consistency for Distributed Collaborative Modeling. ECMFA 2017 - 13th
European Conference on Modelling Foundations and Applications, Jul 2017, Marburg, Germany.
pp.197-212, �10.1007/978-3-319-61482-3_12�. �hal-01629475�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132005523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01629475
https://hal.archives-ouvertes.fr


Model Consistency for Distributed Collaborative

Modeling

Gerson Sunyé
gerson.sunye@univ-nantes.fr

LS2N – University of Nantes
AtlanMod Group (Inria, IMT Atlantique, and LS2N)

November 7, 2017

Abstract

Current collaborative modeling tools use a centralized architecture,
based on version control system, where models are updated asynchronously.
These tools depend on a single server and are not completely adapted for
collaborative modeling, where update reactivity is essential. In this pa-
per, we propose a framework for building collaborative modeling tools
which provides synchronous model update. The framework is based on
a peer-to-peer architecture and uses a consistency algorithm for model
updating.

1 Introduction

As collaborative modeling becomes more and more popular, changing the way
that modelers interact with colleagues to design and create documents, there is a
growing need for tools and techniques that enable effective collaboration. A first
response for this need is the emergence of online web-based modeling tools, e. g.,
Lucidchart [24] or GenMyModel [9], and of standalone modeling tools coupled
with control version systems, as the recent release of MetaEdit+ [31].

In this paper, we propose a model consistency approach for providing the
bases of collaborative modeling tools. This approach is inspired from cooper-
ative editing systems, introduced in Section 2.1 and is based on the Eclipse
Modeling Framework [26], EMF, the de-facto standard framework for building
modeling tools, which is introduced in Section 2.2.

The goal of our approach is to provide the basis for developing modeling
tools with following characteristics: (i) distributed : collaborative tools can be
deployed on distributed nodes, connected by networks with different latency
times, and do not require a centralized server for update integration; (ii) re-
active: the response for integrating remote updates is fast with low latency;
(iii) synchronous: local updates are broadcast to other nodes right after their
execution.

1



Differently from other approaches that use a generic control-version server,
e. g., Git or SVN, or a model-specific one, e. g., EMFStore [12], the approach
does not use versions and resolves conflicts automatically aiming at a simple
goal, that all model replicas are consistent. The advantages and limits of the
approach with respect to other research efforts are discussed in Section 5.

To ensure that remote changes are integrated with the same execution order
in all nodes, the approach classifies the relations between updates into four dis-
tinct types: independent, dependent, equivalent, and conflictual. Independent
updates can be executed in any order, while dependent ones must always follow
the same order. Equivalent updates produce the same result and thus only one
should be executed, and conflictual updates produce different results depending
on their execution order. The integration of the latter is more complex and
may result in undoing local changes and re-executing them after the integra-
tion. Section 3 describes the approach an the integration algorithm, as well as
a simple example that illustrates the approach.

To validate the integration algorithm through implementation, we develop
a prototype that uses EMF notifications to capture local updates and the pub-
lish–subscribe architectural pattern [4] to broadcast them to remote nodes. Sec-
tion 4 describes the implementation.

2 Background

This section introduces the principles of cooperative editing systems, which
inspired our work, and some of the modeling concepts implemented in EMF
that help the comprehension of the model consistency approach.

2.1 Cooperative Editing Systems

A real-time cooperative editing system consists of a set of interconnected nodes
where locally to each node, users perform changes on a shared document. Each
node propagates its local changes to the remote nodes, which integrate them to
the local copy of the shared document. The system maintains the consistency
among the different copies. A cooperative editing system is said to be consistent
if it maintains the following properties [29]:

Convergence. When the same set of operations have been executed at all
nodes, all copies of the shared document are identical.

Causality Preservation. For any pair of operations Oa and Ob , if Oa → Ob,
then Oa is executed before Ob at all nodes.

Intention Preservation. For any operation O, the effects of executing O at
all sites are the same as the intention of O, and the effect of executing O
does not change the effects of independent operations.

2



A common solution to achieve consistency is to use an operational transfor-
mation approach [28], which consists of an integration algorithm and a transfor-
mation function. The integration algorithm is responsible for performing, broad-
casting, and receiving operations, while the transformation function is responsi-
ble for detecting and merging concurrent operations. The transformation func-
tion often relies on vector clocks, e. g., GOTO [28] and ABT [18]. A vector clock
is an array of logical clocks, one clock per node, associated to each operation and
used to determine the causality between operations. The limit of vector clocks is
that the size of the exchanged messages grows with the number of nodes, creat-
ing a bottleneck that prevents these systems to scale. A scalable alternative to
vector clocks is to use semantic causal dependency [16, 20], declared with respect
to operation preconditions. For instance, consider a Graph on which two opera-
tions are performed, O1 = createV ertex(A) and O2 = createV ertex(B). There
is no casual dependency between this two operations since their execution order
can be interchanged. However, if a third operation O3 = createEdge(A,B) is
considered, then there is a casual dependency: the execution of O3 requires that
vertices A and B exist, i. e., O3 must be executed after O1 and O2.

While cooperative editing systems focus on documents and on casual depen-
dency of operations on characters, we believe that their techniques and algo-
rithms can also be applied to structured data models.

2.2 EMF

The Eclipse Modeling Framework is a set of components that aims at help-
ing developers to create sophisticated modeling tools [26]. Similarly to other
modeling frameworks, e. g., MDR [19] and NSUML [22], it proposes a modeling
language, Ecore, and code generation facilities to create Java underlying mod-
els, specific to each Ecore model. In EMF terms, the Java generated modeling
elements are (subclasses of) EObject and their meta-types, the elements of
an Ecore model, are instances of EClass. Unlike the other frameworks, EMF
introduces the concept of Resource, a container for modeling element instances
(EObject sub-instances), which is independent from Ecore models. Indeed,
a resource can contain a subset of instances from the same underlying model,
as well as instances from other models. Resources are mainly used to persist
instances on different formats: e. g., XMI, relational databases [25], or NoSQL
databases [21, 7].

Resources respect the containment relationship: when an instance is at-
tached to a resource, so are all its contents. Conversely, when an instance is
detached from a resource, all its contents are also detached. Resources are re-
sponsible for assigning identities to instances, needed to serialize and unserialize
references to instances that use the Java object identity as identifiers. Identi-
ties are unique among instances from the same modeling element (EObject
subclass). Instances from a resource can reference instances from a different
resource, provided that both resources belong to the same Resource Set. Each
resource has an unique identifier, used as an index in the global Registry, another
EMF concept introduced along with resources.

3



Since EMF does not distinguish models by their contents, i. e., another lan-
guage syntax or real-world concepts, we refer to the contents of a model as
Instances and to the modeling language elements as Types.

3 Model Consistency Approach

We consider a distributed system of interconnected nodes, where each node
contains models expressed in different modeling languages. Nodes also contain
resources, which are composed of instances from different modeling languages.
In this system, any subset of nodes can share one or more resources: each
node contains a replica of a shared resource and performs query and update
operations on it. To ensure that all replicas of a shared resource are consistent,
we propose the following approach:

1. Each update operation in a shared resource is first executed locally.

2. Thereafter, the operation is broadcast to all nodes containing replicas of
the shared resource.

3. These nodes receive and integrate the update operation. The integra-
tion may result in undoing a locally executed operation, executing a new
operation, and redoing that operation.

Shared resources are basically EMF resources that have replicas spread over
a set of nodes and that are defined as follows:

Definition 1 (Shared Resource). A Shared Resource is a tuple R = 〈rid, N,
I, F 〉 where: rid is the resource unique identifier, N is a set of nodes sharing
the resource, I is a set of instances, and F is a set of features (i. e., instance
attribute values and references between instances),

Locally to each node, Java object identifiers (i. e., memory addresses) are
commonly used as identifiers for instances and features. However, in a dis-
tributed environment, we must ensure the following propositions concerning the
unique identification of resources, instances, types, and features.

Proposition 1. Every node has an unique identity through the network, denoted
by nid.

The unicity of a nid may be ensured either locally, e. g., using a UUID, or
distributively, e. g., using a naming server.

Proposition 2. Every shared resource has an unique identity across the net-
work, denoted by rid. This identity is independent from the node that created
the resource and is ensured by a Global Resource Registry, which also helps
nodes to find available shared resources.

The registry is a simple associative array that may be implemented by a
single node or by a Distributed Hash Table [23, 27].

4



Proposition 3. Each instance has an unique identity across the network, de-
noted by oid, which depends on its containing resource and is independent from
the node where it was created. An instance belonging to a shared resource has
the same identity across all resource replicas.

Proposition 4. Each type and each feature of a type have unique identities
across the network, denoted by tid and fid, respectively. A pair (oid,fid)
identifies the value of feature fid on instance oid.

The unicity of a type is usually ensured by its name and the name (or URI)
of its modeling language. The unicity of a feature may be ensured by its name
or by a natural number.

3.1 Update Operations

We consider only operations that modify the contents of a shared resource, i. e.,
operations that: add/remove instances to/from a resource, modify the values
of instance monovalued features, or modify the valued of instance multivalued
features. The specification of these operations is listed below:

• attach(rid,oid): adds instance oid to the shared resource rid.

• detach(rid,oid): removed an instance from a shared resource.

• set(oid, fid, v): sets the value of feature fid to value v.

• unset(oid, fid): unsets feature fid.

• add(oid, fid, v) adds value v at the end of the multivalued feature fid.

• remove(oid, fid, i): removes value of multivalued feature fid at index i.

• move(oid, fid, s, t): moves value of multivalued feature fid from source
index s to target index t.

• clear(oid, fid): clears all values of multivalued feature fid.

Update operations can be formulated using simple mathematics. The fol-
lowing equation expresses the relation between a resource R and a resource R′
that was modified by operation O.

R = O ∗ R′

The operator ”∗” denotes the application of an update operation to a re-
source. Updating a resource means applying n operations Oi to a resource R′
in a stepwise manner:

R = O1 ∗O2 ∗ . . . ∗On−1 ∗On ∗ R′

Two operations can be either dependent on, independent of, equivalent to or
conflictual with each other. We define independent (or concurrent) operations
as follows:

5



Definition 2 (Independent Operations). Given any shared resource R and any
two operations Oa and Ob are said to be independent of each other if they are
commutative, i. e., if an only if Oa ∗Ob ∗ R = Ob ∗Oa ∗ R.

Conceptually, each operation O is associated to an original context CO, i. e.,
the sequence of operations required to bring a resource from its initial state to
the state where O can be applied.

Definition 3 (Dependent Operations). Given any operations Oa and Ob, and
COa

, the original context of operation Oa, Oa is said to be dependent on Ob if
and only if Ob ∈ COa .

When two operations have the same original context and are not indepen-
dent, they are said to be conflictual. For instance, operations set(oida, fid1, va)
and set(oida, fid1, vb) are conflictual.

Definition 4 (Conflictual Operations). Given any shared resource R and any
two operations Oa and Ob and their original contexts COa

and COb
, Oa and Ob

are said to be conflictual if and only if COa
= COb

and Oa ∗Ob ∗R 6= Ob ∗Oa ∗R

In most cases, operations have different contexts and therefore are inde-
pendent. For instance, the operations set and remove both concern features,
but since features cannot be mono and multivalued at the same time, they are
obligatory independent.

Some operations may produce the same result, even when they come from
different nodes. For instance, two operations clear, or two operations remove
or add of the same value, produce the same results on the same features.

Definition 5 (Equivalent Operations). Given any shared resource R and any
two operations Oa and Ob and their original contexts COa and COb

, Oa and Ob

are said to be equivalent if and only if COa = COb
and Oa ∗ R = Ob ∗ R

3.2 Casual Dependencies

The casual dependency relation, denoted by ”→”, expresses that one operation
happened before another and is commonly based on time [29, 17]. In our ap-
proach, we adopt a semantic casual dependency [16, 20]. The idea is not to
establish whether a given operation Oa at node n1 was generated before oper-
ation Ob at node n2, but whether Ob depends on Oa. For instance, the oper-
ation Oa = attach(rid1,oida) precedes operation Ob = set(oida, fid1, value),
Oa → Ob, since object oida must exist before feature fid is set. Conversely,
two operations Oa and Ob are said to be independent (or concurrent), if and
only if neither Oa → Ob nor Ob → Oa, which is expressed as Oa ‖ Ob.

In our approach, we adopt following propositions concerning the semantic
casual dependencies between conflictual operations. In these propositions, we
assume that the operations have the same original contexts.

Let us denote by OAttach(i) an operation that attaches an instance i to a
resource, by ODetach(i) an operation that detaches an instance i from a resource,
and by OAny any feature-related operation.

6



Proposition 5. For any Instance i, we have the following semantic casual
dependency: OAttach(i) → OAny(i) → ODetach(i)

Two attach() operations cannot be conflictual, since instances attached to
different shared resource replicas have different identifications, according to
Proposition 3. Two detach() operations are equivalent since they produce the
same result.

There is no semantic casual dependency between Operations on monovalued
features with the same original context, set and unset. However, it can be
established for operations on multivalued features, add, remove, clear, and
move.

Let us denote by fid a multivalued feature, by OAdd(fid) an operation and
adds a value to fid, by ORemove(fid) an operation that removes an element from
fid, by OClear(fid) an operation that clears fid, and by OMove(fid) an operation
that moves around a value in fid.

Proposition 6. For any multivalued feature fid, we have the following casual
dependencies:

• OMove(fid) → ORemove(fid), OClear(fid)

• OMove(fid) ‖ OAdd(fid)

• OClear(fid) → OAdd(fid)

• ORemove(fid) → OClear(fid)

• OAdd(fid) ‖ ORemove(fid)

Differently from the other operations, OMove parameters are indexes, instead
of values. Therefore, any operation that changes the position of a value affects
the behavior of OMove. In the opposite, OMove operations do not affect oper-
ations that use values as parameters. OMove and OAdd are independent, since
a value is added to the end of the feature and do not affect a move operation.
OClear(fid) precedes OAdd(fid) because when the first operation is executed,
it is not aware of the value added by the second one. ORemove(fid) precedes
OClear(fid), otherwise the first operation could raise an error (value not found).
Finally, OAdd(fid) and ORemove(fid) are independent, even if their arguments are
the same. Indeed, the first operation adds a value to the end of a feature, while
the second one removes the first occurrence of a value.

In complement to the casual dependency between operations from different
types, we have the following casual dependencies between operations of the same
type:

• Two add or two remove operations are either independents or equivalents.

• Two clear operations are equivalents.

• Two move operations are independents if the range of values between the
source and the target indices do not overlap.

7



3.3 Integration Algorithm

To propagate local changes to remote nodes, nodes send an update messages for
each operation executed locally. We define update messages as follows.

Definition 6. An Update Message is a tuple M = 〈n,R, O,C〉 where: n is the
source node, R the shared resource, O is the executed operation, and CO is the
operation original context.

The integration requires that each node implements a precedence relation,
according to the following proposition:

Proposition 7. For all nodes sharing a resource, there is a precedence relation
denoted by ”≺”, ≺:M ×M → B, such as for any pair of update messages
(ma,mb), ma ≺ mb produces the same result in all nodes.

A simple way to ensure that the precedence operator behaves the same in
all nodes is to use properties belonging to the message: e. g., the source node,
the operation arguments, a hash function on the arguments, etc.

The integration also requires that each node implements a context-equivalent
relation, according to the following proposition:

Proposition 8. For all nodes sharing a resource, there is a context-equivalent
relation denoted by ”t”, t:M×M→ B, such as for any pair of update messages
(ma,mb), ma tmb if and only if Cma = Cmb

.

Algorithm 1 describes the integration of update messages on nodes. Each
node has a local history of integrated remote messages, denoted by H and
receives an update message m. The integration first verifies if an equivalent
message exists in H and stops the integration if it is the case. Then, it searches
all messages that are context-equivalent with m and that should precede m,
adds these messages to the set successors and removes them from H. After
the removal, message m is executed and added to H. Lastly, the integration
re-executes all successors and adds them to H.

Algorithm 1: Update Message Integration

Input: m, an Update Message; H, the local history.
if ∃h, h ∈ H ∧ h ≡ m then

return
successors← {h | h ∈ H ∧m ≺ h ∧m t h};
H ← H− successors ;
foreach each ∈ successors do

undo(each)

execute(m);
foreach each ∈ successors do

execute(each)

H ← H + {m}+ successors;

8



3.4 Example

Graph

Edge

name : EString
Vertex

so
ur

ce
 [1

]

ta
rg

et
 [1

]

edges [0..*]

vertices [0..*]

(a) GraphML Syntax in Ecore

A

B

C

D

(b) A GraphML Instance

Figure 1: Simple Example

Figures 1a and 1b present respectively the Ecore model for a Graph modeling
language (GraphML) and a model containing an instance of this language, i. e.,
a graph. This graph contains 7 instances, each one with an unique identifier:

• the graph itself, identified by g.

• 4 vertices (and their identifiers): ”A” (a), ”B” (b), ”C” (c), and ”D” (d).

• 2 edges, identified by ab and ac.

Let us suppose a collaborative environment, where a shared resource containing
this graph is being modified by three different nodes, performing the following
modifications:

Node 1 : renames vertex a to ”A1”.

Node 2 : renames vertex a to ”A2” and deletes vertex d.

Node 3 : creates a new vertex e, named ”E”, and adds it to graph g; creates
a new edge ae between a and e and adds it to graph g; and deletes vertex
d.

Table 1 presents a summary of the operations generated by these modi-
fications. These operations are first executed locally at each node and then
broadcast to the other nodes. We present the integration of operations on each
node in the next sections. In this example, the order nodes receive remote op-
erations from remote nodes is arbitrary. Nevertheless, if different orders occurs,
the integration result would be the same.

3.5 Integration at Node 1

Node 1 receives operations O2
1..3 from Node 2 and integrates them sequentially.

Operations O1
1 and O2

1 conflict: they both modify the value of the same feature
and have equivalent contexts. Node 1 uses the precedence relation to determine
that O1

1 ≺ O2
1 and executes operation O2

1. Operations O2
2 and O2

3 are not
conflictual with the precedent ones and are executed.

9



Node 1 Node 2 Node 3

O1
1 = set(a,#name, ”A1”) O2

1 = set(a,#name, ”A2”) O3
1 = attach(e)

O2
2 = remove(g,#vertices, d) O3

2 = set(e,#name, ”E”)
O2

3 = detach(d) O3
3 = add(g,#vertices, e)

O3
4 = attach(ad)

O3
5 = add(g,#edges, ae)

O3
6 = set(ad,#target, e)

O3
7 = set(ad,#source, a)

O3
8 = remove(g,#vertices, d)

O3
9 = detach(d)

Table 1: Summary of Operations at Nodes 1, 2, and 3.

Then, Node 1 receives operations O3
1..9 from Node 3. Operations O3

1 and
O3

2 concern a new instance, are independent and are executed. O3
3 and O2

2

concern the same feature from the same instance, however, they are independent
(Proposition 6) and O3

3 is executed. O3
4..7 are all independent and are executed.

Operation O3
8 is equivalent to O2

2 and O3
9 is equivalent to O2

3. Both operations
are not executed. This results in the following history of operations:

H1 =
{
O1

1, O
2
1, O

2
2, O

2
3, O

3
1, O

3
2, O

3
3, O

3
4, O

3
5, O

3
6, O

3
7

}
.

3.6 Integration at Node 2

Node 2 receives operations O3
1..9 from Node 3. Similarly to the precedent inte-

gration at Node 1, Node 2 executes operations O3
1..7, which are independent and

does not execute operations O3
8 and O3

9, which are equivalent to O2
2 and O2

3.
Then, Node 2 receives O1

1 from Node 1, which conflicts with operation O2
1.

Node 2 uses the same precedence relation as Node 1 to determine that O1
1 ≺ O2

1

and cannot execute operation O1
1. It first undoes operation O2

1, executes O1
1

and re-executes O2
1. This results in the following history of operations:

H2 =
{
O2

2, O
2
3, O

3
1, O

3
2, O

3
3, O

3
4, O

3
5, O

3
6, O

3
7, O

1
1, O

2
1

}
.

3.7 Integration at Node 3

Lastly, Node 3 receives and integrates operations O2
1..3 from Node 2, without

executing O2
2 and O2

3. Then, it receives O1
1 from Node 1, which conflicts with

operation O2
1, as in the other nodes. The very same precedent relation deter-

mines that O1
1 ≺ O2

1 and operation O1
1 cannot be executed. Thus, Node 3 first

undoes operation O2
1, and then executes O1

1 and re-executes O2
1, resulting in the

following history of operations:

H3 =
{
O3

1, O
3
2, O

3
3, O

3
4, O

3
5, O

3
6, O

3
7, O

3
8, O

3
9, O

1
1, O

2
1

}
.

10



3.8 Discussion

After integration, all three nodes have equivalent replicas of the same shared
resources, all three local histories are equivalent (H1 ≡ H2 ≡ H3), ensuring
convergence and intention preservation. The integration algorithm ensures that
in all nodes, the only pair of conflictual operations, (O1

1, O
2
1), is executed in the

same sequence, i. e., in all nodes O1
1 → O2

1.
If Node 1 is not satisfied with the name of Vertex a and renames it again,

creating operation O1
2 = set(a,#name, ”A1”), this operation is broadcast and

executed on the other nodes without conflicts. Indeed, since both operations
(O1

1, O
2
1) belong to the original context of O1

2, i. e., O1
2 depends on O1

1 and on
O2

1 (Definition 3).

4 Prototype Implementation

To validate the integration algorithm, we develop a prototype in Java (v. 1.8),
based on EMF (v. 2.12). While the algorithm could be implemented in other
languages and other modeling frameworks, we choose EMF to benefit from
resource management and the change notification framework. We use the dis-
tributed hash table TomP2P DHT [5] to implement the distributed shared re-
source registry and the HornetQ messaging system [11] to broadcast change
messages. The initial validation of the prototype uses PeerUnit [1], a distributed
test architecture.

In this section, we present the main design and implementation choices
adopted for the prototype. The source code is available on GitHub1.

4.1 Identities

In EMF, types and features are identified by integer numbers, associated to a
package (EPackage). A package is a Façade [10] for the generated underlying
model. It uses a namespace URI, originated from the source Ecore model, as
identity. Thus, types (and features) can be identified by a URI and one (or two)
integers. Similarly to packages, instances also use a URI as an identity, when
no indentity attribute exists.

While using URI as identities ensures their unicity, URI are long strings
which are not adapted for network message exchanges. To avoid this prob-
lem and use more efficient identities, we introduce a distributed version of the
package registry. This class is basically a map that allows retrieving packages
from its Id and an Id from the package URI. The shared resource class is also a
map that allows retrieving instances from their Id. Figure 2 sketches these two
classes.

To ensure the unicity of an instance Id, we adopt the high-low strategy [2].
The identity of an instance is then the Id of the shared resource it is attached to
(high part) and an unique identifier within this resource (low part). This same

1https://github.com/sunye/model-consistency

11

https://github.com/sunye/model-consistency


EPackageid:PIDgetEPackage(PID) : EPackage
getEPackageId(String) : PID

Distributed Registry

id:OIDid : PID
Shared Resource

EObject
[1

] r
eg

ist
ry

packages [*]

instances [*]

Figure 2: Distributed Registry

strategy is used for types and features. Figure 3 sketches these identities and
their relationships.

low : Integer

«dataType»
OID

id : Integer

«dataType»
PID

low : Integer

«dataType»
TID

low : Integer

«dataType»
FID

id : Integer

«dataType»
RID

id : Integer

«dataType»
NID

[1] high[1] high

[1] high

Figure 3: Identity Datatypes

We use EMF adapters to associate an oid to instances when they are at-
tached to a shared resource, avoiding the modification of the different EObject
implementations.

4.2 Update Notification

The EMF change notification framework is an enhanced implementation of the
Observer and the Adapter design patterns [10], where the adapter class is also
an observer. When any feature of an instance is changed, its adapters receive
informations about the change.

EObject Adapter
[*]

Instance 
Adapter

Update 
Manager

[1]
id:FID Change

changes [*]

Figure 4: Update Notification

12



Figure 4 depicts a UML class diagram representing the update notification
mechanism. When an instance is changed, the instance adapter receives a no-
tification and forwards it to the update manager. The latter stores the change,
which is later broadcast to remote nodes through the Publish-subscribe service.

4.3 Original Context and Precedence

To detect conflicts between operations, each operation is associated to an orig-
inal context, i. e., the state of the shared resource when the change was done.
We adopt two different strategies to establish the original context, both based
on the changed feature. For operations on manovalued features, we use the
previous value of the feature. According to this rationale, two operations have
the same original context if the previous values of the concerned feature are the
same.

Multivalued features are more complex, since sending all values of a collection
would be too expensive. In this case, hashing the collection values is a more
efficient alternative, albeit still expensive. We adopt an alternative strategy,
which consists in keeping track of the node that originated the last change
and of the of the number of times the feature has been structurally modified
(analogously to the modCount field in the Java AbstractList class).

To determine the precedence relation between two conflictual operations, we
adopt a straightforward strategy, we use a hash function to calculate the hash
values of the operation values. The operation that has the lower hash value
precedes the operation with the greater one. This strategy works for operations
on mono and multivalued features, except for the move operation, which does
not have any associated value. In this case, we first compare the source indices
and if they are equal, we compare the target indices. An operation with the
lower index precedes the one with the greater index.

5 Related Work

Standard control version systems, e. g., CVS, Subversion, or Git, are not fully
adapted for collaborative modeling. Although models can be exported to XMI,
a textual format that could be managed by a version system, this approach
would not be successful. Indeed, XMI files are generated dynamically and
this generation does not ensure neither that the order of XML tags nor that
tag identification attributes remain unchanged across different generations. In
consequence, the version system may detect several conflicts on two XMI files
representing the same model.

To avoid these issues, academic and industrial projects developed control
version systems dedicated to models. EMFStore [12] from TU Munich, Model-
CVS [14] from TU Vienna, MetaEdit+ [31], and Modelio Constellation [8] from
Softeam implement RCS’ well-oiled checkout-update-commit pattern for EMF
resources. They consider the semantics of modeling languages and thus can cor-
rectly support model merging and conflict detection. They differ from our tool

13



by supporting asynchronous cooperative work, while we focus on synchronous
cooperative work.

The EMFStore project also proposes a synchronous real-time extension [15],
based on the Bonjour peer-to-peer protocol. While their project has the same
goal as ours, they adopt a different approach for change integration on nodes,
which is based on Git. More precisely, they use hash values to identify change
operations (packages) and maintain a reference to the parent operation. When
conflicts occur, the tool asks the user to solve them. We believe that our seman-
tic casual dependency is more pertinent for detecting conflicts and that the use
of local context information instead of hash numbers consumes less resources.

Koshima et al. propose DiCoMEF [13], a collaborative model-editing frame-
work. Similarly to our approach, this tools detects conflicts at a low granularity
level, the update operations. Unlike our approach, operations can be annotated
with multimedia information to help users to manually solve conflicts.

Model repositories such a Morsa [21] and Eclipse CDO [25] use a pessimistic
locking approach as a support for collaborative modeling. In this centralized
approach, users lock the elements they want to edit, preventing others from
accessing these elements. Chechik et al. propose the use of a property locking
approach for more efficient locking [6]. They use the semantic of the modeling
language to avoid users to introduce changes that could generate inconsistencies
for other users.

Hawk [3] is a distributed model indexing framework for file-based models.
Hawk uses a NoSQL database to store and update continuously metadata in-
formation from these models, to provide efficient and scalable model querying.

6 Conclusion and Future Work

The model consistency approach presented in this paper is an initial step towards
effective collaborative modeling. However, a large amount of work still remains.
Currently, the approach does not ensure the security of the system and does not
provide a service to send efficiently large resources through the network. This
is an issue when nodes open shared resources with an important initial size.

Additionally, the approach does not consider some syntax rules that are
specific to modeling languages. For instance, if two software modelers are editing
the same UML diagram and create two classes with same name, this would not
be considered as an error, since these classes would have different identities.
However, the diagram would not be valid according to the UML wellformed
rules.

The approach adopts a data consistency algorithm, where changes are small
and conflicts are automatically solved. The approach must be integrated into
existing modeling tools to evaluate the impact of these choices on the usability
of the tools during collaborative modeling. Furthermore, we want to analyze
the impact of these choices when performing a complex sequence of changes,
e. g., when performing different refactorings on UML models [30].

As future work, we will integrate the approach to NeoEMF [7] and extend

14



it to provide a distributed repository of models, as well as a service to allow
inter-resource references.

References

[1] de Almeida, E.C., Sunyé, G., Le Traon, Y., Valduriez, P.: Testing peer-to-
peer systems. Empirical Software Engineering 15(4), 346–379 (2010)

[2] Ambler, S.W.: The object primer: Agile model-driven development with
UML 2.0. Cambridge University Press, 3rd edition edn. (2004)

[3] Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale mod-
els. In: European Conference on Modelling Foundations and Applications.
pp. 35–50. Springer (2014)

[4] Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed sys-
tems. SIGOPS Oper. Syst. Rev. 21(5), 123–138 (Nov 1987), http://doi.
acm.org/10.1145/37499.37515

[5] Bocek, T.: Tomp2p a p2p-based high performance key-value pair storage
library (February 2017), https://tomp2p.net/

[6] Chechik, M., Dalpiaz, F., Debreceni, C., Horkoff, J., Ráth, I., Salay,
R., Varró, D.: Property-based methods for collaborative model develop-
ment. In: Joint Proceedings of the 3rd International Workshop on the
Globalization Of Modeling Languages and the 9th International Workshop
on Multi-Paradigm Modeling co-located with ACM/IEEE 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
GEMOC+MPM@MoDELS 2015, Ottawa, Canada, September 28, 2015.
pp. 1–7 (2015), http://ceur-ws.org/Vol-1511/paper-01.pdf

[7] Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez,
A., Cabot, J.: Neoemf: a multi-database model persistence framework
for very large models. In: Proceedings of the MoDELS 2016 Demo and
Poster Sessions co-located with ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2016),
Saint-Malo, France, October 2-7, 2016. pp. 1–7 (2016), http://ceur-ws.
org/Vol-1725/demo1.pdf

[8] Desfray, P.: Model repositories at the enterprises and systems scale: The
modelio constellation solution. In: 2015 International Conference on In-
formation Systems Security and Privacy (ICISSP). pp. IS–17–IS–17 (Feb
2015)

[9] Dirix, M., Muller, A., Aranega, V.: GenMyModel : An Online
UML Case Tool. ECOOP (2013), https://hal.archives-ouvertes.fr/
hal-01251417, poster

15

http://doi.acm.org/10.1145/37499.37515
http://doi.acm.org/10.1145/37499.37515
https://tomp2p.net/
http://ceur-ws.org/Vol-1511/paper-01.pdf
http://ceur-ws.org/Vol-1725/demo1.pdf
http://ceur-ws.org/Vol-1725/demo1.pdf
https://hal.archives-ouvertes.fr/hal-01251417
https://hal.archives-ouvertes.fr/hal-01251417


[10] Gamma, E., Helm, R., Johnson, R., Vlissides”, J.M.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley Professional
(1995)

[11] Giacomelli, P.: Hornetq messaging developer’s guide. Packt Publishing Ltd
(2012)

[12] Koegel, M., Helming, J.: Emfstore: a model repository for EMF models.
In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8
May 2010. pp. 307–308 (2010), http://doi.acm.org/10.1145/1810295.
1810364

[13] Koshima, A.A., Englebert, V.: Collaborative editing of emf/ecore meta-
models and models: Conflict detection, reconciliation, and merging in di-
comef. Sci. Comput. Program. 113, 3–28 (2015), http://dx.doi.org/10.
1016/j.scico.2015.07.004

[14] Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W.,
Schwinger, W.: Towards a semantic infrastructure supporting model-based
tool integration. In: Proceedings of the 2006 International Workshop on
Global Integrated Model Management. pp. 43–46. GaMMa ’06, ACM, New
York, NY, USA (2006), http://doi.acm.org/10.1145/1138304.1138314

[15] Krusche, S., Brügge, B.: Model-based real-time synchronization.
Softwaretechnik-Trends 34(2) (2014), http://pi.informatik.

uni-siegen.de/stt/34_2/01_Fachgruppenberichte/CVSM2014/

KruscheCVSM2014.pdf

[16] Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability
using lazy replication. ACM Trans. Comput. Syst. 10(4), 360–391 (1992),
http://doi.acm.org/10.1145/138873.138877

[17] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7), 558–565 (1978), http://doi.acm.org/10.
1145/359545.359563

[18] Li, R., Li, D.: Commutativity-based concurrency control in groupware.
In: Zhang, T. (ed.) Proceedings of the 1st International Conference on
Collaborative Computing: Networking, Applications and Worksharing, San
Jose, CA, USA, December 19-21, 2005. IEEE Computer Society / ICST
(2005), http://dx.doi.org/10.1109/COLCOM.2005.1651251

[19] Matula, M.: Netbeans metadata repository. Tech. rep., Sun Microsystems
(2003)

[20] Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for P2P collab-
orative editing. In: Hinds, P.J., Martin, D. (eds.) Proceedings of the 2006
ACM Conference on Computer Supported Cooperative Work, CSCW 2006,

16

http://doi.acm.org/10.1145/1810295.1810364
http://doi.acm.org/10.1145/1810295.1810364
http://dx.doi.org/10.1016/j.scico.2015.07.004
http://dx.doi.org/10.1016/j.scico.2015.07.004
http://doi.acm.org/10.1145/1138304.1138314
http://pi.informatik.uni-siegen.de/stt/34_2/01_Fachgruppenberichte/CVSM2014/KruscheCVSM2014.pdf
http://pi.informatik.uni-siegen.de/stt/34_2/01_Fachgruppenberichte/CVSM2014/KruscheCVSM2014.pdf
http://pi.informatik.uni-siegen.de/stt/34_2/01_Fachgruppenberichte/CVSM2014/KruscheCVSM2014.pdf
http://doi.acm.org/10.1145/138873.138877
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://dx.doi.org/10.1109/COLCOM.2005.1651251


Banff, Alberta, Canada, November 4-8, 2006. pp. 259–268. ACM (2006),
http://doi.acm.org/10.1145/1180875.1180916

[21] Pagán, J.E., Cuadrado, J.S., Molina, J.G.: Morsa: A Scalable Approach
for Persisting and Accessing Large Models. In: Proceedings of the 14th
MoDELS Conference. pp. 77–92. Wellington, New Zealand (2011), http:
//dl.acm.org/citation.cfm?id=2050655.2050665

[22] Plotnikov, C.: Novosoft metadata framework and uml library (2002), http:
//nsuml.sourceforge.net

[23] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable
content-addressable network. In: SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for
computer communications. pp. 161–172. ACM, New York, NY, USA (2001)

[24] Software, L.: (March 2017), https://www.lucidchart.com

[25] Steinberg, D.: Fundamentals of the eclipse modeling framework. Tuto-
rial presented at EclipseCon 2008 (March 2008), http://www.eclipsecon.
org/2008/index1000.html

[26] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF – Eclipse
Modeling Framework. The Eclipse series, Pearson Education, 2nd edn.
(2008)

[27] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet applications.
In: SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications.
pp. 149–160. ACM, New York, NY, USA (2001)

[28] Sun, C., Ellis, C.A.: Operational transformation in real-time group editors:
Issues, algorithms, and achievements. In: CSCW ’98, Proceedings of the
ACM 1998 Conference on Computer Supported Cooperative Work, Seattle,
WA, USA, November 14-18, 1998. pp. 59–68 (1998), http://doi.acm.org/
10.1145/289444.289469

[29] Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems. ACM Trans. Comput.-Hum. Interact. 5(1), 63–108 (Mar
1998), http://doi.acm.org/10.1145/274444.274447

[30] Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.: Refactoring UML models.
In: UML 2001 - The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 4th International Conference, Toronto, Canada, Oc-
tober 1-5, 2001, Proceedings. pp. 134–148 (2001), http://dx.doi.org/10.
1007/3-540-45441-1_11

17

http://doi.acm.org/10.1145/1180875.1180916
http://dl.acm.org/citation.cfm?id=2050655.2050665
http://dl.acm.org/citation.cfm?id=2050655.2050665
http://nsuml.sourceforge.net
http://nsuml.sourceforge.net
https://www.lucidchart.com
http://www.eclipsecon.org/2008/index1000.html
http://www.eclipsecon.org/2008/index1000.html
http://doi.acm.org/10.1145/289444.289469
http://doi.acm.org/10.1145/289444.289469
http://doi.acm.org/10.1145/274444.274447
http://dx.doi.org/10.1007/3-540-45441-1_11
http://dx.doi.org/10.1007/3-540-45441-1_11


[31] Tolvanen, J.P.: Metaedit+ for collaborative language engineering and lan-
guage use (tool demo). In: Proceedings of the 2016 ACM SIGPLAN Inter-
national Conference on Software Language Engineering. pp. 41–45. ACM
(2016)

18


	Introduction
	Background
	Cooperative Editing Systems
	EMF

	Model Consistency Approach
	Update Operations
	Casual Dependencies
	Integration Algorithm
	Example
	Integration at Node 1
	Integration at Node 2
	Integration at Node 3
	Discussion

	Prototype Implementation
	Identities
	Update Notification
	Original Context and Precedence

	Related Work
	Conclusion and Future Work

