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Medical specialists treating chronic conditions typically face a heterogeneous set of patients. Such heterogene-

ity arises because of differences in medical conditions as well as the travel burden each patient faces to visit

the clinic periodically. Given this heterogeneity, we compare the strategic behavior of revenue-maximizing

and welfare-maximizing specialists and prove that the former will serve a smaller patient population, spend

more time with the patients, and have shorter waiting times. We also analyze the impact of telemedicine

technology on patient utility and the specialists’ operating decisions. We consider both the case when spe-

cialists can freely set their own fee for service and the case when fees are set exogenously by a third-party

payer. We prove that with the introduction of telemedicine the specialists become more productive and the

overall social welfare increases, though some patients, unexpectedly, will be worse off. Our analytical results

lead to some important policy implications for facilitating the further deployment of telemedicine in the care

of chronically ill patients.

1. Introduction

Service quality, unlike product quality, largely depends on perception. Service providers have

employed different mechanisms to signal quality, ranging from price (?) to service environment or

ambiance (?). The nature of the server-customer interaction adds another vital dimension. In a

healthcare setting, the interaction between the service provider (such as a medical specialist) and

the customer (patient), or more technically the consultation time, gains further importance. Most

patients form opinions based on their interaction with the specialist since they are poorly equipped

to judge the long-run clinical outcomes of any particular visit. Even though a specialist might be

able to cover all possible clinical aspects in a short consultation, if the specialist spends very little
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time with patients, the patients might not be satisfied with the specialist’s effort and may feel they

are being rushed out (??).

Medical specialists, like many other service providers in almost all settings, face an inherently

challenging trade-off: While a customer would like more time with the provider, spending more

time with each customer reduces the number of customers who can be served in a given day and

reduces the number of billed visits per day, and the slower service rate delays other customers

waiting to be served. Longer waiting times reduce customer satisfaction (?), and more so if the

waiting time is significant when compared to the actual service time. Yet it is common in medical

settings that patients have to wait for hours for only a few minutes of interaction with their

provider. In this paper we study the speed-quality trade-off when chronically ill patients have

heterogeneous treatment utility. Considering that specialists are also busy and have a huge backlog

of appointments, we also explore why and when a busy specialist would adopt telemedicine to

begin with and analyze the impact of telemedicine on this trade-off in that setting.

Features of chronic care: This paper is motivated by our long-term study of the clinical

service requirements of chronically ill patients. Chronic conditions represent a huge burden on the

modern healthcare system, and they are a major factor in mortality and disability (?). About 140

million Americans have at least one chronic condition, and these patients account for about 75% of

total U.S. health expenditure (?). These patients require lifelong care by highly trained specialists

and must visit their providers periodically to adjust their medication and dosages and to manage

their conditions. For example, a patient suffering from Parkinson’s disease (PD) might visit their

specialist two to six times a year and visits are sometimes added or missed due to unexpected

disease progression, severe complications, or other nontrivial comorbidities (see Appendix ?? that

describes care of a typical patient suffering from this condition).

Chronically ill patients are not homogeneous in the utility they derive from treatment by spe-

cialists, which is one of the main motivations of the models we study in this paper. Most specialists

are concentrated in urban areas, and there are few or even none in remote or rural areas (?).

Thus patients located in urban areas are closer to specialists, but many rural patients travel long

distances to visit one. In fact, a one-way travel time of 4 hours is not uncommon for a visit of

just 30 minutes for patients from rural areas (?). Besides distance, there are also other reasons

for heterogeneity among patients, such as their overall morbidity. Our framework in this paper

accommodates a large number of patients and specialists, and it also fits well with major chronic

conditions such as diabetes, rheumatoid and psoriatic arthritis, and kidney disease.
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Recently, telemedicine has proved to be a feasible alternative to office visits to treat chroni-

cally ill patients. Consultations related to chronic conditions are required multiple times a year

to manage the underlying disease, and the medical condition of a patient deteriorates without

these periodic visits. For many medical conditions,1 it is clinically feasible to substitute virtual

visits via a telemedicine facility for some in-person visits to a medical practitioner. Specifically

in chronic care, telemedicine is used for direct, synchronous, and remote communication between

the physician and the patient.2 Therefore, the introduction of telemedicine has the potential to

increase patient utility by reducing the travel burden and in the process fundamentally change the

operational challenges specialists face.

Impact of treatment value heterogeneity on specialists’ actions: Motivated by the het-

erogeneity in treatment utility, the first part of this paper establishes the impact of this hetero-

geneity on patient and specialist behaviors. Service systems in which rational customers decide

whether to seek service based on service quality have been studied extensively (????). ? recently

considered the speed-quality trade-off for homogeneous customers. However, their results do not

cover the case when the patients are heterogeneous, which is precisely the case with the treatment

of chronic patients.

In the first part of the paper, we prove that if the patient population is heterogeneous, the

operating policies of revenue-maximizing specialists and welfare-maximizing specialists are such

that the former work slower and treat fewer patients than the latter. We also show that the

utilization of the welfare-maximizing specialists is higher than that of the revenue-maximizing

specialists, resulting in relatively longer wait times for the patients and a busier appointment

calendar. We also find that as the travel burden increases for the patients, specialists tend to

compensate by spending more time with them, even though lowering the service rate might increase

congestion and reduce the number of patients seen per day, to optimize their overall revenue.

Impact of telemedicine on specialists’ and patients’ actions: In the second part of the

paper we study the impact of telemedicine on the quality-speed trade-off in chronic care. We extend

our basic model to include the case in which patients have the option to seek treatment by their

specialist via telemedicine. We seek answers to the following fundamental questions regarding the

1 Telemedicine has already been used for pediatrics, psychiatry, movement disorders, neurological disorders like
Alzheimer’s disease and epilepsy, dermatological disorders, and such chronic disorders as diabetes; see ? and ? for
various applications, and ? for a review of telemedicine’s benefits.

2 Telemedicine can take a number of different forms. There can be asynchronous information exchange, such as
when the provider is remote from the facility, as with medical diagnostics and radiology. Telemedicine can support
peer-to-peer consultation (for instance, via a video-conferencing facility, as with telestroke), or it can involve direct
synchronous communication between the physician and the patient (?).
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operational issues: Given the advantages and limitations of telemedicine, what clinical fields are

likely to benefit most? Why should an already busy specialist add a telemedicine service? Also,

providers can react to the introduction of telemedicine by changing their prices and service rates.

What will be the economic impact of these changes on providers and patients? More specifically,

given the severe shortage of specialists even at the current level of coverage (?), how will an

increase in demand for specialist care because of telemedicine be handled? Will specialists choose

to accept more patients or try to leverage the increase in expected utility (surplus) for each patient

by charging higher fees? How will service levels (utilization) change? Finally, what will be the

subsequent process impact on patients and on social welfare?

By incorporating a factor for clinical feasibility, we find that with the introduction of

telemedicine, the utilization of the revenue-maximizing specialists goes up, their service rate

increases, their overall productivity in terms of clinical capacity increases, and (if the perceived

quality of the telemedicine visits is comparable to that of the in-person visits) the average price

per visit decreases.

In addition, we establish a relatively simple sufficient condition to identify when telemedicine

becomes economically feasible. There are three important parameters that determine this feasibil-

ity: the perceived “quality” difference between telemedicine and in-person visits, the travel burden

(or disutility) because of the distance the patients have to travel to the clinic (without telemedicine),

and the technological and maintenance costs for a patient to receive telemedicine treatment. Inter-

estingly enough, the same condition is sufficient for the introduction of telemedicine to increase the

total welfare. However, we find that the benefit from telemedicine is not uniform for all patients,

and some patients who continue to use in-person visits may be worse off.

We then make general observations as to which characteristics are necessary for telemedicine to

be attractive for a certain specialty. For example, based on our ongoing research experience with

Parkinson’s patients, patients could expect to receive quality care with telemedicine, at least for

a certain proportion of their annual visits (?). Also, many Parkinson’s patients have a relatively

high travel cost, because of their motion disorder conditions, and leading neurologists are usually

concentrated in large urban areas (?). Therefore, treatment of Parkinson’s patients is highly suitable

for implementing telemedicine, assuming the technological cost is not excessive.

Technical contributions: Aside from our findings on the impact of patient heterogeneity and

telemedicine on the speed-quality trade-off, this paper makes two main technical contributions.

First, we extend the literature on the analysis of queuing systems with rational customers. Due

to customer heterogeneity, the standard results from the literature cannot be used directly. In
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our proof we first show that the revenue-maximizing service provider’s objective can be expressed

in a simpler form. Then we use the implicit function theorem to establish the optimal decisions

for revenue-maximizing and welfare-maximizing service providers. Our second contribution is to

establish the equilibrium behavior of patients when telemedicine is introduced. For these more

complex analyses we use the concept of non-atomic games (reviewed in Appendix ??). To the best

of our knowledge our study is the first paper in the queuing literature that uses this concept. We

have chosen this approach because non-atomic games enable us to model and analyze a conflict

situation where no single patient has an influence on the final outcome, but the aggregate behavior

of a “large” set of patients would change the payoffs. Using this approach, we establish the unique

Nash equilibrium in our queuing model and then use this result to find the optimal operating

decisions for the specialist who will be running a hybrid modality: treating some patients face-to-

face and others via a mix of telemedicine and face-to-face visits at the clinic. This approach also

allows us to analytically characterize the impact of telemedicine on patient access to care, patient

wait and visit times, and physician utilization, capacity, fees, and revenues, as well as the impact

of telemedicine on total welfare.

2. Related Literature

Our research is closely related to the stream of literature on queues with rational customers. ?

was the first to demonstrate that in a single-server Markovian queuing system, when customers

are rational and decide to seek service based on their utility, they end up joining at more than the

socially optimal levels. He also showed that this behavior can be curbed by charging customers a

toll. ? extended this result to unobservable queues. Later, ? and ? extended the results in ? and

?, respectively, to the case with heterogeneous customers.

In most service systems, the service provider can also alter the service speed to manage conges-

tion. ? considered optimizing over toll price and capacity (service rate), with the cost of capacity

being convex in the service rate and ? consider a similar model with linear capacity costs. They

show how the revenue-maximizing server’s actions deviate from those of a welfare-maximizing

server, in a similar spirit to ? and ?. However, because ? focused on computer systems, he did not

model the impact of service speed on customer’s utility.

The pioneering paper by ? modeled the impact of service speed explicitly and examined the

interaction between service value and speed. They considered a single server serving homogeneous

customers and studied the quality effect of a given service rate and incorporated it into the cus-

tomer’s decision criteria. In their model, the probability that a customer decides to seek treatment
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is based on the value of the service at the given service rate (the quality effect), the waiting cost

incurred, and the price to be paid. They show that the quality effect may change the server’s deci-

sions significantly. However, ? did not consider customers with heterogeneous service valuation,

and in the healthcare setting patients typically have to travel from different locations to see a

provider. Differences in distances naturally cause heterogeneous service values, and we extend the

literature by incorporating this into a model similar to that in ? and ?.

A service provider can offer different service levels (with different waiting times) and different

prices to obtain more revenue from heterogeneous customers. ? derive a pricing mechanism that

is optimal and incentive-compatible for a welfare-maximizing provider, and ? (see the references

therein for an extensive review of this literature) derives a pricing mechanism for a revenue-

maximizing provider. Although these studies modeled customer heterogeneity explicitly, they did

not study the case when the customer’s service valuation depends on service speed as well. In

addition, in our model the server can offer two modes of service, in-person and telemedicine, and

customers prefer more time with the server. Also, customers’ preference for a particular type of

service mode might be different based on their distance, their, whereas in ? and ? all customers

prefer waiting less. We refer the reader to ? and ? for extensive reviews of the literature on queues

with rational customers.

We also contribute to the literature on the economic feasibility of telemedicine. In addition to

evaluating the clinical feasibility of telemedicine (see several works cited in our introduction), the

cost effectiveness and socio-economic benefits of telemedicine have been investigated empirically in

various studies; see review papers by ? and ?. The impact of telemedicine in primary care has also

been the subject of study in the current literature (??). The general conclusion is that although

there is evidence in certain medical fields that telemedicine is beneficial, the economic impact of

telemedicine is unclear. We hope to clarify this impact with a service model that considers the

main trade-offs that arise with the introduction of telemedicine.

3. Effect of patient heterogeneity on specialist interaction

In this section, we analyze the impact of patient heterogeneity on patient and provider actions.

We first consider a basic model without telemedicine, before turning in Section ?? to the effect of

telemedicine on patient and provider behavior. After introducing our analytical model, we estab-

lish the properties of the equilibrium behavior of rational customers and revenue- and welfare-

maximizing specialists. We then establish the impact of increasing traveling cost on a revenue-

maximizing specialist’s optimal actions. Then we compare the optimal actions of revenue- and

welfare-maximizing specialists. Finally, we analyze the case when prices are determined exoge-

nously.
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3.1. Patient utility and the specialist’s objective

We consider a single specialist (monopolist) in a region serving a patient base. The specialist

chooses his service rate and price in order to either maximize his revenue (see Section ??) or total

welfare (see Section ??). In response to the specialist’s choices, patients decide to seek service based

on their expected net utility. Each patient’s utility comprises (i) a reward from seeking treatment,

(ii) a quality cost, (iii) a payment, and (iv) a congestion cost. We next describe each component

of the customer’s utility function, assuming the service rate and price are fixed, before we describe

the details of the specialist’s objective function (see Appendix ?? for a detailed description of a

Parkinson patient’s profile).

Reward from seeking treatment: We model the patient’s utility from seeking treatment as a

function of the patient’s distance from the specialist. This is because, typically, a specialist has

patients coming from various places and the patient’s net utility from seeking service depends

on the distance to be traveled to see the specialist. We are also interested in this setting due to

our ultimate goal of understanding the effect of telemedicine on patient and provider choices (see

Section ??), and one of the most significant benefits of telemedicine is that it obviates the need to

travel for some consultations with the specialist.

In order to model the impact of distance on the patient’s utility, we assume that the potential

patients are indexed by x, their distance from the specialist. Also, we assume that each patient gets

a constant reward m per visit to the specialist. Specifically, let t :R+→R+, where t(x) denotes the

travel burden for a patient located at a distance x from the specialist.3 We assume that the net

benefit per visit to the specialist, after accounting for the travel burden, for a patient at a distance

x is given by m− t(x). Since all patients see the same specialist and suffer from a similar medical

condition, for simplicity, we set aside differences in utility owing to differences in current health

status or individual perceptions. (This assumption can be relaxed easily; see Remark ?? below.)

We make the following assumptions in our model. We assume that t is strictly increasing and

thus invertible, and (without loss of generality) that t(0)≥ 0. We let f denote the density function

for the distribution of the distance of the patients from the specialist and F denote the associated

cdf. Throughout, we assume that F and t satisfy the conditions in Appendix ??, unless stated

otherwise. We set Mv =m− t(0) and assume that Mv > 0; that is, at least some of the patients

would potentially seek treatment. Also, we denote by Xm the farthest distance of the patient whose

benefit from treatment net of travel burden is zero; hence m− t(Xm) = 0. We note that patients

whose distance is more than Xm would never seek treatment.

3 We use R to denote the real numbers, and R+ = [0,∞).
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Unlike in the standard queuing models, each patient needs repeated visits to the specialist in

chronic care. We assume implicitly that all patients need to see the specialist at the same rate on

average. This should hold true for a population of patients suffering from the same chronic disease.

In addition, this assumption can be relaxed, and the arrival rate can be taken as the average rate of

patient visits at the specialist, if the visit rate is not correlated with the distance or the treatment

utility that patients receive. We denote by Λ<∞ the total number of patients as well as the total

arrival rate if the specialist decides to serve all the patients.

Quality cost: We use Q : R+→ R+ to denote the quality cost4 or disutility to the patient as a

function of the service rate µ(≥ 0). We assume without loss of generality that Q≥ 0 is increasing

(see Appendix ?? for other technical assumptions on Q). In other words, patients prefer more time

with the specialist (?).

Payment: We assume that patients incur a monetary cost every time they visit a provider. Since

patients typically are covered by insurance, most of the cost is borne by their insurance. Thus,

if the price per visit is p for the services rendered, the patient pays βp, for 0 < β ≤ 1, where β

is the co-insurance rate. Any co-payments or other out-of-pocket expenses are absorbed into the

heterogeneous benefit m− t(x) to keep our modeling concise.

Congestion cost: We use the term cEW (µ,λ) to capture the congestion cost, where µ is the ser-

vice rate chosen by the specialist and λ is the equilibrium arrival rate, whose specifics are discussed

below. This term measures the disutility of patients who are dealing with a busier specialist, where

EW (µ,λ) is the expected delay and c is the opportunity cost per unit time of “delay” incurred

by the patient. This cost should be viewed as a notional cost in general. Some patients may need

to see the doctor sooner than the recommended time, and some patients may not comply with

the recommendations (they miss scheduling their next visit, which might trigger a complication

that may require one or more unexpected and unscheduled visits to the clinic). Thus, the patient

appointments could be regular appointments (which, as we have noticed, need not be precisely at

the recommended time, as there is some uncertainty with respect to the specialist’s availability or

the patient’s own medical condition), or it could be for emergency appointments or new appoint-

ments in case of cancellations (see Appendix ?? for an example of a patient’s appointment log).

The term thus captures the fact that the patient’s utility decreases as the provider gets busier and

4 Utility functions are generally measured using standard methods described in the consumer research literature (see,
for example, (??). Customers are typically asked for alternatives they would choose (for example, in this case, 10
minutes of extra time with their specialist or a 45-minute physiotherapy session). If one alternative could be assigned
a monetary value (a 45-minute physiotherapy session could be worth, say, $150), then the patient’s choice in each
such pair could be used to measure the utility function. The utility could also be measured by observing customer
choices when they are offered different service times along with differential co-payments.
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busier—longer waiting times for visit rescheduling, medication renewals or adjustments, physical

therapy referrals, or other unplanned visit requests in the case of any unforeseen concern.

The term EW (µ,λ) thus enables us to incorporate the important operational constraint that at

steady state, specialists cannot plan to operate at a very high utilization. This follows from several

notable works in the literature on the optimal panel size. ? note that “the primary lever to bring

demand and supply into a relationship that is compatible with being able to offer short appointment

dates is patient panel size.” As a result, we noticed that specialists who deal with chronic patients

operate with a relatively small panel size as they try to maintain acceptable utilization and service

levels. For example, one of the specialists we worked with limits his panel size to only 200 active

patients as compared to 2,000-2,500 patients for a primary care physician (see Appendix ?? for the

description of a sample clinic). With the current geographical distribution and small panel sizes,

it is no wonder that 42% of Medicare beneficiaries diagnosed with Parkinson’s do not even see a

general neurologist, not to mention a specialist (?).

Patient’s utility function: Given that the specialist chooses a service rate µ and price p, the

arrival rate, λ, is obtained from the number of patients who decide to seek treatment based on

their utility in equilibrium, whose specifics are discussed in the next section. The total utility,

Ψ(: [0,Λ]×R×R+× [0,Mv]→R), for a patient at distance x as a function of equilibrium arrival

rate λ, price p, and service rate µ is given by

Ψ(λ,p,µ,x) = m− t(x)︸ ︷︷ ︸
reward from

seeking treatment

−Q(µ)︸ ︷︷ ︸
quality

cost

− βp︸︷︷︸
payment

− cEW (µ,λ)︸ ︷︷ ︸
congestion

cost

. (1)

We model the demand from patients as a Poisson process; that is, the time between arrivals for

patient appointments has an exponential distribution. We assume that the service times offered

by the single specialist are exponentially distributed as well (see ? and ? for similar assumptions),

resulting in an M/M/1 queuing model, an assumption that helps provide analytical tractability.

With the M/M/1 assumption, EW (µ,λ) = 1/(µ−λ). Our results can readily be extended to cover

other interarrival and service-time distributions using standard queuing approximations, and we

present other extensions to this model (including considering just the waiting time in queue, (1/(µ−

λ)− 1/µ) in Appendix ??. We also assume that patients do not renege; that is, our model does

not allow no-shows.

Remark 1. Our utility model builds on extant literature. While ? and ? consider customer

heterogeneity, they do not consider the quality cost of service, Q(µ). ? considerQ(µ) to be linear but

assume the benefit to be homogeneous. Specifically, they take m− t(x)−Q(µ) = (Vb + ςµb− ςµ)+,
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where Vb, ς, and µb (following the notation in ?) are all non-negative constants. (In their model the

patient utility form is homogeneous and thus does not depend on the distance from the specialist.

It can be shown that the service provider’s optimal decisions are the same in both papers if

t(x) = 0 ∀x; see Section ??.) One of our main results in this section, Theorem ?? below, still holds

if we assume that the utility from treatment (or service) is given by a random variable instead

of m− t(x) (as long as the technical conditions (i) and (ii) in Lemma ?? in Appendix ?? hold),

extending the results in ?. By considering the quality cost, Q, as well as customer heterogeneity,

we expand the growing literature on service operations. We are especially interested in the cost

associated with traveling to a specialist’s office, which requires considering customer heterogeneity.

3.2. Equilibrium for fixed service rate and price:

Given the specialist’s choices of service rate and price, patients’ decisions determine the equilib-

rium arrival rate. Patients have two choices, to seek treatment or not, based on their net utility

Ψ(λ,p,µ,x). If the net utility Ψ(λ,p,µ,x) of a given patient from seeking treatment is non-negative,

or, in other words, the benefit collected at the end of the service compensates for the expected

total cost incurred in seeking the service, then the patient decides to seek treatment. Patients make

the choice considering only their net utility and thus act in a self-interested manner. Patients keep

joining the queue as long as their expected net utility is positive. An equilibrium is reached when

no more patients have an incentive to seek treatment or can obtain a positive net utility.

Because of the special structure of the utility function Ψ, it is not difficult to see that for a

given (µ,p), an equilibrium (in the sense defined in ?; see Appendix ?? for an overview) has to

have the following structure: There exists a threshold, x∗, such that patients whose distance, x,

from the specialist satisfies x≤ x∗ seek treatment and other patients do not seek treatment. Let

λ(·, ·) :R2
+→R, where λ(p,µ) is the equilibrium arrival rate of such rational self-interested patients

per unit time for fixed p≥ 0 and µ≥ 0. The arrival rate under this equilibrium is given by

λ(p,µ) = ΛF (x∗). (2)

Hence, the threshold x∗ can be found using the following identity:

x∗ = inf{x≥ 0 : Ψ(ΛF (x), p,µ,x)≤ 0 and ΛF (x)≤ µ}∧Xm, (3)

where the condition ΛF (x)≤ µ ensures stability and the inf of an empty set is taken to be 0 by

convention.

The intuition behind (??) is as follows. Assume that Ψ(ΛF (x∗), p,µ,x∗) = 0 for some x∗. Then

the patient who is at a distance x∗ from the specialist is indifferent between seeking treatment
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and not seeking treatment. Also, Ψ(ΛF (x∗), p,µ,x)>Ψ(ΛF (x∗), p,µ,x∗) = 0 for all x≤ x∗. Hence

all patients located at a distance less than or equal to x∗ seek treatment, so λ(p,µ) is the highest

possible arrival rate such that all patients seeing the specialist derive a non-negative utility from

seeking treatment.

3.3. Revenue-maximizing specialist:

Given patient utility function Ψ, the specialist’s revenue is also directly proportional to the equi-

librium arrival rate—the number of patients seen per unit time—when the specialist is paid on a

fee-for-service basis. The specialist has control over the rate at which he sees patients (service rate)

and the price per visit (we consider price to be exogenous in Section ??). The specialist’s choice

of service rate and price automatically determines an equilibrium arrival rate based on the patient

utility function (see ?, ?, and ? for a similar approach in different applications). The specialist

then has the revenue function R :R2
+→R, defined by

R(p,µ) = pλ(p,µ). (4)

The revenue-maximizing specialist will then try to choose an optimal price and service rate to

obtain the maximum revenue given by

R∗ = sup
p≥0, µ>0

R(p,µ). (5)

Note that the specialist is facing a complex and nonintuitive trade-off. If the specialist works

faster, it will result in more appointment slots, and this in turn will lead to less congestion. This

increase in the utility of an individual patient is captured through a lower expected congestion

cost cEW (µ,λ) in our model. Before walking into the clinic of the specialist, patients prefer shorter

wait times. However, once meeting with the specialist face-to-face, patients prefer longer visit times

with the specialist, as modeled using Q(µ). Therefore, even though faster service tends to increase

the arrival rate, it will also increase the quality cost (captured by Q(µ)) and hence tends to reduce

the equilibrium arrival rate. The opposite effects can be seen if the specialist tries to work slowly.

Specialists usually have some degree of flexibility as to how much time they spend with each

patient on average (?), while a minimum time with each patient is recommended and can be

accounted for in Q. This is also supported by our observations that a specialist’s time with the

patient typically has two primary components. The first is the clinical exam and diagnostic brief-

ing, and the second part comprises the psychological support and long-term guidance that are

important when dealing with patients who suffer from incurable (chronic) disease. The latter is
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in the specialist’s discretion and gives support to our assumption that the specialist can alter his

service rate.

Although most primary care physicians, family physicians, and pediatricians have limited bar-

gaining power and prices are guided by medical standards determined by Current Procedural

Terminology (CPT) codes and reimbursed by the insurance provider, specialists, through their

associations, have sufficient say in determining the prices in the long run (??). In the U.S. there

is a growing number of medical specialists who bypass the insurance system and charge patients

directly (??). Outside the U.S., in countries such as Australia, France, and Finland, medical prac-

titioners, especially specialists, are free to set their own prices for the services they offer (???).

Therefore, modeling price as a decision variable for the specialist is a plausible approach.

3.4. Effect of the Travel Burden

We next analyze the effect of the travel burden on the equilibrium arrival rate and the optimal

service rate for the revenue-maximizing specialist. We have the following proposition. (The proofs

of the results in this section are placed in Appendix ??.)

Proposition 1. Consider two travel burden functions t1 and t2 such that t2(x) = t1(x) + a for

some constant a≥ 0, for all x≥ 0. Let (λ∗i , µ
∗
i ) denote the optimal decisions for two independent

revenue-maximizing specialists treating two identical populations except for the travel burden func-

tion given by ti, for populations i= 1,2, and that the optimal revenue R∗2 (see (??)) for the second

specialist satisfies R∗2 > 0. The following results hold:5

(i) λ∗1 ≥ λ∗2, and

(ii) µ∗1 ≥ µ∗2.

The condition R∗2 > 0 is required for technical reasons. If R∗2 = 0, then λ∗2 = 0 is an optimal solution,

so Proposition ??(i) holds trivially.

The implication of these results is that if the distance cost or traveling cost reduces the utility

of seeking treatment and hence fewer patients are interested in seeking out a specialist, then the

revenue-maximizing specialist sees fewer patients. The second part of the proposition implies that

quality costs decrease as the traveling cost increases. This may be interpreted in two ways. First,

the specialist tries to induce demand by increasing the utility for patients by decreasing the quality

cost. It can also be interpreted as the specialist trying to compensate for the travel burden by

spending more time with patients. In other words, because the patients travel from far-off places

or go through great difficulty in coming to the specialist, he tries to spend more time with them

to make them feel better, thereby increasing their net utility.

5 The results also hold if t1(x) = 0 and t2(x)≥ 0 is a travel burden function that is a constant or satisfies Assump-
tion ??. In addition, the case t1(x) = 0 corresponds precisely to the analysis in ?.
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3.5. Welfare-maximizing specialist

Next, we compare the optimal decisions of a revenue-maximizing specialist with those of a welfare-

maximizing specialist. First, we present the details of our model for the welfare-maximizing spe-

cialist, following ?.

If the welfare-maximizing specialist cannot serve all patients, he would prefer to choose the

patients with the greatest benefits from treatment. With other parameters remaining the same, the

closer the patients are located, the greater the benefits they receive. Hence the welfare-maximizing

specialist needs to determine the maximum distance (and he would serve all the patients located

closer than this maximum level) and choose the service rate. Therefore, we can transform the

problem to choosing an arrival rate (instead of choosing the maximum distance), as we explain

next.

Let λx denote the total arrival rate of patients whose distance is at most x. Then

λx = ΛF (x). (6)

By inverting we can find xλ, the maximum distance of an arriving patient, given the total arrival

rate λ and assuming that only patients at a distance less than xλ will arrive. Specifically, xλ :

[0,Λ]→ [0,Xm] is given by

xλ =

F−1 (λ/Λ) , for λ∈ (0,Λ)
Xm, if λ= Λ
0, if λ= 0

. (7)

Then V : [0,Λ]→R, the cumulative benefit for all patients obtaining service net of travel burden,

as a function of the total arrival rate λ, is given by

V (λ) = Λ

∫ xλ

0

(m− t(x))f(x)dx. (8)

The total utility U : [0,Λ]×R→R per unit time obtained by all the patients, if λ patients seek

service per unit time and the specialist employs a service rate µ per unit time, is given by

U(λ,µ) =

{
V (λ)−λ

(
Q(µ) + c

µ−λ

)
, if µ> λ, and λ∈ [0,Λ]

0, otherwise
, (9)

where the condition µ> λ again ensures stability. The objective from the welfare-maximizing angle

would be to maximize the total utility of all patients per unit time. Thus the objective would be

to find

U∗ = sup
λ≥0, µ>0

U(λ,µ). (10)
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In summary, a welfare maximizer needs to strike a balance between serving more patients and

managing wait times in a cost-effective way. With each additional patient, the specialist’s workload

goes up, so if the average service rate remains the same, the congestion cost increases for all patients.

Each additional patient therefore increases the cost for existing patients and hence the overall

system. A welfare maximizer will consider the negative externality caused by the arrival of each

additional patient. Prices charged will simply be transfers, as the specialist is also part of this joint

system that has patient welfare in mind. For welfare maximization we allow non-positive prices, as

patients can be compensated in different ways for receiving treatments. Hence the objective from

the welfare-maximizing angle will be to maximize the total utility of all patients, ignoring the price

transfers, as in (??).

Comparing decisions for the two different objectives: We next compare the optimal

decisions of the revenue-maximizing specialist and the welfare-maximizing specialist.

Theorem 1 (Comparison of the two specialists). Let (λ∗, µ∗) denote the optimal decisions

for the revenue-maximizing specialist, and let (λ∗s, µ
∗
s) denote the optimal decisions for the welfare-

maximizing specialist.

i. The optimal equilibrium arrival rate for the welfare-maximizing specialist is never lower than

that for the revenue-maximizing specialist; that is, λ∗s ≥ λ∗, if R∗ > 0.

ii. The optimal service rate for the welfare-maximizing specialist is never lower than that for the

revenue-maximizing specialist; that is, µ∗s ≥ µ∗, if λ∗s > 0 and λ∗ > 0.

iii. If t(x) is constant and λ∗ > 0, then λ∗s = λ∗ and µ∗s = µ∗.

From Theorem ??, a revenue-maximizing specialist sees fewer patients per unit time than a welfare-

maximizing specialist does. Just like a monopolist, the revenue-maximizing specialist earns higher

revenue by charging a higher price for the fewer patients he sees. However, the higher revenue

does not compensate for the lost utility, as some patients opt out of treatment because of the

combined effect of the higher prices and the travel burden. Hence, the total welfare is lower. We

note here that this part of the proposition is similar to what ? found, and our proof follows similar

lines as well, but because of the addition of the service quality effect (Q(µ)) the extension is not

straightforward. Moreover, it is obvious that the first part of the result is also true if λ∗ = 0.

From the second part of the proposition we observe that the revenue-maximizing specialist sees

patients at a slower rate than the welfare-maximizing specialist. Even though the former spends

more time with patients, it might not be socially optimal to work at such a slow rate. Also, even

though the service rate increases, the specialist sees more patients in the welfare-maximizing case.
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In fact, we show in Appendix ?? that the utilization, hence the congestion cost (c/(µ−λ)), is not

lower than it is in the case of a revenue-maximizing specialist; see Remark ?? for details.

The third part of the proposition states that if customers are homogeneous in their travel burden,

as in ?—i.e., t(x) is a constant, then the optimal actions of the two specialists will be identical.

This result is similar to that in ?, but they studied the case when the service provider cannot alter

the service rate. We also note here that when customers are homogeneous the specialist sets a price

such that all patients receive zero utility. Otherwise, more patients will be expected to join, as the

utility is positive.

3.6. Exogenous price setting

In this section, we analyze the case in which visit prices are determined exogenously by an external

regulator or by a health insurance company and may be outside the control of the agency (which

might have preferred to act differently), for example, due to political reasons. We use the model we

introduced in Section ?? for the patients and providers, but now we assume that the price is fixed

at p. Therefore, the specialist has control over only the average visit length when he sees patients

at the clinic or, in other words, the service rate. The choice of the service rate by the specialist

automatically determines the equilibrium arrival rate in a way similar to the one described in

Section ??.

Although the case with fixed prices may seem like a special case of the more general case we

considered in Section ??, surprisingly Theorem ?? does not hold anymore. We illustrate this using

a case in which the cost and utility functions have a special structure. We make the following

simplifying assumptions: t(x) = tox, where to is the transportation cost per unit distance and x is

the distance from the specialist to the patient; Q(µ) = δµ, where µ is the service rate and δ > 0

represents the proportionality constant; f(x) = 1/M for x ∈ [0,M ]. For notational simplicity, we

also take Λ =M/t0. The price that maximizes the specialist’s revenue in (??) is denoted by p∗, and

we let p∗s denote the exogenous price that is derived from the optimal solution of (??)—that is, p∗s

satisfies λ(p∗s, µ
∗
s) = λ∗s. We use λ∗(p) and µ∗(p) to denote the arrival and service rates for a revenue-

maximizing provider when the exogenous price is set to p. We next prove that the conclusions in

Theorem ?? are not valid if the fixed price is not high enough.

Proposition 2. If the exogenous price p < p∗s, then

a. the optimal equilibrium arrival rate for the revenue-maximizing specialist would be higher

than that for the welfare-maximizing specialist—that is, λ∗(p)>λ∗s;

b. the optimal service rate for the revenue-maximizing specialist would be higher than that for

the welfare-maximizing specialist—that is, µ∗(p)>µ∗s.
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If p > p∗s, then λ∗(p)<λ∗s and µ∗(p)<µ∗s, similar to Theorem ??.

We observe that there exists a threshold for the fixed price per visit, p, offered to the specialist

by a third party. Above this threshold, p∗s, the optimal arrival and service rates for a revenue-

maximizing specialist would be lower than those for a welfare-maximizing specialist, which is

similar to the result in Theorem ??. From Proposition ??, this threshold is below that of the price

that a revenue-maximizing specialist would set (the endogenous case). Since one would expect the

exogenous price, p, to be less than p∗, Proposition ?? means that there are cases when even if the

price is determined by a third party (p∗s < p < p∗), the revenue-maximizing specialist would work

more slowly than the welfare-maximizing specialist. We further illustrate Proposition ?? using a

numerical analysis in Appendix ??.

4. Analyzing the operational impact of telemedicine

We now model the implications of implementing telemedicine for both utility-maximizing patients

and revenue-maximizing specialists. We assume that the specialist may choose to offer two modes

of treatment, telemedicine and in-person. A patient then has three choices: (1) in-person mode,

(2) telemedicine mode, and (3) no treatment. A patient’s choice will depend on the utility of each

option.

For most medical conditions, the physician’s vision is the primary medium for diagnosis. An

interactive video-conferencing system thus can enable a specialist to carry out a significant portion

of the assessments required in a typical one-on-one visit. However, patients might still need to travel

to the specialist’s location for some clinical assessments, laboratory procedures, and emergency

situations. Thus, not all visits can be done via telemedicine. With a slight abuse of terminology,

we refer to a consultation as an in-person visit if the patient travels to see the specialist and as a

telemedicine “visit” if the consultation is done remotely using telemedicine technology.

In Section ??, we introduce a model in which the specialist dedicates the same amount of time

(on average) to each in-person and telemedicine visit and charges the same price for both. Then,

in Section ??, we consider the case in which the specialist can choose different service rates and

prices. Although we were able to analyze the former model in detail, the equilibrium behavior of

patients is much more complex for the latter model, so we make additional assumptions and offer

numerical results after we present a method to identify the equilibrium.

4.1. Optimal decisions for a specialist offering the telemedicine mode

We start our analysis of the effect of telemedicine on the specialist’s and patients’ decisions by

considering a special case in which the specialist does not differentiate between telemedicine and
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in-person visits but chooses the same service rate µ and price p for all patients. From the specialist’s

perspective, the patient’s mode of treatment does not really matter (since the service rate and

price are identical for both modes). However, from a patient perspective, the patient’s utility is

dependent upon the mode of treatment due to different travel burdens.

We use a model similar to that in Section ?? to capture patient utility. We assume that a patient

located at a distance x from the specialist gains utility mi− t(x) from an in-person visit and utility

mt− t(0) from a telemedicine visit, for two positive constants mi and mt. (Recall that t(x) denotes

the travel burden for a patient located at a distance x from the specialist and that it is assumed to

be strictly increasing.) Term t(0), being a constant, can be adjusted in the factors mi and mt, so we

take t(0) = 0 without loss of generality. (We assume that the conditions in Appendix ?? continue

to hold.) Similar to (??), for a given total arrival rate λ, price p, service rate µ, and distance of the

patient x, we define the patient’s utility Ψi(: [0,Λ]×R×R+×R+→R) for the in-person mode by

Ψi(λ,p,µ,x) =mi− t(x)−Q(µ)−βp− c

µ−λ
. (11)

The main difference between Ψi and Ψ in (??) is that λ is the total arrival rate, including those

who chose the telemedicine mode. As noted earlier, not all the care provided in the office can

be delivered by telemedicine sessions. Accordingly, for telemedicine patients we define the clinical

feasibility, α∈ (0,1) and (1−α), representing the fraction of visits via telemedicine and in person

respectively. If the patient located at distance x from the specialist chooses the telemedicine mode

and if s is the setup cost involved in telemedicine (further explained below), the patient utility

Ψt(: [0,Λ]×R×R+×R+→R) is given by

Ψt(λ,p,µ,x) = αmt + (1−α)(mi− t(x))− s−Q(µ)−βp− c

µ−λ
. (12)

We use s ∈ R+ to denote the amortized cost of setting up telemedicine visits, such as setting

up an Internet connection, installing a webcam (or other video-conferencing facility), and fulfilling

other hardware and software requirements; see ?. It also includes the operating cost and any cost

related to on-site technical support that may be needed for the initial few visits. The other terms

are similar to those in Section ??.

Objective function and decisions: Let λt(p,µ) denote the equilibrium arrival rate of

telemedicine visits and λi(p,µ) the equilibrium arrival rate of in-person visits per unit time, whose

existence we prove below, for a given price p and service rate µ. Most of the cost incurred by a

specialist will be fixed in nature (the cost of the facility, staff, and so on). Most specialists devote a

certain portion of their time to seeing patients. Hence the cost is likely to depend on the aggregate
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time and not the time spent with an individual patient or type of visit. In other words, we assume

that the cost of implementing telemedicine is negligible. If the specialist chooses a price p and a

service rate µ, then the revenue function R̄ :R2
+→R for the specialist is defined by

R̄(p,µ) =

{
p(λi(p,µ) +λt(p,µ)), if p≥ 0,

0, otherwise
. (13)

The revenue-maximizing specialist will try to choose an optimal price and service rate to suit his

objective. The objective function for the specialist is then given by

R̄∗ = sup
p≥0, µ>0

R̄(p,µ). (14)

Equilibrium for a specialist offering both modes: We next establish the existence of the

equilibrium when patients have a choice between in-person and telemedicine modes, based on the

definition of a Nash equilibrium for a continuum of players as in ?.

Proposition 3. Given the payoff functions (??), (??), and (??) for in-person and telemedicine

patients and for the revenue-maximizing specialist, respectively, there exists a unique equilibrium.

In proving Proposition ??, we also determine the potential equilibrium outcomes in closed form,

which are instrumental in our analysis of telemedicine’s impact on welfare in the next section. Also,

we observe that in equilibrium some patients may or may not seek telemedicine mode depending

on the utility they receive from different modes of treatment.

Unfortunately, the proof of Proposition ?? cannot be extended to the case when the specialist’s

choices are different for the two modes of treatment. This is because the provider’s objective

function in (??) is separable in a certain sense only when service rates and price are the same for

both modes.

Remark 2. Throughout this section we assume price to be a decision variable for the specialist

for two reasons. First, most telemedicine services are currently not reimbursable, and the specialist

sets the price in these cases (?, ?), and we are interested in the long-run equilibrium actions of

providers. Second, when prices are exogenous, the equilibrium outcome depends on the price; recall

Section ??. However, we verify numerically that the insights generated when prices are exogenous

and fixed are, in principle, similar if prices are low enough, since the lower exogenous prices will

tend to drive the optimal service rates higher; see Appendix ??.
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Economic feasibility of telemedicine: In this section we explore the effect of offering the

telemedicine mode on the specialist’s optimal actions. Let λ̃i and λ̃t denote the optimal equilibrium

arrival rates of in-person and telemedicine patients and p̃ and µ̃ denote the optimal equilibrium

price and service rate. Recall that we use λ∗ and µ∗ to denote the equilibrium arrival rate when a

revenue-maximizing provider does not offer the telemedicine mode.

Theorem 2. Assume that λ∗ > 0. If

s < α
(
mt−mi + t

(
F−1 (λ∗/Λ)

))
, (15)

then

i) the optimal equilibrium total arrival rate for a specialist offering both modes of service is greater

than that for a specialist offering only the in-person mode —that is, λ̃t + λ̃i >λ
∗; and

ii) the optimal service rate for a specialist offering both modes of service is greater than that for a

specialist offering only the in-person mode —that is, µ̃ > µ∗.

The result gives a simple necessary condition to check the economic feasibility of telemedicine

based on the patient (located at λ∗/Λ) who is indifferent between the in-person mode of treatment

and telemedicine mode of treatment. The condition in (??) defines a threshold for the setup costs

of telemedicine based on the direct relative treatment benefit telemedicine visits provide (mt−mi)

and the reduction in travel burden (proportional to α and t). The significance of the result is that

the condition can be checked based on the parameters that are observed before the introduction

of telemedicine, except mt, the treatment benefit from telemedicine.

By part (ii) of Theorem ??, the specialist sees more patients at a faster rate. Thus, the results

from our model support the hypothesis that telemedicine increases patient access to specialists; see

?. Interestingly, the increased access comes from increasing the “efficiency” in the system by means

of an increased service rate. Recent work by ? and ? also offer empirical support that telemedicine

could increase specialist efficiency through shortened visit times. However, it is to be noted that

those patients who continue to choose the in-person mode of treatment will experience a reduced

net utility because of the faster service rate.

Effect of telemedicine on total welfare: Although the introduction of telemedicine increases

the arrival and service rates, its exact effect on total welfare is unclear. Also, we cannot use

Theorems ?? and ?? to reach a conclusion because of the differences in the current model when

compared to that studied in Section ??. Therefore, we next analyze how total welfare is impacted

by telemedicine and show that it increases under certain conditions.
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First, we define the total welfare when some patients choose telemedicine. Let xID denote the

location of the patient who is indifferent between the two modes of treatment; that is,

xID = inf{x≥ 0 : α(mi− t(x)−mt) + s≤ 0}. (16)

Due to the independence of xID from µ and p, if the specialist chooses arrival rate λ, then those

patients located at a distance between 0 and (xID ∧F−1(λ/Λ)) receive higher utility from the in-

person mode, and those located between (xID ∧F−1(λ/Λ)) and F−1(λ/Λ) receive higher utility

from the telemedicine mode (see Lemma ?? for more details). Therefore, the total welfare, if the

specialist chooses to serve an arrival rate of λ and uses a service rate of µ, is given by

Ud(λ,µ) =

{
Vd(λ)−λ

(
Q(µ) + c

µ−λ

)
, if µ> λ, and λ∈ [0,Λ]

0, otherwise
, (17)

where

Vd(λ) = Λ

[∫ xID∧F−1(λ/Λ)

0

(mi− t(x))f(x)dx+

∫ F−1(λ/Λ)

xID∧F−1(λ/Λ)

(m̃− (1−α)t(x))f(x)dx

]
, (18)

and m̃= αmt+(1−α)mi. Let Ũd(:=Ud(λ̃i+ λ̃t, µ̃)) denote the resulting total welfare in equilibrium

for a revenue-maximizing provider who offers the telemedicine mode, and recall that U(λ∗, µ∗) is

the total welfare in equilibrium for a revenue-maximizing provider’s optimal actions, λ∗ and µ∗,

without telemedicine.

Theorem 3. If (??) holds, then the total welfare increases with the introduction of telemedicine;

that is, Ũd ≥U(λ∗, µ∗).

4.2. Treatment model using distinct service rates and prices

Next we consider a more general model for the specialist’s approach to the telemedicine mode

based on our observations in practice, where the specialist allocates a proportion, r, of his capacity

to in-person visits and the rest, 1− r, to telemedicine visits. This is typical in certain specialties

where the specialist only sees telemedicine patients during certain hours each day or on certain

days of the week. The specialist in effect provides the two modes of service almost independently.

However, recall that patients using the telemedicine mode still need in-person visits for a fraction of

their visits, tying these two modes together. In addition, we assume that the provider may choose

different prices and service rates for the two modes.

In this case the model becomes analytically intractable, and we were unable to obtain the poten-

tial equilibrium outcomes in a closed form, so we cannot generalize Theorems ?? and ??. Hence

we carry out a numerical analysis under the following streamlining assumptions.
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Assumptions:

C.1 The travel burden is linear in distance, t(x) = tox, where to is the transportation cost per

unit distance and x is the distance from the specialist to the patient.

C.2 The service quality function is linear, Q(µ) = δµ, where µ is the service rate and δ > 0

represents the proportionality constant.

C.3 Patients are uniformly distributed with the specialist located at x= 0; that is, f(x) = 1/M

for x∈ [0,M ].

We also take the total arrival rate if the specialist decides to serve all the patients Λ =M/t0 for

analytical simplicity. The specialist has five variables to optimize: the service rates and the prices

for each mode, and the proportion of time dedicated to each mode. Because total enumeration is

not practical due to the size of the problem, we developed a method explained in ? to identify

the optimal actions of a specialist given r. We then used a numerical search algorithm to find the

optimal r.

As a base case, we considered the following values for the various parameters in our model:

the proportionality constant for the service quality function, δ = 1; the patient reward from an

in-person visit, mi = 60; the patient reward from a telemedicine visit, mt = 60; the transportation

cost per unit distance, to = 10; the co-insurance rate, β = 0.1; the cost to the patient for setting

up telemedicine visits, s= 10; the clinical feasibility of telemedicine, α= 0.75; and the opportunity

cost per unit time for patients, c= 5. We also carried out a sensitivity analysis by allowing mt and

to to vary from 0 to 90 and 0 to 30 respectively with 30 equal increments, keeping other values

as in the base case. Similarly, we considered 30 different values for α from 0.01 to 1 with equal

increments and for s from 0 to 45 with equal increments. We mainly focus on the sensitivity of

the results with the parameters α and t0 as these two parameters define the nature of telemedicine

visits. The results of additional numerical results are presented in Appendix ?? for brevity, and we

refer to them while we explain the reasons behind our general observations.

Our objectives in this section are as follows. We first would like to check whether our results

in Theorems ?? and ?? will still hold in this new setting—i.e., the effect of telemedicine on total

coverage (see Section ?? below) and social welfare (Sections ?? and Section ?? below). In addition,

the numerical analysis will help us in understanding the extent of the impact of telemedicine on

the specialist’s revenue. With separate prices for in-person and telemedicine visits in this setting,

we will also compare the total patient surplus (that is, the sum of the utility of all patients) before

and after telemedicine, something that we could not do in Section ??.



22

4.2.1. Optimal actions and resulting revenue: We first focus on the optimal actions and

the optimal revenue after the introduction of telemedicine. Figure ?? compares the optimal service

rates for the specialist and the equilibrium arrival rates at optimal values before telemedicine (µ∗

and λ∗) and after telemedicine (µ∗i and λ∗i for in-person visits and µ∗t and λ∗t for telemedicine visits)

as functions of α and t0, respectively. The vertical lines in the following figures are used to separate

the different regions. Region I is when the specialist does not introduce telemedicine in equilibrium.

The other regions are explained below as and when needed.

The optimal service rates and arrival rates are higher than they were before telemedicine for

high enough α and t0 (α > 0.3 in Figures ???? and ???? and t0 > 1 in Figures ???? and ????).

Thus our results in Theorem ?? hold in this case as well. The service and arrival rates also increase

with the clinical feasibility of telemedicine (α) (Figures ???? and ????), and they decrease with

the travel burden (t0) (Figures ???? and ????).

The optimal service rate for telemedicine visits can be either higher (Region II, Figure ????) or

lower (Region III, Figure ????) than the optimal service rate for in-person visits. Basically, the

specialist plays with the two levers, price and service rate, to maximize his revenue. For low values

of α, the price for telemedicine visits is also relatively lower (see Appendix ??). Hence the service

rates are higher to optimize revenue. For higher values of α, prices are higher, and this increase is

compensated by a decrease in the service rate.

Figures ???? and ???? compare the optimal revenue for the specialist before telemedicine (R∗)

and after telemedicine (R∗ TM) (both on the left axis), and also show the proportion of time spent

on in-person visits (r) (on the right axis), as functions of the clinical feasibility of telemedicine,

α (Figure ????), and the transportation cost, t0 (Figure ????). As the clinical feasibility of

telemedicine (α) increases, the proportion of time spent on in-person visits (r) decreases. In other

words, as telemedicine becomes more clinically feasible and a higher proportion of visits can be done

virtually, the specialist will also find it beneficial to adopt telemedicine. From a policy perspective,

telemedicine may not make sense for chronic conditions where α is relatively small. In Figure ????

the specialist will only offer the telemedicine mode beyond a certain threshold (α= 0.3). In addi-

tion, both R∗, the specialist’s revenue before telemedicine, and R∗ TM , the specialist’s revenue

after telemedicine, decrease with the transportation cost (t0).

In summary, specialists’ productivity and revenue increase, but so will their utilization (see

Appendix ??) with the introduction of telemedicine. Patients can expect to enjoy a reduction

in their travel burden, which increases their utility, resulting in greater patient access (higher

arrival rates). On the other hand, patients can also expect increased congestion (waiting times for
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(a) Optimal Service Rates vs. Clinical Feasibility of

Telemedicine (α): mt = 60; t0 = 10

(b) Arrival Rates vs. Clinical Feasibility of Telemedicine

(α): mt = 60; t0 = 10

(c) Optimal Service Rates vs. Transportation Cost (t0): α=

0.75;mt = 60

(d) Arrival Rates vs. Transportation Cost (t0):mt = 60; t0 =

4

Figure 1 Analyzing the optimal service rates (µ∗, µ∗i , and µ∗t ) and the optimal arrival rates (λ∗, λ∗i , and λ∗t ):

δ= 1;mi = 60;β = 0.1;s= 10; c= 5

appointments; see Appendix ??), shorter visits online or in person, and busier specialists, which

tend to decrease their utility. We also find that if the perceived quality of telemedicine visits is

comparable to that of in-person visits, the average price per visit decreases with the introduction

of telemedicine (see Appendix ??).

4.2.2. Effect on total welfare: As we demonstrated in the previous section, even though

the travel burden decreases for patients choosing the telemedicine mode, the higher service quality

cost and the higher congestion cost reduce the utility for some patients. It is therefore not clear

what happens to the total welfare6 and whether Theorem ?? still holds in this case.

Figures ???? and ???? compare the total welfare for a revenue-maximizing specialist before

6 The total welfare is defined in a manner similar to (??) by ignoring the prices paid by patients. The main difference
is that we account for the utilities of both in-person and telemedicine patients.
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(a) Optimal Revenues (R∗ and R∗TM) and Proportion of

Time Spent on In-person Visits (r) vs. Clinical Feasibility

of Telemedicine (α): mt = 60; t0 = 10

(b) Optimal Revenues (R∗ and R∗TM) and Proportion of

Time Spent on In-person Visits (r) vs. Transportation Cost

(t0): α= 0.75;mt = 60

Figure 2 Analyzing the optimal revenues (R∗ and R∗TM) and proportion of time spent on in-person visits (r):

δ= 1;mi = 60;β = 0.1;s= 10; c= 5

telemedicine (RM), the total welfare for a welfare-maximizing specialist before telemedicine (WM),

and the total welfare for a revenue-maximizing specialist after telemedicine (TMRM) as functions

of the clinical feasibility of telemedicine, α (Figure ????), and the travel burden, t0 (Figure ????).

There is no difference between RM and WM when customers are homogeneous (t0 = 0) (not shown

in Figure ???? to emphasize the difference between the welfares when t > 5), but the difference

increases with the degree of heterogeneity, as seen in Figure ????.

Surprisingly, the total patient welfare increases when the specialist offers the telemedicine mode

(in Regions II and III in Figures ???? and ????), even for a revenue-maximizing specialist.

Thus, even though congestion costs increase for patients who were undergoing treatment before

telemedicine was made available, the reduced travel burden for the existing patients and the added

welfare through patients who were not treated before more than compensates for this relative

welfare loss. Theorem ?? therefore holds in this case.

The total welfare under a revenue-maximizing specialist who introduces telemedicine (TMRM)

is more than the welfare under a welfare-maximizing specialist who does not offer telemedicine

(WM) if the transportation cost is sufficiently high (Region III, Figure ????) or if the clinical

feasibility of telemedicine is not too low (Region III, Figure ????). When the clinical feasibility of

telemedicine or the travel burden is in Region II, the total welfare under telemedicine is more than

that of the revenue-maximizing specialist but less than that of the welfare-maximizing specialist.

4.2.3. Effect on total patient surplus: In this section, we analyze the impact of

telemedicine on total patient surplus. The total patient surplus is defined similarly to the total
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(a) Total Welfare vs. Clinical Feasibility of Telemedicine

(α): δ= 1;mi = 60; t0 = 10;β = 0.1;s= 10;mt = 60; c= 5

(b) Total Welfare vs. Transportation Cost (t0): δ= 1;mi =

60;mt = 39;β = 0.1;s= 10;α= 0.75; c= 5

Figure 3 Analysis of total patient welfare under a welfare-maximizing specialist before the introduction of

telemedicine (WM) and a revenue-maximizing specialist before (RM) and after the introduction of

telemedicine (TMRM)

welfare in (??), but it includes the prices paid by patients to the specialist.

The introduction of telemedicine has different impacts on different patients depending on their

distance from the specialist. Even though prices fall after the introduction of telemedicine (see

Appendix ??), the higher service quality cost and the higher congestion cost reduce the utility

for some patients. Even with an increase in total welfare, the reduced prices may still be too high

for some patients to see an increase in the total surplus. Telemedicine is thus beneficial only for

patients located at some distance from the specialist for whom the reduction in the travel burden

and price more than compensates for the higher congestion cost. (See Figure ?? in Appendix ??

for how a patient’s utility varies with distance.)

We next turn to total patient surplus. Figures ???? and ???? compare the total patient surplus

for a revenue-maximizing specialist before telemedicine (RM) and after telemedicine (TMRM) as

functions of the clinical feasibility of telemedicine, α (Figure ????), and the transportation cost

per unit distance, t0 (Figure ????). Region I is when the specialist does not offer the telemedicine

mode; α≤ 0.3 in Figure ???? and t0 < 1 in Figure ????.

As telemedicine becomes more and more feasible (higher α), the total patient surplus increases

and is higher than the total utility before the introduction of telemedicine; see Figure ????. When

α is very high (α≥ 0.9 in Figure ????), however, the total patient surplus starts decreasing, and

it can become lower than it was before telemedicine (α ≥ 0.98 in Figure ????). This is because

as α increases more patients shift to the telemedicine mode and the heterogeneity among patients

decreases as well (a higher α reduces the need for travel and hence implies a reduced travel burden
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(a) Total Utility vs. Clinical Feasibility of Telemedicine (α):

δ= 1;mi = 60;mt = 60;β = 0.1; t0 = 10;s= 10; c= 5

(b) Total Utility vs. Transportation Cost (t0): δ = 1;mi =

60;mt = 60;β = 0.1;s= 10;α= 0.75; c= 5

Figure 4 Analysis of total patient surplus under a revenue-maximizing specialist before the introduction of

telemedicine (RM) and after the introduction of telemedicine (TMRM)

for these patients). A high α scenario therefore gets closer to the situation when t0 = 0, where the

specialist absorbs all the patient surplus (see Theorem ??), by setting an appropriate price and

service rate, and therefore results in a total utility close to zero.

The total patient surplus increases with t0 at first (t0 < 1) and then decreases; see Figure ????.

For low values of t0 (t0 ≤ 4), the total patient surplus is lower with telemedicine due to the increase

in service rates (see Figure ????) and hence higher quality costs. But above this threshold the

total patient surplus is higher with telemedicine, as the lower travel burden and increased access

compensate for the higher quality costs. Thus, as the travel burden increases, not only is the

total welfare greater with telemedicine (Figure ????), the total patient surplus is higher with

telemedicine as well.

5. Conclusions and key policy implications

With the rapid deployment of digital technologies, more and more specialists are looking at the

potential of telemedicine in treating some or all of their patients. In this work, we analyze the

operational impact for a specialist implementing telemedicine technology for the care of patients

suffering from chronic conditions who are arriving periodically at the clinic from different locations.

Our research extends analytical results on service interactions to the general case of heterogeneous

customers for both revenue-maximizing and social welfare-maximizing service providers. We char-

acterize the impact of patient heterogeneity on the specialist’s price and service rate decisions,

where the heterogeneity could be due to different morbidity or the travel burden each patient faces.

We also consider the case when specialist fees (price) are fixed exogenously and its impact on the

specialists’ strategic behavior.
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We then apply these new results in examining the economic and operational implications of

implementing telemedicine for the care of chronic patients. The model especially allows us to

explain how already busy specialists would still be able to accommodate additional telemedicine

visits and to analyze the impact of introducing telemedicine on overall coverage, service quality,

specialist productivity and income, cost of care, and patient welfare.

We obtain the following important managerial insights for the benchmark case—i.e., the operat-

ing equilibrium before telemedicine is introduced. We show when it would become optimal, even for

physicians who are being paid on a fee-for-service basis, to spend more time on average with each

patient as the travel burden increases. By doing so these physicians could end up with fewer patients

per day and fewer billable visits, yet it would be optimal for them to provide their patients a bet-

ter clinical experience, thereby partially recognizing their travel burden. We prove that this trend

becomes more and more pronounced with an increase in the patient’s travel burden. Second, under

fairly general conditions of patient heterogeneity, we prove that the arrival rate of patients (or the

workload) at a revenue-maximizing specialist is always lower than (or equal to) that at a welfare-

maximizing specialist. On the other hand, the former spends more time with each patient than the

latter. Our analysis explains why the congestion costs for the revenue-maximizing specialist would

always be lower than they are for the welfare-maximizing specialist. Thus the revenue-maximizing

specialist will work more slowly and treat fewer patients than the welfare-maximizing specialist,

making those providers more easily accessible.

While high-end specialists can freely set their fees, others may have to accept the fees set by

third-party payers. In this case we identify the threshold price above which the revenue-maximizing

specialist would work more slowly than the welfare-maximizing specialist. Our results also identify

the feasible range of fees determined by third-party payers and the exogenous price that results in

welfare maximization.

Using non-atomic games to model patient choices for care modalities, we prove that with the

introduction of telemedicine technology, a patient’s strategic choice falls into one of four mutually

exclusive outcomes in equilibrium: Existing patients who were treated in person choose to continue

with in-person visits or switch to virtual visits, new patients (for instance, those who live farther

away) now join the clinic to be seen via telemedicine, and patients (for instance, those who live

even farther away) who were not treated before choose to stay untreated by that specialist. With

the introduction of telemedicine, the clinic will expect to see an increase in the arrival rate of

patients. This will result in higher congestion costs for the patients, increased waiting times for
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appointments, shorter (online or face-to-face) visits, and busier providers. Despite all these costs, we

prove that social welfare increases even for the patients served by revenue-maximizing specialists.

Our results also indicate that telemedicine benefits the specialist physicians, as they enjoy both

higher productivity and higher revenue. When in-office visits provide similar or superior value

as compared to telemedicine visits, in an unregulated system the optimal uniform fees charged

by the specialists (for both in-office and telemedicine visits) would be lower than the fees levied

before telemedicine. Our numerical experiments illustrate how the introduction of telemedicine

will benefit patients, providers, and third-party payers. We also show that as the travel burden

increases, specialists decrease their service rate and yet their utilization decreases as well.

While the clinical efficacy of using telemedicine for a host of conditions has been proven in prior

clinical studies by us and others, there still remains a host of public policy and economic issues

that prevent it from being a widely accepted clinical practice. Our research highlights some very

interesting policy implications regarding some of the administrative barriers to the implementation

of telemedicine for treating chronically ill patients (?).

First, our analytical results clearly show that though patients might incur an additional cost

for technological support, many chronically ill patients will still benefit from the introduction of

telemedicine in terms of access to care, as telemedicine increases both the geographical coverage

and the capacity of specialist providers. Patients using telemedicine also enjoy a reduced travel

burden and reduced dependence on others for travel. We also find instances where a lower fee for

service will be optimal even for revenue-maximizing providers who implement telemedicine.

A second barrier is uncertainty about the differential effects of telemedicine. While some patients

who have not been treated before (say, those who live far away or with serious motion disorders)

will gain access to care, we do find that the benefit from telemedicine is not uniform for all patients,

and indeed we show that some patients unexpectedly will be worse off with the introduction of

telemedicine. For instance, after the introduction of telemedicine, those patients who live closer to

the clinic will face busier providers, shorter visit times, and higher congestion costs. Hence it is

important to recognize that not all specialist groups or patient populations will benefit equally. In

addition, we have seen in our clinical studies that some of the patients who will be worse off might

belong to the socio-economic strata that are highly desirable for the healthcare providers. Hence

special care must be taken to not lose the goodwill of this population segment while expanding

the geographic reach of the clinic. This brings about the policy option of introducing differential

deployment of subsidies based on the degree of heterogeneity within the patient population.
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A third barrier is the restrictive licensure laws in the United States, which require a practi-

tioner to obtain a full license to deliver telemedicine care across state lines. Our results show that

telemedicine has tremendous clinical and economic benefits, mainly for underserved populations.

Hence several initiatives are already underway to relax these legal constraints (?).

The final barrier is the lack of clear guidelines for reimbursement of the specialist (?). Our results

suggest that both specialist physicians and patients will likely benefit from telemedicine, even with-

out any external subsidies, so long as the specialists are fairly reimbursed for telemedicine visits,

even if the new (uniform) fees per face-to-face or telemedicine visit are set lower than the current

fees for face-to-face office visits. For the reasons shown above, political leadership should act to

remove the various legal barriers with respect to the deployment of and reimbursement for using

telemedicine technology while treating chronically ill patients. In fact, several state Medicaid pro-

grams have already moved forward in allowing for proper reimbursement of telemedicine services

(?). Congress, through the Cures Act, signed into law on December 13, 2016, directed the Cen-

ters for Medicare and Medicaid Services (CMS) to further study the use of technology (including

telehealth) for the delivery of healthcare. This study will help decision makers better understand

the major operational trade-offs in implementing telemedicine for chronic care and should assist in

the planning of future field studies that could address the existing clinical and technological gaps

identified above.
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Appendices

A. Example Case

We present below a motivating example of a chronically ill patient (name and details changed to

protect her privacy). It describes one of many similar patient scenarios that formed the basis of

our research model.

Ms. Janice Taylor is a 61-year-old female who lives alone in Utica, New York. She was first diag-

nosed with Parkinson’s disease (PD) back in 2009. Two years later, she lost her job at a small local

dry-cleaning store due to her worsening medical condition. After waiting for over seven months in

2012, she was finally seen by Dr. Reginald Dolchini, a PD specialist at the University of Rochester

Medical Center. The trip to this doctor’s office is about 140 miles, and it takes her driver some 2.5

hours each way in a good weather. She goes all the way to Rochester since she does not have any

PD specialist in her immediate neighborhood. Dr. Dolchini is the closest academic specialist who

was able to accept her and gain her trust.

Addressing the multiple symptoms related to PD, Janice takes on average 7 to 10 different medi-

cations (including Carbidopa-levodopa, Sinemet, Amantadine, Entacapone, Pramipexole, Effexor,

and Atropair). These drugs treat the primary disease, as well as the more severe side effects of

her PD medications. These side effects include, in her case, insomnia, constipation, drooling, and

depression. Typically, the medications and dosages change as the disease progresses and the medical

conditions of the patient worsen over time, or when some of the side effects of these medications

get acute. This is one of the primary reasons that PD patients need to be seen periodically by their

specialist.

Her specialist prefers to see most of his patients on average four times a year in order to continu-

ously monitor their condition, adjust their dosages, and recommend other complementary tests or

treatments. We noticed that historically the actual annual count of past patient visits ranges between

two and six. Visits are added due to unexpected disease progression, severe complications, or other

nontrivial comorbidities. This happened to Janice about three years ago: after a new medication

was introduced, she started suffering from symptoms resembling arrhythmia, but she had to wait

days before she could get an appointment with Dr Dolchini, who was away at a conference and

already had a long list of patients waiting to see him in the week of his return. Overall, Janice made

a total of six visits to the clinic in 2013. A year later, Janice fell off the stairs while visiting her

daughter; she ended up being hospitalized for several weeks. Upon her discharge, she needed to wait

for a few more weeks before she could check with her specialist. In total, she visited Dr. Dolchini
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only three times in that year.

The movement disorder clinic is very busy and hence they schedule only one patient visit at a time.

They know well that the specialist’s schedule and patients’ demands are highly unpredictable beyond

the next few months. In order to maintain sufficient capacity for any urgent patient needs—and

to provide a reasonable service level for his current cases—Dr. Dolchini limits his panel size to

only 200 active patients (as compared to 2,000-2,500 patients for a primary care physician). This

is typical for his other academic colleagues at that group. Every time Janice visits the clinic in

person, she uses her credit card to pay the typical follow-up visit fee of $ 250 at the front desk. She

then submits the bill to her (private) insurance company for a partial reimbursement, as the clinic

is out of the locally approved insurance network. Moreover, most of the leading insurance networks

still do not cover telemedicine services for PD patients. These patients and nursing homes now

directly pay the University PD clinic about $ 150 per each virtual visit.

B. List of Notations

x - Patient index, the distance of the patient from the specialist

Xm - Upper bound on the patient index, the maximum distance from the specialist

m - Reward per visit to the specialist; subscripts “i” and “t” are for in-person and telemedicine
visits respectively

Mv - Upper bound on m− t(x); that is, m− t(0)

f, F - pdf and cdf of the distance between patients and the specialist

Λ - Total arrival rate if the specialist decides to serve all patients

p - Price charged by a revenue-maximizing specialist

µ - Average service rate of a revenue-maximizing specialist

Λ - Total arrival rate if the specialist decides to serve all the patients

λ - Arrival rate of patient visits at the specialist

β - Co-insurance rate (a fraction between 0 and 1)

Q(µ) - Cost or disutility to the patient as a function of the service rate

EW - Expected time spent by the patient in the system

c - Opportunity cost per unit time for patients

A =
{i, t, o}

- Action set for the patients; “i” denotes in-person treatment, “t” denotes telemedicine treat-
ment, and “o” denotes no treatment

gx - Distribution on A for a patient indexed by x

t(x) - Transportation cost (perceived) for the patient located at distance x from the specialist

R(p,µ) - Revenue function for the revenue-maximizing specialist who does not offer telemedicine,
defined in (??)

U(λ,µ) - Total utility function for the welfare-maximizing specialist, defined in (??)
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s - Amortized cost to the patient for setting up telemedicine visits

α - Proportion of visits possible via telemedicine; for a (1−α) fraction of the total visits, the
patient has to visit the hospital or specialist in person (including emergency visits)

λin - Arrival rate of in-person mode patients at the specialist

λtm - Arrival rate of telemedicine mode patients at the specialist

λi - Arrival rate of in-person visits at the specialist

λt - Arrival rate of telemedicine visits at the specialist

D(p,µ) - Location of the patient who is indifferent between choosing treatment and not seeking
treatment when the telemedicine mode is not available

xID - Location of the patient who is indifferent between the two modes of treatment

xTM - Location of the patient who is indifferent between choosing the telemedicine mode and not
seeking treatment when the telemedicine option is available

R̄(p,µ) - Revenue function for the revenue-maximizing specialist who offers telemedicine, defined in
(??)

δ - Proportionality constant for the service quality function

t0 - Transportation cost per unit distance for the travel burden function

C. Technical assumptions

In order to obtain the optimal decisions for the revenue-maximizing specialist we need to make

certain assumptions. We list these assumptions in this section and explain why they are plausible.

Throughout we assume that the derivative of a function denotes its right derivative at the left

boundary and its left derivative at the right boundary of its domain. First, we assume that m<∞

and Q(µ)<∞ for all µ≥ 0. We make the following technical assumptions on F , t, and Q.

Assumptions on F and t:

A.1 F : [0,Xm]→ [0,1] and t : [0,Xm]→R are twice differentiable, and F ′ > 0, F ′′ ≤ 0 on [0,Xm].

A.2 t : [0,Xm]→R is convex and strictly increasing on [0,Xm].

The assumption that t is a convex increasing function (such as t(x) = x2)—that is, t′(x)> 0 and

t′′(x)≥ 0—implies that as distance increases, the travel burden increases at a nondecreasing rate.

The assumption is true in many general cases in which patients dealing with chronic conditions are

old and therefore relatively less mobile. Many of these patients are also physically handicapped and

need help from caretakers in case of travel. The burden thus is likely to increase at an increasing

rate with distance. One can also expect f ′(x)< 0, as the population density decreases with distance

from the specialist (such as an exponential distribution, f(x) = e−x), who is typically located in an

urban area, as the population density tends to be lower in rural areas.

For the analysis in Section ?? the definition of Xm has to be modified slightly. Let M denote

the maximum distance of a patient who might seek treatment from the specialist, where M =
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t−1(α/(1−α)mt +mi)≥ t−1(mi); α is the fraction of clinical visits possible via telemedicine, and

the remaining fraction, (1−α), involves visiting the specialist in person. We again use f and F to

denote the pdf and the cdf for the distribution of the patients on [0,M ], respectively. We assume

that Assumption ?? holds for Xm =M .

Assumptions on Q:

B.1 Q :R+→R+ is a strictly increasing function.

B.2 Q :R+→R+ is a convex function with continuous first and second derivatives.

Based on our discussion in the introduction, we assume that a patient’s utility increases with

time spent with the specialist and thus decreases with the service rate chosen by the specialist.

Assumption ??, which combined with Assumption ?? gives Q′(µ)> 0, for µ≥ 0, helps in modeling

the higher cost to the patient (and thus the lower value to the patient) as the service rate increases.

Assumption ?? also helps model the fact that the specialist is heavily penalized for working too

fast. In addition, the convexity in Assumption ?? helps us simplify sufficient conditions for finding

the optimal values. Assumptions ?? and ?? also imply that

lim
µ→∞

Q(µ) =∞. (19)

This ensures that if the specialist spends very little time with the patients, the patients will get no

utility from the service. In addition, Assumption ?? implies Q′(µ)<∞, Q′′(µ)<∞, for all µ∈R+,

which we use in the proofs of our main results.

D. Non-cooperative non-atomic games

Here we provide a general description of non-cooperative non-atomic games, which we use to study

patient choices. We use the terminology introduced here in Section ??. In the models we study,

each patient has a choice between different treatment modes (including no treatment) and receives

a reward based on his choice, his intrinsic value from treatment, the specialist’s actions, and other

patients’ choices. We next define a general form for a game to capture these features.

We follow the terminology in ?. Consider a continuum of patients (or players) indexed by x ∈

[0, T ] (for example, x denotes their utility from treatment), for some T > 0 and its Borel σ-algebra,

endowed with an absolutely continuous probability measure µ with respect to the Lebesgue mea-

sure. Measure µ is used to assess how patients are distributed in this interval. Assume that each

patient has to choose one of n treatment modes (or activities), and let A= {1, . . . , n} denote the

action set for patients. For our purposes it is enough to consider a discrete A and an action set

that is not dependent on x. Denote

P =

{
x= (x1, . . . , xn)∈Rn|xi ≥ 0, i= 1,2, . . . , n,

n∑
i=1

xi = 1

}
. (20)
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Let gx ∈P denote a distribution on A for x∈R+, and let G= {gx : x≥ 0}. Let G−1(x) denote the

actions of all patients, excluding those with index x, and let Ψa(Γ,G
−1(x), x) denote the reward

received by a patient with index x if he chooses action a, all the patients follow the strategy profile

G, and all the other external parameters are captured by Γ. (In our context Γ is used to denote

the actions chosen by the specialist.) A T-strategy is a measurable function x̂ from [0, T ] to P .

Therefore, for x̂= (x̂1, . . . , x̂n), x̂i is µ-integrable. We restrict our attention to T-strategies as in ?.

A T-strategy G is said to yield a Nash equilibrium, for a given Γ, if it satisfies

∑
a∈A

gx(a)Ψa(Γ,G
−1(x), x)≥

∑
a∈A

px(a)Ψa(Γ,G
−1(x), x) (21)

µ-a.s. for x ∈R+ and for any px ∈ P. Inequality in (??) implies that under the strategy profile G

no patients are better off by deviating from their choices in terms of expected utility. From here

on we use “equilibrium” to refer to a Nash equilibrium.

In our setting, the formulation of the non-atomic games is slightly different from the extant

literature (???). In ?, for example, the players are indexed by a finite closed interval [0, T ], and

this interval is mainly used for indexing purposes only. In our setting the index of a patient is

associated with the utility a patient gets from receiving treatment, for example, depending on the

distance t ∈ [0, T ] of the patient from the specialist. Unlike in ??, and ?, there might be multiple

patients with the same index. Therefore, it is not clear how gx should be interpreted. However, we

show that in our setting, we can find a pure equilibrium strategy where patients with the same

index follow the same strategy (in the a.s. sense). In general, one can consider gx for a mixed

strategy to be the distribution of patients with index x on how to choose each available action. In

addition, because we assume that µ is an absolutely continuous probability measure with respect

to the Lebesgue measure and because of our cost function, if a group of players with total measure

zero change their actions, the payoffs to other players do not change. Hence the interpretation of

gx is not crucial for the applications we focus on.

E. General functions for disutility due to congestion

Our results hold under a more general function, denoted by θ, for the disutility due to congestion.

Specifically, the following set of conditions on θ is sufficient for our results to hold.

C.1 For µ> 0, θ(·, µ) : R+→R+ is a twice-differentiable, strictly increasing convex function on

[0, µ), limλ↑µ θ(λ,µ) =∞.

C.2 For λ> 0, θ(λ, ·) :R+→R+ is a twice-differentiable, strictly decreasing convex function on

(λ,∞) with limµ→∞ θ(λ,µ) = 0, limµ↓λ θµ(λ,µ) =−∞, and limµ→∞ θµ(λ,µ) = 0.
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C.3 Given M > 0, there exists εM > 0 such that θ(λ,λ+x)>M and θµ(λ,λ+x)<−M for any

x∈ (0, εM).

For example, our results are valid under the following class of functions:

θ(λ,µ) =
I∑
i=1

ai
(µ−λ)i

(22)

for a finite I ≥ 1 and ai ≥ 0 for all i ∈ [1, . . . , I] and ak > 0 for at least one k ∈ [1, . . . , I]. The case

I = 1 reduces to the linear case that we primarily focus on.

F. Proofs of the results in Section ??

We first characterize the optimal actions for revenue-maximizing and welfare-maximizing specialists

in Appendix ?? and Appendix ??, respectively. Then we use these results to prove Proposition ??

and Theorem ?? in Appendix ??.

We start with the following result, which establishes some structural properties for V .

Lemma 1. If F and t are twice differentiable, t is convex, strictly increasing, and F ′ > 0, F ′′ ≤ 0

on [0,Xm], then we have the following:

i. V : [0,Λ]→R is a thrice-differentiable function on [0,Λ].

ii. V ′ : [0,Λ]→R is a decreasing concave function. Thus, we have V ′′′(λ)≤ 0 for all λ∈ (0,Λ).

Proof of Lemma ??: By Assumptions ?? and ??, F and t are twice differentiable, t is convex

strictly increasing, and F ′(x) > 0, F ′′(x) ≤ 0 for all x ∈ [0,Xm]. Without loss of generality, we

assume that F (Xm) = 1, as otherwise we can redefine it by conditioning on the fact all patients

seeking treatment should be closer than Xm. Let H(u) = F−1(u) for u ∈ [0,1]. Since F is strictly

increasing, it is also invertible. Then, by our assumption that F ′(x)> 0,

H ′(u) =
1

F ′(H(u))
and H ′′(u) =−F

′′(H(u))H ′(u)

(F ′(H(u)))2
.

for all u∈ [0,1]. Therefore,

H ′(u) > 0 and H ′′(u)≥ 0 ∀u∈ [0,1]. (23)

If the arrival rate is λ, then the location of the farthest patient who seeks treatment is given by

H(λ/Λ). By Leibniz’s rule, V ′(λ) =m− t(F−1 (λ/Λ)) for λ∈ (0,Λ), so

V ′(λ) = m− t (H(λ/Λ)) , V ′′(λ) =− 1

Λ
t′ (H(λ/Λ))H ′(λ/Λ), and (24)

V ′′′(λ) =−1/Λ2 [(H ′(λ/Λ))2t′′ (H(λ/Λ)) + t′ (H(λ/Λ))H ′′(λ/Λ)] . We are now ready to prove the

lemma.
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A1) Note that V (λ) is a thrice-differentiable function, since t and F are twice differentiable as

well.

A2) We need to show that V ′(λ) is a decreasing concave function. By (??) and the assump-

tion t′(x) > 0, V ′′(λ) ≤ 0; by the fact that t′′(x) ≥ 0, and by (??), V ′′′(λ) ≤ 0 on λ ∈

[0,ΛF−1(M)]. �

F.1. Optimal decisions of a revenue-maximizing specialist

We next find the optimal decisions of a revenue-maximizing specialist, stated in Lemma ??, given

patient utility function Ψ, defined in (??). The main technical difficulty is that in the definition of

x∗ in (??) the stability constraint makes the analysis around this boundary very challenging. We

tackle this problem by showing that µ≥ λ(p,µ) + δ for some δ > 0, if the revenue is positive.

The optimization problem in (??) has price and service rates as decision variables for the spe-

cialist. The equilibrium arrival rate is then determined by the price and service rate set by the

specialist, as given by (??). It is easier to solve the optimization problem with the arrival rate and

the service rate as decision variables instead. Because the arrival rate is automatically determined

by the specialist’s choice of service rate and price, this new optimization problem is equivalent to

the original one, (??), as we show next.

Preliminaries: Let p : [0,Λ]×R+→R+ be defined by

p(λ,µ) = inf

{
p∈R :m− t(F−1(λ/Λ))−Q(µ)−βp− c

µ−λ
≤ 0

}
∨ 0, (25)

where we take F−1(0) = 0 and F−1(1) =Xm. Hence p(λ,µ) can be interpreted as the equilibrium

price given the service rate µ and the arrival rate λ. In other words, given the arrival rate and

the service rate, the price is chosen such that the marginal patient (with threshold distance x∗ =

F−1(λ/Λ)) is indifferent between seeking treatment and not seeking treatment. (Otherwise, the

price can simply be increased for higher revenue.) We need to ensure that the price is non-negative

for practical reasons. We define R̃ : [0,Λ]×R→R as follows:

R̃(λ,µ) =

{
p(λ,µ)λ, if λ∈ [0,Λ] and µ> λ

0, otherwise
. (26)

The specialist’s objective is to maximize his revenue by choosing an appropriate service rate µ and

arrival rate λ. We will thus be able to define the following optimization problem:

R̃∗ = sup
λ≥0, µ≥0

R̃(λ,µ). (27)

Before we verify that the optimization problem in (??) is equivalent to (??), we first show in the

following lemma that the specialist can only choose from a range of service rates for the revenue

to be non-zero. Let κ= ΛF (t−1 (m−Q(c/Mv))).
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Lemma 2. If µ ≥Q−1(Mv) or if µ ≤ λ+ c/Mv, then R̃(λ,µ) = 0 for any µ ≥ 0 and λ ∈ [0,Λ].

Also, if λ≥ κ, then R̃(λ,µ) = 0 for all µ≥ 0.

Proof of Lemma ??: Let µ≥Q−1(Mv). We note that the inverse exists by Assumptions ?? and

??, and by (??). Then Q(µ)≥Mv. Let µ be such that µ > λ. If not, R̃(λ,µ) = 0 from (??). Since

c > 0 and µ > λ, we have Q(µ) + c/(µ − λ) > Mv, which implies, from (??), that x∗ = 0, and

so p(λ,µ) = 0 from (??). Hence R̃(λ,µ) = 0 from (??). Now we find the lower limit for µ. Let

µ ≤ λ+ c/Mv. Rearranging terms, we have, and since Q(µ) ≥ 0, Q(µ) + c/(µ− λ) ≥Mv, x
∗ = 0

from (??), and so p(λ,µ) = 0 from (??).

Finally, if λ≥ κ, then m− t(F−1 (λ/Λ))≤Q(c/Mv).

If µ≤ λ+ c/Mv, then R̃(λ,µ) = 0 by the first part. If µ> λ+ c/Mv, then Q(µ)>Q(c/Mv). This,

combined with m− t(F−1 (λ/Λ))≤Q(c/Mv), gives m− t(F−1 (λ/Λ))−Q(µ)≤ 0. Thus p(λ,µ) = 0

by (??), giving the desired result. �

Throughout, we assume that Q(c/Mv) <Mv, as otherwise p(λ,µ) = 0 for all µ > λ ≥ 0 by the

first part of Lemma ?? and (??). Hence κ<Λ. Lemma ?? follows from the fact that the specialist

can work neither too quickly nor too slowly. If he treats patients too quickly, then the cost of

quality will be too high, because Q(µ) is decreasing in µ, resulting in a negative net utility for all

the patients. Similarly, if the specialist treats patients too slowly, congestion, and hence waiting

cost, will rise, resulting in a negative net utility for all the patients. (We note that Lemma ?? is

similar to the quantities A1(α) and A2(α) on page 43 of ?, except that our result is valid for a

more general model.)

Mathematically, Lemma ?? helps in finding lower and upper bounds for the optimal service rate.

We will thus be able to write the optimization problem in (??) using Lemma ?? as

R̃∗ = sup
λ≥0, λ+ c

Mv
<µ≤Q−1(Mv)

R̃(λ,µ). (28)

The boundary conditions in (??) follow from Lemma ??. We have the following lemma to prove

that the optimization problem in (??) is equivalent to (??):

Lemma 3. For R defined as in (??) and R̃ as in (??), if R(p,µ)> 0 for p≥ 0 and µ≥ 0, then

R(p,µ) = R̃(λ(p,µ), µ), and if R̃(λ,µ)> 0 for λ≥ 0 and µ≥ 0, then R̃(λ,µ) =R(p(λ,µ), µ). Hence

R̃∗ =R∗.

Proof of Lemma ??: Let µ′ > 0 and p′ > 0 be such that R(p′, µ′) > 0 (if µ′ = 0 or p′ = 0, then

R(p′, µ′) = 0 by (??), (??), and (??)). If R(p′, µ′)> 0, then λ(p′, µ′)> 0, and so x∗ > 0 by (??). In
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addition, x∗ <Xm by (??). From Assumptions ?? and ??, F−1(t(.)) is continuous on (0,1) also.

This implies by (??) and (??) that

m− t(F−1 (λ(p′, µ′)/Λ))−Q(µ′)−βp′− c

µ−λ(p′, µ′)
= 0

and µ′ >λ(p′, µ′). Thus, by (??), p(λ(p′, µ′), µ′) = p′. Hence R̃(λ(p′, µ′), µ′) =R(p′, µ′).

Now let λ′ > 0 and µ′ > 0 be such that R̃(λ′, µ′) > 0 (if λ′ = 0 or µ′ = 0, then R̃(λ′, µ′) = 0 by

(??)). This implies by (??) that p(λ′, µ′) > 0 and λ′ < µ′. Hence, by Lemma ??, λ′ < Λ, and by

(??),

m− t(F−1 (λ′/Λ))−Q(µ′)−βp(λ′, µ′)− c

µ′−λ′
= 0.

By (??), λ(p(λ′, µ′), µ′) = λ′. Hence R̃(λ′, µ′) = R(λ(p(λ′, µ′), µ′). The fact that R̃∗ = R∗ follows

from Lemma ??. �

We can now concentrate on finding the optimal service rate for the specialist and the optimal λ

(the arrival rate) that the specialist must choose. The optimal price can then be determined using

(??).

Solution to the optimization problem: We solve the optimization problem in (??) in two

sequential steps. First, we solve the following optimization problem for fixed λ≥ 0:

R̃∗(λ) = sup
λ+ c

Mv
≤µ
R̃(λ,µ). (29)

That is, we find the optimal service rate for a given arrival rate. Let γ : R+ → R be defined as

follows:

γ(λ) =

{
µ :Q′(µ)− c

(µ−λ)2
= 0 and µ> λ

}
. (30)

We start with the following technical result.

Lemma 4. Mapping γ : (0,M)→R is a well-defined continuous function for any finite constant

M > 0. Also, 0<γ′(λ) = 2c/(2c+ (γ(λ)−λ)3Q′′(γ(λ)))≤ 1.

Proof of Lemma ??: Let M > 0 denote a finite constant. Define

J(λ,µ) =Q′(µ)− c

(µ−λ)2
.

By Assumptions ?? and ??, Q′ is nondecreasing and continuous. Also, because c/(µ−λ)2 is a

decreasing continuous function for µ> λ with its values dense in (0,∞), and from Assumptions ??

and ??, there exists µλ >λ such that J(λ,µλ) = 0.
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Because Q′ is nondecreasing, µλ1 <µλ2 , if λ1 <λ2. Therefore,

µλ−λ≥
√
c/Q′ (µ0), for all λ∈ [0,M ]. (31)

Next we prove that there exists a continuously differentiable function γ : (0,M)→ R+ such that

γ(λ)>λ+ δ for some δ > 0 and

J(λ,γ(λ)) = 0, for λ∈ (0,M). (32)

Before we proceed with the proof of (??), we recall the implicit function theorem (IFT). The

IFT states the following: If J is defined on an open disk containing (λ,µ), where J(λ,µ) = 0,

Jµ(λ,µ) 6= 0, and Jµ and Jλ are continuous on the disk, then the equation J(λ,µ) = 0 defines µ

as a function of λ; i.e., there exists a function γ such that J(λ′, γ(λ′)) = 0 in a neighborhood of

(λ,µ). We now check whether all the conditions hold to allow us to apply the theorem to prove

the existence of γ(λ) for λ∈ (0,M).

By the discussion above, given λ> 0, there exists a unique µλ >λ such that J(λ,µλ) = 0. Also,

the partial derivatives of J with respect to λ and µ, Jλ and Jµ respectively, are continuous in the

region λ> 0 and µ> λ. In addition,

∂J

∂µ
(λ,µλ) = Q′′(µλ) +

2c

(µλ−λ)3
=
∂2R̃

∂µ2
(λ,µλ)> 0,

because of Assumption ?? and µλ > λ. Hence all the conditions of the implicit function theorem

hold, so for any λ∈ (0,M) there exists a unique function γλ and a neighborhood Aλ of λ such that

J(λ′, γλ(λ′)) = 0 for all λ′ ∈Aλ.

Although the IFT proves the existence of γλ, we still have not proved that there exists a unique

differentiable function γ on (0,M) and that γ(λ)> λ. We next prove that for λ 6= λ′, γλ = γλ′ on

Aλ ∩Aλ′( 6= ∅), proving uniqueness. The fact that γ(λ)>λ+ δ for some δ > 0 follows from (??).

First, each γλ is continuous and differentiable by the IFT. Assume that there exists λ′ ∈Aλ such

that γλ(λ′)<λ′ and λ′ <λ. This implies by the continuity of γλ that there exists λ′′ ∈ (λ′, λ) such

that λ′′ = γλ(λ′′). However, this is not possible, since Q′(λ′′) is bounded by Assumptions ?? and

??. Hence no such λ′ exists. We can prove the conclusion for λ′ >λ similarly. Hence for all λ′ ∈Aλ,

γλ(λ′)>λ′. However, there is a unique γλ(λ′)>λ′ that satisfies (??), so γλ = γλ′ on Aλ∩Aλ′( 6= ∅).

Therefore there is a unique γ that satisfies the conditions of the result.

By the IFT we have

dγ(λ)

dλ
= −

∂J
∂λ
∂J
∂µ

=
2c

2c+ (γ(λ)−λ)3Q′′(γ(λ))
.

From Assumption ?? and the fact that γ(λ)>λ+ δ, γ′(λ)> 0 and γ′(λ)≤ 1 for all λ∈ (0,M). �
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Next we show that γ gives the optimal service rate.

Lemma 5. Given λ ∈ (0, κ), if there exists µ(> 0) such that R̃(λ,µ) > 0, then γ(λ) gives the

optimal solution for (??); that is, R̃∗(λ) = R̃(λ,γ(λ)). If λ≥ κ, λ= 0, or p(λ,µ) = 0 for all µ≥ 0,

then R̃∗(λ) = 0.

Proof of Lemma ??: Let λ ∈ (0, κ) and assume that there exists µ > 0 such that R̃(λ,µ) > 0.

Next we show that given λ, γ(λ) gives the optimal solution for (??). Let

p+(λ,µ) =
1

β

(
m− t(F−1 (λ/Λ))−Q(µ)− c

µ−λ

)
and (33)

R̃+(λ,µ) = λp+(λ,µ) =
1

β

(
m− t(F−1 (λ/Λ))−Q(µ)− c

µ−λ

)
λ, (34)

for λ∈ [0,Λ] and µ> λ.

Note that

p+(λ,µ)≤ p(λ,µ) and R̃+(λ,µ)≤ R̃(λ,µ). (35)

The first inequality in (??) follows from the definition of p(λ,µ) (see (??)), and the second inequality

follows from (??). We note that if R̃+(λ,µ) < 0, ∀µ > λ, then p+(λ,µ) < 0, ∀µ > λ by (??) and

thus p(λ,µ) = 0, ∀µ > λ, from (??). Then R̃(λ,µ) = 0, ∀µ > λ, from (??). On the other hand,

if R̃+(λ,µ) > 0, then p+(λ,µ) > 0, so p+(λ,µ) = p(λ,µ). Also, p+(λ,µ) = p(λ,µ) if p(λ,µ) > 0.

Therefore,

R̃+(λ,µ) = R̃(λ,µ), if p+(λ,µ)> 0 or p(λ,µ)> 0. (36)

Given λ∈ (0, κ), we next solve

sup
µ≥λ+ c

Mv

R̃+(λ,µ) = sup
µ≥λ+ c

Mv

1

β

(
m− t(F−1 (λ/Λ))−Q(µ)− c

µ−λ

)
λ.

We use KKT necessary conditions to obtain the optimal service rate. Given λ > 0, since the

constraint µ≥ λ+ c/Mv is linear in µ, regularity conditions are satisfied, so if µ∗λ is optimal then

there exists σ such that the following KKT necessary conditions are satisfied (see Proposition 6.5,

?):

∂R̃+

∂µ
(λ,µ∗λ) = −σ,

µ∗λ ≥ λ+
c

Mv

,

σ ≥ 0, and

σ

(
µ∗λ−

(
λ+

c

Mv

))
= 0.
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We then have the following two cases for non-negative σ:

Case 1, σ= 0: This implies that µλ along with σ = 0 will satisfy the KKT conditions if µλ ≥

λ+ c/Mv. Also, from (??), ∂R̃+/∂µ=−J(λ,µ), Hence µλ = γ(λ) is the unique solution.

Case 2, σ> 0: This implies that µ∗λ = (λ+ c/Mv) and σ=−∂R̃+/∂µ(λ,µ∗λ) is the only solution

that will satisfy the KKT conditions if σ=−∂R̃+/∂µ(λ,µ∗λ)> 0.

Next we argue that we can ignore the solution given by Case 2 for the optimization problem (??).

Note that if µ∗λ = (λ+ c/Mv) (i.e., Case 2 holds), from Lemmas ?? and ??, we have R̃(λ,µ∗λ) = 0.

Hence, R̃+(λ,µ)≤ 0, ∀µ> λ, which implies R̃∗(λ) = 0 from the discussion above. We can take µ∗λ as

in Case 1, since R̃(λ,µ)≥ 0. Otherwise, if R̃+(λ,µ∗λ)> 0, then µ= (λ+ c/Mv) cannot be optimal,

so we need to consider only Case 1. Therefore, from (??), we obtain the result stated in the first

part of the lemma.

Next we prove the last part of the lemma. If p(λ,µ) = 0, ∀µ, then R̃(λ,µ) = 0, ∀µ. If λ≥ κ, the

result follows from Lemma ??. �

Remark 3. By (??) and Lemmas ?? and ??, the optimal service rate is increasing in the arrival

rate. More interestingly, the derivative, γ′, is bounded by 1. In other words, in response to an

increase in the arrival rate, the optimal capacity increases at most by the same rate. The implication

is that because the optimal service rate will not increase at a faster rate, utilization and congestion

costs will not decrease (will increase if Q is strictly convex) with an increase in the arrival rate.

Thus the average congestion cost for all patients will not decrease (will increase if Q is strictly

convex).

We next solve the optimization problem for λ to complete the optimization problem in (??). We

do so by substituting the optimal service rate for a given λ from Lemma ??. Assume that λ̃∈ [0,Λ]

satisfies the following equation (we show that the solution is unique if a solution exists):

V ′(λ̃) + λ̃V ′′(λ̃)−Q(γ(λ̃))− c

γ(λ̃)− λ̃
− cλ̃

(γ(λ̃)− λ̃)2
= 0. (37)

Lemma 6. If there exists (λ,µ) such that R̃(λ,µ)> 0, then there exists a unique optimal λ∗; that

is, R̃(λ∗, γ(λ∗)) = R̃∗ > 0 and λ∗ = λ̃. If no such (λ,µ) exists, R̃∗ =R∗ = 0.

Proof of Lemma ??: Assume that there exists (λ,µ)≥ 0 such that µ> λ, λ∈ [0,Λ], and R̃(λ,µ)>

0. First note that µ> 0 because µ> λ and λ> 0 by (??) because R̃(λ,µ)> 0.

If R̃(λ,µ) > 0 for some λ and µ satisfying the conditions above, and λ∗ ∈ [0,Λ] and µ∗ > λ∗

satisfies

R̃+(λ∗, µ∗) = sup
λ∈[0,Λ],µ>λ

R̃+(λ,µ),
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then by (??) and Lemma ??, (λ∗, µ∗) must be the solution of (??) as well. We next show that such

λ∗ and µ∗ exist.

We have

sup
λ∈[0,Λ],µ>λ

R̃+(λ,µ) = sup
λ∈(0,κ],µ>λ

R̃+(λ,µ) = sup
λ∈(0,κ]

R̃+(λ,γ(λ)),

where the first equality follows from the condition R̃(λ,µ) > 0 and Lemma ?? and the second

inequality follows from (??) and Lemma ??. By (??) and Lemma ??, R̃+(λ,γ(λ)) is continuous on

(0,Λ] and limsupλ→0 R̃
+(λ,γ(λ))≤ 0, so there exists 0< ε< κ such that R̃+(x,γ(x))< R̃+(λ,γ(λ))

for 0<x≤ ε. Hence

sup
λ∈(0,κ]

R̃+(λ,γ(λ)) = sup
λ∈[ε,κ]

R̃+(λ,γ(λ)). (38)

Also, since V ′(λ) =m− t(H(λ/Λ)),

βR̃+(λ,γ(λ)) =

(
V ′(λ)−Q(γ(λ))− c

γ(λ)−λ

)
λ

for λ∈ (0,Λ). By Lemma ??, R̃+(λ,γ(λ)) is continuous in λ on [ε, κ], so there exists λ∗ ∈ (0, κ] such

that R̃+(λ∗, γ(λ∗)) = supλ∈[ε,κ] R̃
+(λ,γ(λ)).

Using the second derivative of R̃+(λ,γ(λ)), we next show that R̃+(λ,γ(λ)) is concave in λ on

[ε, κ]. First, by (??),

β
dR̃+(λ,γ(λ))

dλ
= V ′(λ)−Q(γ(λ))− c

γ(λ)−λ
+λV ′′(λ)− cλ

(γ(λ)−λ)2
(39)

and

β
d2R̃+(λ,γ(λ))

dλ2
= 2V ′′(λ) +λV ′′′(λ)− 2c

(γ(λ)−λ)2
− 2cλ(1− γ′(λ))

(γ(λ)−λ)3
.

By Lemma ??, Lemma ??, Lemma ??, and Assumptions ?? and ??, each of the terms on the

right-hand side is either negative or non-positive. Also, by Lemma ??,

β
d2R̃+(λ,γ(λ))

dλ2
< 0, for λ∈ (0, κ). (40)

Thus, R̃+(λ,γ(λ)) is concave in λ for λ∈ [ε, κ]. Recall that by our assumption there exists λ∈ [ε, κ]

such that R̃+(λ,γ(λ)) > 0. Because R̃+(λ,γ(λ)) is concave in λ and R̃+(ε, γ(ε)) < R̃+(λ∗, γ(λ∗))

and R̃+(κ,γ(κ))< R̃+(λ∗, γ(λ∗)), for λ∈ [ε, κ], we can use the necessary first-order condition for an

optimal solution. The necessary first-order condition (using (??)) gives (??). Uniqueness is then

ensured by strict concavity. Also, (??) has a solution, λ̃ ∈ [ε, κ], because the optimal point is not

at the boundaries. The second part of the lemma is obvious. �

Given functional forms for the utility functions, the optimal service rate can thus be determined

using Lemma ??. Finally, using (??), the price can be determined as well, solving the optimization

problem in (??) by Lemma ??.
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F.2. Optimal decisions of a welfare-maximizing specialist

In Section ??, we considered the specialist and the patients to be separate entities focused on their

own self-interest. Here we consider the specialist and the patients as a single combined entity and

solve the optimization problem in (??) for socially optimal decisions. The technical details are

similar to those in Section ??, so we do not repeat them here.

Assume that λ̃s ∈ [0,Λ] satisfies the following equation (we show that the solution is unique if a

solution exists):

V ′(λ̃s)−Q(γ(λ̃s))−
c

γ(λ̃s)− λ̃s
− cλ̃s

(γ(λ̃s)− λ̃s)2
= 0.

By (??) and since V ′(λ) =m− t(F−1 (λ/Λ)) for λ∈ (0,Λ), the marginal change in the cumulative

benefit function value for the welfare-maximizing specialist with an increase in the arrival rate

is equal to the benefit received by the farthest patient (m − t(xλ)) among the patients seeking

treatment, a fact we use below.

Lemma 7. If there exists (λ,µ) such that U(λ,µ)> 0, then there exists a unique optimal λ∗s; that

is, U(λ∗s, γ(λ∗s)) = U∗ > 0. If λ̃s ∈ [0,Λ] exists, then λ∗s = λ̃s; otherwise, λ∗s = Λ. If no such (λ,µ)

exists, U∗ = 0.

Comparing Lemmas ?? and ??, if the arrival rate per unit time at the revenue-maximizing specialist

and the welfare-maximizing specialist is the same and if U∗(λ) > 0, then they both work at the

same service rate. In other words, if the arrival rates of patients at the specialists are exogenous,

then both revenue-maximizing and welfare-maximizing specialists spend equal amounts of time

with the patients on average.

Before we prove Lemma ??, we present a few preliminary results. The following result corresponds

to Lemma ?? in this setting.

Lemma 8. If µ≥Q−1(Mv) or if µ≤ λ+ c/Mv, then U(λ,µ)≤ 0.

The proof is similar to that of Lemma ?? and thus is omitted. Using this result, the objective (??)

can be written as U∗ = supλ≥0, λ+c/Mv≤µ≤Q−1(Mv)U(λ,µ), and, by (??),

U(0, µ) = 0, for any µ≥ 0. (41)

Next, we find the optimal service rate, µ, given the arrival rate, λ; that is, given λ≥ 0, we solve

the optimization problem U∗(λ) = supλ+c/Mv≤µU(λ,µ). We then have the following lemma, which

is similar to Lemma ??, for γ(λ) defined in (??).
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Lemma 9. Given λ∈ (0,Λ], if there exists µ> λ such that U(λ,µ)> 0, then U∗(λ) =U(λ,γ(λ)).

Next we prove Lemma ??.

Proof of Lemma ??: Assume that there exists (λ,µ) such that U(λ,µ)> 0. We have

sup
0≤λ≤Λ,µ≥0

U(λ,µ) = sup
0<λ≤Λ,µ≥0

U(λ,µ) = sup
0<λ≤Q−1(Mv)∧Λ

U(λ,γ(λ)), (42)

where the first equality follows from (??) and the second equality follows from the assumption that

U∗ > 0 and Lemma ??.

Define

U+(λ) = V (λ)−
(
Q(γ(λ)) +

c

γ(λ)−λ

)
λ.

Because U∗(λ∗s) = supλ≥0U
∗(λ), and U∗ > 0 by the assumption in the theorem,

sup
0<λ≤Q−1(Mv)∧Λ

U(λ,γ(λ)) = sup
0<λ≤Q−1(Mv)∧Λ

U+(λ). (43)

Note that U+ is continuous on [0,Λ] and limsupλ→0U
+(λ)≤ 0. Similar to the proof of Lemma ??,

there exists Q−1(Mv)∧Λ> ε> 0 such that

sup
0<λ≤Q−1(Mv)∧Λ

U+(λ) = sup
ε≤λ≤Q−1(Mv)∧Λ

U+(λ).

By Lemma ??, Lemma ??, and Assumptions ?? and ??, U+ is continuous. Therefore there

exists λ∗s ∈ [ε,Q−1(Mv) ∧Λ] such that U+(λ∗s) = supε≤λ≤Q−1(Mv)∧ΛU
+(λ), and, by (??) and (??),

U∗(λ∗s) = supλ≥0U
∗(λ).

Using the second derivative of U+(λ), we next show that U+(λ) is concave in λ on (0,Λ]. First,

by (??),

dU+(λ)

dλ
= V ′(λ)−Q(γ(λ))− c

γ(λ)−λ
−λ

(
c

(γ(λ)−λ)2

)
.

Also, again by (??),

d2U+(λ,γ(λ))

dλ2
= V ′′(λ)− 2c

(γ(λ)−λ)2
− 2c(1− γ′(λ))λ

(γ(λ)−λ)3
.

Hence, since γ(λ)>λ by Lemma ??, and by Lemma ?? and Lemma ?? each term is non-positive,

d2U+(λ,γ(λ))

dλ2
< 0, ∀λ∈ (0,Λ]. (44)

Thus, U+(λ) is strictly concave in λ, for λ ∈ (0,Λ]. We thus can use the necessary first-order

conditions for an optimal solution. Then if λ̃s ∈ [0,Λ] exists, it must be the optimal solution due

to strict concavity. Otherwise, the optimal solution must be at the boundary Λ. The second part

of the result follows from (??). �
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F.3. Proofs of Propositions ?? and ?? and Theorem ??

Proof of Proposition ??: Consider two travel burden functions t1 and t2 such that t2(x) =

t1(x) + a for some constant a≥ 0, for all x≥ 0, and assume that Assumptions ??, ??, ??, and ??

hold and that R∗2 > 0. Let V1 and V2 be defined as in (??) when the travel burden is given by t1 and

t2 respectively. Therefore, we have V ′i (λ) =m− ti(F−1(λ/Λ)) by (??). Let hi, i= 1,2, be defined

by

hi(λ) = V ′i (λ) +λV ′′i (λ)−Q(γ(λ))− c

γ(λ)−λ
− cλ

(γ(λ)−λ)2
. (45)

By the assumption on t1 and t2, Lemma ??, and (??), we have

h1(λ)≥ h2(λ). (46)

Because R∗2 > 0, λ∗2 > 0 by (??) and (??). Therefore, by Lemma ??, h2(λ∗2) = 0, and by (??),

h2(λ)> 0 for λ∈ (0, λ∗2). Hence, h1(λ)> 0 for λ∈ (0, λ∗2) by (??), giving part (i) by Lemma ??. The

proof of µ∗1 ≥ µ∗2 follows directly from part (i) and Lemmas ?? and ??.

Now assume that t1(x) = 0. In this case we need to modify the proof of Lemma ?? because the

proof relies on Assumption ??. Our approach can be used to show that we can still find the optimal

solution in a similar way. The details are very similar to the case with heterogeneous customers,

so we only present the summary of results here.

Consider a service system when v=m with probability 1. In this case the definition of the equi-

librium is different because all customers have the same utility from seeking service. In equilibrium

customers choose to join the service with probability q such that the utility from seeking service

becomes equal to not seeking service. We refer the reader to ? and ? for more details.

The rest of the analysis for identifying the optimal actions for a specialist is identical to that

in Section ?? by setting V ′(λ) = Θ̄−1(λ/Λ) =m for all λ ∈ [0,Λ]. Next we provide the details. Let

k(p,µ) =m−Q(µ)−βp− c/µ. For given µ> 0 and p≥ 0, define

q∗(p,µ) =

{
sup{q :m−Q(µ)−βp− c

µ−qΛ = 0}, if k(p,µ)≥ 0

0, otherwise
.

Then the equilibrium arrival rate λm(p,µ) is given by λm(p,µ) = q∗(p,µ)Λ. The specialist’s objective

is given by

Rm(p,µ) =

{
pλm(p,µ), if p≥ 0 and µ> λ(p,µ)

0, otherwise
.

Let R∗m = supp≥0,µ>0Rm(p,µ). As in Section ??, we can cast the problem in terms of choosing the

arrival rate and the service rate. Define

pm(λ,µ) = sup

{
p∈R :m−Q(µ)−βp− c

µ−λ
≤ 0

}
∨ 0 (47)
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and

R̃m(λ,µ) =

{
pm(λ,µ)λ, if λ∈ [0,Λ] and µ> λ

0, otherwise
.

Let R̃∗m = supλ≥0,µ>0 R̃m(p,µ). Then Lemma ?? still holds in this case. That is, R̃∗m =R∗m.

Lemma ?? and the following result corresponding to Lemma ?? hold. Let λ̃m ∈ [0,Λ] be a solution

to

m−Q(γ(λ̃m))− c

γ(λ̃m)− λ̃m
− cλ̃m

(γ(λ̃m)− λ̃m)2
= 0. (48)

If there exist λ> 0 and µ> λ such that R̃m(λ,µ)> 0, and λ̃m ∈ [0,Λ] exists, then λ∗1 = λ̃m; otherwise

λ∗1 = Λ. If no such λ> 0 and µ> λ exist, then R̃∗m = 0.

Now assume that t2 satisfies Assumption ??, as if not the proof is very similar to the one

we present below using (??). Because R∗2 > 0, λ∗2 > 0 by (??) and (??). Also, by (??) and (??),

pm(λ,µ) ≥ p(λ,µ) for any λ > 0 and µ > 0, which implies that R̃m(λ,µ) ≥ R̃2(λ,µ), where R̃2 is

defined as in (??) for the case in which the travel burden is given by t2. Hence, if λ∗2 > 0, then

λ∗1 > 0.

Let h1 be defined by

h1(λ) = m−Q(γ(λ))− c

γ(λ)−λ
− cλ

(γ(λ)−λ)2
. (49)

Let V2 be defined as in (??) when the travel burden is given by t2. Also, let h2 be defined as in

(??); that is,

h2(λ) = V ′2(λ) +λV ′′2 (λ)−Q(γ(λ))− c

γ(λ)−λ
− cλ

(γ(λ)−λ)2
. (50)

From Assumption ??, Lemma ??, and (??) and (??), h1(λ)≥ h2(λ).

The result then follows from the discussion following (??) above. �

Proof of Theorem ??: For parts (i) and (ii), the proof follows from Lemmas ?? and ??, in a way

similar to the proof of Proposition ??. For the third part of the proposition, if customers are homo-

geneous in their travel burden (i.e., t(x) is a constant), then the objectives of the welfare-maximizing

specialist and the revenue-maximizing specialist are identical by (??) and (??). Therefore, their

optimal actions are identical as well. �

Proof of Proposition ??: We solve the optimization problem for the revenue-maximizing spe-

cialist and the welfare-maximizing specialist using the approach given in ?. It can be shown that

p∗s = δ(m−2
√
cδ)/(β(t0 +2δ)). When the price is exogenous, the optimal arrival rate for a revenue-

maximizing specialist is λ∗(p) = (m− pβ− 2
√
cδ)/(t0 + δ), and the optimal service rate is given by
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µ∗(p) = (m− pβ)/(t0 + δ) +
√
c/δ(t0δ)(t0 + δ). The optimal service rate for a welfare-maximizing

specialist is given by µ∗s = (m−2
√
cδ)/(t0 +2δ)+

√
c/δ. Comparing the two service rates, the price

at which the two service rates (and so the arrival rates) are the same is given by p= p∗s. Proposition

?? then follows. �

G. Exogenous Price Setting Numerical Analysis

We better illustrate Proposition ?? using a numerical analysis. We continue to use the linear

functional forms introduced above and assume that δ = 1,m= 60, t0 = 5, β = 0.1, and c= 5. Fig-

ure ???? compares the total revenue and welfare, and Figure ???? the optimal service rate, against

a fixed price set by a third party. We can observe that the revenue-maximizing price (p∗) is higher

than that of the welfare-maximizing price (p∗s). We also observe that there is a linear relationship

between the fixed price and the optimal service and arrival rates. The threshold mentioned in

Proposition ?? is marked by p∗s in the figures (p∗s = 79), above which the optimal arrival and service

rates for a revenue-maximizing specialist are lower than those for a welfare-maximizing specialist.

If the exogenous price is in Region I (< p∗s), then not only does the specialist’s revenue increase,

but the welfare increases as well with a higher price. Similarly, revenue and welfare both increase

if the price is reduced in Region III. Hence the third party who determines the exogenous price is

limited to choosing a price from Region II (between p∗s and p∗).

(a) Optimal Revenue and Total Welfare vs. Price: δ= 1;m=

60; t0 = 5;β = 0.1; c= 5

(b) Optimal Service Rates vs. Price: δ = 1;m = 60; t0 =

5;β = 0.1; c= 5

Figure 5 Analysis of optimal service rates, revenue, and total welfare when price per visit is exogenous
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H. Proofs of the results in Section ??
H.1. Proof of Proposition ??

Given a strategy for patients (see Section ?? for a mathematical definition), let λin denote the

arrival rate for in-person mode patients and λtm the arrival rate for telemedicine mode patients.

Let λt denote the arrival rate of telemedicine visits and λi denote the arrival rate of in-person visits

per unit time, which includes in-person visits from patients opting for the telemedicine mode of

treatment as well. Hence,

λi = λin + (1−α)λtm and λt = αλtm. (51)

We set λ = (λi, λt). We next establish the equilibrium for a given p and µ. We start with the

following elementary result:

Lemma 10. Fix λ,p, and µ ∈ R+. If, for a patient located at distance x1, Ψi(λ,p,µ,x1) ≥

Ψt(λ,p,µ,x1), then Ψi(λ,p,µ,x)>Ψt(λ,p,µ,x) for all x< x1. Similarly, if, for a patient located at

distance x1, Ψi(λ,p,µ,x1)≤Ψt(λ,p,µ,x1), then Ψi(λ,p,µ,x)<Ψt(λ,p,µ,x) for all x> x1. Also, if

Ψt(λ,p,µ,x1)≤ 0, then Ψt(λ,p,µ,x)< 0 for all x> x1.

The proof immediately follows from the definitions of Ψt and Ψi in (??) and (??) and the fact that

t is strictly increasing. We can then deduce that for a strategy to be an equilibrium it has to have

the following structure: There exist x1 ≥ x0 ≥ 0 such that patients located closer than x0 prefer the

in-person mode, patients located between x0 and x1 prefer the telemedicine mode, and patients

located beyond x1 do not seek treatment.

From here on we assume that xID > 0 (see (??)); that is, at least some patients prefer the in-

person mode. Otherwise, none of the patients prefers the in-person mode, and this case reduces

to a specialist offering only the telemedicine mode, which can be analyzed as in Section ??. Let

D :R2
+→R+ be defined as follows:

D(p,µ) =

{
inf {x≥ 0 : k1(p,µ,ΛF (x))− t(x)≤ 0 and µ≥ΛF (x)} , if k1(p,µ,0)≥ 0

0, otherwise
, (52)

where k1(p,µ, `) = mi −Q(µ)− βp− c/(µ− `). Thus, D(p,µ) denotes the location of the patient

who is indifferent between choosing treatment and not seeking treatment when the telemedicine

mode is not available. Also, given p ≥ 0 and µ ≥ 0, let the telemedicine mode utility component

independent of patient location be given by k2(p,µ, `) = αmt+(1−α)mi−s−Q(µ)−βp−c/(µ−`),

and define xTM :R2
+→R+ by

xTM(p,µ) =

{
inf {x≥ 0 : k2(p,µ,ΛF (x))− (1−α)t(x)≤ 0 and µ>ΛF (x)} , if k2(p,µ,0)≥ 0

0, otherwise
.

(53)
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Therefore, xTM(p,µ) denotes the location of the patient who is indifferent between choosing the

telemedicine mode and not seeking treatment when the telemedicine option is available. Let i, t, and

o denote three alternatives: the in-person mode, the telemedicine mode, and not seeking treatment,

respectively. Hence the action set for the patients is given by A = {i, t, o}. Let gx(a) denote the

probability that a patient in location x ∈ R+ chooses action a ∈ A. We have the following result,

which implies Proposition ??. We need the more general result in proving Theorems ?? and ??

below.

Theorem 4. For fixed p≥ 0 and µ> 0,

i) if D(p,µ) ≤ xID, then the unique7 equilibrium is given by gx(i) = 1 for 0 ≤ x ≤D(p,µ) and

gx(o) = 1 for x>D(p,µ);

ii) if D(p,µ)> xID, then xID < xTM(p,µ), and the unique equilibrium is given by gx(i) = 1 for

0≤ x≤ xID, gx(t) = 1 for x∈ (xID, xTM(p,µ)], and gx(o) = 1 for x> xTM(p,µ).

Based on Theorem ??, for a given (p,µ), if the condition in part (i) holds (D(p,µ)≤ xID), then

patients do not prefer the telemedicine mode and none of the patients seeks treatment if in addition

D(p,µ) = 0; if the condition in part (ii) holds (D(p,µ) > xID), some of the patients choose the

in-person mode and some choose the telemedicine mode.

Proof of Theorem ??: First, by Lemma ?? and (??),

Ψi(λ,p,µ,x)>Ψt(λ,p,µ,x), for all x< xID, (54)

for any λ,p, and µ. Hence in any equilibrium

gx(t) = 0 for 0≤ x< xID. (55)

Fix p≥ 0 and µ> 0 for the rest of the proof.

Part (i): Assume that xTM ≤D(p,µ) ≤ xID. Let G = {gx : x ≥ 0} denote the strategy profile

given in part (i) and λG denote the associated total arrival rate defined as in (??). Note that

λG = ΛF (D(p,µ)) by (??). We first show that G is an equilibrium. By Lemma ??, (??), and (??),

for x∈ [0,D(p,µ)], (??) holds with gx(i) = 1. By (??), (??), and (??), (??) holds with gx(o) = 1 for

x ∈ (D(p,µ), xID]. Finally, by Lemma ?? and (??), (??) holds with gx(o) = 1 for x > xID . Hence

G is an equilibrium.

Next we show G = {gx : x ≥ 0} is the unique equilibrium. Let G′ = {g′x : x ≥ 0} be another

equilibrium, and denote the associated total arrival rate by λ′, defined as in (??). First assume that

7 in almost everywhere (a.e.) measure theory technical sense.
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g′x′(t)> 0 for some x′, so Ψt(λ,p,µ,x
′)≥ 0 by (??). Then, by (??), x′ ≥ xID. Also, by Ψt(λ,p,µ,x

′)≥

0, (??), and the fact that t is strictly increasing,

Ψt(λ
′, p,µ,x)> 0 for all x< x′, (56)

and by (??) this implies that

Ψi(λ
′, p,µ,x)> 0 for all x< xID. (57)

If x′ = xID, then G and G′ must be equal a.e. by (??) and (??). Thus assume that x′ > xID.

Then, again by (??) and (??), g′x(i) = 1 for all x < xID, and g′x(t) = 1 for x ∈ (xID, x
′). Therefore

λ′ >λ by (??) and the fact that x′ >xID. So by (??) there exists x′′ <D(p,µ) such that

Ψi(λ
′, p,µ,x)< 0 for all x∈ [x′′,D(p,µ)]. (58)

Since D(p,µ)≤ xID and x′ > xID, (??) contradicts (??); therefore no such x′ exists and patients

only seek in-person visits. It then readily follows from Lemma ?? that G is the unique equilibrium

(in the a.e. sense).

Part (ii): Now assume that D(p,µ)> xID. First we prove that xTM(p,µ)> xID. Note that for

x∈ (xID,D(p,µ)),

Ψt(ΛF (D(p,µ)), p,µ,x)≥Ψi(ΛF (D(p,µ)), p,µ,x)> 0, (59)

where the first inequality follows from the definition of xID and the second follows from the defi-

nition of D(p,µ). By (??), (??) implies that xTM(p,µ)≥D(p,µ)>xID.

Let G = {gx : x ≥ 0} denote the strategy profile given in part (ii) and λG denote the asso-

ciated total arrival rate defined as in (??). We first show that G is an equilibrium. Note that

λG = ΛF (xTM(p,µ)). By the definition of xID and the fact that xTM(p,µ)>xID, Ψi(λG, p,µ,x)≥

Ψt(λG, p,µ,x) > 0 for all x ∈ [0, xID]. Hence, for x ∈ [0, xID], (??) holds with gx(i) = 1. Similarly,

for x ∈ [xID, xTM(p,µ)], by (??) and (??), Ψt(λG, p,µ,x) ≥ Ψi(λG, p,µ,x) and Ψt(λG, p,µ,x) ≥ 0.

Hence, for x∈ [xID, xTM(p,µ)], (??) holds with gx(t) = 1. Finally, by (??), the fact that xTM(p,µ)>

xID, and Lemma ??, Ψi(λG, p,µ,x) ≤ Ψt(λG, p,µ,x) < 0 for all x > xTM(p,µ). Thus, for x >

xTM(p,µ), (??) holds with gx(o) = 1.

Next we show that G= {gx : x≥ 0} is the unique equilibrium. Let G′ = {g′x : x≥ 0} be another

equilibrium, and denote the associated total arrival rate by λ′ defined as in (??). First we show

that for y > xTM(p,µ), in any equilibrium g′y(o) = 1. If not, then by (??) Ψt(λ
′, p,µ, y)≥ 0, and so

by Lemma ??

Ψt(λ
′, p,µ,x)> 0, for all x< y. (60)
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This implies that g′x(t) = 1 for all x ∈ (xID, y), so λ′ > λG. But then, by (??) and the fact that

xTM(p,µ) > xID, Ψi(λ
′, p,µ,x) < Ψt(λ

′, p,µ,x) < 0, for x ∈ (xTM , y). This obviously contradicts

(??), so no such y exists. This also implies that λ≤ λG. Therefore, by (??), (??), and Lemma ??,

any equilibrium strategy g′x must satisfy g′x(i) = 1 for all x ∈ [0, xID), since Ψi(λ
′, p,µ,x) >

Ψt(λ
′, p,µ,x) > 0, for all x ∈ [0, xID), where the last inequality follows from the fact that xID <

xTM(p,µ). Then it readily follows that g′x(t) = 1 for x ∈ (xID, xTM(p,µ)), proving uniqueness

a.e. �

H.2. Proof of Theorem ??

We first show that when the specialist does not differentiate between in-person and telemedicine

patients, his objective function is separable in a certain sense. This allows us to obtain a closed-

form solution for the specialist’s optimal decisions. The separability results from the fact that the

difference between the utilities (see (??)) only depends on the patient’s characteristics, not the

specialist’s decisions.

Before we state the main result in this section we note that if at equilibrium all patients seeking

treatment choose the in-person mode or all patients seeking treatment choose the telemedicine

mode, then the specialist ends up offering only one mode of treatment: the in-person mode or the

telemedicine mode, respectively. His (revenue-maximizing) optimal actions are determined using

Lemma ?? and Lemma ?? in Appendix ??. With a slight abuse of notation, we let (p∗k, µ
∗
k) denote

the optimal decisions for a specialist offering only the in-person mode for k = 1 and only the

telemedicine mode for k= 2 for notational simplicity. (Quantities p∗1 and µ∗1 are the optimal choices

of the revenue-maximizing provider we identified in Section ??.) We similarly use subscript k with

the function λ defined in (??) and R defined as in (??) to denote the associated quantities with

these two types of specialists. By (??), given µ∈R+ and p∈R+,

λ1(p,µ) = ΛF (D(p,µ)) and λ2(p,µ) = ΛF (xTM(p,µ)). (61)

We set λ∗k = λk(p
∗
k, µ

∗
k) and R∗k =Rk(p

∗
k, µ

∗
k), k= 1,2, for notational brevity.

Proposition 4. For a specialist offering both treatment modes, R̄∗ = max{R∗1,R∗2}. For m =

arg maxk=1,2{R∗k} (which denotes the mode whose revenue is higher), p̃ = p∗m and µ̃ = µ∗m. Hence

the total arrival rate satisfies λi(p̃, µ̃) +λt(p̃, µ̃) = λ∗m.

From Proposition ??, in order to find the optimal decisions for a specialist offering both modes of

treatment, we only need to find the optimal actions for a specialist offering each mode exclusively (to

a patient population with the same characteristics). The specialist offering both modes of treatment
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will choose the same action as the one that obtains more revenue. The resultant equilibrium may

or may not be a mixed equilibrium, as we explain next.

We can also identify the ensuing equilibrium if the specialist chooses the optimal actions given in

Proposition ??. Specifically, if R∗1 ≥R∗2 and the specialist chooses the parameters p̃= p∗1 and µ̃= µ∗1,

then patients do not choose the telemedicine mode in the equilibrium.

If R∗1 < R∗2, then D(p∗2, µ
∗
2) > xID, and so the characterization of the equilibrium follows from

Theorem ??(ii).

Proof of Proposition ??: We prove the result by showing that for any p≥ 0 and µ> 0,

R̄(p,µ) = max{R1(p,µ),R2(p,µ)} . (62)

Fix p≥ 0 and µ> 0. Note that if Ri(p,µ)> (≥)Ri′(p,µ), then λi(p,µ)> (resp.,≥)λi′(p,µ) by (??),

for i∈ {1,2} and i′ = {1,2} \ {i}. We prove the following result below.

Lemma 11. If λ1(p,µ)≥ λ2(p,µ), then D(p,µ)≤ xID, and if λ1(p,µ)<λ2(p,µ), then D(p,µ)>

xID.

Hence if R1(p,µ)≥ R2(p,µ), then by Theorem ??(i), (??), and Lemma ??, R̄(p,µ) = R1(p,µ). If

on the other hand R1(p,µ) < R2(p,µ), then by Theorem ??(ii), (??), and Lemma ??, R̄(p,µ) =

R2(p,µ), proving (??). We complete the proof by proving Lemma ??.

Assume that

λ1(p,µ)≥ λ2(p,µ). (63)

This implies by (??) that

D(p,µ)≥ xTM(p,µ). (64)

Therefore

Ψi(λ1(p,µ), p,µ,D(p,µ))≥Ψt(λ2(p,µ), p,µ,D(p,µ))≥Ψt(λ1(p,µ), p,µ,D(p,µ)), (65)

where the first inequality follows from (??), (??), and (??), and the second inequality follows from

(??). By Lemma ?? and (??), Ψi(λ1(p,µ), p,µ,x)≥Ψt(λ1(p,µ), p,µ,x), for all x≤D(p,µ). Thus

D(p,µ)≤ xID by (??), proving the first part of the lemma.

Now assume that

λ1(p,µ)<λ2(p,µ). (66)
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This implies by (??) that D(p,µ)<xTM(p,µ). Therefore

Ψi(λ1(p,µ), p,µ,D(p,µ))<Ψt(λ2(p,µ), p,µ,D(p,µ))≤Ψt(λ1(p,µ), p,µ,D(p,µ)), (67)

where the first inequality follows from (??), (??), (??), and Lemma ??, and the second inequality

follows from (??). By Lemma ?? and (??), Ψi(λ1(p,µ), p,µ,x) < Ψt(λ1(p,µ), p,µ,x) for all x ≥

D(p,µ). Thus D(p,µ) > xID by (??), proving the second part of the lemma and concluding the

proof. �

The proof of Theorem ?? follows from Theorem ?? and Proposition ??. Assume that λ∗ > 0 and

(??) holds. By (??), λ∗1 = ΛF (D(p∗1, µ
∗
1)) . Then, by (??), (??), and (??), Ψt(λ

∗
1, p
∗
1, µ
∗
1,D(p∗1, µ

∗
1))>

Ψi(λ
∗
1, p
∗
1, µ
∗
1,D(p∗1, µ

∗
1)) = 0. Thus xTM(p∗1, µ

∗
1)>D(p∗1, µ

∗
1). Therefore, by (??), R∗2 >R∗1. Then, by

Proposition ??, R̄∗ =R∗2 and λ̃= λ∗2, proving part (i). Part (ii) follows from Lemma ??. �

H.3. Proof of Theorem ??

Note that it is enough to prove that

Ud(λ
∗
2, µ
∗
2)≥U(λ∗1, µ

∗
1), (68)

where λ∗i and µ∗i are defined as in the previous section for i= 1,2. This follows from the fact that

when telemedicine is feasible the optimal arrival and service rates coincide with those when the

specialist offers only the telemedicine mode by Theorem ??.

If λ∗1 = 0, then U(λ∗1, µ
∗
1) = 0 by (??) as well, so (??) holds trivially. Assume that λ∗1 > 0 and that

(??) holds. If Ud(λ,µ) = 0 for all λ> 0 and µ> 0, then, by (??) and (??), Ud(λ,µ) = 0 for all λ> 0

and µ> 0 as well (recall that we assume xID > 0). So also assume that Ud(λ,µ)> 0 for some λ> 0

and µ> 0.

Let U∗d (λ) = supµ>λUd(λ,µ). Similar to Lemma ??, it can be shown that if there exists µ > λ

such that Ud(λ,µ)> 0, then U∗d (λ) =Ud(λ,γ(λ)).

If the specialist chooses to serve arrival rate λ, then the distance of the farthest patient is given

by x= F−1(λ/Λ). By the proof of Theorem ??, if (??) holds, then λ1(µ∗1, p
∗
1)≥ΛF (xID). Therefore,

by Proposition ??, Lemma ??, and (??),

U∗1 (ΛF (xID))≥U∗1 (ΛF (x)) for x≤ xID. (69)

Because U∗d (ΛF (x)) =U∗1 (ΛF (x)) for x≤ xID, we have by (??) that

U∗d (ΛF (xID))≥U∗1 (ΛF (x)) for x≤ xID. (70)
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Also, by (??), dV ∗d (λ)/dλ= m̃− (1−α)t(F−1(λ/Λ)), for λ>ΛF (xID). Therefore, by (??),

dU∗d (λ)

dλ
=
dU∗2 (λ)

dλ
, for λ>ΛF (xID) . (71)

By Proposition ??, Lemma ??, and (??), dU∗2 (λ)/dλ> 0 for λ< λ∗2. Thus, by (??), U∗d is increasing

for λ∈ (ΛF (xID) , λ∗2). Combined with (??), this gives the desired result. �

H.4. Telemedicine equilibrium when prices are exogenous

In this section, we analyze the impact of introducing telemedicine when the prices are fixed exoge-

nously (recall that we analyze the same case without telemedicine in Section ??). We assume a

setting similar to Section ??; the specialist employs the same service rate for both in-person and

telemedicine visits. The model parameters specific to telemedicine are explained in Section ??.

We also assume the exogenous price to be the same for both types of visits. We make use of the

simplifying assumptions on page ?? in an attempt to obtain closed-form solutions to get better

insights. Despite the simplifying assumptions and only one decision variable for the specialist,

namely the service rate, finding a closed-form solution for the equilibrium arrival rates is analyti-

cally cumbersome. Hence we optimize the specialist’s revenue assuming specific values for the model

parameters and then obtain insights. We assume the following values for the model parameters:

δ = 1,mi = 60,mt = 60, t0 = 10, β = 0.1, c = 5, α = 0.75, and s = 10. We then find the equilibrium

arrival rates as functions of the service rate, µ. Then we optimize the revenue function to find the

optimal service rate. Figures ???? and ???? show the optimal service rates for the specialist and

the optimal arrival rates at equilibrium as functions of the exogenous price respectively.

We observe that, similar to Theorem ??, the total arrival rate and service rate increase with

the introduction of telemedicine. Similar to Proposition ??, there is a threshold for the exogenous

price beyond which the service rates after the introduction of telemedicine are lower than those of

the welfare-maximizing specialist. If the exogenous price is lower, it will tend to drive the optimal

service rates higher. Also, this threshold has moved to the right after telemedicine; that is, the

threshold is higher than that when telemedicine mode is not available, so if the existing price

continues after telemedicine, service rates will be higher and may be higher than those of the

welfare-maximizing specialist.

I. Additional Numerical Analysis

In this section we extend our numerical analysis in Section ??. We first look at two important

measures, utilization and congestion costs, and see how sensitive they are to the clinical feasibility

of telemedicine (α) and the transportation cost (t0). We then look at the sensitivity of optimal
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(a) Optimal Service Rates vs. Price: δ = 1;mi =

60;mt = 60; t0 = 10;β = 0.1; c= 5;α= 0.75;s= 10

(b) Optimal Arrival Rates vs. Price: δ = 1;mi =

60;mt = 60; t0 = 10;β = 0.1; c= 5;α= 0.75;s= 10

Figure 6 Analysis of post-telemedicine optimal service rate and arrival rates when price per visit is exogenous:

µ∗A—optimal service rates for a revenue-maximizing specialist after telemedicine; λ∗i and λ∗t—optimal

arrival rates for in-person visits and telemedicine visits after telemedicine; µ∗s and λ∗s—optimal service

and arrival rates for a welfare-maximizing specialist before telemedicine; µ∗ and λ∗—optimal service

and arrival rates for a revenue-maximizing specialist before telemedicine

service rates, arrival rates, revenue, optimal prices, total welfare, and total utility with respect to

the relative benefit of telemedicine visits (mt/mi) and the setup cost (s).

Figures ???? and ???? compare the specialist’s utilization before telemedicine (ρ B) and after

telemedicine (ρi TM and ρt TM). Utilization goes up with the clinical feasibility of telemedicine,

with more patients getting treatment than before. Hence the congestion cost for all patients

increases when the specialist can choose two different service rates for in-person and telemedicine

visits. Similar to what we observed in Figure ????, utilization for in-person visits is higher than

utilization for telemedicine visits if α is not too high (0.3≤ α≤ 0.6). This is because the service

rates for telemedicine visits are higher (Figure ????), and with α being not so high demand (λ)

is lower as well. However, when α is higher (α > 0.6), utilization for telemedicine visits is higher

than that of in-person visits due to higher demand.

Even though the optimal service rate decreases with the travel burden (Figure ????), it is

interesting to note that the utilization also drops with the travel burden (Figure ????). This is

because the increased travel burden decreases patient utility and hence their arrival rate.

Figures ???? and ???? compare the congestion costs at optimal values before telemedicine for

a revenue-maximizing specialist (Cong B) and a welfare-maximizing specialist (Cong S) and after

telemedicine for in-person visits (Cong i) and for telemedicine visits (Cong TM), and the weighted

congestion cost (α Cong TM + (1−α) Cong i), as functions of α in Figure ???? and t0 in Figure

????. There is no difference between the congestion cost before telemedicine (Cong B) and the
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(a) Utilization vs. Clinical Feasibility of Telemedicine (α):

mt = 60; t0 = 4

(b) Utilization vs. Transportation Cost (t0): α= 0.75;mt =

60

Figure 7 Analyzing the utilization of the specialist at optimal values, optimal prices, and optimal revenue: δ =

1;mi = 60;β = 0.1;s= 10; c= 5

congestion cost for a welfare-maximizing specialist (Cong S). Even though the optimal arrival rates

and service rates are both different in these two cases, their differences (µ− λ) are the same and

hence the congestion costs are also the same. These lines therefore overlap in Figures ???? and

????.

We can also observe that congestion costs increase after the introduction of telemedicine owing

to greater patient coverage and higher specialist utilization. Because telemedicine also increases

productivity by increasing the service rate, as telemedicine becomes more feasible (higher α),

congestion costs decrease and approach the value before the introduction of telemedicine.

(a) Congestion Costs vs. Clinical Feasibility of Telemedicine

(α): mt = 60; t0 = 10

(b) Congestion Costs vs. Transportation Cost (t0): mt =

60;α= 0.75

Figure 8 Analyzing the total cost of congestion: δ= 1;mi = 60;β = 0.1;s= 10; c= 5
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(a) Service Rates vs. Relative Benefit of Telemedicine Visits

(mt/mi): α= 0.75; t0 = 10

(b) Arrival Rates vs. Relative Benefit of Telemedicine Visits

(mt/mi): α= 0.75; t0 = 10

Figure 9 Analyzing the optimal service rates (µ∗, µ∗i , and µ∗t ) and the optimal arrival rates (λ∗, λ∗i , and λ∗t ):

δ= 1;mi = 60;β = 0.1;s= 10; c= 5

(a) Service Rates vs. Setup Cost of Telemedicine (s): α =

0.8; t0 = 10

(b) Arrival Rates vs. Setup Cost of Telemedicine (s): α =

0.8; t0 = 10

Figure 10 Analyzing the optimal service rates (µ∗, µ∗i , and µ∗t ) and the optimal arrival rates (λ∗, λ∗i , and λ∗t ):

δ= 1;mi = 60;β = 0.1;s= 10; c= 5

Figures ???? and ???? show how the optimal service rates and arrival rates change with the

relative benefit of telemedicine visits (mt/mi). We observe that as the relative benefit increases,

the provider’s efficiency increases as well. When mt is low, telemedicine is not operationally and

economically viable.

Figures ???? and ???? show how the optimal service rates and arrival rates change with the

setup cost of telemedicine (s). We observe that as the setup cost increases, both the rates decrease

as well. When s is high, telemedicine is not operationally and economically viable.

Figures ???? and ???? compare the optimal prices for the specialist before telemedicine (p∗)
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and after telemedicine (p∗i for in-person visits, p∗t for telemedicine visits; the weighted price is

αp∗t + (1− α)p∗i ) as functions of the relative benefit of telemedicine visits, mt/mi (Figure ????),

and the clinical feasibility of telemedicine, α (Figure ????), respectively. The vertical lines in the

following figures are used to separate the different regions. Region I is when the specialist does not

offer the telemedicine mode, and the other regions are described as and when needed.

We see that both in-person and telemedicine prices in general drop after the introduction of

telemedicine, as seen in Region II. The weighted optimal price for telemedicine patients there-

fore drops as soon as telemedicine becomes feasible (mt/mi ≥ 0.55) and then increases with

telemedicine’s value. This is especially true when the benefits are equivalent (mt/mi = 1). Only

if the benefit from telemedicine visits is significantly larger than the benefit from in-person visits

(mt/mi ≥ 1.2, Region III, Figure ????) is it optimal for the specialist to charge higher prices for

telemedicine visits. Thus, in Region III, the specialist seems to capture more of the patient surplus

by charging a higher price.

The specialist plays with the two levers, price and service rate, to maximize his revenue. For low

values of α, the price for telemedicine visits is relatively lower (see Figure ????). Hence the service

rates are higher to optimize revenue. For higher values of α, prices are higher and compensated by

a decrease in the service rate.

The increased productivity and the increased volume will drive the price difference between

telemedicine and in-person visits. The actual prices will of course be influenced by the parameter

values. Region II in Figure ???? is also the area where the specialist begins to find the introduction

of telemedicine beneficial. When mt is lower (Region I), telemedicine is not operationally and

economically viable.

Figures ???? and ???? compare the optimal revenue (left vertical axis) for the specialist before

telemedicine (R∗) and after telemedicine (R∗ TM), and also show the proportion of time spent on

in-person visits, r (right vertical axis), as functions of the relative benefit of telemedicine visits,

mt/mi (Figure ????), and the setup cost of telemedicine, s (Figure ????). mt/mi is allowed to vary

from 0 to 1.5. We observe that as the relative benefit of telemedicine visits (mt/mi) increases, the

proportion of time spent on in-person visits (r) decreases. In other words, as telemedicine becomes

more attractive to the patient, the specialist also finds it beneficial to adopt telemedicine.

R∗, the specialist’s revenue before telemedicine, is constant with respect to mt/mi. In Figure

???? we see that, even when the clinical efficacy of telemedicine is somewhat smaller (mt/mi < 1),

patients would still find telemedicine desirable because of the reduced travel burden and hence the

specialist would be introducing the telemedicine mode. This is one of the reasons why telemedicine
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(a) Optimal Prices vs. Relative Benefit of Telemedicine Vis-

its (mt/mi): α= 0.75; t0 = 10

(b) Optimal Prices (p∗, p∗i and p∗t ) vs. Clinical Feasibility of

Telemedicine (α): δ = 1;mi = 60;β = 0.1;s= 10; c= 5;mt =

60; t0 = 10;s= 10

Figure 11 Analyzing the optimal prices (p∗, p∗i , and p
∗
t ): δ= 1;mi = 60;β = 0.1;s= 10; c= 5

(a) Optimal Revenues (R∗ and R∗TM) and Proportion of

Time Spent on In-person Visits (r) vs. Relative Benefit of

Telemedicine Visits (mt/mi): α= 0.75; t0 = 10;s= 10

(b) Optimal Revenues (R∗ and R∗TM) vs. Setup Cost of

Telemedicine (s): α= 0.8; t0 = 10;mt = 60

Figure 12 Analyzing the optimal revenue of the specialist at optimal values (R∗ and R∗TM) and proportion of

time spent on in-person visits (r): δ= 1;mi = 60;β = 0.1; c= 5

has been increasingly popular for treating minor medical conditions. Even though care may be

somewhat inferior, the convenience gained by patients through telemedicine is still significant.

Figures ???? and ???? compare the total welfare for a revenue-maximizing specialist before

telemedicine (RM), the total welfare for a welfare-maximizing specialist before telemedicine (WM),

and the total welfare for a revenue-maximizing specialist after telemedicine (TMRM) as functions of

the relative benefit of telemedicine visits, mt/mi (Figure ????), and the setup cost of telemedicine,

s (Figure ????).

Figures ???? and ???? compare the total patient surplus for a revenue-maximizing specialist
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(a) Total Welfare vs. Relative Benefit of Telemedicine Vis-

its (mt/mi): δ = 1;mi = 60; t0 = 10;β = 0.1;s = 10;α =

0.75; c= 5

(b) Total Welfare vs. Setup Cost (s): δ = 1;mi = 60;mt =

60;β = 0.1; t0 = 10;α= 0.75; c= 5

Figure 13 Analysis of total patient welfare under a welfare-maximizing specialist before the introduction of

telemedicine (WM) and a revenue-maximizing specialist before (RM) and after the introduction of

telemedicine (TMRM)

(a) Total Utility vs. Relative Benefit of Telemedicine Vis-

its (mt/mi): δ = 1;mi = 60;α = 0.75;β = 0.1; t0 = 10;s =

10; c= 5

(b) Total Utility vs. Setup Cost (s): δ = 1;mi = 60;mt =

60;β = 0.1; t0 = 10;α= 0.75; c= 5

Figure 14 Analysis of total patient surplus under a revenue-maximizing specialist before the introduction of

telemedicine (RM) and after the introduction of telemedicine (TMRM)

before telemedicine (RM) and after telemedicine (TMRM) as functions of the relative benefit of

telemedicine visits, mt/mi (Figure ????), and the setup cost of telemedicine, s (Figure ????). In

both figures, when the specialist does not offer the telemedicine mode the total patient surplus is

the same (mt/mi ≤ 0.53 in Figure ???? and s≥ 30 in Figure ????), and RM and TMRM overlap.

Figure ?? shows how patient utility varies with distance before (Before TM) and after

telemedicine (After TM). The point where the slope changes for the After TM line denotes the
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Figure 15 Analyzing patient utility with distance from the specialist: δ = 1;mi = 60;β = 0.1;s = 10; c = 5;mt =

60; t0 = 10;s= 10;α= 0.75

threshold where patients start preferring the telemedicine mode to the in-person mode. From Fig-

ure ??, we can observe that the utility for those patients located close to a specialist actually falls

(although only marginally) after the introduction of telemedicine. Even though prices fall after

the introduction of telemedicine, the higher service quality cost and the higher congestion cost

reduce the utility for these patients. Telemedicine is thus beneficial only for patients located at

some distance from the specialist.


