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Lecture notes Concentration of R-valued distributions Fall 2017

BASIC CONCENTRATION PROPERTIES OF REAL-VALUED DISTRIBUTIONS
ODALRIC-AMBRYM MAILLARD

Inria Lille - Nord Europe
SequeL team

odalricambrym.maillard@inria.fr

In this note we introduce and discuss a few concentration tools for the study of concentration inequalities on the
real line. After recalling versions of the Chernoff method, we move to concentration inequalities for predictable
processes. We especially focus on bounds that enable to handle the sum of real-valued random variables, where

the number of summands is itself a random stopping time, and target fully explicit and empirical bounds. We
then discuss some important other tools, such as the Laplace method and the transportation lemma.
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1 Markov Inequality and the Chernoff method
In this section, we start by introducing the celebrated Markov’s inequality, and show how this seemingly weak
result leads to some of the most powerful tool in statistics: the Chernoff method, and the Laplace transform.#

"

 

!

Lemma 1 (Markov’s inequality) For any measurable real-valued random variable that is almost
surely non-negative, then it holds for all ε > 0 that

P(X > ε) 6
E[X]

ε
.

Proof of Lemma 1:

The proof uses the following straightforward decomposition:

X = XI{X > ε}+XI{X < ε}

Now since X is almost surely non-negative, it holds almost surely that XI{X < ε} > 0, and thus
X > εI{X > ε}. We conclude by taking expectations on both sides (which is valid since E[X] < ∞),
and deduce that E[X] > εP[X > ε]. �
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1.1 A first consequence
We can apply this result immediately to real-valued random variables by remarking that for any random variable
distributed according to ν which we note X ∼ ν) and λ ∈ R, the random variable exp(λX) is non-negative.
Thus if we now define the domain of ν by Dν = {λ : E[exp(λX)] <∞}, we deduce by application of Markov’s
inequality that for all t > 0,

∀λ ∈ R+
? ∩ Dν P(X > t) = P(exp(λX) > exp(λt))

6 exp(−λt)E[exp(λX)] . (1)
∀λ ∈ R−? ∩ Dν P(X 6 t) = P(exp(λX) > exp(λt))

6 exp(−λt)E[exp(λX)] . (2)

In this construction, the exp transform may seem arbitrary, and one could indeed use more general transforms.
The benefit of using other transforms will be discussed later. Currently, we explore what happens with the exp
case. One first immediate result is the following:�

�

�

�
Lemma 2 (Chernoff’s rule) Let X ∼ ν be a real-valued random variable. Then

logE exp(X) 6 0 , implies ∀δ ∈ (0, 1], P
(
X > ln(1/δ)

)
6 δ .

The proof is immediate by considering t = ln(1/δ) and λ = 1 in (1).

1.2 Two complementary results
Now one can consider two complementary points of view: The first one is to fix the value of t in (1) and (2) and
minimize the probability level (the term on the right-hand side of the inequality). The second one is to fix the
value of the probability level, and optimize the value of t. This leads to the following lemmas.'

&

$

%

Lemma 3 (Cramer-Chernoff) Let X ∼ ν be a real-valued random variable. Let us introduce the
log-Laplace transform and its Legendre transform:

∀λ ∈ R, ϕν(λ) = logE[exp(λX)],

∀t ∈ R, ϕ?ν(t) = sup
λ∈R

(
λt− ϕν(λ)

)
,

and let Dν = {λ ∈ R : ϕν(λ) <∞}.
If Dν ∩ R+

? 6= ∅, then E[X] <∞ and for all t > E[X]

logP(X > t) 6 −ϕ?ν(t) .

Likewise, if Dν ∩ R−? 6= ∅, E[X] > −∞ and for all t 6 E[X],

logP(X 6 t) 6 −ϕ?ν(t) .

Remark 1 The log-Laplace transform ϕν is also called known as the cumulant generative function.

Proof of Lemma 3:

First, note that {λ ∈ R : E[exp(λX)] < ∞} coincides with {λ ∈ R : ϕν(λ) < ∞}. Using equations
(1) and (2), it holds:

P(X > t) 6 inf
λ∈R+

? ∩Dν
exp(−λt+ logE[exp(λX)])

P(X 6 t) 6 inf
λ∈R−

? ∩Dν
exp(−λt+ logE[exp(λX)])
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The Legendre transform ϕ?ν of the log-Laplace function ϕν unifies these two cases. Indeed, a striking
property of ϕ?ν is that if λ ∈ Dν for some λ > 0, then E[X] <∞. This can be seen by Jensen’s inequality
applied to the function ln: Indeed it holds λE[X] = E[ln exp(λX)] 6 ϕν(λ). Further, for all t > E[X], it
holds

ϕ?ν(t) = sup
λ∈R+∩Dν

(
λt− ϕν(λ)

)
.

Note that this also applies if E[X] = −∞. Likewise, if λ ∈ Dν for some λ < 0 then E[X] > −∞ and for
all t 6 E[X], it holds

ϕ?ν(t) = sup
λ∈R−∩Dν

(
λt− ϕν(λ)

)
.

�

Alternatively, the second point of view is to fix the confidence level δ ∈ (0, 1], and then to solve the equation
exp(−λt)E[exp(λX)] = δ in t = t(δ). We then optimize over t. This leads to:'

&

$

%

Lemma 4 (Alternative Cramer-Chernoff) LetX ∼ ν be a real-valued random variable and letDν =
{λ ∈ R : logE exp(λX) <∞}. It holds,

P
[
X > inf

λ∈Dν∩R+
?

{ 1

λ
logE[exp(λX)] +

log(1/δ)

λ

}]
6 δ (3)

P
[
X 6 sup

λ∈(−Dν)∩R+
?

{
− 1

λ
logE[exp(−λX)]− log(1/δ)

λ

}]
6 δ . (4)

Proof of Lemma 4:

Solving exp(−λt)E[exp(λX)] = δ for δ ∈ (0, 1] and λ 6= 0, we obtain he following equivalence

−λt+ logE[exp(λX)] = log(δ)

λt = − log(δ) + logE[exp(λX)]

t =
1

λ
log(1/δ) +

1

λ
logE[exp(λX)] .

Thus, we deduce from (1) and (2) that

∀λ > 0 P
[
X >

1

λ
log(1/δ) +

1

λ
logE[exp(λX)]

]
6 δ

∀λ > 0 P
[
X 6 − 1

λ
log(1/δ)− 1

λ
logE[exp(−λX)]

]
6 δ .

�

The rescaled Laplace transform λ → 1
λ logE[exp(λX)] is sometimes called the entropic risk measure. Note

that Lemma 3 and 4 involve slightly different quantities, depending on whether we focus on the probability level
δ or the threshold on X .

1.3 The illustrative case of sub-Gaussian random variables
An immediate corollary is the following:
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'

&

$
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Corollary 1 (Sub-Gaussian Concentration Inequality) Let {Xi}i6n be independent R-sub-
Gaussian random variables with mean µ, that is such that

∀λ ∈ R, logE exp
(
λ(Xi − µ)

)
6

1

2
λ2R2 .

Then,

∀δ ∈ (0, 1) P
[ n∑
i=1

(Xi − µ) >
√

2R2n log(1/δ)

]
6 δ

Remark 2 This corollary naturally applies to Gaussian random variables with variance σ2, in which caseR = σ.
It also applies to bounded random variable. Indeed random variables {Xi}i6n bounded in [0, 1] are 1/2-sub-
Gaussian. This can be understood intuitively by remarking that distributions with the highest variance on [0, 1]
are Bernoulli, and that the variance of a Bernoulli with parameter θ ∈ [0, 1] is θ(1− θ) 6 1/4, thus resulting in
R2 = 1/4. This is proved more formally via Hoeffding’s lemma.

Proof of Corollary 1:

Indeed, it holds that

1

λ
logE

[
exp(λ

n∑
i=1

(Xi − µ))
]

=
1

λ
logE

[ n∏
i=1

exp(λ(Xi − µ))

]
(a)
=

1

λ
log

n∏
i=1

E
[

exp(λ(Xi − µ))
]

=
1

λ

n∑
i=1

logE
[

exp(λ(Xi − µ))
]

(b)

6
n

2
λR2 ,

where (a) is by independence, and (b) holds by using the sub-Gaussian assumption. We deduce by Lemma 4
that

P
[ n∑
i=1

(Xi − µ) > inf
λ∈Dν∩R+

?

{
λR2n/2 +

log(1/δ)

λ

}]
(a)

6 P
[ n∑
i=1

(Xi − µ) > inf
λ∈Dν∩R+

?

{ 1

λ
logE

[
exp

(
λ

n∑
i=1

(Xi − µ)
)]

+
log(1/δ)

λ

}]
6 δ ,

where in (a), we used that x < y implies P(X > y) 6 P(X > x).
Now we note that Dν = R by the sub-Gaussian assumption, where ν is the distribution of

∑n
i=1Xi.

We conclude by noticing that λδ =
√

2 log(1/δ)
R2n achieves the minimum in

inf
λ∈R+

?

{
λR2n/2 +

log(1/δ)

λ

}
=

√
2R2n log(1/δ) .

�

2 Concentration inequalities for predictable processes
In practice, it is often desirable to control not only a random variable such as an empirical mean at a single time
step n, but also at multiple time steps n = 1, . . . . The naive approach to do so is by controlling the concentration
at each different time step and then use a union-bound to deduce the final bound.

However, this is generally sub-optimal as the empirical mean at time n and at time n + 1 are close to each
other and correlated. We study here two powerful methods that enable to improve on this naive strategy.
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2.1 Doob’s maximal inequalities
We start by recalling two standard and important inequalities that can be found in most introductory textbooks on
statistics:'

&

$

%

Lemma 5 (Doob’s maximal inequality for non-negative sub-martingale) Let {Wt}t∈N be a non-
negative sub-martingale with respect to the filtration {Ft}t∈N, that is

∀t ∈ N, E[Wt+1|Ft] >Wt , and Wt > 0 .

Then, for all p > 1 and ε > 0, it holds for all T ∈ N

P
(

max
06t6T

Wt > ε

)
6

E[W p
T ]

εp
.

'

&

$

%

Lemma 6 (Doob’s maximal inequality for non-negative super-martingale) Let {Wt}t∈N be a non-
negative super-martingale with respect to the filtration {Ft}t∈N, that is

∀t ∈ N, E[Wt+1|Ft] 6Wt , and Wt > 0 .

Then, for all p > 1 and ε > 0, it holds for all T ∈ N

P
(

max
06t6T

Wt > ε

)
6

E[W p
0 ]

εp
.

In particular, if E[W0] 6 1, then for all T ∈ N, P
(

max06t6T Wt > ε

)
6 ε−1.

2.2 The peeling technique for random stopping times
In this section, we provide a powerful result that is useful when dealing with generic real-valued distributions.
We say a process generating a sequence of random variables {Zi}∞i=1 is predictable if there exists a filtration
H = (Hn)n∈N (”filtration of the past”) such that Zn is Hn-measurable for all n. We say a random variable N is
a random stopping time forH if ∀m ∈ N, {N 6 m} isHm−1-measurable.
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Lemma 7 (Concentration inequality for predictable processes) Let {Zi}∞i=1 be a sequence of ran-
dom variables generated by a predictable process. Let ϕ : R → R+ be a convex upper-envelope of
the cumulant generative function of the conditional distributions with ϕ(0) = 0, and ϕ? its Legendre-
Fenchel transform, that is:

∀λ ∈ D,∀i, lnE
[

exp
(
λZi

)∣∣∣Hi−1

]
6 ϕ(λ) ,

∀x ∈ R ϕ?(x) = sup
λ∈R

(
λx− ϕ(λ)

)
,

where D = {λ ∈ R : ∀i, lnE
[

exp
(
λZi

)∣∣∣Hi−1

]
< ∞}. Assume that D contains an open neigh-

borhood of 0. Then, ∀c ∈ R+, there exists a unique xc such that for all i, xc > E
[
Zi

∣∣∣Hi−1

]
, and

ϕ?(xc) = c, and a unique x′c such that for all i, x′c < E
[
Zi

∣∣∣Hi−1

]
and ϕ?(x′c) = c. We define

ϕ−1
?,+ : c 7→ xc, ϕ−1

?,− : c 7→ x′c. Then ϕ−1
?,+ is not decreasing and ϕ−1

?,− is not increasing.
Let Nn be a random stopping time (for the filtration generated by {Zi}∞i=1) a.s. bounded by n. Then for
all α ∈ (1, n], and δ∈ (0, 1),

P
[

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+

(
α

Nn
ln
(⌈ ln(n)

ln(α)

⌉
1

δ

))]
6 δ

P
[

1

Nn

Nn∑
i=1

Zi 6 ϕ
−1
?,−

(
α

Nn
ln
(⌈ ln(n)

ln(α)

⌉
1

δ

))]
6 δ

In particular, one can take α to be the minimal solution to ln(α)e1/ ln(α) = ln(n)/δ.
Now, if N is a (possibly unbounded) random stopping time for the filtration generated by {Zi}∞i=1, it
holds for all deterministic α > 1 and δ∈ (0, 1),

P
[

1

N

N∑
i=1

Zi > ϕ
−1
?,+

(
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

])]
6 δ

P
[

1

N

N∑
i=1

Zi 6 ϕ
−1
?,−

(
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

])]
6 δ

Proof of Lemma 7:

First, one easily derives the following properties, from properties of the Legendre-Fenchel transform.

• ϕ?(0) = 0, ϕ?(x)
x→+∞→ ∞, ϕ? is convex, increasing on R+.

• ∀x such that ϕ?(x) <∞, there exists a unique λx ∈ Dν such that ϕ?(x) = λxx− ϕ(λx).

• ∀c ∈ R+, there exists a unique xc > E[Z] such that ϕ?(xc) = c. We write it ϕ−1
?,+(c). ϕ−1

?,+ is not
decreasing.

1. A peeling argument We start with a peeling argument. Let us choose some η > 0 and define
tk = (1 + η)k, for k = 0, . . . ,K, with K = d ln(n)

ln(1+η)e (thus n 6 tK).
Let εt ∈ R+ be a sequence that is non-increasing in t.
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P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6 P
( K⋃
k=1

{tk−1 < Nn 6 tk} ∩ {
Nn∑
i=1

Zi > NnεNn}
)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] :

t∑
i=1

Zi > tεt

)
Let λk > 0, for k = 1, . . . ,K.

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] :

t∑
i=1

Zi > tεt

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] : exp

(
λk

( t∑
i=1

Zi

))
> exp(λktεt)

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] : exp

(
λk

( t∑
i=1

Zi

)
− tϕ(λk)

)
︸ ︷︷ ︸

Wk,t

> exp
(
t
(
λkεt − ϕ(λk)

))
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk] : Wk,t > exp

(
t
(
λkεtk − ϕ(λk)

))
.

Since εtk > 0, we can choose a λk > 0 such that ϕ?(εtk) = λkεtk − ϕ(λk).

2. Doob’s maximal inequality At this, point, we show that the sequence {Wk,t}t is a non-negative

super-martingale, where Wk,t = exp

(
λk
(∑t

i=1 Zi
)
− tϕ(λk)

)
. Indeed, note that:

E[Wk,t+1|Ft] = Wk,tE[exp
(
λkZt+1

)
|Ft] exp(−ϕ(λk))

6 Wk,t .

Thus, using that tk−1 > tk/(1 + η), we find

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk]Wk,t > exp

(
tϕ?(εtk)

))

6
K∑
k=1

P
(

max
t∈(tk−1,tk]

Wk,t > exp
( tkϕ?(εtk)

1 + η

))
(a)

6
K∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
,

where (a) holds by application of Doob’s maximal inequality for non-negative super-martingales, using
that maxt∈(tk−1,tk]Wk,t 6 maxt∈(0,tk]Wk,t and Wk,0 6 1.
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3. Parameter tuning for bounded Nn Now, let us choose εt such that tϕ?(εt) = c > 1 is a constant,
that is εt = ϕ−1

?,+(c/t) (non increasing with t). Thus, we get for all η ∈ (0, n− 1):

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)
6

d ln(n)
ln(1+η)

e∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
6 d ln(n)

ln(1 + η)
e exp

(
− c

1 + η

)
,

which suggest to set c = (1 + η) ln
(
d ln(n)

ln(1+η)e
1
δ

)
. We thus obtain for all η ∈ [0, n− 1],

P
(

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+

[1 + η

Nn
ln
(⌈ ln(n)

ln(1 + η)

⌉
1

δ

)])
6 δ .

Then, it makes sense to find the minimum value of f : x → x ln( a
ln(x) ), for x > 1. An optimal point

x? > 1 satisfies

f ′(x) = ln
( a

ln(x)

)
+ x
−(1/x)/ ln2(x)

1/ ln(x)
= ln

( a

ln(x)

)
− 1

ln(x)
= 0 ,

that is x? satisfies a = ln(x?)e
1/ ln(x?). We may thus choose the (slightly suboptimal) minimal value x

that satisfies ln(x)e1/ ln(x) = ln(n)/δ.

4. Parameter tuning for unbounded N
We restart from

P
(

1

N

N∑
i=1

Zi > εN

)
6

K∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
,

where tk = (1 + η)k and K = d ln(n)
ln(1+η)e, and choose a different tuning for εt in order to handle an infinite

sum (with K =∞). Let us choose εt that satisfies tϕ?(εt) = c(t), where c(t) is chosen such that
∞∑
k=1

exp

(
− c(tk)

1 + η

)
<∞ .

Choosing c(t) = (1+η) ln

(
ln(t)

δ ln(1+η) [ ln(t)
ln(1+η) +1]

)
, it comes c(tk) = (1+η) ln(k(k+1)δ) and thus

P
(

1

N

N∑
i=1

Zi > εN

)
6

∞∑
k=1

δ

k(k + 1)
= δ ,

With this choice, we thus deduce

P
(

1

N

N∑
i=1

Zi > ϕ
−1
?,+

(
(1 + η)

N
ln
( ln(N) ln(N(1 + η))

δ ln2(1 + η)

))
6 δ .

5. Reverse bounds. We now provide a similar result for the reverse bound. Let εt ∈ R be a sequence
that is non-decreasing with t, and λk > 0, for k = 1, . . . ,K. Then

P
(

1

N

N∑
i=1

Zi 6 εN

)
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk] exp

(
− λk

( t∑
i=1

Zi

)
− tϕ(−λk)

)
> exp

(
t(−λkεt − ϕ(−λk))

))
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk],Wk,t > exp

(
t(−λkεtk − ϕ(−λk))

))
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If εtk < E[Ztk ], we can choose λk = λεtk > 0 such that ϕ?(εtk) = −λkεtk − ϕ(−λk) > 0. Thus, using
that tk−1 > tk/(1 + η), it comes

P
(

1

N

N∑
i=1

Zi 6 εN

)
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk],Wk,t > exp

(
tϕ?(εtk))

))

6
K∑
k=1

P
(

max
t∈(tk−1,tk]

Wk,t > exp
( tkϕ?(εtk)

1 + η

))

6
K∑
k=1

exp
(−tkϕ?(εtk)

1 + η

)
Now, let us choose εt < E[Zt] such that tϕ?(εt) = c > 1, that is εt = ϕ−1

?,−(c/t) (non decreasing with t).
For η = 1/(c− 1) and c = ln(e/δ), we obtain

P
(

1

N

N∑
i=1

Zi 6 ϕ
−1
?,−(ln(e/δ)/N)

)
6 dln(n) ln(e/δ)eδ .

�

Improvement In some situations, it is possible to refine the previous result'

&

$

%

Corollary 2 (Improved concentration inequality for predictable processes) Under the same setting
as Lemma 7, let hn(x) = logd log(n)

log(1/x)e, and hn,? its Legendre-Fenchel transform. Finally let c =

h−1
n,?,+(log(1/δ)).

If it holds that supx∈(1/n,1) cx− hn(x) = hn,?(c), then,

P
(

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+

(
h−1
n,?,+(log(1/δ))

Nn

))
6 δ .

Note that the restrictive condition that supx∈(1/n,1) cx − hn(x) = hn,?(c) is on whether the maximum of
cx− hn(x) is reached by a point x in the set (1/n, 1).

Proof of Corollary 2:

Indeed, following the proof of Lemma 7, it suffices to refine the last step:

inf
η∈(0,n−1)

d log(n)

log(1 + η)
e exp

(
− c

1 + η

)
= inf

x∈(1/n,1)
exp

(
− cx+ logd log(n)

log(1/x)
e
)

= exp

(
−
(

sup
x∈(1/n,1)

cx− logd log(n)

log(1/x)
e
))

= exp

(
− hn,?(c)

)
= δ.

�

2.3 Birge-Massart concentration
We conclude this section by applying Lemma 7 to the concentration of the quadratic sum of a noise term ξi. We
believe that this illustrates the power of this method. Assume that the noise terms are strongly sub-Gaussian in the
sense that

∀λ ∈ Dν ,∀i logE[exp(λξ2
i )|Hi−1] 6 ϕ(λ)
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where ϕ(λ) = − 1
2 log(1 − 2λR2) . Note that this is the cumulant generative function of the square of a centered

Gaussian. Then we can prove the following result:'

&

$

%

Lemma 8 (Birge-Massart concentration for predictable process) Assume thatNn is a random stop-
ping time that satisfies Nn 6 n almost surely, then it holds for all α > 1

P
[

1

Nn

Nn∑
i=1

ξ2
i > R

2 + 2R2

√
2α

Nn
ln
(⌈ ln(n)

ln(α)

⌉
1

δ

)
+

2αR2

Nn
ln
(⌈ ln(n)

ln(α)

⌉
1

δ

)]
6 δ

P
[

1

Nn

Nn∑
i=1

ξ2
i 6 R

2 − 2R2

√
α

Nn
ln
(⌈ ln(n)

ln(α)

⌉
1

δ

)]
6 δ

Further, for a random stopping time N , then it holds for all α > 1,

P
[

1

N

N∑
i=1

ξ2
i > R

2 + 2R2

√
2α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

]
+

2αR2

N
ln

[
ln(N) ln(αN)

δ ln2(α)

]]
6 δ

P
[

1

N

N∑
i=1

ξ2
i 6 R

2 − 2R2

√
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

]]
6 δ

Proof of Lemma 8:

According to Lemma 7 applied to Zi = ξ2
i , all we have to do is to compute an upper bound on the

quantity ϕ−1
?,+(c), first for the value c = ln(e/δ)

Nn
, then for c = ln(e/δ)

N (1 + 2
ln(1/δ) ln

(
π ln(N) ln(1/δ)
61/2(1+ln(1/δ))

)
) 6

ln(e/δ)
N (1 + cN/ ln(1/δ)). We proceed in the following way. First, the envelope function is given by

ϕ(λ) = −1

2
ln(1− 2λR2) 6

λR2

1− 2λR2
.

for λ ∈ (0, 1
2R2 ). Let x > R2. It holds that ϕ?(x) > supλ[λx − λR2

1−2λR2 ]. Solving this optimization by
differentiating over λ, the supremum is reached for λ = (1 − R√

x
) 1

2R2 ∈ (0, 1
2R2 ), with corresponding

value given by

ϕ̃?(x) = (1− R√
x

)
x

2R2
− (1− R√

x
)

√
x

2R

=
x

2R2
−
√
x

R
+

1

2
.

Now, for c > 0, it is easily checked that ϕ̃?(x) = c holds for xc = R2(1 +
√

2c)2. As a result, we deduce
that ϕ−1

?,+(c) 6 R2(1 +
√

2c)2 = R2 + 2R2c+ 2R2
√

2c.
Now, for the reverse inequality, we have to compute a lower bound on the quantity ϕ−1

?,−(c), first for

c = ln(e/δ)
Nn

, then for c = ln(e/δ)
N (1+ 2

ln(1/δ) ln
(
π ln(N) ln(1/δ)
61/2(1+ln(1/δ))

)
) 6 ln(e/δ)

N (1+cN/ ln(1/δ)). We proceed
in the following way. First, the envelope function is given for λ > 0 by

ϕ(−λ) = −1

2
ln(1 + 2λR2) > − λR2

1 + λR2
.

Thus, for 0 < x < R2 it holds ϕ?(x) > supλ>0[−λx + λR2

1+λR2 ] = 1 + supλ>0[−λx − 1
1+λR2 ]. Solving

this optimization by differentiating over λ, the supremum is reached for λ = 1
R2 ( R√

x
− 1) > 0 with

corresponding value given by

ϕ̃?(x) = 1− x

R2

( R√
x
− 1
)
−
√
x

R

=
x

R2
− 2R

√
x

R
+ 1 .
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Now, for c > 0, it is easily checked that ϕ̃?(x) = c holds for xc = R2(1 −
√
c)2, and xc < R2 if c < 1.

As a result, we deduce that if c ∈ (0, 1), then ϕ−1
?,−(c) > R2 − 2R2

√
c + R2c. On the other hand, for all

c > 0, choosing λ = 1
R2

√
c, and using the inequality 1

1+v > 1− v for v > 0, then

ϕ?(x) > − x

R2

√
c+ 1− 1

1 +
√
c

=
√
c
(
− x

R2
+

1

1 +
√
c

)
> ϕ̃?(x)

def
=
√
c
(
− x

R2
+ 1−

√
c
)

Thus, ϕ̃?(x) = c for xc = R2 − 2R2
√
c < R2. As a result, we deduce that if c > 0, then ϕ−1

?,−(c) >
R2 − 2R2

√
c. �

3 Uniform bounds and the Laplace method
In this section, we present another very powerful tool, that is the Laplace method (method of mixtures for sub-
Gaussian random variables). We provide the illustrative following result here, for real-valued randome variables.
The result however extends naturally to dimension d, and even, to some extent, to infinite dimension.'

&

$

%

Lemma 9 (Uniform confidence intervals) Let Y1, . . . Yt be a sequence of t i.i.d. real-valued random
variables bounded in [0, 1], with mean µ. Let µt = 1

t

∑t
s=1 Ys be the empirical mean estimate. Then,

for all δ ∈ (0, 1), it holds

P
(
∃t ∈ N, µt − µ >

√(
1 +

1

t

) ln
(√
t+ 1/δ

)
2t

)
6 δ

P
(
∃t ∈ N, µ− µt >

√(
1 +

1

t

) ln
(√
t+ 1/δ

)
2t

)
6 δ .

Proof of Lemma 9:

The first result is Hoeffding’s inequality for i.i.d. bounded random variables. For the second one, we
introduce for a fixed δ ∈ [0, 1] the random variable

τ = min

{
t ∈ N : µt − µ >

√(
1 +

1

t

) ln
(√

1 + t/δ
)

2t

}
.

This quantity is a random stopping time for the filtration F = (Ft)t, where Ft = σ(Y1, . . . , Yt), since
{τ 6 m} is Fm-measurable for all m. We want to show that P(τ <∞) 6 δ. To this end, for any λ, and t,
we introduce the following quantity

Mλ
t = exp

( t∑
s=1

(λ(Ys − µ)− λ2

8
)

)
.

By the i.i.d. bounded assumption, the random variables are 1/2-sub-Gaussian and it is immediate to show
that {Mλ

t }t∈N is a non-negative super-martingale that satisfies lnE[Mλ
t ] 6 0 for all t. It then follows that

Mλ
∞ = limt→∞Mλ

t is almost surely well-defined and so,Mλ
τ as well. Further, let us introduce the stopped

version Qλt = Mλ
min{τ,t}. An application of Fatou’s lemma shows that E[Mλ

τ ] = E[lim inft→∞Qλt ] 6

lim inft→∞ E[Qλt ] 6 1. Thus, E[Mλ
τ ] 6 1.

The next step is to introduce the auxiliary variable Λ = N (0, 4), independent of all other variables,
and study the quantity Mt = E[MΛ

t |F∞]. Note that the standard deviation of Λ is (1/2)−1 due to the
fact we consider 1/2-sub-Gaussian random variables. We immediately get E[Mτ ] = E[MΛ

τ |Λ]] 6 1. For
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convenience, let St = t(µt − µ). By construction of Mt, we have

Mt =
1√
8π

∫
R

exp

(
λSt −

λ2t

8
− λ2

8

)
dλ

=
1√
8π

∫
R

exp

(
−
[
λ

√
t+ 1

8
−
√

2St√
t+ 1

]2
+

2S2
t

t+ 1

)
dλ

= exp

(
2S2

t

t+ 1

)
1√
8π

∫
R

exp
(
− λ2 t+ 1

8

)
dλ

= exp

(
2S2

t

t+ 1

)√
8π/(t+ 1)√

8π
.

Thus, we deduce that

St =

√
t+ 1

2
ln
(√

t+ 1Mt

)
.

We conclude by applying a simple Markov inequality:

P
(
τ(µτ − µ) >

√
τ + 1

2
ln
(√

τ + 1/δ
))

= P(Mτ > 1/δ) 6 E[Mτ ]δ .

�

Proceeding with the steps, more generally we obtain the following result for sums of sub-Gaussian random
variables.

Lemma 10 Let Y1, . . . Yt be a sequence of t independent real-valued random variables where for each s 6 t, Ys
has mean µs and is σs-sub-Gaussian. Then for all δ ∈ (0, 1), it holds

P
(
∃t ∈ N,

t∑
s=1

(Ys − µs) >

√√√√2

t∑
s=1

σ2
s

(
1 +

1

t

)
ln
(√
t+ 1/δ

))
6 δ

P
(
∃t ∈ N,

t∑
s=1

(µs − Ys) >

√√√√2

t∑
s=1

σ2
s

(
1 +

1

t

)
ln
(√
t+ 1/δ

))
6 δ .

4 Some other applications
We provide below some other applications of the basic concentration inequalities we derived earlier that we believe
provide interesting insights.

4.1 Change of measure and code-length theory
For arbitrary random variable X admitting a finite cumulant generative function around 0, one has the properties
that

P
[
X > inf

λ>0

{ 1

λ
logE exp(λX) +

log(1/δ)

λ

}]
6 δ (5)

P
[
X 6 sup

λ>0

{
− 1

λ
logE exp(−λX)− log(1/δ)

λ

}]
6 δ . (6)

Importantly, note that in equations (5) and (6), the random variable X can be chosen to be a sum of any sequence
of variables, with arbitrary dependency.

Now, let us consider some space X and two non-foreign distributions P,Q ∈ M(X ) with density p, q. Then
we have that

EP
[
q(X)

p(X)

]
=

∫
X
q(x)dx = 1 .
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Thus, we deduce from this simple change of measure that we have

logEP exp

(
log(q(X))− log(p(X))

)
= 0 ,

and in particular, this is less than 0, so that we deduce by Markov’s inequality that for all δ ∈ [0, 1] then

PP
[
− log(q(X)) 6 − log(p(X))− log(1/δ)

]
6 δ ,

which is precisely the core inequality of compression theory (using δ = e−K for some number of bits K).

4.2 Chernoff Importance Sampling
Another way to use the previous construction is to consider importance sampling1. In many application of Im-
portane sampling, people start by considering they want to estimate EQ[f(X)] but we have samples X1, . . . , Xn

sampled from P . The classical way is to reweight the values by P , namely to form

fP→Qn =
1

n

n∑
i=1

f(Xi)
Q(Xi)

P (Xi)
=

1

n

n∑
i=1

f̃P→Q(Xi)

Since indeed EP [fP→Qn ] = EQ[ 1
n

∑n
i=1 f(Xi)].

However, in many applications, one do not really care about EQ[f(X)] but rather about the deviations of
1
n

∑n
i=1 f(Xi) around its mean, which is a very different questions. For that purpose, the estimate fP→Qn can turn

out to be very bad since it classically suffers from a high variance.
A number of techniques have been suggested to reduce this variance. Here we directly tackle the control of

the tail of 1
n

∑n
i=1 f(Xi), which classically requires a control of its log Laplace transform. More precisely:'

&

$

%

Lemma 11 (Chernoff Importance Sampling) Let P be a distribution on X and X1, . . . , Xn
i.i.d.∼ P .

Let f : X → R be some function taking real values. Let Q be another distribution on X such that the
real random variable f(X), for X ∼ Q, is known to be R-sub-Gaussian. Let δ ∈ [0, 1] be given, and
form the quantity

f̃P→Qδ (Xi) = f(Xi) +R

√
n

2 log(1/δ)
log

(
Q(Xi)

P (Xi)

)
.

Then, it holds for this precise δ and number of observations n,

PP
[

1

n

n∑
i=1

f̃P→Qδ (Xi)− EQ[f ] > R

√
2 log(1/δ)

n

]
6 δ .

This result shows that even though we do not directly have access to samples coming from Q, it is possible,
knowing some concentration properties of Q, to reshape the empirical estimate of the mean in order to have a
good control of the tails.

Proof of Lemma 11 :

Indeed, we want to control logEQ exp[λ
∑n
i=1(f(Xi) − EQ[f ])]. This can be written using a change

of measure argument by

logEP
[

exp
[
λ

n∑
i=1

(f(Xi)− EQ[f ])
]Q(Xi)

P (Xi)

]
= logEP exp

[
λ

[ n∑
i=1

f(Xi) +
1

λ
log

(
Q(Xi)

P (Xi)

)
− EQ[f ]

]]
At this point, let us consider that the target distribution f(X) for X ∼ Q is known to be, say R-

sub-Gaussian. In this case, we know that what matters is to control the Legendre-Fenchel dual potential

1In the litterature, Chernoff Importance sampling refers to a different approach. However, there is no reason not to call the scheme
considered in this section otherwise. An alternative name may be Chernoff-Laplace importance sampling.
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function

sup
λ∈R

(
λnε− logEQ exp

[
λ

n∑
i=1

(f(Xi)− EQ[f ])
])

> sup
λ∈R

(
λnε−R2λ2n/2

)
= nε2/2R2,

where the equality its obtained for the value λ? = ε/R2. This suggests to make the choice

f̃(Xi) = f(Xi) +
R2

ε
log

(
Q(Xi)

P (Xi)

)
,

for some ε > 0. Indeed, one obtains that

logEP exp

[
λ?

n∑
i=1

(f̃(Xi)− EQ[f ])

]
= logEQ exp

[
λ?

n∑
i=1

(f(Xi)− EQ[f ])

]
and thus for this specific value of ε, it holds

P
[

1

n

n∑
i=1

f̃(Xi) > EQ[f ] + ε

]
6 exp

(
− nε2

2R2

)
.

Alternatively, choosing ε = R
√

2 log(1/δ)/n for some δ ∈ [0, 1], we obtain that with probability higher
than 1− δ,

1

n

n∑
i=1

f̃(Xi)− EQ[f ] < R

√
2 log(1/δ)

n
,

where

f̃(Xi) = f(Xi) +R

√
n

2 log(1/δ)
log

(
Q(Xi)

P (Xi)

)
.

Likewise, writing the reverse quantity

logEP
[

exp
[
λ

n∑
i=1

(EQ[f ]− f(Xi))
]Q(Xi)

P (Xi)

]
= logEP exp

[
λ

[ n∑
i=1

EQ[f ] +
1

λ
log

(
Q(Xi)

P (Xi)

)
− f(Xi)

]]
suggests to make the choice

f̃−(Xi) = f(Xi)−
R2

ε
log

(
Q(Xi)

P (Xi)

)
,

Indeed, one obtains that

logEP exp

[
λ?

n∑
i=1

(EQ[f ]− f̃(Xi))

]
= logEQ exp

[
λ?

n∑
i=1

(EQ[f ]− f(Xi))

]
and then for the same ε as before, we get

PP
[

1

n

n∑
i=1

EQ[f ]− f̃P→Q−,δ (Xi) > R

√
2 log(1/δ)

n

]
6 δ .

�

The previous argument can be generalized, by following the construction of Lemma 7. This leads to the
following result, that enables to transfer the concentration of measure from a single target distribution to a set
of distributions that have been previously sampled. We present this version of the result without considering the
random stopping time for simplicity of exposure.
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Lemma 12 (Concentration inequality for predictable Processes under Covariate-Shift) Let
{Xi}∞i=1 be a predictable sequence of random variables for a filtration H, with known distributions
{Pi}∞i=1 such that Xi|Hi−1 ∼ Pi. Let Q be a probability measure and ϕ : R → R+ be a convex
upper-envelope of the cumulant generative function corresponding to Q, with ϕ(0) = 0, and ϕ? its
Legendre-Fenchel transform, that is:

∀λ ∈ D, lnEQ
[

exp
(
λ(X − EQ[X])

)]
6 ϕ(λ) ,

∀x ∈ R ϕ?(x) = sup
λ∈R

(
λx− ϕ(λ)

)
,

where D = {λ ∈ R : lnE
[

exp
(
λX
)]

<∞}. Assume that D contains an open neighborhood of 0.

Let δ ∈ [0, 1] be given, and form the quantities

X+,Pi→Q
i = Xi +

1

λ+
ln

(
Q(Xi)

Pi(Xi)

)
where λ+ = Argmax

λ∈R+

[
λϕ−1

?,+(ln(1/δ)/n)− ϕ(λ)
]

X−,Pi→Qi = Xi +
1

λ−
ln

(
Q(Xi)

Pi(Xi)

)
where λ− = Argmax

λ∈R−

[
λϕ−1

?,−(ln(1/δ)/n)− ϕ(λ)
]

Now, for this specific choice of δ and a deterministic number of observations n, it holds

P
[

1

n

n∑
i=1

X+,Pi→Q
i,δ − EQ[X] > ϕ−1

?,+

(
ln(1/δ)

n

)]
6 δ

P
[

1

n

n∑
i=1

X−,Pi→Qi,δ − EQ[X] 6 ϕ−1
?,−

(
ln(1/δ)

n

)]
6 δ

Proof of Lemma 12:

1. Change of measure Let us introduce for convenience the notation Z̃i = X−,Pi→Qi −EQ[X]. Then,
we want to control, for some εn > 0 to be defined later

P
(

1

n

n∑
i=1

Z̃i > εn

)
6 P

(
exp

(
λ
( n∑
i=1

Z̃i

))
> exp(λnεn)

)

6 P
(

exp

(
λ
( n∑
i=1

Z̃i

)
− nϕ(λn)

)
︸ ︷︷ ︸

Wn

> exp
(
n
(
λnεn − ϕ(λn)

))

6 P
(
Wn > exp

(
n
(
λnεn − ϕ(λn)

))
.

Since εn > 0, we can choose a λn > 0 such that ϕ?(εn) = λnεn − ϕ(λn).

2. Doob’s maximal inequality At this, point, we show that the sequence {Wn}n is a non-negative

super-martingale, where Wn = exp

(
λn
(∑n

i=1 Z̃i
)
− tϕ(λn)

)
. Indeed, note that:

E[Wt+1|Ft] = WtE[exp
(
λnZ̃t+1

)
|Ft] exp(−ϕ(λn))

= WtE
[

exp
(
λn(Xt+1 +

1

λn
ln

(
Q(Xt+1)

Pt+1(Xt+1)

)
− EQ[X])

)
|Ft
]

exp(−ϕ(λn))

= WtEQ
[

exp
(
λn(X − EQ[X])

)]
exp(−ϕ(λn))

6 Wt .
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We thus find

P
(

1

n

n∑
i=1

Z̃i > εn

)
6 P

(
Wn > exp

(
nϕ?(εn)

))
(a)

6 exp
(
− nϕ?(εn)

)
,

where (a) holds by application of Doob’s maximal inequality for non-negative super-martingales, using
that E[W0] 6 1.

3. Parameter tuning Now, let us choose εn such that nϕ?(εn) = c > 1 is a constant, that is εn =
ϕ−1
?,+(c/n). Thus, we get for all η ∈ (0, n− 1):

P
(

1

n

n∑
i=1

Z̃i > εn

)
6 exp

(
− nϕ?(εn)

)
6 exp(−c)

We conclude by choosing c = log(1/δ) > 1.

5. Reverse bounds. Now for εn < EQ[X], we can follow the same steps, but choose λn > 0 such that
ϕ?(εn) = −λn, εn − ϕ(−λn) > 0. �

4.3 Transportation lemma
We conclude this section with a powerful result known as the transportation lemma.

Lemma 13 For any function f , let us introduce ϕf : λ 7→ logEP exp(λ(f(X) − EP [f ])). Whenever ϕf is
defined on some possibly unbounded interval 0 ∈ I , define its dual ϕ?,f (x) = supλ∈I λx− ϕf (λ). Then it holds

∀Q� P, EQ[f ]− EP [f ] 6 ϕ−1
+,f (KL(Q,P )) whereϕ−1

+,f (t) = inf{x > 0 : ϕ?,f (x) > t}

∀Q� P, EQ[f ]− EP [f ] > ϕ−1
−,f (KL(Q,P )) whereϕ−1

−,f (t) = sup{x 6 0 : ϕ?,f (x) > t} .

Proof :

Let us recall the fundamental equality

∀λ ∈ R, logEP exp(λ(X − EP [X]) = sup
Q�P

[
λ
(
EQ[X]− EP [X]

)
−KL(Q,P )

]
.

In particular, we obtain on the one hand that

∀Q� P, EQ[f ]− EP [f ] 6 min
λ∈R+

ϕf (λ) +KL(Q,P )

λ

Since ϕf (0) = 0, then the right hand side quantity is non-negative. Let us call it u. Then, we note
that for any t such that u > t > 0, then by construction of u, it holds KL(Q,P ) > ϕ?,f (t). Thus,
{t > 0 : ϕf,?(t) > KL(Q,P )} = (u,∞) and thus u = ϕ−1

+,f (KL(Q,P )).
On the other hand, it holds

∀Q� P, EQ[f ]− EP [f ] > max
λ∈R−

ϕf (λ) +KL(Q,P )

λ

Since ϕ(0) = 0, then the right hand side quantity is non-positive. Let us call it v. Then, we note that
for any t such that v 6 t 6 0, then by construction of v, it holds KL(Q,P ) > ϕ?,f (t).Thus, {t 6 0 :
ϕ?,f (t) > KL(Q,P )} = (−∞, v) and thus v = ϕ−1

−,f (KL(Q,P )).
�
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Corollary 3 Assume that f is such that VP [f ] and S(f) = maxx f(x)−minx f(x) are finite. Then it holds

∀Q� P, EQ[f ]− EP [f ] 6
√

2VP [f ]KL(Q,P ) +
2S(f)

3
KL(Q,P ) ,

∀Q� P, EP [f ]− EQ[f ] 6
√

2VP [f ]KL(Q,P ) .

In particular, this shows that it is enough to control the Kullback-Leibler divergence between a distribution and
its empirical counter part in order to derive immediately a concentration result for the empirical mean of virtually
any function (with finite variance and span).

Proof :

Indeed, by a standard Bernstein argument, it holds

∀λ ∈ [0,
3

S(f)
), ϕf (λ) 6

VP [f ]

2

λ2

1− S(f)λ
3

∀x > 0, ϕ?,f (x) >
x2

2(VP [f ] + S(f)
3 x)

Then, a direct computation shows that

ϕ−1
+,f (t) 6

S(f)

3
t+

√
2tVP [f ] +

(S(f)

3
t
)2

.

ϕ−1
−,f (t) >

S(f)

3
t−
√

2tVP [f ] +
(S(f)

3
t
)2

.

Combining these two bounds, we obtain that

EQ[f ]− EP [f ] 6

√
2VP [f ]KL(Q,P ) +

(S(f)

3

)2

KL(Q,P )2 +
S(f)

3
KL(Q,P )

EP [f ]− EQ[f ] 6

√
2VP [f ]KL(Q,P ) +

(S(f)

3

)2

KL(Q,P )2 − S(f)

3
KL(Q,P ) .

�

Conclusion
In this short note, we have provided a few basic results for concentration of real-valued predictable processes.
There are much more results out there regarding concentration of measure. This includes Sanov’s concentration
inequalities for the empirical distribution, concentration results for the variance leading to empirical Bernstein
bounds, concentration of the cumulative distribution function, of the conditional value at risk, concentration in-
equalities for the median instead of the mean, or in terms of (inverse) Information projection. Beyond the real-
valued random variables, one can consider concentration for vector-valued or matrix-valued martingales, and look
at concentration in terms of various norms, for instance based on the Wasserstein or total variation distance.
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