
HAL Id: hal-01632790
https://hal.inria.fr/hal-01632790

Submitted on 10 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(GETRF Delivrable 3: Network Coding) DragonNet:
Specification, Implementation, Experimentation and

Performance Evaluation
Ichrak Amdouni, Antonia Masucci, Hana Baccouch, Cédric Adjih

To cite this version:
Ichrak Amdouni, Antonia Masucci, Hana Baccouch, Cédric Adjih. (GETRF Delivrable 3: Network
Coding) DragonNet: Specification, Implementation, Experimentation and Performance Evaluation.
[Research Report] Inria Paris Rocquencourt. 2014. �hal-01632790�

https://hal.inria.fr/hal-01632790
https://hal.archives-ouvertes.fr

GETRF Delivrable 3: Network Coding

DragonNet: Speci�cation,
Implementation, Experimentation

and Performance Evaluation

Ichrak Amdouni, Antonia Masucci,
Hana Baccouch, Cedric Adjih

September 2014

This work has been supported by DGA/ASTRID/ANR-11-ASTR-0033

1

Contents

1 Introduction and Overview of the Network Coding 6
1.1 Presentation of the Document 6
1.2 Synthesis of the Activities . 7
1.3 Related Work . 8

1.3.1 Network Coding . 8
1.3.2 Fundamentals of Network Coding 8
1.3.3 Benefits of Network Coding 11
1.3.4 DRAGONCAST . 12

I Description of DragonNet 13

2 DragonNet: a Generic Solution for Network Coding 14
2.1 Introduction . 14
2.2 Overview of DrangonNet . 14
2.3 The Building Blocks of DragonNet 15

2.3.1 LIB: Local Information Base 15
2.3.2 SIG: SIGnalisation . 16
2.3.3 Protocol . 16
2.3.4 SEW: Sliding Encoding Window 16
2.3.5 DRAGON: Dynamic Rate Adaptation from Gap with

Other Nodes . 16
2.4 General Functioning . 17
2.5 Conclusion . 18

II Specifications 19

3 Specification of the Building Blocks of DragonNet 20
3.1 Introduction . 20
3.2 SIG: The Signaling in DragonNet 20

2

3.2.1 Format of the Flow Protocol Message Element F-PME 22
3.2.2 Format of the State Protocol Message Element S-PME 23
3.2.3 Format of the Encoded Data Protocol Message Ele-

ment ED-PME . 24
3.3 LIB: Local Information Base 25

3.3.1 Flow Information Base 25
3.3.2 Coding Block Information Base 26
3.3.3 Neighbor Information Base 26
3.3.4 Decoding Information Base 26

3.4 DragonNet Protocol Functioning 27
3.4.1 Source Payload Generation 27
3.4.2 Payload Processing . 27
3.4.3 Payload Generation . 27

3.5 DRAGON: Packet Rate Selection 28
3.5.1 DRAGON Rationale 28
3.5.2 DRAGON (Dynamic Rate Adaptation from Gap with

Other Nodes) . 28
3.6 Real-time Decoding: Sliding Encoding Window (SEW) 29

3.6.1 Coding Rule of SEW 30
3.6.2 Decoding Rule of SEW 31

3.7 Conclusion . 32

4 Specification of DragonNet for Wireless Sensor Networks 33
4.1 Introduction . 33
4.2 DragonNet Message Format 33

4.2.1 Dragon Parameters . 34
4.2.2 Flow Related Parameters 35
4.2.3 Coded Data Related Information 35

4.3 LIB: Local Information Base 36
4.4 Conclusion . 37

5 Specification of the Coding Interval-based Sliding Encoding
Window (CISEW) for DragonNet 38
5.1 Introduction . 38
5.2 Overview of CISEW . 38
5.3 Overview of CISEW Advertizement 40
5.4 CISEW Design and General Rules 41

5.4.1 Signaling . 41
5.4.2 CISEW Components 43

5.5 Specification of Proposed Policies and Algorithms for CISEW 45
5.5.1 Applicability Statement 45

3

5.5.2 CISEW Heuristics . 46
5.6 Conclusion . 53

III Performance Evaluation 55

6 Experiments of DragonNet on a real WSN testbed IoT-LAB 56
6.1 Introduction . 56
6.2 Setting of the Experiment . 56
6.3 Results . 58
6.4 Conclusion . 64

7 Performance of DragonNet under ns3 Simulator 65
7.1 Introduction . 65
7.2 Description of the Framework 65
7.3 Simulation Results . 67

7.3.1 Grid scenario . 67
7.3.2 Mobility scenario . 69
7.3.3 Military Scenario . 70

7.4 Conclusion . 72

8 E�ciency of Broadcast with Network Coding in Wireless
Networks 73
8.1 Introduction . 73
8.2 Problem and Background . 73

8.2.1 Problem . 73
8.2.2 Related Work . 74
8.2.3 Methodology and Summary of Results 74

8.3 Model . 75
8.4 Network Coding: Maximum Broadcast Rate 76
8.5 Broadcast Rate in Torus Grid 77

8.5.1 Minowski Sum and Neighborhood 77
8.5.2 Maximum Broadcast Rate 79
8.5.3 The logic for Energy-E�ciency 80
8.5.4 Inequalities for Sumsets 81

8.6 Performance of NC in Lossy Wireless Networks 86
8.6.1 Uniform loss rate . 88
8.6.2 Non-Uniform loss rate 91

8.7 Conclusions . 97

4

9 Performance Computation over TDMA Wireless Networks
with VCM Scheduled Transmissions 98
9.1 Introduction . 98
9.2 Methodology . 98

9.2.1 Max-flow Computation 98
9.2.2 VCM: The Vector-based Coloring Method 99

9.3 Results . 99
9.4 Conclusion . 107

5

Chapter 1

Introduction and Overview of
the Network Coding

1.1 Presentation of the Document

This document represents the synthesis of the work package 3, “Network
Coding” of the GETRF project, and is the deliverable for this work package.

In the project, we have developed a solution, called DragonNet, for ef-
ficient communications with network coding. Following the context of the
GETRF project, we have kept in mind tactical military applications, and
focused on two use cases:

• Mobile ad-hoc networks (as used in tactical military networks with
microwave or VHF radio communication equipment for instance).

• Wireless sensor networks (used for instance with the goal of monitoring
intrusions in strategic areas).

Thus, it appears that these two cases are characterized with a common
feature: they are multi-hop wireless networks. This fact has implications on
the design of network coding solutions.

During the work package, we focused on two objectives:

• Specifying and developing a generic solution for network coding com-
munications: the solution has the name of DragonNet. Our emphasis is
on providing a modular and universal solution that can be adopted in
the previously cited scenarios and, in reality, also in many other ones.

• Evaluating the performance of the solution, and of network coding in
general, in the context of multi-hop wireless networks.

6

1.2 Synthesis of the Activities

Concerning specification-related activities, our main results that are summa-
rized in this report are:

• Design of a complete modular solution: DragonNet. This solution is re-
sponsible of: coding, decoding, maintaining necessary information and
the associated signaling (see Chapter 2). It is designed to be extensible.

• Detailed specification of DragonNet for multicast communications. This
specification was proposed as an IRTF draft [4] and presented in the
IRTF network coding research group NWCRG 1 (see Chapter 3), to
generate discussion, and contribute to the research group.

• Detailed specification of DragonNet for wireless sensor networks. This
specification derives from the previous one and mainly it updates the
control message format (see Chapter 4).

Concerning implementation and performance evaluation, our main results
are:

• Design of a building block for coding, decoding and signaling. This
module is called CISEW. Mainly, it refines the module SEW in Drag-
onNet and makes it more general. CISEW has been proposed as an
IRTF draft [5] (see Chapter 5).

• Implementation and performance evaluation of DragonNet with:

– Real sensor networks: IoT-LAB 2 (see Chapter 6).

– ns3 simulator (see Chapter 7);

• Analytical analysis of network coding performance, in terms of capacity
and energy, in multi-hop wireless networks. This work is published as
an Inria research report [8] and in the conference [7] (see Chapter 8).

• Illustration of this theoretical result via the computation of the max-
flow (see Chapter 9). This computation is done over the transmission
graph that is obtained (1) first, by a pure TDMA scheduling of nodes,
(2) Second, by scheduling nodes transmissions via a coloring algorithm
called VCM (Vector based Coloring Method). This illustrates also the
integration of two works under the GETRF project (integration of VCM
with the theoretical result about the capacity and e�ciency in grid
networks).

1https://irtf.org/nwcrg
2https://www.iot-lab.info/

7

1.3 Related Work

1.3.1 Network Coding

In classical wired or wireless networks, coding is restricted to the sources
and the end receivers, whereas the intermediate nodes are only in charge of
routing and copying payloads. Network coding departs from this traditional
end-to-end forwarding paradigm by enabling intermediate nodes to mix the
received payloads. Hence, the intermediate nodes may recombine several
input payloads into one or several output payloads.

The idea of network coding has been introduced by Ahlswede, Cai, Li
and Yeung in [15]. Since then, research on network coding has attracted
significant interest from the research community.

1.3.2 Fundamentals of Network Coding

In this section, we present terminology and fundamentals of network cod-
ing. We describe a general framework using the terminology adopted in this
draft [6].

1.3.2.1 Linear Coding and Random Linear Coding

Network coding di↵ers from classical routing by permitting coding at interme-
diate nodes. In network coding, there is a source that transmits information
to the network. This information is called a “flow”. The flow represents
a sequence of bytes at the source that needs to be broadcast. The source
divides the flow in a sequence of payloads. The payloads are numbered,
and can be identified by their payload index. The payloads of one flow may
optionally be divided in several coding blocks (one by default). The source
may have an arbitrary number of flows. We speak about intra-flow coding
when each flow is coded independently. We speak about inter-flow coding
when inter-flow coding is allowed.

One possible coding algorithm is linear coding that performs only linear
transformations through addition and multiplication (see Li et al. [23]
and Koetter et al. [16]). Precisely, linear coding assumes identically sized
payloads. These payloads are vectors on a fixed Galois field. Let consider
any source that multicasts k payloads (p

j

)
j=1,...,k. At any time, any node v

receives payload that is a linear combination of payloads p
j

; that is:

ith received coded payload at node v: y(v)
i

=
P

j=k

j=1 gi,jpj

8

The sequence of coe�cients for a coded payload y
(v)
i

at the node v is

[g
i,1, gi,2, ..., gi,k] is called the “coding vector” of payload y

(v)
i

. The matrix
of coe�cients [g

i,j

]
i=1...n,j=1...k, where n is the number of payloads received by

any node v is called the coding matrix. Consider the example depicted in
Figure 1.1. The vector P = [p1, p2, . . . , pn] represents the original payloads
generated by the source. Node v has the vector yv1 , . . . , y

v

n

of coded payloads.
This vector is in fact obtained by multiplying the matrix G by the vector P .

y
1

v

y
2

v

y
n

v

.

.

.

.

.

.

g
2,1

.

.

.

g
1,k

g
1,2

g
1,1

...

g
2,k

g
2,2

...

p
1

p
2

p
n

 Y = G P

Figure 1.1: A set of coded payloads in a local bu↵er of a node v.

When a node generates a coded payload with linear coding, an issue is
how to select coe�cients. Whereas centralized deterministic methods exist,
Ho and al. [24] presented a novel coding algorithm, which does not require
any central coordination. This algorithm is called random linear coding:
when a node transmits a payload, it computes a linear combination of all
data it possesses with randomly selected coe�cients and sends the result of
the linear combination. In practice, a special header containing the coding
vector of the transmitted payload may be added as proposed by Chou et
al. [18].

Thinking in terms of coding vectors, at any point of time, it is possible
to associate with one node v, the vector space, ⇧

v

spawned by its coding
vectors, and which is identified with its coding matrix. The dimension of
that vector space, denoted D

v

, D
v

, dim(⇧
v

), is also the rank of
the matrix. By abuse of language, we call rank of any node v, that rank
and dimension.

There are many network coding methods. We speak for instance about
block coding when the original payload sequence is divided into blocks,
called coding blocks (as known as generations), and coding is performed
only over payloads within the same block.

There is also, the sliding window coding when the coding blocks are

9

selected based on a sliding window. For instance, for a window size = [5, 9],
the node should code payloads having indices between 5 and 19 (from p5
to p19). In this case, coding blocks of nodes may be partially overlapping,
and, over time, moving to higher original payload sequence numbers. This
method has the advantage to allow a real-time decoding; any node is not
obliged to wait for the reception of a whole coding block to be able to decode
payloads, as in the block coding method. The solution we propose for the
network coding is based on a sliding window as we will see in the remaining
of this report.

1.3.2.2 Decoding and Rank

The rank of a node is a direct metric for the amount of useful received pay-
loads, and a received payload is called innovative when it increases the rank
of the receiving node. Ultimately a node can decode all source payloads when
its rank is equal to the total number of source payloads. In this case, we say
that the decoding matrix has full rank. Decoding is done by inverting the
coding matrix formed by the coding coe�cients. As seen in the example
of Figure 1.1, Y = G ⇥ P . Hence, the original payloads (p

i

, i = 1 . . . n) can
be determined by inverting the matrix G: P = G�1 ⇥ Y . Matrix inversion
can be performed by Gauss Elimination.

y
1

v

y
2

v

y
n

v

.

.

.

.

.

.

0

0

.

.

.

0

001 ...

1

01

...

p
1

p
2

p
n

 G-1 Y = I P

00

00

Figure 1.2: Decoding with Gauss Elimination.

10

1.3.3 Benefits of Network Coding

The e�ciency provided by network coding in multicast and broadcast net-
works has been studied for instance, by Lun et al. [17], and Wu et al. [19].
In particular, they provide methods for determining optimal network coding
parameters for a given network with specific model assumptions. The work
of Fragouli et al. [20] gives insights for all-to-all broadcast and illustrates how
gains could be obtained compared to classical routing.

It has been argued that the network coding is best suited to multi-hop
wireless networks. Indeed, compared to wired networks, they have specific
properties, see for instance [21], including:

• Wireless ’neighborcast’: one wireless transmission by a node may reach
several receivers. This property may be used to optimize broadcast.

• Time-variation: the visibility between two nodes may evolve with time,
due to node mobility, physical changes in the propagation environment
or other reasons.

• Unreliability of wireless communications: due to wireless channel con-
ditions or properties, transmissions losses (packet erasures) potentially
occur.

Intuitively, by combining the received packets, a coded packet sent by
an intermediate node could benefit multiple receivers simultaneously, thus
improving the bandwidth e�ciency. In [15], it was shown that the multicast
capacity (that is the maximum number of packets that can be sent from the
source to a set of terminals per time unit) can be achieved by performing
network coding at the intermediate nodes. A few years later, in [23], it
was shown that for multicast networks, linear coding su�ces to achieve the
capacity limit, which is the max-flow from the source to each receiving node.

The authors of [25] show that random linear coding technique performs
asymptotically as e�ciently as any other network coding method in terms of
capacity, for the case of single source multicast [25], and its performance is
determined entirely by the average rates of nodes [26].

By reducing the number of transmissions required to transmit some amount
of information, network coding achieves energy e�ciency. In Chapter 8, we
analyse the performance of network coding in torus networks. Results show
that the capacity in a torus grid is equal to the number of neighbors of a node.
Moreover, network coding in such networks is “near optimal” in terms of en-
ergy e�ciency, in the sense that each transmission will provide innovative
information (outside the vicinity of the source).

11

To benefit from the aforementioned advantages, we propose a generic
framework for network coding called DragonNet. DragonNet derives from
an existing solution called DRAGONCAST (various parts are described in
[1–3]). The description of DRAGONCAST is proposed in the next section.

1.3.4 DRAGONCAST

DRAGONCAST is a protocol for broadcasting a set of packets from one
source to the entire network with network coding. The base functioning is
simple: the broadcast is initiated by transmissions from the source. Every
node in the network retransmits coded payloads with a changing interval
between transmissions. At the same time, every node collects received coded
payloads and performs decoding as they are received. Finally, termination
is automatically detected when all the nodes have successfully received all
data.

DRAGONCAST provides a general framework with a modular architec-
ture of three main components:

1. DRAGON “Dynamic Rate Adaptation from Gap with Other Nodes”: is
a rate adjustment method. Every node is retransmitting coded packets
with a certain rate; this rate is adjusted dynamically. Essentially, the
rate of the node increases if it detects some nodes that lack too many
coded packets in the current neighborhood. This is called a “dimension
gap” and the adaptation algorithm is a Dynamic Rate Adjustment from
Gap with Other Nodes (DRAGON).

2. SEW “Sliding Encoding Window” is a real-time decoding method. The
general idea of SEW is that it restricts the mixed original payloads
within an encoded payload from a window of a fixed size. Consequently,
nodes are not constrained to wait for the whole set of original coded
payloads from the source, instead, real time decoding is possible.

3. A termination protocol for ensuring the termination of the broadcast:
each node stops transmitting payloads once its known neighbors and
itself have su�cient data to recover all source payloads.

As we will see in the remaining of this report, DragonNet specifies and
completes these modules by the information base and the signaling required
to perform network coding in a wireless network.

12

Part I

Description of DragonNet

13

Chapter 2

DragonNet: a Generic Solution
for Network Coding

2.1 Introduction

In this chapter, we will present a general overview of DragonNet. We will
also describe the architecture of DragonNet and its di↵erent building blocks.

2.2 Overview of DrangonNet

DragonNet is a generic framework for network coding in wireless networks.
It is based on intra-flow coding where the source divides the flow in a se-
quence of payloads of equal size (padding may be used). The design keys of
DragonNet are simplicity and universality; DragonNet does not use explicit
or implicit knowledge about the topology (such as the direction or distance
to the source, the loss rate of the links, ...). Hence, it is perfectly suited to
the most dynamic wireless networks. The protocol is distributed and requires
minimal coordination. DragonNet architecture is modular, it is based on 5
building blocks (LIB, SIG, Protocol, SEW and DRAGON). Each block is
almost independent. This makes DragonNet generic and hence adaptable to
many application scenarios.

DragonNet derives from an existing protocol called DRAGONCAST.
Indeed, DragonNet shares the same principles and theoretical overview of
DRAGONCAST. It enriches DRAGONCAST by the information base and
signaling required to perform broadcast in wireless networks and in wireless
sensor networks in particular. Furthermore, DragonNet provides a specifica-
tion of its di↵erent blocks. The IRTF draft [4] is a detailed description of
DragonNet and the material of this chapter derives from this draft. Notice

14

however, that in this draft, the same acronym of DRAGONCAST is kept.
For clarity reasons, we replace it by DragonNet for the remaining of this
report. Also, some acronyms are changed compared to this draft.

2.3 The Building Blocks of DragonNet

Figure 2.1 illustrates the di↵erent building blocks of DragonNet.

When to send packets How to generate/decode packets

How to store information
about neighbor nodesHow to signal node state

Protocol
Logic

DRAGON
 Packet Rate

Selection

SIG
Signaling

DRAGONCAST
Protocol

SEW
Real-Time Decoding

LIB
Local Information

Base

Figure 2.1: Organization of the di↵erent building blocks of DragonNet.

To make DragonNet the most universal possible, we separate the design of
its building blocks into two categories: the protocol and the policy. The pro-
tocol category defines the general protocol aspects themselves and includes
the information base LIB, the signalisation SIG and the Protocol itself. The
policy category defines the higher protocol behavior and it includes the slid-
ing encoding window SEW and the dynamic rate adaptation DRAGON.
In the following, we give a brief description of all these building blocks. A
detailed specification of these modules is provided in Chapter 3.

2.3.1 LIB: Local Information Base

This module is responsible for maintaining all information required for the
functioning of the protocol. This information base maintains information

15

about the flows, the decoding process, and the state of the neighbors.

2.3.2 SIG: SIGnalisation

This module provides the signaling for the control plane for DragonNet. The
signaling consists mainly on the specification of a header for each coded
payload (e.g piggybacking). It includes information relative to the state of
the node, in addition to the packet encoding information. This allows each
node to maintain information about the state of its neighbors.

2.3.3 Protocol

This module is the protocol itself with message generation and message pro-
cessing.

2.3.4 SEW: Sliding Encoding Window

SEW is a real-time decoding method. This method relies on implicit coop-
eration between neighbor nodes, in order to allow recovery of some source
payloads without requiring to decode all source payloads at once. Techni-
cally, as described in [1], it ensures the existence of a low triangle in the
coding matrix during the online Gauss elimination process. The method
SEW relies on two principles:

• SEW coding rule: generates only coded payloads that are linear com-
binations within a given window. The determination of this window is
a policy for SEW.

• SEW decoding rule: when decoding, performs a Gaussian elimination
in such a way that one coded payload is only used to eliminate the
source payload with the highest possible index (i.e. the latest source
payload).

2.3.5 DRAGON: Dynamic Rate Adaptation from Gap
with Other Nodes

DRAGON is a dynamic payload rate adjustment policy. Every node trans-
mits coded payloads with a specific payload rate. With DRAGON, this rate
is adjusted dynamically. Essentially, the rate of the node increases if it de-
tects that some nodes in the current neighborhood are “falling behind” in
the decoding process. This is called a “dimension gap”. DRAGON provides
a heuristic to avoid this gap.

16

2.4 General Functioning

Figure 2.2 illustrates the general functioning of DragonNet.

Source

Node U

Node V

Coded Packet (w/ SIG)

Rank=3 | Known neigh.=3

Encoding vector=(1,3,5,0,…)

Content = [P1+3 P2+5 P4]

State of node U (LIB)

“Decoding Information
Base”
•Q1 = P1+2 P2+4 P3
•Q2 = P1+2 P2+P3
•Q3 = P2+P3
(rank=3)

[…]

Node W State of node V (LIB)

“Decoding Information
Base”
 […]
•Qk = P1+3 P2+5 P4

Neighbor Information Set
 […]

Node U:
rank = 3, #neigh =3

(RLC: Q1+Q3)

Figure 2.2: The general functioning of DragonNet.

The source initiates broadcasting by sending its original data payloads
with a format specified in Section 3.2 from Chapter 3. These payloads have
a predefined, constant size; padding can be used if necessary. Other nodes
initiate transmission of encoded payloads upon receiving the first coded pay-
load. As an example, we observe that the node u in Figure 2.2 has received
payloads Q1, Q2 and Q3 and has rank=3. These payloads are stored lo-
cally in the decoding information base as we will specify later. In addition
to payloads, any node stores information relative to its neighbors. As an
example, the node v has information about its neighbor u: (the rank and

17

the number of neighbors). Notice that received coded payloads are stored
only when they are innovative. Then, nodes transmit payloads periodically.
The transmission periodicity is decided by payloads rate selection algorithms.
Precisely, when intermediate nodes receive a data payload that is a source
payload or a coded payload, they start scheduling encoded data transmis-
sion. The scheduling interval is decided by the policy DRAGON. Payloads
transmitted by intermediate nodes are coded payloads generated using ran-
dom linear coding with a specified header. This header contains information
needed for decoding. For instance, we see on Figure 2.2 hat node u pig-
gybacks its message by adding its rank, the number of its neighbors, the
encoding vector and the coded payload. Data transmission continues until
nodes detect the termination condition, i.e. when themselves and all their
neighbors have successfully decoded the data stream. However, a node may
re-enter the transmission state. This happens when it receives a notification
indicating that one neighboring node requires more coding vectors to recover
some source payloads.

2.5 Conclusion

This chapter presented an overview about DragonNet, its building blocks and
its functioning. Next chapter will specify the building blocks of DragonNet.

18

Part II

Specifications

19

Chapter 3

Specification of the Building
Blocks of DragonNet

3.1 Introduction

The previous chapter gives an overview of DragonNet. This chapter details
the specification of this architecture. Notice that this specification is available
as a draft [4]. However, compared to the draft, the terminology used in this
document is updated according to the network coding taxonomy draft [6].

3.2 SIG: The Signaling in DragonNet

DragonNet uses one single control message format based on a sequence of
Type-Value including several protocol elements. The general message format
is represented in Figure 3.1.

20

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Packet size | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| Protocol Message Element (PME) |
| +-+-+-+-+-+-+-+-+
| | |
+-+ |
| |
: ... :
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Protocol Message Element (PME) |
| +-+-+-+-+-+-+-+-+
| |
+-+

Figure 3.1: Format of DragonNet control message.

The following protocol elements are defined:

• The Flow Protocol Message Element (F-PME) depicted in Figure 3.2:
it specifies information identifying the flow and the associated (con-
stant) parameters.

• The State Protocol Message Element (S-PME) depicted in Figure 3.3:
it specifies information relative to the state of the sender with respect
to the decoding process.

• The Encoded Data Protocol Message Element (ED-PME) depicted in
Figure 3.4: it specifies parameters of the encoding, along with the
coding vector and includes the coded payload data.

They are used as the basis for DragonNet messages. Control information
is sent in-band, prepended to encoded payloads. In the normal flow of the
protocol, the majority of transmitted messages are “Data Payloads”. In this
version of the specification, the message MUST respect exactly one of the
following formats:

• A regular data payload (with coded content): it MUST include the
three following elements, in this order exactly: F-PME, S-PME, ED-
PME.

21

• A termination control payload (e.g. without coded content): it MUST
first include the two following elements, in this order exactly: F-PME,
S-PME.

3.2.1 Format of the Flow Protocol Message Element
F-PME

The Flow PME includes the following fields:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type: FLOW | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| Flow Identifier (64 bits) |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Coding Block Identifier |
+-+
| Source Payload Rate |Coding Block Number of Payloads|
+-+
| Sliding Encoding Window Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.2: Format of the Flow PME (F-PME).

• Flow Identifier (Flow-ID): an identifier of size 8 bytes for the flow. Its
semantics is opaque to DragonNet.

• Coding Block Identifier: DragonNet includes support for splitting a
flow (with a given Flow-ID), which allows flows with more than 65535
payloads, and also allows to optionally operate with coding blocks.

• Source Payload Rate: expressed as the average inter-departure of the
coded payloads in milliseconds (e.g. “10 payloads per second” yields
the value 100).

• Coding Block Number of Payloads: total number of payloads in the
coding block with the given coding block identifier.

• Sliding Encoding Window Size: the size of the encoding window, when
generating coded payloads.

22

3.2.2 Format of the State Protocol Message Element
S-PME

The State PME specifies state information of transmitter with respect to the
coding block identified by a preceding F-PME. As depicted in Figure 3.3, the
S-PME includes:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type: STATE | Rank of Transmitter |
+-+
| Lifetime | Number of Neighbors |
+-+
| High Index | Low Index |
+-+
| Transmitter Address |
+-+

Figure 3.3: Format of the State PME

• Rank of Transmitter: denotes the current amount of innovative data
of the transmitter.

• Lifetime: denotes the duration during which the information in this
message (that is, the rank and the fact that the transmitter is a neigh-
bor of a node receiving this message) is considered valid (after this it
will expire).

• Number of neighbors: denotes the number of neighbors heard, that are
not yet expired.

• High Index: specifies the highest index of the undecoded linear combi-
nation in the decoding table.

• Low Index: specifies the lowest index of the undecoded linear combi-
nation in the decoding table. Hence, all source payloads with lower
indices have been decoded.

• Transmitter Address: the IP address of the transmitter of the message.

23

3.2.3 Format of the Encoded Data Protocol Message
Element ED-PME

The Encoded Data PME holds actual coded payloads. It includes:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type: ENCODED_DATA | Coding Type and Parameters |
+-+
| Coding Vector Data Size | Coded Payload Data Size |
+-+
| Coding Vector Index Offset | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Coding Vector Data |
: ... :
+-+
| Coded Payload Data |
: ... :
+-+

Figure 3.4: Format of the Encoded Data PME

• Encoding Type and Parameters: in this version of the specification,
this fields contains one of the constants ENCODING GF 2, ENCOD-
ING GF 4, ENCODING GF 16 or ENCODING GF 256. This repre-
sents the fact that the fields GF(2), GF(4), GF(16) or GF(256) re-
spectively are used as a basis for coding. As a result, the coe�cients
are respectively coded on 1, 2, 4 or 8 bits. Coding Vector Data Size:
the size of the information representing the coding vector, in bytes.
As indicated above, one byte will hold an integral number of vector
coe�cients.

• Coded Payload Data Size: the size of data payloads.

We define the following constants:

1. ENCODING GF 2 = 0

2. ENCODING GF 4 = 1

3. ENCODING GF 16 = 2

4. ENCODING GF 256 = 3

24

3.3 LIB: Local Information Base

Any node maintains a Local Information Base that records information about
its decoding process and the state of its neighbors. The protocol state is
maintained per flow: a flow is uniquely identified by a flow identifier. In
addition, DragonNet supports the concept of partitioning a flow into coding
blocks. In this version of the specification, each coding block is considered
as an independent “flow”.

The di↵erent information bases of LIB are structured hierarchically as
follows:

• Flow Information Set. Each flow is independently associated with a
Flow Information Tuple, which contains one or several coding blocks.
The state of each coding block is maintained in a:

– Coding Block Information Set. Each coding block contains infor-
mation about the neighbors with respect to the propagation and
the decoding of this coding block. This neighborhood information
is stored in a:

⇤ Neighbor Information Set. Such information may also be pro-
vided by another protocol, such as OLSR [11] or NHDP [12].

In addition, for decoding purposes, the flow information set in-
cludes the:

– Decoding Information Base.

Now, we detail these di↵erent information bases.

3.3.1 Flow Information Base

Each node maintains a Flow Information Set which contains collected infor-
mation about current flows. Specifically, the Flow Information Set consists
of Flow Information Tuples. Each Flow Information Tuple contains the fol-
lowing information:

• F flow identifier: the identifier of the flow.

• F source rate: the payload rate of the source.

• F coding block set: the Coding block Information Set associated to the
flow.

25

3.3.2 Coding Block Information Base

Each node maintains, for each of its Flow Information Tuple, a Coding Block
Information Set, which contains a Coding Block Tuple for each coding block.
A Coding Block Tuple contains information relative to a coding block:

• G coding Block identifier: an integer that identifies the coding block
(coding blocks are numbered from 0).

• G coding block size: number of coded payloads in the coding block.

• G encoding window size: the size of the sliding encoding window (for
SEW).

• G decoding: the Decoding Information Base associated to this coding
block.

• G neighbor set: the Neighbor Information Set associated to this coding
block.

3.3.3 Neighbor Information Base

For each coding block, a node maintains a Neighbor Information Set which
contains its known neighbors (with an expiration time), and information
related to their state. Specifically, the Neighbor Information Set consists of
Neighbor Tuples, each of which contains information about a single neighbor,
for a given flow and for a given coding block, as follows:

• N neighbor address: address of the (heard) neighbor.

• N neighbor rank: the rank of the neighbor.

• N high index: high index of the neighbor.

• N low index: low index of the neighbor.

• N validity time: the validity time of the tuple (after which it expires).

3.3.4 Decoding Information Base

For each coding block, a node maintains a Decoding Information Base with
the following content:

• D coded payload set: a set of coded payloads. For each, the node
maintains:

26

– Coding vector

– Coded payload content

During the decoding process, the decoding module (SEW) performs real-
time decoding by performing Gaussian elimination on the list of coded pay-
loads.

3.4 DragonNet Protocol Functioning

3.4.1 Source Payload Generation

A node that acts as a data source for a flow, also runs an instance of the
DragonNet protocol for that flow (e.g. has a Flow Tuple with all associ-
ated information). In addition, it adds periodically source payloads in the
associated Flow Information Base respecting the source rate.

3.4.2 Payload Processing

Whenever a node receives a coded payload:

• It updates its Flow Information Base related to the associated flow.
This includes the rank and the expiration time.

• It notifies SEW for real-time decoding. Then, SEW will forward any
decoded payload to the application.

• It notifies DRAGON which may update the transmission payload rate
of the flow.

3.4.3 Payload Generation

For every “active” flow in its Flow Information Base, a node will generate
coded payloads, with an interval between payloads determined by DRAGON.
Based on its Local Information Base, every node is able to determine if it
needs to send payloads, as described in [3]. If for a given flow and coding
payload, in the associated neighbor set, no neighbor is known to require coded
payloads, the payload is generated without an encoded payload (without
Encoded Data PME).

27

3.5 DRAGON: Packet Rate Selection

In this section, we describe one payload rate selection algorithm, proposed
for DragonNet.

3.5.1 DRAGON Rationale

The heuristic DRAGON has proposed and analyzed in [1] is inspired by
Fragouli et al. [9]. We briefly summarize it in this section. The starting
point of our heuristic DRAGON is the following observation. Indeed, for
real-time decoding, the rank of nodes inside the network should be close to
the index of the last source payload, and that in any case, they should at
least evolve in parallel.

Thus, one would expect the rank of any node to grow at the same pace as
the source transmission, as in the example of optimal rate selections for static
networks. Decreasing the rates of intermediate nodes by a too large factor,
would not permit the proper propagation of source payloads in real time.
On the contrary, increasing excessively their rates, would not increase the
rate of the decoded payloads (naturally bounded by the source rate) while
it would decrease energy-e�ciency (by increasing the amount of redundant
transmissions).

The idea of the proposed rate selection is to find a balance between these
two ine�cient states. As we have seen, ideally the rank of a node would be
comparable to the lastly sent source payload. Since we wish to have a simple
decentralized algorithm, instead of comparing with the source, we compare
indirectly the rank of a node with the rank of all its perceived neighbors.

The key idea is to perform a control so that the rank of neighbor nodes
would tend to be equalized: if a node detects that one neighbor had a rank
which is too low compared to its own, it would tend to increase its rate.
Conversely, if all its neighbors have greater ranks than itself, the node does
not need to send payloads in fact.

3.5.2 DRAGON (Dynamic Rate Adaptation from Gap
with Other Nodes)

DRAGON is based on the following definitions. Precisely, let:

• D(v,t) denotes the rank of any node v at time t.

• N(v,t) denotes the number of neighbors of the node v at time t.

28

• g(v,t) denotes the maximum rank gap of v compared to its neighbors,
normalized by the number of these neighbors. Then g(v,t) is evaluated
as:

g(v, t) = Max
for all u neighbor of v

D(v, t)�D(u, t)

N(u, t)

• We determine C(v,t): the payload rate of any node v at time t as
follows:

– if g(v,t) > 0 then: C(v,t) = A g(v,t) where A is some constant.

– Otherwise, the node stops sending encoded payloads until g(v,t)
becomes larger than 0.

When computing the payload rate selection, the node uses information
about its neighbors stored in the Neighbor Information Base. Indeed, any
node needs the rank of each of its neighbors as well as their total number.
This information is deduced from the last received payloads. Although these
payloads might not necessarily reflect the exact values at the computation
time, they provide an estimate.

3.6 Real-time Decoding: Sliding Encoding Win-
dow (SEW)

In this section, we describe the method of DragonNet for real-time decoding,
which allows recovery of some source payloads without requiring to decode
all source payloads at once. It is related to the method from Sundararajan
et al. [10] described for TCP.

The real-time decoding method, Sliding Encoding Window (SEW) relies
on implicit cooperation between neighbor nodes in order to ensure the pos-
sibility of decoding. Technically, as described in [1], it ensures the existence
of a low triangle in the coding matrix during the online Gauss elimination
process.

The method SEW relies on two principles:

• SEW coding rule: generates only coded payloads that are linear com-
binations of consecutive source payloads within the first L source pay-
loads, where L is a quantity that increases with time.

• SEW decoding rule: decoding is performed via Gaussian elimination
in such a way that one coded payload is only used to eliminate the

29

source payloads with the highest possible index (i.e. the latest source
payload).

In the following, we give the insights behind these rules.

3.6.1 Coding Rule of SEW

We introduce the following definitions.

Definition 1 (highest (resp. lowest) index of a coded payload) The high-
est (resp. lowest) index of a coded payload, is the maximum (resp. minimum)
index of its encoded payloads.

Example:
For the payload Q = P3+P5+P7+P8, the highest index is 8 and the lowest
index is 3.

Because all coded payloads have their own highest index and lowest index,
we can also compute the maximum of the highest indices of all undecoded
payloads at any node, as well as the minimum of the lowest indices. Hence,
we define:

Definition 2 (The high (resp. low) index of any node) The high (resp.
low) index of any node is the maximum (minimum) index of all its undecoded
payloads.

Notice that a node will generally decode the source payloads from 1 up
to its low index.

To ensure real-time decoding, SEW uses knowledge about the state of
neighbors of one node, namely their high and low index. Any node restricts
the generated payloads to a subset of payloads of the source such that its
perceived neighbors are able to decode nearly all of them, up to a margin K.
Notice that once all these neighbors may decode up to the first L-K payloads,
it is unnecessary for the node to include payloads P1, . . . PL

in its generated
combinations.

Hence, the general idea of SEW is that it restricts the mixed original
payloads within an encoded payload from a window of a fixed size K. In
other words, any node v encodes only source payloads inside a fixed Encoding
Window as:
i-th generated payload q(v, i) = a(v, i, k)P

k

++ a(v, i, k+K)P
k+K

, where
the (P

j

, j = k, . . . k +K) is the set of payloads generated by the source, The
sequence of coe�cients for q(v,i) is the following coding vector: [0, 0, ...,
a(v,i,k), a(v,i,k+1), ..., a(v,i,k+K), ...,0,0].

30

P10 P11 … P15 P16 …

Decoded

Unknown
packets

Highest
 index

Lowest
index

Being decoded

P5 …P4

Lowest index
of others

My Lowest index=11 Coding vector

11 12

9 10

12 13

Knowl. of Node B

Knowl. of Node C

Knowl. of Node D

Figure 3.5: Illustration of coding rule of SEW

As an example, we consider the state of node A in Figure 3.5. Node
A has decoded payloads until index 10. Its neighbors B, C and D have
lowest indices equal to 12, 10 and 13. Hence, the lowest index at node A
codes payloads starting from index 10 which is the minimum low index of its
neighbors.

A node will repeat transmissions of new random combinations within the
same window, until its neighbors progress in the decoding process.

3.6.2 Decoding Rule of SEW

The intent of the SEW decoding rule, is to guarantee proper functioning of
the Gaussian elimination. An example of SEW decoding rule is the following:
assume that node v has received payloads q1 and q2, for instance q1 = P1+P9

and q2 = P1 + P2 + P3. Then q1 would be used to eliminate P9 for newly

31

incoming payloads (the highest possible index is 9), and q2 would be used to
eliminate P3 from further incoming payloads. On the contrary, if the SEW
decoding rule was not applied and if q1 were used to eliminate P1, then it
would be used to eliminate it in q2, and would result into the computation of
q2� q1 = P2+P3�P9; this quantity now requires elimination of P9, a higher
index than the initial one in q2. In contrast, the SEW decoding rule guar-
antees the following invariant: during the Gaussian elimination process, the
highest index of every currently undecoded payload will always stay identical
or decrease.

Provided that the neighbor state is properly exchanged and known, the
combination of the SEW coding rule and the SEW decoding rule, guarantees
that ultimately every node will be able to decode the payloads in the window
starting from its lowest index; that is, they guarantee early decoding.

Notice that improper knowledge of neighbor state might impact the per-
formance of the method but not its correctness: if a node detects a previously
unknown neighbor (for instance due to mobility), it will properly adjust its
encoding window. Similarily, in DragonNet, obsolete neighbor information,
for instance about disappeared neighbors, will ultimately expire.

3.7 Conclusion

This chapter provides a specification of the di↵erent building blocks of Drag-
onNet. The design of DragonNet is modular and universal. The ideas pre-
sented here are su�ciently abstract to make their adaptation to many use
cases in wireless networks possible. Examples of this adaptation are given in
the next chapters.

32

Chapter 4

Specification of DragonNet for
Wireless Sensor Networks

4.1 Introduction

This chapter describes the adaptation of the specification of DragonNet to
wireless sensor networks (WSNs). The major modifications of the protocol
are made on message format. Furthermore, the Local Information Base is
updated. We also detail specifications of the decoding process.

4.2 DragonNet Message Format

New message format is introduced for DragonNet. The idea is to simply the
header of this message. DragonNet is based on a unique message format.
This message does not contain the Protocol Message Element as described
in Section 3.2 from Chapter 3. However, it includes a sequence of values of
several protocol elements. As depicted in Figure 4.1, this message includes:

• Node Id: The identifier of the message.

• Sequence Number: The sequence number of the message.

• Dragon Parameters: specifies decoding parameters.

• Flow Parameters: specifies informations about the flow.

• Coded Data : gives informations about encoded data.

We now detail these di↵erent parameters.

33

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Node ID | Sequence Number |
+-+
| DRAGON Parameters |
| +-+-+-+-+-+-+-+-+
| | |
+-+ |
| |
| Flow Parameters |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Coded Data |
| +-+-+-+-+-+-+-+-+
| |
+-+

Figure 4.1: The format of DragonNet message as specified for WSNs.

4.2.1 Dragon Parameters

Dragon parameters (equivalent to the State Protocol Message Element de-
fined previously in the old version of DragonNet) represents the informations
relative to the decoding state of one neighbor. It includes :

• Rank: The rank of the neighbor.

• High Index: The highest index of the undecoded payloads of this neigh-
bor.

• Low Index: The lowest index of the undecoded payloads of the neigh-
bor.

• Neighbors number: The number of the neighbors.

• Last Time: The last time the current information was updated.

34

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Rank of the Transmitter | High Index |
+-+
| Low Index | Number of Neighbors |
+-+
| LastTime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.2: Dragon Related Parameters.

4.2.2 Flow Related Parameters

The Flow parameters (see Figure 4.3) specifies the parameters identifying
the flow and the associated parameters. It includes:

• Massage Interval: inter message transmission interval.

• Sliding Encoding Window Size: The size of encoding window.

• Coding Block Size: the total number of payloads in the coding block.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Message Interval | Sliding Encoding Window Size |
+-+
| Coded Block size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.3: Flow parameters

4.2.3 Coded Data Related Information

The coded payload (see Figure 4.4) holds actual coded payload content and
decoding informations.

• Coef Pos Min: The minimum index of the coded payload.

35

• Coef Pos Max: The maximum index of the coded payload.

• Data Size: The size of the coded data payloads.

• Coded Packet Data: The content of the coded payloads.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Coef Pos Min | Coef Pos Max |
+-+
| Data Size | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| Coded Payload Data |
| ... |
+-+

Figure 4.4: Coded Payload Related Parameters.

4.3 LIB: Local Information Base

A node maintains a Local Information Base containing information about
his decoding process and its neighbors state.

Each node maintains a table containing its known neighbors and infor-
mation related to their state:

• N neighbor rank : The rank of the neighbor.

• N neighbor high index: The highest Index of the neighbor.

• N neighbor low index: The lowest Index of the neighbor.

• Neighbors number : The number of the neighbors neighbors.

• N last time: The last time this information was updated.

When a node receives a packet data from its neighbor, it checks if the trans-
mitter exists in the table. If the transmitter does not exist, the node creates
a new entry in the table and saves the rank and the current time. If the
transmitter exists already in the table, the receiver updates the current time
and the rank relative to this neighbor.

36

4.4 Conclusion

This chapter presented a specification of the main modifications introduced
on the DragonNet module to be adapted to wireless sensor networks. The
main change was the use of a more compact (although less general) header, in
order to accomodate for the shortest packet size of wireless sensor networks.
Indeed, with 802.15.4, maximum packet size is 127, which would cause the
previously proposed DragonNet header to induce a large overhead, on the
order of 20 to 50 %.

37

Chapter 5

Specification of the Coding
Interval-based Sliding Encoding
Window (CISEW) for
DragonNet

5.1 Introduction

This chapter focuses on CISEW; the sliding encoding window of DragonNet
that refines and replaces SEW (CISEW is available as an individual IRTF
draft [5]). CISEW o↵ers a general framework for online network coding, with
associated signaling. From this framework, several online coding policies can
be implemented. Hence, we first start by proposing the general principles of
CISEW. Then, we propose heuristics for the scenario of a real-time di↵usion
of content on nodes with limited resources.

5.2 Overview of CISEW

CISEW is a real time decoding method based on a sliding window. The
method is proposed as a building block that could be integrated in a complete
network coding protocol. This building block is responsible of:

• decoding: maintaining and decoding of the set of received coded pay-
loads,

• recoding: selecting the content of generated coded payloads,

38

• signaling: allowing nodes to collect the information on the state of their
neighbors.

Like SEW, CISEW aims at providing a real-time decoding via coopera-
tion between neighbors. Every node, when it sends (re-)coded payloads also
piggybacks information about its state, and specifically its decoding state
(e.g. current matrix). CISEW enriches the signaling information used by
SEW with additional information defined in this chapter.

CISEW processes received coded payloads with the same decoding rules
as SEW. The di↵erence comes from CISEW state advertisement, which is
much richer, and is based on describing intervals of original payload indices,
as indicated in Section 5.3.

As for SEW, this summarized state of the node is piggybacked on the
coded payloads (along with encoding vector), and at each packet receipt,
CISEW updates and maintains the information about its neighbors (for each
node, it stores the interval indices).

Then, upon coded payload generation (re-coding), based on these inter-
vals, the node determines the Encoding Window, that is the index interval of
payloads it should encode. The intent of CISEW is to generate a coded pay-
load that fits at best the requested intervals of these neighbors (with di↵erent
possible policies for “at best”).

Setting and processing the index intervals and determining the Encoding
Window is a policy. Hence, CISEW design is general. Di↵erent policies
are possible, and as a reference, we will specify some possible policies in
Section 5.5.

Compared to SEW, the benefits of CISEW are:

• A finer adjustment of the coded payload to the decoding progress and
the bu↵er state of neighboring nodes.

• An enhancement of the decoding possibilities upong receiving each
coded payload.

• A management of the bu↵er overflow.

• A more extensive handling of bu↵er state cases, allowing for instance,
for dropping part of the decoding bu↵er when a node ”falls behind”.

• CISEW design is general which makes it suitable to general applica-
tions.

39

5.3 Overview of CISEW Advertizement

CISEW main improvement starts with a much richer advertizement of the
state of the node. The starting point is, the exact state of one node in its
decoding bu↵er (that is, the matrix of Gaussian elimination). It is charac-
terized as follows; each original payload, corresponding to an index, is one
of:

1. original payloads that were decoded, but are no longer available (i.e.
old, discarded, original payloads),

2. original payloads that were decoded, and are still available,

3. original payloads that are not yet decoded, but are present in coded
payloads in the bu↵er (some of them are “seen”, i.e. correspond to a
pivot),

4. original payloads that are not yet decoded, and are not in any received
coded payload.

CISEW invents the concept of Interval-based Coding, where the state of the
node is concisely summarized by sets of intervals, with more precision than
SEW (which only specifies the index of the first non-decoded payload).

Indeed, each node indicates (to its neighbors) which indices it needs,
which ones it needs urgently, which ones it does not need, etc. To do so,
CISEW determines and advertizes four types of index intervals:

1. Black: advertized interval of unwanted indices;

2. Grey: advertized interval of indices that the node is not interested in,
but would not harm decoding;

3. Gold: advertized interval of indices that the node is interested in, in
the near future.

4. White: advertized interval of indices that the node is interested in;

Thus, for instance, the “black interval” would typically correspond to old
decoded original payloads that were already discarded: they can no longer
be used by the node to decode newly received coded payloads, hence should
be avoided.

Upon generation, the received, and stored, intervals of neighbors are taken
into account. For instance, we can imagine that any node should not generate
a payload with an index in the Black interval of all its neighbors, because
this index is unwanted by all of them. However, it should try to mix payloads
from the Gold interval of its neighbors.

40

5.4 CISEW Design and General Rules

In this section, we describe the design features of CISEW.

5.4.1 Signaling

CISEW uses the same type of local information base as defined in Dran-
gonNet, specified in this document [4], and which maintains the state of the
neighbors. However, some additional information are updated or added, re-
flecting the richer state advertizement of CISEW. This information concerns
the Neighbor information set and the payload information set.

1. The Neighbor Information Set consists of Neighbor Tuples. For a given
flow and for a given coding block, each neighbor tuple ’Neighbor Tuple’
contains:

• N min black index: the minimum index of payloads in Black in-
terval of this neighbor.

• N max black index: the maximum index of payloads in Black in-
terval of this neighbor. It corresponds also to the start index of
the Grey interval-1.

• N min grey index: the minimum index of payloads in Grey inter-
val of this neighbor. It corresponds also to the end index of the
Black interval+1.

• N max grey index: the maximum index of Grey payloads of this
neighbor. It corresponds also to the start index of the Gold
interval-1.

• N min gold index: the minimum index of payloads in Gold inter-
val of this neighbor. It corresponds also to the end index of the
Grey interval+1.

• N max gold index: the maximum index of Gold payloads of this
neighbor. It corresponds also to the start index of the White
interval-1.

• N min white index: the minimum index of payloads in White in-
terval of this neighbor. It corresponds also to the end index of the
Gold interval+1.

• N max white index: the maximum index of White payloads of
this neighbor. It corresponds also to the end index of all payloads
of this neighbor.

41

Notice that it is possible that any neighbor has an empty Black, Grey,
Gold or White interval. In this case, the minimum and maximum
indices associated to this interval are set to -1.

2. Payload Information Base: For each coding block, a node maintains a
Payload Information Base with the following content:

• D payload set: a set of coded and decoded payloads. For each,
the node maintains: Coding vector Coded payload content

• D min black index: the minimum index of Black interval of this
node.

• D max black index: the maximum index of Black interval of this
node. It corresponds to the start index of its Grey interval-1.

• D min grey index: the minimum index of Grey interval of this
node. It corresponds to the end index of its Black Interval+1.

• D max grey index: the maximum index in Grey interval of this
node. It corresponds to the start index of its Gold interval-1.

• D min gold index: the minimum index of Gold interval of this
node. It corresponds to the end index of its Grey interval+1.

• D max gold index: the maximum index of Gold interval of this
node. It corresponds to the start index of its White interval-1.

• D min white index: the minimum index in White Interval of this
node. It corresponds to the end index of its Gold interval+1.

• D max white index: the maximum index in White Interval of this
node. It corresponds to the end index of all payloads in the pay-
load set of this node.

Notice that it is possible that any node has an empty Black, Grey,
Gold or White interval. In this case, the minimum and maximum
indices associated to this interval are set to -1.

42

5.4.2 CISEW Components

Figure 5.1 represents the organization of the di↵erent building blocks of
CISEW.

Policy

Protocol

Determination of the
Encoding Window
and the Coding

Intervals

Generation of
coded Payloads

Processing and
Real-Time
Decoding

Coding window and
coding intervals

Figure 5.1: The components of CISEW

Now, we detail these components.

5.4.2.1 Determination of the Encoding Window and the Coding
Intervals

This module is responsible for the determination of:

1. The encoding window: when any node attempts to generate a coded
payload, this module starts by determining the index interval of the
coded payload to be generated. The coding intervals (Black, Grey,
Gold and White intervals) that each node should advertize.

This module is a policy for CISEW; hence CISEW rules can be applied
to di↵erent policies. In Section 5.5.2 we propose sample heuristics for the
implementation of this module. In practice, setting these intervals on a given
node depends on:

43

1. The computing and the storage capacity of this node: as previously
detailed, the intervals that the node advertizes indicate the indices it
needs and the indices it does not need, etc. Hence, for instance, if the
node advertizes a large Gold interval, it may receive a high number of
undecoded indices that it should store and decode. Clearly, this is not
suitable when the node has low computing and storage capacity.

2. The application requirements: as an example, we consider a real-time
application and a code distribution application. A real-time application
requires a real time decoding. Hence, nodes should evolve in parallel in
their decoding. To ensure this, nodes should advertize coding intervals
that are not too far apart. For instance, if a node notices that it is
too late in the decoding process compared to all its neighbors (that
is, its neighbors have already decoded many indices after its highest
decoded index), it can increase its Gold interval even if it will never
decode some payloads (and drop the older part of its decoding bu↵er).
This prevents this node from delaying the global network.

3. In another type of application, such as code distribution (Over The Air
reflashing of wireless sensor nodes for instance), all original payloads
must be decoded. Hence, any node should still request the same in-
dices of its undecoded payloads even if its neighbors are much more
progressed compared to it.

5.4.2.2 Generation of Payloads

Each time the protocol DrangonNet requires a payload generation, it triggers
CISEW that triggers itself this module.

If for a given flow and coding block, no neighbor is known to require
coded payloads (all neighbors have already decoded all original payloads),
the payload is empty. Otherwise, a coded payload is generated.

The CISEW procedure for generating a coded payload has the following
rules:

The procedure has as an entry the encoding window interval determined
by the previous component. All decoded or undecoded payloads from D payload set
having indices in the encoding window interval are mixed.
Example: Consider a Decoding Information base containing the following
payloads:

• q(1) = a(3) P(3) + a(5) P(5)

• q(2) = a(2) P(2) + a(6) P(6)

44

• q(3) = a(2) P(2) + a(3) P(3)

Assume that the encoding window is the interval [3, 6]. Hence, the node
generates a random linear combination of payloads q(1) and q(2) but not
q(3) since it includes the index 2.

5.4.2.3 Processing of Payloads

Whenever a node receives an encoded payload, CISEW:

1. Stores the coded payload received in this message. This step implies
the management of the Coding Information Base, in particular the
overflow of the payload set. Indeed, if the node receives a coded payload
while its coded payload set, D payload set, is full, it should manage the
situation. Many solutions are possible. For instance, this node may
ignore the received payload, replace an old decoded payload by this
payload, or replace another coded payload by the received one, etc.
The choice of the best strategy is a policy for CISEW. We propose one
in Section 5.5.2.

2. If the received payload is not ignored, CISEW:

(a) Updates its Information Base related to the associated flow and
neighbor.

(b) Performs real-time decoding via a Gauss elimination applied to
coded payloads stored in its D payload set.

5.5 Specification of Proposed Policies and Al-
gorithms for CISEW

In this section, we propose specific policies, algorithms and heuristics for
CISEW. We start by presenting one class of applications, deployment sce-
nario, and associated assumptions, which inspired their design.

5.5.1 Applicability Statement

One typical class of application and scenario for our proposed policies and
algorithm would be a real-time di↵usion of content on nodes with limited
resources. A prime example is the real time code update over a wireless sensor
network. Regarding CISEW design, this context implies some considerations:

45

With limited computing capacity (such as with wireless sensors), CISEW
should keep low decoding complexity. In particular, nodes should not decode
in a very large encoding window. With limited memory (such as on sensor
nodes), the decoding bu↵er will not hold the all decoded original payloads
(and should drop them). We further assume that the DrangonNet protocol
cannot use the secondary storage (e.g flash of sensors: this assumption holds
because the flash access is time-consuming which is not preferable in a real
time application). In a real-time application, the source generates coded pay-
loads regularly and intermediate nodes decode these payloads. As discussed
above, to guarantee that the global network evolves in parallel, every node
should maintain a good decoding progress. For illustration, we give an exam-
ple. Imagine a network with a late starting node. Assume that its neighbors
have decoded the 10 first original payloads sent by the source and that these
payloads are no longer stored by these nodes. The late node would request
these payloads from its neighbors. However, in this case, it is not worthy for
these neighbors to try to redecode these payloads. Because this may delay
the whole network by prohibiting these neighbors to transmit random linear
combinations of new payloads. Furthermore, it would be preferable for the
late node to catch up other nodes rather than decoding old payloads. All
these considerations are taken into account to define heuristics for CISEW
as proposed in Section 5.5.2.

5.5.2 CISEW Heuristics

In this section, we will specify the CISEW algorithms.

5.5.2.1 Description of the Payload Set

Before specifying the procedures of CISEW, let us describe the payload set
at any node denoted i.

Each node i has a payload set to store the decoded and undecoded pay-
loads. However, it may be possible that this node withdraw some payloads.
This happens for instance in case of memory overflow, or when the node
judges that some payloads are no longer useful. Hence, we assume that each
node i stores an admissibility variable denoted a(i) that is defined as follows:

• a(i) the minimum index of payloads that the node i stores and can
process.

Consequently, at any instant, all index payloads smaller than a(i) are
ignored. Payloads with indices � a(i) can be decoded, undecoded or unheard.

46

The state of the payload set of any node i is described in Figure 5.2.

h(i) s(i) u(i) e(i)
+--------------------+---------------+---------------+
unheard	decoded	
(undecoded)		
+--+

Figure 5.2: The bu↵er state of any node i.

We use the following notations,

1. s(i): (“coded payload set Start”) minimum index of all payloads (de-
coded and undecoded) in the coded payload set of node i.

2. h(i): (“minimum unHeard”) minimum index of unheard payloads hav-
ing indices strictly smaller than the payloads in the coded payload set.
Assume for instance that the source broadcasts payloads from index 1,
and the node has as payloads: a(2)P(2) + a(3)P(3) and a(4)P(4) +
a(5)P(5). Then h(i) is equal to 1, since the index 1 does not appear
in any linear combination at node i. If there are not unheard payloads
with indices smaller than the present payloads, then h(i) is set to -1.

3. u(i): (“minimum Undecoded”) minimum index of undecoded payloads
in the coded payload set.

4. e(i): (“coded payload set End”) maximum index of payloads in the
coded payload set at node i.

With these definitions, we have the following remarks:

1. If h(i) 6= -1 then we have always h(i) < s(i) by definition.

2. If h(i) 6= -1 then the interval [h(i), s(i)] corresponds to unheard payloads
(o↵ course undecoded ones).

3. We have always s(i) u(i).

4. We can have s(i) = u(i) when the node i has not decoded any payload
yet.

5. If s(i) < u(i), then the interval [s(i), u(i)] corresponds to decoded pay-
loads.

47

6. The first index in the interval [u(i), e(i)] corresponds to a decoded
payload, the following ones are either decoded or undecoded.

To summarize, we can have one of the following schemas:
• Case 1: h(i) = -1 and s(i) = u(i)

This case corresponds to the initial state of any node. Initially, nodes receive
undecoded payloads, store them but they are generally not able to decode
them immediately. Also, for large Galois fields, the probability to mix pay-
loads with low indices before payloads with higher indices is high, hence,
h(i)=-1.

s(i)=u(i) e(i)
+---------------+
| |
+---------------+

Figure 5.3: Case 1

• Case 2: h(i) =-1
This case corresponds to the scenario where the node i has started decoding
some coded payloads. So, it is the normal case after a number of message
exchanges.

s(i) u(i) e(i)
+---------------+---------------+
| | |
+-------------------------------+

Figure 5.4: Case 2

• Case 3: s(i) = u(i)
The scenario that corresponds to this case is when the node i has not de-
coded any payload yet, and it did not heard some indices smaller than the
indices it has stored. This scenario may correspond to the initial case where
high indices are coded before low ones or for a late node that missed initial
payloads transmitted in the network.

h(i) s(i)=u(i) e(i)
+---------------+---------------+
| | |
+-------------------------------+

Figure 5.5: Case 3

48

• Case4: h(i) < s(i) < u(i)

This case may correspond to a late node that missed some payloads.
However, this node succeeds to decode payloads because its neighbors are
more progressed than it.

h(i) s(i) u(i) e(i)
+--------------------+---------------+---------------+
| | | |
+--+

Figure 5.6: Case 4

5.5.2.2 Algorithm: Determination of the Coding Intervals

Consider any node i. The purpose of this algorithm is to determine the
Coding Intervals that the node should advertize. The algorithm depends on
the cases described in Section 5.5.2.1.

1. Case 1:

(a) Black = [1,s(i)[.

(b) Grey = empty.

(c) Gold = [u(i), u(i)+MAX GOLD].

(d) White = [u(i)+MAX GOLD, u(i)+MAX GOLD+MAX WHITE].

2. Case 2:

(a) Black = [1,s(i)[. The node i has not the indices strictly smaller
than s(i). Hence, all these indices are unwanted. Note that this
interval starts from 1 because we assume that the source generates
coded payloads starting from 1.

(b) Grey = [s(i), u(i)]. This is because, all the payloads in [s(i), u(i)]
are decoded.

(c) Gold = [u(i), u(i)+MAX GOLD].

(d) White = [u(i)+MAX GOLD, u(i) +MAX GOLD+MAX WHITE].

3. Case 3:

(a) Black = empty.

(b) Grey = empty.

49

(c) Gold = [u(i), u(i)+MAX GOLD]. MAX GOLD is the maximum
size of this interval.

(d) White = [u(i)+MAX GOLD, u(i)+MAX GOLD+MAX WHITE].
An arbitrary choice of the maximum size of the White interval is
set to MAX WHITE.

4. Case 4:

(a) Black = empty; this node needs all the payloads with indices
starting from h(i). Hence, Black interval is empty.

(b) Grey = [s(i), u(i)]. This is because, all the payloads in [s(i), u(i)]
are decoded. Consequently, they are not useful for the node, but
does not harm the decoding. Indeed, when a node receives a linear
combination with decoded payloads, it will replace these payloads
by their stored value.

(c) Gold = [h(i), h(i)+MAX GOLD]. First, the node i needs to receive
linear combinations of payloads that it has not heard, that is in
[h(i), s(i)]. Second, the undecoded payloads start at index u(i).
Hence, the node needs to receive linear combinations starting at
this index. Third, linear combinations in [s(i), u(i)] are not needed.
However, for simplicity, we include them in the Gold interval.

(d) White = [u(i)+MAX GOLD, u(i)+MAX GOLD+MAX WHITE].
White payloads are useful in the future. Hence, the White interval
starts at the end of the Gold interval.

5.5.2.3 Algorithm: Determination of the Encoding Window In-
terval

When a sender node attempts to generate a coded payload, it needs to de-
termine the encoding window for the payload it should generate. To do so,
CISEW adopts the following general rules:

The selected encoding window should have a maximum size. Dealing with
sensor networks, decoding has to keep a low complexity. Hence, the window
size should not exceed a given threshold. Also, large encoding window in-
creases the probability to include new payload indices in the coded payload
generated. As a consequence, the least advanced node from decoding point
of view (called latest node) would have new undecoded payloads instead of
higher decoding opportunities. Let MAX WINDOW SIZE be the maximum
size of the encoding window. Given an encoding window, any node may fail
to generate a coded payload within this window. This happens when all the

50

payloads of this node include an index outside this window. In this case,
the algorithm should adjust this window in order to avoid the generation of
empty coded payload. The aim is to increase the number of neighbors whose
rank is increased by receiving this payload. To determine the encoding win-
dow interval, any sender node proceeds as follows:

Any node determines the encoding window based on the advertized coding
intervals of its neighbors. Note that the coding intervals of these neighbors
may be overlapped or completely disjoint. For the use case described above,
our strategy is to take into account the advertized state of the latest neighbor,
that is the neighbor with the smallest value of h(i). If h(i) 6= -1, or the smallest
value of s(i) otherwise. We say that the encoding window is associated to
this node.

Note that given the coding intervals associated to the latest node, the
sender node may fail to generate a coded payload. This happens when all
coded and undecoded payloads at this sender node contain at least one index
outside the coding intervals of its latest neighbor. In this case, the sender
node proceeds in two steps:

1. The sender node increases the encoding window (as we will see here-
after) and tries again to generate a coded payload within this modified
window.

2. If the node fails to generate a coded payload at the end of the first
step, it considers the second latest node and try to generate a coded
payload associated to this node. If it fails again, it considers the third
neighbor, etc. The node repeats this procedure while looping through
the neighbors starting from the latest ones, until it generates a non
empty payload.

The detailed algorithm is as follows:

1. Initialisation: S is empty

2. WHILE there are non visited neighbors and S is empty DO

(a) Let N be the latest node among non visited neighbors.

(b) W = union of Gold and White intervals of N without exceed-
ing MAX WINDOW SIZE; that is W=[N.N min gold index, min-
imum(N.N min gold index+MAX WINDOW SIZE, N.N max white index)]

(c) S = set of coded payloads with indices in W

(d) If S is not empty, then return W

51

(e) Otherwise, the coding intervals of N may be in one of the cases
detailed in Section 5.5.2.2. Setting W depends on these cases as
follows:

i. Case1: (Black—Gold—White) or Case 3: (Gold—White)
We cannot extend W in this case, so come back to the step 1
in the loop (select the next node N).

ii. Case2: (Black—Grey—Gold—White) or Case4: (Grey—Gold—White)
• Increase W to include the Grey interval of node N in ad-
dition to its Gold and White intervals, without exceeding
MAX WINDOW SIZE; that is W=[x,y] where:
� x = N.N min grey index
� y =minimum (x+MAX WINDOW SIZE, N.N max white index)
• If S is still empty, then come back to the step 1 in the loop
(select the next node N).

5.5.2.4 Algorithm: Processing

Let P be a received payload at any node i. To process this payload, i proceeds
as follows:

1. If P includes indices that are lower than a(i), then P is ignored.

2. If the payload set is not full then i stores P in its payload set and
performs Gauss elimination.

3. If the bu↵er is full, then i should decide whether it should keep P or
ignore it. Hence, i starts by evaluating whether the payload P may
help it to decode other payloads in the near future or not. If it is the
case, then P is kept. Furthermore, the node i should empty memory
space and discard another payload to be able to store the payload P.
The procedure of the management of the payload set is detailed in
Section 5.5.2.5. If upon applying this procedure, the payload P is kept,
then P is stored and Gauss elimination is performed.

5.5.2.5 Algorithm: Management of the Payload Set Overflow

Before detailing the procedure for the management of the payload set over-
flow, we introduce the following notations relative to any payload.

1. min index: the minimum index of this payload if it is undecoded. Oth-
erwise, if this payload is decoded, then min index is the index of this
payload.

52

2. max index: the maximum index of this payload if it is undecoded.
Otherwise, if this payload is decoded, then max index: the index of
this payload.

This procedure is called when any node i receives a payload P while its
payload set is full. Hence the node i proceeds as follows:

1. If P is in the Grey or Gold Interval of node i, then P is useful. Hence,
i should discard the oldest decoded payload and store P.

2. If P is in Gold and White Interval of node i, then:

(a) If P is ”rather Gold” (that is: |i.N max gold index - min index| �
|max index - i.N min white index|) then P is kept and the oldest
decoded payload is ignored.

(b) If P is ”rather White” (that is: |i.N max gold index - min index|
< |max index - i.N min white index|) then P is ignored.

5.5.2.6 Algorithm: Decoding and Gauss Elimination

CISEW keeps the same decoding rule of SEW. Indeed, when decoding,
CISEW performs a Gaussian elimination, in such a way that one coded pay-
load is only used to eliminate the source payload with the highest possible
index (i.e. the latest source payload).

The intent of the CISEW decoding rule is to guarantee proper functioning
of the Gaussian elimination. As an example, assume that node v has received
payloads q(1) and q(2), for instance q(1) = P(1) + P(9) and q(2) = P(1) +
P(2) + P(3). Then q(1) would be used to eliminate P(9) for newly incoming
payloads (the highest possible index is 9), and q(2) would be used to elim-
inate P(3) from further incoming payloads. On the contrary, if the CISEW
decoding rule was not applied and if q(1) were used to eliminate P(1), then it
would be used to eliminate it in q(2), and would result into the computation
of q(2) - q(1) = P(2) + P(3) - P(9); this quantity now requires elimination
of P(9), an higher index than the initial one in q(2). In contrast, the CISEW
decoding rule guarantees the following invariant: during the Gaussian elimi-
nation process, the highest index of every currently undecoded payload will
always stay identical or decrease.

5.6 Conclusion

In this chapter, we presented a specification of the building block CISEW.
CISEW allows a real time decoding by encoding payloads within a sliding

53

window. We also provided heuristics of CISEW for real time application over
a limited resources hardware. One of the great improvements of CISEW over
the previously designed module SEW is to be applicable (and well specified)
in the case where one or several nodes are behind in the decoding process
(possibly due to losses, due to late start, or some other cuase), and the
network coding protocol decides that some parts would not be decoded.

54

Part III

Performance Evaluation

55

Chapter 6

Experiments of DragonNet on
a real WSN testbed IoT-LAB

6.1 Introduction

In this chapter, we run experiments of DragonNet on a remote open testbed,
IoT-LAB [13]. IoT-LAB is a very large scale testbed, remotely accessible,
and includes a total number of 2728 nodes (in 6 sites); the nodes are mostly
of type “wireless sensor nodes” with a wireless radio, and are well suited to
perform wireless protocol experiments. A variant of this protocol was run on
IoT-LAB: some results were presented in [14].

6.2 Setting of the Experiment

We run experiment on the Euratech testbed in the region of Lille using 20
nodes arranged in a line. Figure 6.1 shows a part of this testbed.

56

Figure 6.1: Euratech testbed in Inria Lille.

The nodes are equipped with MSP430F1611 micro-controller (16-bit, 48kB
flash and 10kB RAM) and CC2420 radio.

We run experiment of the version of DragonNet adapted to wireless sensor
networks with the simplified design of SEW. The rate adaptation is not
activated in this version.

In the configuration tested, the cumulative distribution of the loss rate is
illustrated in Figure 6.2: notice that the network is highly lossy. Less than
20% of the links have less than 18% loss rate, and in the same spirit, more
than 40% have a loss rate greater than 40%.

57

Figure 6.2: Cumulative distribution of the loss rate.

6.3 Results

We first study the evolution of the network in terms of rank and number of
decoded packets. These results are depicted in Figures 6.3, 6.4 and 6.5. We
set the window size to 15.

58

Figure 6.3: The rank evolution of nodes 102, 137 and 167.

Figure 6.4: The number of decoded packets at nodes 102, 137 and 167.

59

Figure 6.5: The evolution of the rank and the number of decoded packets at
node 137.

From these figures, we notice the following remarks.

• The rank and the decoding process evolve progressively in time, which
means that the DragonNet nodes are not blocked.

• The rank and the number of packets evolve very closely (see Figure 6.5).
This is the advantage of the real time decoding of DragonNet. Whereas,
with classical random linear coding, decoding might occur at the end.

• However, we still notice some plateau in the number of decoded pack-
ets plot. This is expected and corresponds to the instants where the
neighbors of selected nodes advance their encoding window. Indeed,
nodes code packets from their low index to low index +K, where K
is the window size. When this index in incremented, the receiver nodes
cannot decode the received packets immediately because these packets
have not been seen previously. This is confirmed by the result in Fig-
ure 6.6 that illustrates the evolution of the lowest index at nodes 172
and 162 which are neighboring nodes of node 167.

60

Figure 6.6: Low index of generated packets at nodes 172 and 162.

• Notice that, globally, the progress of the rank at the selected nodes
is not very di↵erent. Same remark applies for the number of decoded
packets. This means that the network nodes evolve in parallel. Of
course, this result is positive when the nodes progress is good. This is
the case here. The window mechanism of SEW allows nodes to have
near progress speed which is beneficial mainly for real time applications.

However, we notice that the progress of the rank of node 167 is the
slowest one. This is because this node is the farthest node from the
source compared to other nodes (see Figure 6.7 where the source is
node 97).

61

��������
������	

���������������

Figure 6.7: .

Indeed, the probability to receive innovative packets is higher at nodes
close to the source. Hence, these nodes would decode earlier.

Now, we set the window size to 25 and run the same experiment. We
want to determine the impact of the window size.

62

(a) window size = 15 (b) window size = 25

Figure 6.8: The rank of nodes 102, 137 and 167 for two di↵erent window
sizes.

(a) window size = 15 (b) window size = 25

Figure 6.9: The number of decoded packets at nodes 102, 137 and 167 for
two di↵erent window sizes.

We observe that the rank evolution is almost not impacted by the window
size. The number of decoded packets is slightly impacted; when the window
size increases, the decoding is relayed. For instance, node 102 decodes 40
packets at instant 200 seconds if the window size is 15, and decodes the same
number of packets at 350 seconds if the window size is 25. This is because,
when the window size increases, the number of undecoded packets at any

63

node increases (new column in the coding matrix), and hence more time is
needed for the node to decode them.

6.4 Conclusion

This chapter provides proof of concept that network coding and namely Drag-
onNet works well on real wireless networks. Results highlighted the principles
of SEW that allowed nodes to perform real time decoding, even on wireless
sensor nodes with extremely limited resources. Of great interest is also the
fact that the network coding operates well even with highly lossy and unre-
liable links found in our testbed.

64

Chapter 7

Performance of DragonNet
under ns3 Simulator

7.1 Introduction

To evaluate the performance of DragonNet for wireless sensor networks, we
have integrated it in the ns3 simulator. This implementation corresponds
to the specification detailed in Chapter 4. In this chapter, we describe this
integration and present some simulation results.

7.2 Description of the Framework

The ns-3 network simulator is a recently released next generation simulator
intended to replace the popular ns-2 simulator. It introduces many features
over its predecessor and aims to become the leading network simulator. The
key objects in the ns3 simulator are Nodes, Packets and Channels as depicted
in Figure 7.1. A node represents a network element, to which Applications,
Protocol stack, and NetDevices can be added. Each NetDevice is attached
to a channel, over which it sends and receives packets. A Node may be
connected to more than one Channel through multiple NetDevices. A node
may use multiple protocol components, which handle packets received by the
NetDevice. Each node can also handle a list of Applications. The binding
interfaces between the components of the node are designed to be similar
to those in real systems. The interface between Application and Protocols
is based on a class called Socket. This class is used by the application to
send and receive tra�c to the protocol stacks that are attached to a node.
A Channel can represent a wired network cable or a wireless transmission
medium. Each Channel object may be connected to a list of NetDevice.

65

Net Device

Protocol

Stack

Application

Channel

Node

Net Device

Protocol

Stack

Application

Node

Socket like API

Motherboard of a

computer: Ram,

IO, CPU,

Interfaces…

Network Interface

Interface between

the application

and the protocol

stack

Generator and

User of packets

Figure 7.1: Architecture of ns3 Simulator.

We implemented DragonNet module as a C library. To integrate it in ns3
simulator, we have developed a ns3 DragonNet module respecting the archi-
tecture of ns3; it is a network module. It is parametrized and interoperable
with all ns3 modules.

As illustrated in Figure 7.2, The DragonNet module is implemented as a
multicast routing protocol. It implements the abstract class Ipv4RoutingProtocol
which is a minimal interface consistiong mainly of two methods: RouteOut-
put and RouteInput. DragonNetCoding class imports methods from Drag-
onNet C library. It handles coding and decoding of packets.

66

IPv4RoutingProtocol

DragonNet DragonNetCoding

Figure 7.2: DragonNet ns-3 module.

7.3 Simulation Results

To evaluate the performance of DragonNet protocol as designed for wireless
sensor networks. The rate adaptation policy is not activated in the simulated
version. We run di↵erent simulation scripts. For each scenario tested, we
evaluate particularly two metrics: the rank and the rate of innovative packets.
We also consider mobile networks.

7.3.1 Grid scenario

In this scenario, we focus on a multi-hop network. We consider a grid of
11⇥ 11 nodes. The source transmits payloads with constant rate equal to 4
payloads per Second. The simulation runs for 1000 simulated seconds. We
first compute the rank of some nodes selected randomly (see Figure 7.3).

67

Figure 7.3: Variation of the rank in a grid network.

Results show that the rank at the selected nodes evolve almost in parallel
and increases continuously. This plot is proof of concept also for DragonNet.

We also plot the rate of innovative packets received by nodes in the net-
work at each time unit (see Figure 7.4) for two di↵erent window sizes.

(a) window size = 16 (b) window size = 25

Figure 7.4: Rate of the innovative packets in the network.

Results show that when the window size increases, the rate of innovative

68

packets increases also. This is expected since the probability to have coded
combinations that are linearly independent increases when the encoding win-
dow increases.

7.3.2 Mobility scenario

In this scenario we use the same 11 ⇥ 11 nodes grid. The initial distance
between the nodes is fixed to 140m. Nodes move according to RandomWay-
pointMobilityModel with a speed of 3000m/s for high speed mobility sce-
nario 150m/s for low speed mobility scenario with no pause time within a
1540⇥ 1540m grid region. The simulation runs for 1000 simulated seconds.
Source rate is fixed to 4 packets per Second.

Figure 7.5 illustrates the evolution of the rank of the nodes. Results show
that the rank increases more rapidly in low mobility network. This can be
explained by the higher loss rate in high mobile scenario.

(a) High speed (b) Low speed

Figure 7.5: Evolution of the rank in a mobile grid.

Figure 7.6 illustrates the rate of innovative payloads for high mobility
scenario and low mobility scenario.

69

(a) High speed (b) Low speed

Figure 7.6: Rate of innovative packets in a mobile grid.

Results show that the rate of innovative packets is slightly sensible to the
speed of nodes. This means also that packet losses have no impact on this
value. This is because we are plotting the rate of innovative packets.

7.3.3 Military Scenario

Our goal here is to emulate a scenario of a military application. We consider
a surveillance application where soldiers monitor a strategic area and anyone
among them can alert the group in case of intrusion detection. In general,
soldiers are in the border of the region. Hence, we consider a set of nodes
arranged in a rectangle of size 600 ⇥ 500, nodes occupy the border of this
region. We select one source node which generates alarms and broadcasts
it in the whole network. The rank and the rate of innovative packets are
illustrated in Figures 7.7 and 7.8.

70

Figure 7.7: Evolution of the rank in a military scenario.

Like other scenarios, the rank at the selected nodes is almost the same.
However, we observe some plateau in this plot. This is due to the fact that
as arranged in the border of the region, the average number of neighbors per
node decreases compared to the other scenarios. Hence, in average the node
receives less packets. This is also confirmed by the rate of innovative packets
in the network (Figure 7.8) which decreases compared to other scenarios.

71

Figure 7.8: Rate of innovative packets in a military scenario.

7.4 Conclusion

Simulations provided for a proof of concept of the correctness of DragonNet
implementation. Moreoever, the scenarios selected included larger deploy-
ments, typical area surveillance scenario, and mobility: it was show that
network coding continues to perform extremely well in all cases, even in
presence of mobility. The rank of nodes increases continuously illustrating
proper evolution of the decoding in all nodes. The simulation results also
make the case for future improvements on rate adaptation in DragonNet.

72

Chapter 8

E�ciency of Broadcast with
Network Coding in Wireless
Networks

8.1 Introduction

The goal of this chapter is to evaluate the performance of broadcast with
network coding in wireless multi-hop networks regarding the capacity and
the energy metrics. Wireless communication is modeled as a hyper-graph
where the same transmission from one node achieves many of its neighbors
and we analyse the case where the nodes are arranged on a torus grid. We
evaluate the broadcast capacity of wireless network coding when all nodes
have the same transmission rate, with the exception of the source. We prove
also that in this case the network coding is “near optimal” in terms of energy
e�ciency. In this chapter, we detail thee results as well as the methodology
to obtain them.

8.2 Problem and Background

8.2.1 Problem

In multi-hop wireless networks, a natural application of network coding is
to reduce the number of transmissions required to transmit some amount of
information to the destinations. This kind of application allows to achieve
energy e�ciency for networks where the cost of wireless communication is
a critical design factor. We focus on one specific form of communication:
broadcasting information from some sources to all the nodes in a wireless

73

multi-hop network. Such communication is commonly used in wireless net-
works, for instance, for management, information dissemination, multimedia
content distribution, or as a simplified form of multicast.

The idea of energy e�cient broadcast communication can be expressed
as follows:

• With some given broadcast sources, minimize the total number
of (re)transmissions used to allow all nodes in the network to get
the information.

This work seeks and provides some answers for the following question:

• Problem Statement: How e�cient is broadcast with network
coding?

8.2.2 Related Work

The e�ciency provided by network coding in multicast and broadcast net-
works has been studied for instance, by Lun et al. [17], and Wu et al. [19].
In particular, they provide methods for determining optimal network coding
parameters for a given network with specific model assumptions. The work
of Fragouli et al. [20] gives insights for all-to-all broadcast and illustrate how
gains could be obtained compared to routing.

The work in [22] focused on homogeneous planar random networks, where
the density and the area of the network would increase towards infinity.
The authors have shown that, wireless network coding was asymptotically
“optimal” for a strong definition of optimality, transmission-level optimality,
where nearly every received packet would be innovative. This relied on the
computation of the broadcast rate where nodes are organized on a grid,
and on a specific rate selection, where most nodes would have the same
rate. However, because the grid was not a torus, nodes near the edge of the
network would have a smaller neighborhood, and would be in the bottleneck
for the computation of the maximum broadcast rate. For this reason, the
rate selection was modified to handle them specially.

Our methodology to answer this problem is explained in the Section 8.2.3.

8.2.3 Methodology and Summary of Results

We consider a torus grid where the transmission rate (coded payloads per
second) is identical for all nodes except for the source. We investigate the
maximum broadcast capacity which is the maximum rate (payload per sec-
ond) at which the source can inject payloads, while ensuring that the receiver
nodes can decode (with probability tending to 1). Our results are:

74

• We find this capacity in the considered topology to be equal to the
number of neighbors of a node. In order to do this we translate the
min-cut problem on a hypergraph in an equivalent problem of additive
combinatorics.

• Moreover, network coding in such networks is “near optimal” in terms
of energy e�ciency, in the sense that each transmission will provide
innovative information (outside the vicinity of the source).

• We analyse also the performance of network coding in torus networks
with uniform loss rate and non-uniform loss rate: we find that in these
two cases the maximum broadcast capacity is the expected number of
neighbors that receive information.

8.3 Model

We study the problem of broadcasting information from one source to all
nodes in the network. We consider multi-hop wireless networks with a cer-
tain number of nodes, without mobility. We also assume an ideal wireless
model. More precisely, wireless transmissions are without losses, collisions
or interferences. We assume that each node of the network is operating well
below its maximum transmission capacity. Additionally, the network is a
packet network with fixed packet size. We consider the torus grid as network
topology.

A fundamental concept is represented by the idea of “neighbors”. We
give here a definition.

Definition 3 We say that two nodes in the network are neighbors if their
distance is less than a fixed radius that we denote by r (integer).

We will use the following general notation:

• V : set of nodes in the network;

• C
v

: the retransmission rate of packets of a node v;

Some of the notation is more specifically targeted to a network of nodes
organized on a lattice. Assume that V is included in a larger set V̂ (for a
lattice, V ⇢ V̂ = Zn). We use the following notations for concepts related to
neighborhood:

• N (X): open set of neighbors of X 2 V , N (X) ⇢ V̂ ;

75

• N [X]: closed set of neighbors of X 2 V , that is nodes and their neigh-
bors N [X] , N (X) [X;

• R: the set of neighbors of the origin node;

8.4 Network Coding: Maximum Broadcast
Rate

The maximum broadcast rate for the source represents the rate limit for the
source which ensures that every destination in the network may decode. It
is given by the minimum cut from the source to each particular destination
in the network, where connectivity is described as an hypergraph [27].

An hypergraph is a graph where edges are replaced by hyper-arcs which
are generalizations of arcs that may have more than one end node.

Let us consider the source s, and one of the multicast destinations t 2 V .
Definition 4 An s-t cut is a partition of the set of nodes V in two sets S,
T such that s 2 S and t 2 T .

Let Q(s, t) be the set of such s-t cuts : (S, T) 2 Q(s, t).
We denote �S the set of nodes of S that are neighbors of at least one

node of T :
�

S

, {v 2 S|N (v) \ T 6= ;}. (8.1)

The capacity of the cut (S, T) 2 Q(s, t), denoted by C(S), is defined as the
maximum rate between the nodes in S and the nodes in T :

C(S) ,
X

v2�
S

C
v

. (8.2)

In other terms, the idea is to cut the network into two parts, and check the
total quantity of information transmitted from nodes in the part including
the source, to nodes of the other part. The min-cut between s and t, that
we denote by Cmin(s, t), is the cut of Q(s, t) with the minimum capacity:

Cmin(s, t) , min
(S,T)2Q(s,t)

C(S). (8.3)

When we consider the multicast case, there are several destinations t for
the same source s, the min-cut is the minimum of the s � t min-cut for all
destinations t.

In the case of broadcast to all nodes, the min-cut is the minimum for all
nodes di↵erent from s; we denote the broadcast capacity Cmin(s),

Cmin(s) , min
t2V\{s}

Cmin(s, t). (8.4)

76

8.5 Broadcast Rate in Torus Grid

In order to compute the global min-cut Cmin(s) in the considered topology,
we consider a destination node t in the network. We link the capacity of the
cut between the nodes of S and the nodes of T with the number of nodes of
S who are neighbors of nodes of T , that can be written by a Minkowski sum.
Moreover, we use tools from group theory in order to verify that there is no
problem of neighborhood for the nodes that are at the border.

8.5.1 Minowski Sum and Neighborhood

The Minkowski addition is a classical way to express the neighborhood of an
area, see [28] and the figure within.

Definition 5 Given two subsets A and B of a group, the Minkowski sum
A� B is defined as the set of all sums generated by all pairs of points in A
and B, respectively:

A� B , {a+ b : a 2 A, b 2 B}. (8.5)

In the torus grid, the closed set of neighbors of one node t, that we denote
N [t], can then be redefined in terms of the Minkowski sum as

N [t] = {t}�R. (8.6)

This is indeed a translation of R, the set of neighbors of the node at (0, 0)
to the node t.

This extends to the neighborhood of subsets:

N (A) = A�R. (8.7)

To see why, the expression (8.5) can be rewritten as:

A�R =
[

a2A

{a}�R,

which corresponds to the union of the closed neighborhood of each node in
A.

We consider the torus grid G, and we write the 2-dimensional torus grid
as:

G =
Z

n
X

Z ⇥ Z
n
Y

Z , (8.8)

where n
X

and n
Y

are the width and height of the grid and Z
nZ is the set of

integers modulo n. Since each Z
nZ is a group, the Minkowski sum of subsets

77

of G is well-defined. The set R, neighborhood of the node (0, 0), can also be
more precisely defined. Let r > 0 be the radio range, we define:

R , {(x mod n
X

, y mod n
Y

) : (x, y) 2 Z2 and x2 + y2 r2}. (8.9)

We observe that R is symmetric with respect to the origin, that is (x, y) 2
R) (�x,�y) 2 R. In particular, the number of elements in R less 1
represents the number of neighbors of a node : M = |R|� 1. In Figure 8.1,
we show an example of R with range r = 3 and the Minkowski sum with a
set of nodes A.

We now introduce the essential notion of “large neighborhood” related to
the fact that we have no problem of neighborhood for the nodes that are on
the border of the grid.

(a) (b)

(c)

Figure 8.1: (a) R for r = 3; (b) Set of nodes A; (c) Minkowski sum R� A.

Definition 6 If for all subsets A ⇢ G at least one of this conditions is
verified:

A�R = G (8.10)

or |A�R| � |A|+ |R|� 1 (8.11)

we say that R verifies the large neighborhood condition.

78

Lemma 1 In the case R verifies the large neighborhood condition, let (S, T)
be a partition of G and �

S

= N [T] \ T , where N [T] , N (T) [T is the
“closed neighborhood” of nodes of T . If there exists � 2 S such that � 62 �

S

then
|�

S

| � |R|� 1.

Proof: Since �
S

represents the set of nodes of S which are neighbor of at
least a node of T and it can be rewritten as �

S

= N [T] \ T , we have

|�
S

| = |N [T] \ T |
(a)
= |N [T]|� |T |
(b)
= |T �R|� |T |

where (a) is coming from T ⇢ N [T] and (b) from N [T] = T � R. Now
the hypothesis (large neighborhood condition) is that one of the conditions
(8.10) or (8.11) is true. The condition (8.10) would imply that N [T] = G.
This means that � is neighbor of T , and since � in never in T we have
that � 2 �

S

. But we know that �
S

does not include � then this is a
contradiction: (8.10) can never be verified. As a consequence (8.11) must be
true: |T �R| � |T |+ |R|� 1, which implies

|�
S

| � |T |+ |R|� 1� |T |
� |R|� 1. (8.12)

⌅

8.5.2 Maximum Broadcast Rate

We focus on our main problem, computing the maximum broadcast rate of
the source s.

Theorem 1 We consider a network G which is represented by a torus grid
with a neighborhood defined by the set R, and with the following rate selection:

• rate C
v

= 1 for all nodes v 6= s,

• rate C
s

= M = |R|� 1 for the source s.

if R verifies the large neighborhood condition then the maximum broadcast
rate of the source is |R|� 1.

79

Proof: Consider a fixed source s. In the previous section, we said that
the maximum broadcast rate of the source is the min-cut Cmin(s). We will
assume that the source transmits at the maximum broadcast rate, that is
C

s

= Cmin(s). Let us now consider any cut (S, T) 2 Q(s, t). The capacity of
this cut is

C(S) ,
X

v2�
S

C
v

with �
S

, {v 2 S : N (v) \ T 6= ;}. (8.13)

• Case (i): If s 2 �
S

, then T includes at least one node which is neighbor
of the source. Thus C(S) � C

s

, and this cut never constraints the maximum
broadcast rate since C

s

= |R|� 1 and therefore C(S) � |R|� 1.
• Case (ii): Otherwise, �

S

includes only nodes di↵erent from the source,
hence with transmission rate 1. Therefore,

C(S) =
X

v2�
S

C
v

= |�
S

|. (8.14)

Therefore, applying Lemma 1 we have

C(S) � |R|� 1. (8.15)

We observe that in the case of the particular cut (S, T) = (V \ {t}, t) we
have �

S

= {u 2 S|N (u) \ {t} 6= ;} = R \ {t}, then

C(V \ {t}) = |R|� 1.

⌅

8.5.3 The logic for Energy-E�ciency

In this section, we see why the previous results imply energy-e�ciency in the
network.

We have proved in the considered networks that the maximum broadcast
rate of the source is equal to the number of its neighbors. If we consider
a node which is not neighbor of the source, it will receive on average M
coded packets per unit time. Our result implies that, on average, it receives
in particular M “innovative” coded packets per unit time, where innovative
are the packets that provide new informations. This means that on average
each transmission will be innovative for each receiver. In other words, the
transmission in these networks is e�cace in terms of energy since we could
not do better.

80

We underline that this is not true in general (see experiments in [29] for
instance) but it is strictly linked to the network topology and its homogeneity.
We have extended here the results presented in [22], where a modification
of rate selection is needed since the network is not a torus and nodes near
the border of the network would have a smaller neighborhood. Without this
modification the network would be in the bottleneck for the computation of
the maximum broadcast rate.

8.5.4 Inequalities for Sumsets

Our goal is to prove in our case su�cient conditions that appear in Theo-
rem 1, and thus in Definition 6.

In the case of a torus, these relations are a di�cult problem and closely
linked to the number theory and additive combinatorics. To prove the con-
ditions (8.10) and (8.11) we use the following result due to Kneser [30].

Proposition 1 (Kneser’s Theorem) Let G be a finite abelian group, A
and B nonempty finite subsets:

|A� B| � |A�H|+ |B �H|� |H| (8.16)

where H , {h 2 G : x+ h 2 A� B, 8x 2 (A� B)} is a subgroup of G and
it is called stabilizer.

In our case, if n
x

and n
y

are prime (equal or not), we prove the desired
properties.

Theorem 2 Let n
x

and n
y

be prime, A a nonempty finite subset of G, and
R defined in (8.9). Then

|A�R| � |A|+ |R|� 1

or A�R = G.

Proof: We consider Kneser’s relation (8.16) with B = R:

|A�R| � |A�H|+ |R�H|� |H|. (8.17)

H is a subgroup of G and we know that the subgroups of G are: {0}, G,
{(x, 0) : x 2 Z

n

Y

Z} and {(0, y) : x 2 Z
n

X

Z}.
• Case H = {0}: We have

|A�R| � |A� {0}|+ |R� {0}|� |{0}|
� |A|+ |R|� 1. (8.18)

81

• Case H = {(x, 0) : x 2 Z
n

Y

Z}: We observe that

|A�H| � |A|. (8.19)

This is true since 0 2 H implies that A�{0} ⇢ A�H which gives A ⇢ A�H.
We focus, now, our attention on |R � H|. Since we are on a torus, the

Minkowski sum of an horizontal line H and R is equal to a rectangle (see
Figure 8.2), where the height is the diameter of R equal to 2r + 1 and the
width is the lenght of the line H. We consider the upper edge of the rectangle

(a) (b)

(c)

Figure 8.2: (a) R for r = 4; (b) H = {(x, 0) : x 2 Z
n

Y

Z}; (c) Minkowski sum
of R and H.

which is given by the horizontal line denoted by

L
0
= {(x, y) 2 Z2 : y = r}

which has the same lenght of the line H : |L0 | = |H|. By definition of
Minkowski sum and of R, this line passes by the unique point with coordi-
nates (0, r). We observe that

(L
0 \ {(0, r)}) \R = ; and

(L
0 \ {(0, r)}) [R ✓ R�H. (8.20)

82

This means that

|R�H| � |L0 \ {(0, r)} [R|
= |L0 |� 1 + |R|� |L0 \ {(0, r)} \R|
= |H|+ |R|� 1. (8.21)

Then, if we consider equations (8.26), (8.19) and (8.21), we obtain

|A�R| � |A�H|+ |R�H|� |H| �
� |A|+ |R|+ |H|� 1� |H|
= |A|+ |R|� 1.

• Case H = {(0, y) : x 2 Z
n

x

Z}: It is similar to the case H = {(x, 0) : x 2
Z

n

Y

Z}.
• Case H = G: If the stabilizer is G by definition we have that

(A�R)�G = A�R.

This implies that
|A�R| = |(A�R)�G| � |G|

since G ⇢ (A�R)�G. Therefore, A� B = G. ⌅

We observe that Theorem 2 allows us to prove Theorem 1 in the case the
neighborhood R is a discretized circle given in (8.9). What happens if R is
a general subset of integer points? In the following we give some su�cient
conditions such that the inequalities (8.10) and (8.11) hold for a general
neighborhood.

Definition 7 A set B ⇢ G is connected if for all u and v in B there exists a
path from u to v in B such that any two consecutive points in the path di↵er
by at most one in each coordinate.

Theorem 3 Let n
x

and n
y

be prime, A a nonempty finite subset of G, and B
a subset of G. Let nz

1 and nz

2 be positive integers such that n
z

= nz

1+nz

2+d
max

where z 2 {x, y} and d
max

= max{|z
u

� z
v

|, 8u, v 2 B}. Then

|A� B| � |A|+ |B|� 1 (8.22)

or A� B = G (8.23)

is true in the following cases:

83

1. In the case B is connected, (8.22) or (8.23) is true if

d
max

 (n1 + n2)(h� 1) + 1 (8.24)

where h = max{|zc
u

� zc
v

|, 8u, v 2 B} with zc = y (respectively x) if
z = x (respectively y).

2. In the case B is disconnected, (8.22) or (8.23) is true if

d
max

 (n1 + n2)(ĥ� 1) + 1 (8.25)

where ĥ is the number of rows (columns) of B with at least one element.

Proof: We consider Kneser’s relation (8.16)

|A� B| � |A�H|+ |B �H|� |H|. (8.26)

H is a subgroup of G and we know that the subgroups of G are: {0}, G,
{(x, 0) : x 2 Z

n

Y

Z} and {(0, y) : y 2 Z
n

X

Z}.
The cases H = {0} and H = G are similar to the ones discussed in the
previous theorem. In particular,
• Case H = {0}: We have

|A� B| � |A|+ |B|� 1.

• Case H = G: We have

|A� B| = |(A� B)�G| � |G|.

• Case H = {(x, 0) : x 2 Z
n

Y

Z}: We suppose B connected and we denote
nx

1 = n1, nx

2 = n2 and we have d
max

= max{|x
u

� x
v

|, 8u, v 2 B}. The
Minkowski sum of B and H is equal to a rectangle where the height is h and
the width is the lenght of the line H which is n

x

, see Figure 8.3.
Since n

x

= n1 + n2 + d
max

, the rectangle can be written as disjoint union
of three smaller rectangles S1, S2 ans S3, where S1 has n1h elements, S2 has
d
max

h elements and it includes B and S3 with n2h elements. So,

B �H = S1 [S2 [S3. (8.27)

Therefore, we have

|B �H| = |S1 [S2 [S3|
= |S1|+ |S2|+ |S3|
� n1h+ |B|+ n2h

= |B|+ n1 + n2 + n1(h� 1) + n2(h� 1)
(a)

� |B|+ n1 + n2 + d
max

� 1

= |B|+ |H|� 1, (8.28)

84

(a) (b)

(c)

Figure 8.3: (a) B connected; (b) H = {(x, 0) : x 2 Z
n

Y

Z}; (c) Minkowski sum
of B and H.

where (a) comes from applying hypothesis d
max

 (n1 + n2)(h� 1) + 1.

We consider now B a disconnected subset of G. We have by hypothesis
that ĥ is the number of rows of B with at least one element. In this case,
the Minkowski sum of B and H is equivalent to a rectagle with height ĥ and
width n

x

, see Figure 8.4.
Then, as in the previous case, we can write the rectangle as disjoint union

of three rectangles and, in partcular, we have

|B �H| = |S1 [S2 [S3|
= |S1|+ |S2|+ |S3|
� n1ĥ+ |B|+ n2ĥ

= |B|+ n1 + n2 + n1(ĥ� 1) + n2(ĥ� 1)
(b)

� |B|+ n1 + n2 + d
max

� 1

= |B|+ |H|� 1, (8.29)

where (b) comes from applying hypothesis (8.25).
• Case H = {(0, y) : x 2 Z

n

x

Z}: It is similar to the case H = {(x, 0) : x 2
Z

n

Y

Z}. ⌅

85

(a) (b)

(c)

Figure 8.4: (a) B disconnected; (b) H = {(x, 0) : x 2 Z
n

Y

Z}; (c) Minkowski
sum of B and H.

We observe that hypothesis (8.24) and (8.25) allow us to exclude the case
where the neighborhood is too large, which represents a situation not inter-
esting from the point of view of network coding. Moreover, these conditions
imply that h and ĥ are > 1, which means that there is at least one node
di↵erent from the source in the network.

8.6 Performance of NC in Lossy Wireless Net-
works

In order to study the performance of network coding in lossy wireless net-
works, we consider the following model, [31]:

• For a node u, we consider that there exists an hyperarc to any set of
nodes K, with K ⇢ V \ {u}.

• The transmission rate for hyperarc (K, u) is given by C
u

⇡
u

(K) where
C

u

is the transmission rate of the node u and ⇡
u

(K) is the probability
that at least one node in K receives from u.

86

Then, the capacity of the cut is the quantity:

C(S) ,
X

u2�
S

X

K 6⇢S

C
u

⇡
u

(K)

=
X

u2�
S

C
u

X

K 6⇢S

⇡
u

(K) (8.30)

We observe thatK 6⇢ S means that we are considering subsetsK|K ⇢ V\{u}
and K \ T 6= ;.

We consider the event

⇠ = {at least one node in T receives from u} (8.31)

and we consider the exhaustive set {U1, . . . , Un

} made of all subsets of V\{u}
such that U

i

\ T 6= ; for all i = 1, . . . , n. Then we can write the event ⇠ as
follows

⇠={at least one node in U1 receives from u}or {at least one node in U2 receives from u} . . .

. . . or {at least one node in U
n

receives from u}
= {K = U1} or {K = U2} or . . . or {K = U

n

}. (8.32)

The probability of the event ⇠ can then be expressed as follows:

Pr{⇠} =
X

U

i

6⇢S

Pr{K = U
i

}

=
X

U

i

6⇢S

Pr{at least one node in U
i

receives from u}

=
X

U

i

6⇢S

⇡
u

(U
i

). (8.33)

This means that we can write the capacity of the cut

C(S) =
X

u2�
S

C
u

X

K 6⇢S

⇡
u

(K)

=
X

u2�
S

C
u

Pr{⇠}

=
X

u2�
S

C
u

Pr{at least one node in T receives from u}. (8.34)

87

8.6.1 Uniform loss rate

We consider uniform loss rate in the network.

Theorem 4 We consider a network G which is represented by a torus grid
with a neighborhood defined by the set R in (8.9) and we denote by q the
probability that a node receives a packet from its neighbor. We consider the
following rate selection:

• rate C
v

= 1 for all nodes v 6= s,

• rate C
s

= C
max,s

(defined in Theorem 5 later) for the source s.

If R verifies the large neighborhood condition then the maximum broadcast
rate of the source is (|R|� 1)q.

Before proving Theorem 4, we establish intermediary results: Lemma 2
and Theorem 5.

Lemma 2 Under conditions of Theorem 4 and the case we are near the
source (s 2 �

S

), we have

C(S) � C
s

(1� (1� q)`) + (|R|� `� 1)q. (8.35)

Proof: We assume now that we are near the source: s 2 �
S

. Moreover,
we consider �

TS

the set of neighbors of s which are not in �
S

and whose
cardinality is denoted by ` and ` � 1 because s 2 �

S

. We can have two
cases: all the neighbors of the source are included in �

S

[T or some of the
neighbors of the source are not included in �

S

[T .
First, we analyze the case N (s) ⇢ �

S

[T , see Figure 8.5.

�

��

���

����

Figure 8.5: N (s) ⇢ �
S

[T

We observe that

N (s) = (N (s)\�
S

)[(N (s)\�
S

) = �
TS

[(N (s)\�
S

) and�
TS

\(N (s)\�
S

) = ;

88

and since |N (s)| = |R| we have

|R| = |�
TS

|+ |N (s) \�
S

|.

Therefore,
|�

S

| � |N (s) \�
S

| = |R|� |�
TS

| = |R|� `. (8.36)

Then from (8.34)

C(S) � C
s

(1� (1� q)`) + (|�
S

|� 1)q

= C
s

(1� (1� q)`) + (|R|� `� 1)q (8.37)

where (1� (1� q)`) represents the probability that at least one node in �
TS

receives from s.
In the case N (s) 6⇢ �

S

[T , see Figure 8.6: the fact that N (s) 6⇢ �
S

[T
corresponds exactly to conditions of Lemma 1, then applying Lemma 1 we
have |�

S

| � |R|� 1. Therefore, we have

�

��
�����

�

Figure 8.6: N (s) 6⇢ �
S

[T

C(S) � C
s

(1� (1� q)`) + (|�
S

|� 1)q

� C
s

(1� (1� q)`) + (|R|� 2)q

� C
s

(1� (1� q)`) + (|R|� `� 1)q (8.38)

since ` � 1.
This means that in any case we have

C(S) � C
s

(1� (1� q)`) + (|R|� `� 1)q. (8.39)

⌅

We observe in the case near the source: C(S) � C
s

q with q � 0, by setting
C

s

to a su�cintly high value, we can get C(S) arbitrarly high. Hence, the
capacity of this cut is not limiting provided that C

s

is set approprietly. In
the next theorem, we give an appropriate value for C

s

, C
max,s

. It verifies:
8` � 1, C

s

� `q

1�(1�q)` .

89

Theorem 5 Under conditions of Lemma 2, let

C
max,s

= max
`2{1,...,|R|�1}

`q

1� (1� q)`

then

C
max,s

=
(|R|� 1)q

1� (1� q)|R|�1
.

Proof: We first prove that f(`) = `q

1�(1�q)` is an increasing function in the
variable `: we compute

d

d`
f(`) =

q

1� (1� q)`
+

q`(1� q)` log(1� q)

(1� (1� q)`)2

=
q

(1� (1� q)`)2
⇥
1� (1� q)`) + `(1� q)`) log(1� q)

⇤
. (8.40)

We focus our attention on 1� (1� q)` + `(1� q)` log(1� q) that we denote
by g(`): we compute

d

d`
g(`) = `(1� q)`(log(1� q))2 � 0. (8.41)

This implies that g(`) is increasing for ` � 0 and we observe that

g(1) = q + log(1� q)(1� q) � 0 8q 2 [0, 1[, (8.42)

thus g(`) � 1 for ` � 1. This means that d

d`

f(`) � 0 and then `q

1�(1�q)` is an
increasing function in the variable `.

Since `q

1�(1�q)` is an increasing function in the variable `, the maximum is

achieved for ` = |R|� 1. We have

C
max,s

= max
`2{1,...,|R|�1}

`q

1� (1� q)`

= max
`2{1,...,|R|�1}

f(`)

= f(|R|� 1)

=
(|R|� 1)q

1� (1� q)|R|�1
� 1 (8.43)

since f(`) is increasing and f(1) = 1.
⌅

90

Proof of Theorem 4: In the case we are near the source, s 2 �
S

, from
Lemma 2 and Theorem 5 we have for ` 2 {1, . . . , |R|� 1}

C(S) � C
s

(1� (1� q)`) + (|R|� 1� `)q
(a)

� `q

1� (1� q)`
(1� (1� q)`) + (|R|� 1� `)q

= `q + (|R|� 1� `)q

= (|R|� 1)q (8.44)

where (a) comes from the fact that C
s

= C
max,s

= max
`2{1,...,|R|�1}

`q

1�(1�q)` .

We analyze the case of nodes far from the source : s /2 �
S

.
We observe that given u 2 �

s

there exists a node v
u

2 T such that v
u

is
neighbor of u. This implies that

Pr{at least one node in T receives from u} � Pr{v
u

receives from u} = q
(8.45)

Therefore, the capacity of the cut

C(S) �
X

u2�
S

C
u

q = |�
S

|q. (8.46)

Using Lemma 1, we have

|�
S

| � |R|� 1, (8.47)

therefore,
C(S) � |�

S

|q � (|R|� 1)q. (8.48)

We observe that the capacity of the particular cut (V \ {t}, t) is given by

C(V \ {t}) = (|R|� 1)q (8.49)

since in this case�
S

= �V\{t} = R\{t} and |R|�1 is the number of neighbors
of t.

⌅
We observe that the maximum broadcast rate (|R| � 1)q corresponds to

the expected number of neighbors that receive information.

8.6.2 Non-Uniform loss rate

First, we define R1, . . . , Rk

the neighborhoods of node u such that R1 � R2 �
· · · � R

k

and R
i

does not contains 0 for i = 1, . . . , k with k � 2. We denote

91

q
i

(i = 1, . . . , k) the probability that a node in R
i

(i = 1, . . . , k) receives a
packet from u and we have q

i+1 � q
i

. As before we consider a cut (S, T)
and we associate to each R

i

a subset �
i

= (T � (R
i

[{0})) \ T such that
�1 � �2 � · · · � �

k

and, denoting r
i

and d
i

the cardinalities of R
i

and �
i

respectively. In this case,

C(S)
def

=
kX

i=1

X

u2�
i

\�
i+1

C
u

Pr{at least one node in T receives from u} with �
k+1 = ;

=
k�1X

i=1

q
i

(|�
i

|� |�
i+1|) + q

k

|�
k

| (8.50)

=
k�1X

i=1

q
i

(d
i

� d
i+1) + q

k

d
k

. (8.51)

Lemma 3 In the case R
i

[{0} verifies the lage neighborhood condition, if
there exists � 2 S such that � 62 �

i

for i = 1, . . . , k then

d
i

� r
i

8 1 i k.

Proof: We have �
i

= (T � (R
i

[{0})) \ T where the nodes in T �R
i

[{0}
are neighbors of T . In the hypothesis, R

i

[{0} verifies the condition of
large neighborhood, then one of the conditions (8.10) or (8.11) is true. The
condition (8.10), implies that T � (R

i

[{0}) = G. This means that � is
neighbor of T , but we know that it does not belong to T , then � 2 �

i

. But
in the hypothesis s 62 �

i

, then T can never verify (8.10). As a consequence
(8.11) must be true: |T � (R

i

[{0})| � |T | + |(R
i

[{0})| � 1. We observe
that

|T � (R
i

[{0})| � |T |+ |R
i

[{0}|� 1 = |T |+ |R
i

|+ 1� 1 = |T |+ |R
i

|.

Therefore,

|�
i

| = |T � (R
i

[{0})) \ T | � |T |+ |R
i

|� |T | = |R
i

|,

which means d
i

� r
i

. ⌅

Theorem 6 We consider a network G which is represented by a torus grid
with neighborhoods defined by R

i

(i = 1, . . . , k) and we denote by q
i

the
probability that a node receives a packet from its neighbor in R

i

. We consider
the following rate selection:

• rate C
v

= 1 for all nodes v 6= s,

92

• rate C
s

= C
max,s

= max
`12{1,...,r1�1},...,`

k

2{1,...,r
k

�1}

P
k

i=1 `iqi

1�⇧k

i=1(1�q

i

)`i
for the source

s.

If every R
i

[{0} (i = 1, . . . , k) verifies the large neighborhood condition then
the maximum broadcast rate of the source is given by

P
k�1
i=1 qi(ri�r

i+1)+q
k

r
k

.

Lemma 4 Under conditions of Theorem 6 and the case we are near the
source (s 2 �

i

), we have

C(S) � C
s

(1�(1�q1)
`1 . . . (1�q

k

)`k)+(r1�r2�`1)q1+(r2�r3�`2)q2+. . . (r
k

�`
k

)q
k

.
(8.52)

Proof: We consider �
TS

i

the set of neighbors of s which are not in �
i

and
whose cardinality is denoted by `

i

and `
i

� 1 because s 2 �
i

. We can have
two cases: all the neighbors of the source are included in �

i

[T or some of
the neighbors of the source are not included in �

i

[T .
First, we analyze the case N

i

(s) ⇢ �
i

[T . In Figure 8.7, we can see the case
k = 2.

�

��
�

��

�� ���

�� ��� ��� ���

Figure 8.7: N1(s) ⇢ �1 [T

We observe that

N
i

(s) = (N
i

(s)\(�
i

\�
i+1))[(Ni

(s)\(�
i

\�
i+1)) = �

TS

i

[(N
i

(s)\(�
i

\�
i+1))

and
�

TS

i

\ (N
i

(s) \ (�
i

\�
i+1)) = ;

and since |N
i

(s)| = |(R
i

\R
i+1) [{0}| we have

|(R
i

\R
i+1) [{0}| = |�

TS

i

|+ |N
i

(s) \ (�
i

\�
i+1)|.

Therefore,

|�
i

\�
i+1| � |N

i

(s)\(�
i

\�
i+1)| = |(R

i

\R
i+1)[{0}|�|�

TS

i

| = r
i

�r
i+1+1�`

i

.
(8.53)

93

Then

C(S) � C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (|�1 \�2|� 1)q1 + . . . (|�
k

|� 1)q
k

= C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (r1 � r2 + 1� `1 � 1) + · · ·+ (r
k

� `
k

)

= C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (r1 � r2 � `1) + · · ·+ (r
k

� `
k

) (8.54)

where (1 � (1 � q1)`1 . . . (1 � q
k

)`k) represents the probability that at least
one node in �

TS

i

receives from s.
In the case N

i

(s) 6⇢ �
i

[T , see Figure 8.8: it represents the conditions of
Lemma 3, then applying Lemma 3 we have |�

i

| � |R
i

|. Therefore, we have

�

��
�

��

�� ���

	

Figure 8.8: N1(s) 6⇢ �1 [T

C(S) � C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (|�1 \�2|� 1)q1 + . . . (|�
k

|� 1)q
k

� C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (r1 � r2 � `1) + · · ·+ (r
k

� `
k

)(8.55)

since `
i

� 1.
This means that in any case we have

C(S) � C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (r1 � r2 � `1) + · · ·+ (r
k

� `
k

).(8.56)

⌅

Lemma 5 Defining

C
j

(S)
def

=
j�1X

i=1

q
i

(d
i

� d
i+1) + q

j

d
j

and Cb

j

(S)
def

=
j�1X

i=1

q
i

(r
i

� r
i+1) + q

j

r
j

(8.57)
we have

C
j+1(S) = C

j

(S)+ d
j+1(qj+1 � q

j

) and Cb

j+1(S) = Cb

j

(S)+ r
j+1(qj+1 � q

j

)
(8.58)

for all j � 1.

94

Proof: We have

C
j+1(S) =

jX

i=1

q
i

(d
i

� d
i+1) + q

j+1dj+1

=
j�1X

i=1

q
i

(d
i

� d
i+1) + q

j

(d
j

� d
j+1) + q

j+1dj+1

= C
j

(S)� q
j

d
j+1 + q

j+1dj+1

= C
j

(S) + d
j+1(qj+1 � q

j

).

Similarly, we get

Cb

j+1(S) = Cb

j

(S) + r
j+1(qj+1 � q

j

) (8.59)

⌅
We give in the following the proof of Theorem 6.
Proof of Theorem 6: In the case we are near the source, s 2 �

i

, from
Lemma 4 we have

C(S) � C
s

(1� (1� q1)
`1 . . . (1� q

k

)`k) + (r1 � r2 � `1)q1 + · · ·+ (r
k

� `
k

)q
k

(a)

�
P

k

i=1 `iqi
1� ⇧k

i=1(1� q
i

)`i
(1� (1� q1)

`1 . . . (1� q
k

)`k) + (r1 � r2 � `1)q1 + · · ·+ (r
k

� `
k

)q
k

=

P
k

i=1 `iqi
1� ⇧k

i=1(1� q
i

)`i
(1� (1� q1)

`1 . . . (1� q
k

)`k) +
k�1X

i=1

(r
i

� r
i+1)qi �

kX

i=1

`
i

q
i

+ q
k

r
k

�
k�1X

i=1

(r
i

� r
i+1)qi + r

k

q
k

(8.60)

where (a) comes from the fact that C
s

= C
max,s

= max
`12{1,...,r1�1},...,`

k

2{1,...,r
k

�1}

P
k

i=1 `iqi

1�⇧k

i=1(1�q

i

)`i
.

We assume to be far from the source: s 62 �
i

for all i = 1, . . . , k.
We have proved the case k = 1 in uniform case. We consider k = 2 and

we have:

C(S) = q1(|�1|� |�2|) + q2|�2|
= q1(d1 � d2) + q2d2

= q2r2 + q2(d2 � r2) + q1(d1 � d2)

� q2r2 + q1(d2 � r2) + q1(r1 � d2)

= q2r2 + q1(r1 � r2) (8.61)

95

where the inequality comes from applying q
i+1 � q

i

and d
i

� r
i

for all
i 2 {1, . . . , k}.

Assuming that
C

j

(S) � Cb

j

(S) (8.62)

and using Lemma 5 we have

C
j+1(S)� Cb

j+1(S) = C
j

(S) + d
j+1(qj+1 � q

j

)� Cb

j

(S)� r
j+1(qj+1 � q

j

)

= (d
j+1 � r

j+1)(qj+1 � q
j

) + C
j

(S)� Cb

j

(S)

� (d
j+1 � r

j+1)(qj+1 beacause of assumption

� 0 (8.63)

We observe that in the particular case of the cut (V \{t}, t), we have that
�

i

= ({t}� (R
i

[{0})) \ {t} = R
i

for i = 1, . . . , k and

C(V \ {t}) =
kX

i=1

X

u2�
i

C
u

Pr{at least one node in T receives from u}

=
k�1X

i=1

q
i

(r
i

� r
i+1) + q

k

r
k

= Cb

k

(S) (8.64)

since T corresponds to the destination t. ⌅

Remark 1 In the case �1 = ... = �
m�1 = ;, we denote �⇤

1 = �
m

, . . . ,�⇤
k�m+1 =

�
k

and q⇤1 = q
m

, . . . , q⇤
k�m+1 = q

k

We have

C⇤
j

(S)
def

=
j�1X

i=1

q⇤
i

(d⇤
i

� d⇤
i+1) + q⇤

j

d⇤
j

=
j�1X

i=1

q
i+m�1(di+m�1 � d

i+m

) + q
j+m�1dj+m�1 (8.65)

We set ` = i+m� 1, then i = `�m+ 1, and

C⇤
j

(S) =
j+m�2X

`=m

q
`

(d
`

� d
`+1) + q

j+m�1dj+m�1. (8.66)

In particular,

C⇤
k�m+1(S) =

k�1X

`=m

q
`

(d
`

� d
`+1) + q

k

d
k

. (8.67)

96

and we have
C⇤

k�m+1(S) � Cb⇤
k�m+1(S). (8.68)

Hence
k�1X

`=m

q
`

(d
`

� d
`+1) + q

k

d
k

�
k�1X

`=m

q
`

(r
`

� r
`+1) + q

k

r
k

. (8.69)

8.7 Conclusions

In this chapter, we studied network coding applied to the case of information
broadcast in wireless networks. We have provided the maximum broadcast
capacity of the source, for networks modeled by hyper-arcs such as torus grid,
which is equal to the number of neighbors. In particular, each node receives,
in average, M innovative packets where M is the number of neighbors. Net-
work coding in such networks is e�cient in terms of energy e�ciency, in the
sense that each transmission will provide innovative information. In order
to prove this we have translated the min-cut problem on a hypergraph in an
equivalent problem of additive combinatorics and we use tools from group
theory. Moreover, we have considered torus networks with uniform loss rate
and non-uniform loss rate, we have analyzed the maximum broadcast capac-
ity of the source also in these cases and we have found that it is the expected
number of neighbors that receive information.

97

Chapter 9

Performance Computation over
TDMA Wireless Networks with
VCM Scheduled Transmissions

9.1 Introduction

In Chapter 8, we proved that network coding guarantees that a source node
has broadcast capacity equal to the number of neighbors of this source, when
all nodes are retransmitting with equal periodicity and for a specific topol-
ogy. To prove this result, we have considered a torus grid. However, this
assumption is naturally not verified in real networks. Moreover the results
are asymptotic with time grows towards infinity. Hence, we try in this chapter
to illustrate this result “experimentally” (i.e. with simulated transmissions)
for a practical case. We consider nodes disposed on a finite grid. Then, we
use an existing scheduling algorithm based on TDMA (with a coloring called
VCM) to schedule nodes. We then evaluate the performance of the network,
i.e. the amount of information that a source can transmit to one selected
destination, assuming network coding: it is computed as a max-flow over the
resulting transmission graph.

9.2 Methodology

9.2.1 Max-flow Computation

Many algorithms have been elaborated for the maximum flow computation,
including the Ford-Fulkerson algorithm 1. To compute the max-flow, we

1
http://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm

98

apply this algorithm not over the topology, but over the graph resulting from
the transmissions of nodes, called the transmission graph, know as event-
driven graph in [33], and using the approach of that reference.

In our scenario, indeed, nodes transmit each in turn (TDMA scheme)
assuming no packet losses; all neighbors receive the emitted packet. In the
transmission graph, a node is represented by a set of vertices, each of them
representing the node at a given time (see [33]). Edges are created as follows:
when a transmission occur, new edges from the vertex of the transmitter (at
the associated time) to the vertices, at the given time, of the destinations
of this transmission are added to the transmission graph: because wireless
transmissions are actually implying an hypergraph, we apply the transfor-
mation of a hyperarc to a set of edges as proposed by Y. Wu (in his thesis).
Finally, Ford-fulkerson algorithm is applied to this new graph.

9.2.2 VCM: The Vector-based Coloring Method

Graph coloring is one technique to perform node scheduling in wireless sensor
networks. Indeed, in spatial TDMA (STDMA), nodes are colored such that
no two interfering nodes share the same color. Then, each color is associated
to one time slot. Nodes having the same color access the medium during the
slot corresponding to their color. We have developed the VCM method [32]
for grid coloring. VCM provides a regular coloring, that is a coloring ob-
tained via the repetition of a color pattern. The advantage of this solution is
that despite it is distributed, it does not require a coordination or message
exchange between nodes to perform coloring. In this chapter, we used VCM
to schedule nodes transmissions, as a good exemple of what would be applied
in practice.

9.3 Results

We consider a grid with a transmission range= 2.5⇥ the grid step. Figure 9.3
illustrates the neighborhood of the central node. Notice that this node has
20 neighbors.

99

Figure 9.1: Neighborhood of the central node for radio range = 2.5.

Each node transmits a packet at each unit time, except for the source
which has an higher rate: it transmits a number of packets equal to the
number of neighbors. We assume there is no packet loss. We consider a source
node (blue node in Figure 9.2 and a destination node. Then, we compute
the max-flow over the transmission graph using Ford-Fulkerson algorithm.

Results show that the max-flow computed is 20 (packets) per unit time,
which is in fact the number of neighbors of the source node (and the number
of packets it generates by unit time). This confirms the theoretical result
that we have shown in Chapter 8, which implies (asymptotic) optimality of
network coding operation in this scenario: indeed (except from neighborhhod
of the source), asymptotically, every transmission is innovative for every re-
ceiver, a strong result.

100

� � �� �� �� �� ��
�

�

��

��

��

��� 	
��������
�

���������� ���������������

Figure 9.2: Max-flow computation for a finite grid.

Nodes depicted in Figure 9.2 belong to the di↵erent 20 paths obtained.
A modified Ford-Fulkerson was used with a path selection heuristic prefering
paths closer to the source and destination.

The result is an asymptotic result, i.e. what is the number of packets
that could be transmitted per unit time from the source to the destination
when the network running time converges towards infinity.

Now, we consider a grid colored with VCM, and actual transmissions.
Figure 9.3 illustrates the coloring obtained.

101

Figure 9.3: The coloring obtained with VCM.

As shown in Figure 9.4, we look at how much (decoded) information
the source can send to the destination, when the number of cycles increase.
We can see that after a starting phase, the number of packets that can
be decoded (the amount of information that can be send, the max-flow on
the transmission graph), increases linearly. The phenomenon of existence of
starting phase, followed by a steady state phase with constant increase was
predicted in [34]. When the number of cycles is � 3, the linear increase is
exactly 20/cycle, as predicted asymptotically by our previous results.

102

Figure 9.4: With a colored grid: amount of information decodable at the
destination, depending on the number of cycles.

Figure 9.5, Figure 9.6 and Figure 9.7 illustrate the evolution of the paths
found between the source and destination for successively a number of cycles
equal to 1, 2, 3 (starting phase), 4, 6 and 11. For instance, for a cycle
of length 1, only one path could be found, whereas for two cycles, 7 paths
can be found. After that, the paths found at each cycle (by Ford-Fulkerson
+ heuristic) tend to repeat themselves, and indeed the max-flow increases
linearly.

As verified in Figure 9.7: we compute the max-flow over the transmission
graph of this colored network for 11 cycles. The result found is 182. This
result is comparable to the one depicted in Figure 9.2 (182 ⇡ 20 ⇥ 11), and
due to the fact that the linear increase evidenced in Figure 9.4 is exactly as
predicted, 20 per cycle.

103

Figure 9.5: Max-flow computation of the colored grid .

104

Figure 9.6: Max-flow computation of the colored grid .

105

Figure 9.7: Max-flow computation of the colored grid .

106

9.4 Conclusion

This chapter provided an illustration of the theoretical result that we have
presented previously concerning the broadcast capacity of network coding.
It was shown in an non-asymptotic setting: interestingly in the case of a
discrete grid, the asympotic result corresponds exactly to the linear increase
after a starting phase. It illustrates also the integration of two of our results
in the GETRF project: VCM coloring with network coding.

107

Bibliography

[1] Cho S-Y., Adjih C., W ireless Broadcast with Network Coding: Dynamic
Rate Selection, MedHocNet 2008, June 2008.

[2] Cho S-Y., Adjih C., W ireless Broadcast with Network Coding: DRAG-
ONCAST, Inria Research Report RR-6569, July 2008. http://hal.
inria.fr/docs/00/29/28/67/PDF/RR-6569.pdf

[3] Cho S-Y., E�cient Information Dissemination in Wireless Multi-
Hop Networks, Ecole Polytechnique PhD thesis, September 2008.
http://hal.archives-ouvertes.fr/view_by_stamp.php?&halsid=
0a2rq3pq31n2ocg7rosveb4s30&label=LIX&langue=fr&action_todo=
view&id=pastel-00004228&version=1&view=extended_view

[4] Adjih C., Cho S-Y., Baccelli E., Broadcast With Network Coding: DRAG-
ONCAST, draft-adjih-dragoncast-00 (work in progress), July 2013. http:
//tools.ietf.org/html/draft-adjih-dragoncast-00

[5] Amdouni I., Adjih C., Coding Interval-based Sliding Encoding Win-
dow, draft-amdouni-nwcrg-cisew-00 (work in progress), July 2014. http:
//tools.ietf.org/html/draft-amdouni-nwcrg-cisew-00

[6] Firoiu V., Adamson B., Roca V., Adjih C., Bilbao J.,
Fitzek F., Masucci A., M. Montpetit, N etwork Coding Tax-
onomy, draft-firoiu-nwcrg-network-coding-taxonomy-01 (work
in progress), March 2014. http://tools.ietf.org/html/
draft-firoiu-nwcrg-network-coding-taxonomy-01

[11] Clausen T., Jacquet P., Optimized Link State Routing Proto-
col (OLSR), RFC 3626, October 2003. https://www.ietf.org/rfc/
rfc3626.txt

[12] Clausen T., Dearlove C., Dean J., Mobile Ad Hoc Network (MANET)
Neighborhood Discovery Protocol (NHDP), RFC 6130, April 2011. http:
//tools.ietf.org/html/rfc6130

108

[7] Masucci A., Adjih C., Capacité de Di↵usion avec Codage Réseau dans les
Grilles Torique, ALGOTEL 2014, 16́‘emes Rencontres Francophones sur
les Aspects Algorithmiques des Télécommunications, pp. 1-4, June 2014.

[8] Masucci A-M, Adjih C., E�ciency of Broadcast with Network Coding in
Wireless Networks, Inria research report, February 2014.

[9] Fragouli C., Widmer J., J. Le Boudec, A Network Coding Approach to
Energy E�cient Broadcasting, INFOCOM 2006, April 2006.

[10] Sundararajan J., Shah D., Medard M., Mitzenmacher, M., J. Barros,
Network Coding Meets TCP, INFOCOM 2009, April 2009.

[11] Clausen T., Jacquet P., Optimized Link State Routing Protocol (OLSR),
RFC 3626, October 2003.

[12] Clausen T., Dearlove C., Dean J., Mobile Ad Hoc Network (MANET)
Neighborhood Discovery Protocol (NHDP), RFC 6130, April 2011.

[13] https://www.iot-lab.info/

[14] Adjih C., Amdouni I., Baccouch H., Masucci A., Experiments with
Broadcast with Network Coding, Presentation at the Network Coding
Research Group, IRTF, IETF/IRTF 89, London, March 2014. http:
//www.ietf.org/proceedings/89/slides/slides-89-nwcrg-1.pdf

[15] Ahlswede R., Ning Cai, Li S.-Y.R., Yeung R.W., Network information
Flow, Information Theory, IEEE Transactions on, 46(4):1204-1216, July
2000.

[16] Koetter R., Medard M., An algebraic approach to network coding,
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782-95, Oct. 2003.

[17] Lun D.S., Ratnakar N., Medard M., Koetter R., Karger D.R., Ho T.,
Ahmed E., Zhao F., Minimum-cost multicast over coded packet networks,
IEEE Transactions on Information Theory, 52(6):2608-2623, June 2006.

[18] Chou P. A., Wu Y., Jain K., Practical Network Coding, 43th Annual
Allerton Conference on Communication, Control, and Computing, Mon-
ticello, IL, Oct. 2003.

[19] Wu Y., Chou P. A., Sun-Yuan Kung, Minimum-energy multicast in mo-
bile ad hoc networks using network coding, IEEE Transactions on Com-
munications, 53(11):1906-1918, 2005.

109

[20] Fragouli C., Widmer J., Le Boudec J-Y., E�cient Broadcasting Using
Network Coding, IEEE/ACM Transactions on Networking, 16(2):450-463,
2008.

[21] Baccelli E., Perkins C., Multi-hop Ad Hoc Wireless Communication,
draft-baccelli- manet-multihop-communication-02 (work in progress),
July 2013.

[22] Adjih C., Cho S. Y., Jacquet P., Near optimal broadcast with network
coding in large sensor networks, First International Workshop on Infor-
mation Theory for Sensor Netwoks (WITS 2007), Santa Fe, USA, 2007.

[23] Li S-Y R., Yeung R. W., Cai N., Linear network coding, IEEE Transac-
tions on Information Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

[24] Ho T., Koetter R., Médard M., Karger D.R., E↵ros M., The benefits of
coding over routing in a randomized setting, In Proceedings of 2003 IEEE
International Symposium on Information Theory, 2003.

[25] Lun D. S., Médard M., Koetter R., E↵ros M., Further results on coding
for reliable communication over packet networks, CoRR, abs/cs/0508047,
2005.

[26] Lun D. S., Médard M., Koetter R., E↵ros M., On coding for reliable
communication over packet networks, Physical Communication, 1(1):3-
20, 2008.

[27] Deb S., E↵ros M., Ho T., Karger D. R., Koetter R., Lun D. S., Médard
M., Ratnakar N., Network coding for wireless applications: A brief tu-
torial, International Workshop on Wireless Ad-hoc Networks (IWWAN),
2005.

[28] Lee I. K., Kim M. S., Elber G., Wien t., The Minkowski sum of 2d
curved objects, 1998.

[29] Cho S. Y., Adjih C., Jacquet P.. Heuristics for network coding in wireless
networks CoRR, abs/0706.4175, 2007.

[30] Tao T., Vu V.H., Additive Combinatorics, Cambridge Studies in Ad-
vanced Mathematics, Cambridge University Press, 2009.

[31] Lun D.S., Medard M., Koetter R., E↵ros M., On coding for reliable
communication over packet networks, Physical Communication, 1(1):3-
20, March 2008.

110

[32] Adjih C., Amdouni I., Minet P., VCM: the vector-based coloring method
for grid wireless ad hoc and sensor networks, MSWIM 2012, October
2012.

[33] Neglia G., Zhang X., Kurose J., Towsley D., Wang H., On Optimal
Packet Routing in Deterministic DTNs, IEEE Vehicular Technology Con-
ference, (VTC’77), Dresden, Germany, June 2013.

[34] M. Jafari Siavoshani, C. Fragouli, and S. Diggavi, “Subspace Proper-
ties of Network Coding and their Applications”, IEEE Transactions on
Information Theory, vol. 58, no. 5, pp. 2599-2619, May 2012.

111

