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given in Å. Note that de Wijs’ calculations were performed under

the local-density approximation for monoclinic phases, and under the

generalized gradient approximation for triclinic and tetragonal phases. 51

4.1 Parameters for the Gaussian functions added to the modified LEPS

potential, after Henkelman and Jónsson [3]. . . . . . . . . . . . . . . 92

5



LIST OF TABLES 6

4.2 Results, stepsize=0.05; Note that transition states 1 and 2 are inac-

cessible from basin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Results, stepsize=0.1; Note that transition states 1 and 2 are inacces-

sible from basin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Parameters for the force-field used in these simulations. . . . . . . . . 103

5.2 Parameters for the α-quartz supercell, compared against experiment.

As can be seen, c is 0.6% larger, and a 0.84% larger, in this doped

cell than in the experimental undoped values at 20 K measured by

Tucker et al; this is regarded as acceptable, certainly within the spirit

of empirical-potential calculations. . . . . . . . . . . . . . . . . . . . . 104

5.3 Parameters for the tridymite supercell; experimental data from Ki-

hara et al. [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Parameters for the α-cristobalite supercell; experimental data from

Pluth et al. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Figures

3.1 (a) Lattice parameters (for normalized cubic supercell with respect

to the ǫ phase) of WO3. Phase boundaries are denoted by solid lines,

and labelled with their position (in electrons per centre); (b) Volumes

of 2×2×2 supercell of WO3; (c) Bond lengths within WO6 octahedra,

all versus electron dopant concentration. . . . . . . . . . . . . . . . . 52

3.2 Offcentring in WO6 octahedra; (a) along [001], (b) along both [001]

and [110]-type directions . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Order parameters for the doping-induced phase transitions in WO3.
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Summary

Disorder in solids is one of the critical problems facing exponents of simulation-based

studies in the mineral sciences. In this thesis, I present some novel techniques which

can be used to probe the structure and dynamics of such systems under simulation,

and use the techniques thus developed to gain insights into some well-known and

scientifically-important classes of materials.

In Chapter 2, I present an overview of current practice, considering both classical

and quantum-mechanical methods. I also introduce some recent developments in

computer science and software engineering which have begun to be taken up in

scientific circles.

In Chapter 3, I present a study of charge doping in the electrochromic defect per-

ovskite WO3. By using a novel method to represent the doping process, I am able

to neglect dopant-size effects and chemical disorder; this leads to the gaining of new

insights into the sequence of dopant-induced phase transitions in this material.

In Chapter 4, an algorithm for discovery of transition states (named Constrained

Linear Maximization) is introduced. This is a development of an older approach,

called the Intrinsic Reaction Coordinate method; we present the key differences

between this approach and other competing techniques, and test the new method

on three energy surfaces; two test surfaces (one being a modified LEPS2D potential),

and the (001) surface of platinum simulated using Effective Medium Theory.

In Chapter 5, Constrained Linear Maximization is used to undertake studies of

lithium dopant motion in α-quartz, cristobalite and tridymite; in Chapter 6, it is

used to study lithium motion in a fully-coordinated SiO2 glass. In both of these

chapters, the interplay between relaxation of the SiO2 framework and the motion of

lithium is considered extensively.

Chapter 7 summarises and draws conclusions from the work in the thesis, and

presents possible directions for further research in the future.
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Chapter 1

Introduction

Over the course of the last sixty years, the simulation of materials at equilibrium

has progressed from proof-of-concept to fine art. There are many reasons for this;

foremost is the staggering increase in available calculating power. The first stored-

program computer, EDSAC, was switched on in 1949; just over fifty years later, in

2001, using a bespoke computer a molecular dynamics simulation on NaCl thirty-

three million atoms in size [7] was performed. It is not hyperbole to say that a whole

new approach to the physical sciences has been opened up by this new resource.

There have been huge advances in technique as well (and as a result); advanced

classical forcefields, and quantum-mechanical methods like Density Functional The-

ory [8, 9], enable the accurate (and frequently inexpensive) prediction of the me-

chanical, electrical and spectroscopic properties of the vast majority of crystalline

solids. However, not every class of problem is equally accessible to commonly-used

simulation techniques. If the system is ordered – and therefore, symmetry can be

exploited – or if the property one is interested in is time-independent, and does not

require calculation of the motion of atoms within the system, then on the whole it

is likely that it will be relatively straightforward to calculate by some means. Even

if one needs to resort to a very high level of theory – quantum Monte Carlo [10], say

18
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– it can be done, although one may need to find a very fast computer or be very

patient!

Some problems, unfortunately, cannot be attacked so easily, and a lot of work in

recent years has focussed on developing techniques to attack these more-challenging

systems. In the case of disordered materials, the periodic symmetry of the crystal

lattice is disturbed or destroyed; therefore, to simulate these one must either find

some way of placing the disorder in a periodic context or give up and simulate a

radically larger system, with a concomitant increase in computing power needed.

Often this can make the difference between a given system being tractable to simu-

lation or not – particularly when using quantum mechanical methods, as one must

when interested in the electronic behaviour of a system, where typically the CPU

time taken is of the order of the cube of the number of free electrons or worse.

This problem, serious as it is, still pales somewhat when compared to one of the

most significant problems facing computational materials science; that of simulating

the time-dependent dynamic properties of materials. Over the temperature range

we are typically interested in, the nuclei behave classically and we can therefore

use Newtonian mechanics to simulate their motion (in other words, use molecular

dynamics). We can only use this, though, if we’re likely to see the event; molec-

ular dynamics only gives us a probe out to microsecond timescales, and often the

processes we are interested in – diffusion, creep, and so on – take seconds to years.

Diffusion in particular is a challenge for simulation; the characteristic rate for diffu-

sion scales as exp(−∆E/kT ), where T is temperature and ∆E the activation barrier;

thus, diffusion problems can easily vary from being on the picosecond-to-microsecond

timescale, microsecond lengths being right at the limit of what can currently be sim-

ulated, to years. If one takes the natural timescale of an atomic motion as being

one femtosecond, and the natural timescale of human experience as a second, three

microseconds for an atom corresponds to ninety-five years on the human timescale

- an entire lifetime!

There is a very, very large gap between the timescales we can simulate directly and
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the timescales of the events we wish to probe; simple, unbiased molecular dynamics

are clearly not the complete answer. In attacking this problem we, therefore, need

to be a bit more ingenious; we need to consider what we can calculate, rather than

what we can’t. In the case of activated processes, harmonic transition state theory

is very well-established; as long as we can map out the minima and connecting

passes between them, we can determine the kinetics of the system. We don’t need

to observe events – just to know the prerequisites for them to occur.

In the present work, aside from an overview of the state of the art, I introduce novel

approaches to the analysis of characteristic problems of both these kinds. Firstly, I

consider chemical and electronic disorder, in the form of the effect of doping on the

electrochromic ceramic tungsten trioxide. Perovskites are enormously important ma-

terials commercially, quite apart from the dominant role of CaTiO3 in the mineralogy

of the deep Earth; tungsten trioxide is used for its electrochromic [11, 12] properties,

as mentioned – its optical properties vary with applied charge. It also undergoes a

metal-insulator transition, and undergoes many structural phase transitions under

temperature/pressure, including phases which exhibit antiferroelectricity.

Indeed, many perovskites exhibit remarkable behaviour, ranging from subtle elastic

behaviour such as the inverse plateau effect in [Sr,Ca]TiO3 [13] to their high-tech

applications – for instance, the ferroelectric switching behaviour of thin films, which

is used in the design of non-volatile memory devices and has been examined inten-

sively [14]. Tungsten trioxide is a good prototype for doping behaviour in perovskite

oxides; regarding it as ABO3 with a vacancy on the B site, it is a very good exam-

ple of a system displaying dopant-dependent Glazer [15] tilting transitions. Even

more remarkably, at around 91 K, sodium-doped WO3 displays islands of high-Tc

superconductivity [16]; in its own right, it is a fascinating material.

By finding a way of representing doping as a continuous process without destroying

the overall symmetry of the supercell and, thus, increasing the size of the calcula-

tion beyond reasonable limits, I map out the series of phase transitions which this

material undergoes when doped with electron donors. These simulations shed new
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light on experimental analyses of the structure of NaxWO3; this provides a potent

example of the importance of simulation and experimental analysis proceeding in

parallel. Furthermore, the chapter presents a general technique which can be used to

simulate the dopant behaviour of a large part of this class of technologically-critical

materials.

Secondly, the majority of the thesis is devoted to the prediction of diffusion behaviour

in network minerals. A modified, improved derivative of one of the oldest transition-

state search methods, the Intrinsic Reaction Coordinate method, is presented; we

derive the fundamental mathematical behaviour of this method, the method of Con-

strained Linear Maximization, in great detail, and further test the method by briefly

examining the complex problem of crowdion formation on the surface of platinum.

After that, using this novel method I investigate the diffusion of lithium dopant ions

through framework silicates; firstly in ordered polymorphs of quartz (quartz itself,

tridymite, cristobalite), and culminating with a study of diffusion dynamics in silica

glass.

The quartz–β-eucryptite system has been studied extensively by experiment and

approximate simulation methods over the last couple of years [6, 17]; I improve on

that work by using my exact (up to the limits of the potential) transition state

search method. The results thus obtained provide insights into both the mechanism

of transition in these materials and into the length-scale of strain associated with

diffusion in network silicates of these types; given that β-eucryptite, which shares the

β-quartz framework, is a one-dimensional fast-ion conductor [18], once again these

materials are of technological value above and beyond their considerable theoretical

interest. By studying the different polymorphs of quartz, it is possible to consider

the effect of their differing structures on the activation barrier for lithium diffusion.

Using those results, we consider diffusion of Li+ in silica glass. Although there

have been many studies of more highly doped glasses using molecular dynamics,

such as the lithium metasilicate glass Li2SiO3 [19], there have been very few of the

low-doping limit; I analyse the behaviour found in the glass in comparison with the
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behaviour seen in the regular silicate phases.

Therefore, the thesis builds towards this simulation of long-time-scale processes in

a highly disordered system; that, in itself, shows how far the field has come. There

is much further to go in the future, and that is addressed in the conclusion to this

work, but I would like to invite you to survey this thesis and, hopefully, enjoy the

view back over the land it covers.



Chapter 2

Methods for materials simulation;

an overview

2.1 Introduction

In the present study, two major categories of methods for materials simulation have

been used; first-principles electronic structure calculation through density functional

theory [9, 8], as embodied in the SIESTA [20] code, and classical forcefield simula-

tion as found in GULP [21]. In addition, some minor sections have been performed

with effective-medium theory (through the EMT [22] forcefield included in the Cam-

pos suite); I therefore give a brief overview of the common points of each of these

methods, particularly as they relate to the transition-state discovery algorithm pro-

poseed later in the thesis, of the key theoretical concepts underlying each of them,

and of any important peculiarities of each of the methods embodied by the programs.

In the final section of this chapter, however, I digress into software engineering;

some aspects of the work done in this thesis have touched on new approaches to the

process of implementing novel algorithms and approaches to simulation, and it is

worth spending a little time to introduce those.

23
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2.2 Atomistic simulation

All of the simulations performed in this thesis can broadly speaking be considered

as an operation on an explicit set of atoms with well-defined positions in a 3D vector

space. Models (and codes) which implement this kind of simulation are generally

referred to as atomistic.

2.2.1 Common features of our atomistic simulations

In essence, one can think of each model as specifying a Hamiltonian, taking the

simulation cell (and the positions of all atoms contained therein, denoted x and

consisting of a concatenation of the Cartesian positions of atoms 1 through n in

sequence - x1, y1, z1, x2 . . . zn−1xnynzn) as a variable and returning an energy; calling

this H(x), the corresponding forces on the system is given by;

F = −δH(x)

δx
(2.1)

The forces on any given atom are therefore just the relevant components of this

vector. The transition state search algorithm developed later in this thesis depends

solely on being able to evaluate the energy of a given configuration of atoms and the

forces acting on that configuration; therefore any energy-evaluation function which

fulfills these needs can be used with our methods, and indeed all of the atomistic

models used in this thesis provide well-defined forces on atoms in this manner. This

was, as might be expected, a primary criterion for their selection.
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Periodic boundary conditions and supercells

The vector space in which all our simulations are performed must be finite, else it

will not be computable. However, in a study of the bulk properties of periodic – and

(in principle) infinitely large, in the case of a perfect crystal – materials, artificially

truncating our simulations at some surface would either be unacceptably inaccurate

or require too big, and therefore computationally expensive, a simulation. Instead,

throughout this thesis the approximation of periodic boundary conditions (PBCs)

has been used.

In short this approximation can be expressed as follows:

x + ua + vb + wc ≡ x (2.2)

where x is a position vector in our system, u, v and w are integers, and a,b and c are

three vectors defining the edges of our simulation box (termed the supercell). This

imposes periodicity on our system; the supercell used may be as small as a single

unit cell of the system under study, or as large as is required and is computationally

feasible, but it must be borne in mind that this approximation will impose artifi-

cial long-range order on a system. If the supercell is sufficently small, interactions

of atoms with their own periodic images – self-interaction – will occur, and may

seriously impair the accuracy of the simulation.

Electrostatic interactions

Every realistic atomistic simulation must consider electrostatic interactions – be-

tween ions, between positively-charged nuclei and negatively-charged electrons, be-

tween electrons and electrons, or between nuclei and nuclei, depending on the level

of detail embodied by the model. However, in all these cases it is necessary to sum
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the electrostatic interaction over multiple species over some distance, and this is not

easy; one must therefore find a way of achieving this.

The electrostatic interaction between two point charges, at positions r1 and r2 with

charges q1 and q2, has the functional form:

E(r1, r2) =
q1q2

(r2 − r1)
(2.3)

F (r1, r2) =
q1q2

|r2 − r1|3
r2 − r1 (2.4)

where E is the energy of the interaction, and F the force exerted. This is just

Coulomb’s law. However, this needs to be summed over, in principle, every pair of

atoms in the system, and further to this, under periodic boundary conditions these

interactions will extend over more than one supercell; neglect of these long-range

interactions can lead to significant errors in the calculated properties - including

the energy and forces of the system - and as such, it is critically important that an

accurate method is used for the summation of long-range interactions.

The Ewald sum

For this purpose, the Ewald summation [23] is ideal. We decompose the Coulomb

interaction into two parts - a strictly short-ranged interaction, and a long-range in-

teraction which is therefore short-ranged in reciprocal space. Both of these therefore

have convergent sums in the basis where they are short-ranged; one can then set

a cutoff in real and reciprocal space which allows us to calculate the Coulombic

interaction up to acceptable accuracy.

The full derivation can be found in standard textbooks [24], but there are certain

points of interest which should be expanded on here. In principle, the derivation

proceeds by noting that:
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1

r
=

2√
π

∫

0

∞

exp(−r2ρ2)dρ (2.5)

and, by substituting this lemma into the Coulomb interaction, separating the Coulomb

interaction into two integrals on different length scales, as mentioned above. The

short-range interaction falls to zero rapidly; the long-range interaction can be con-

verted, by Fourier transformation, into a short-ranged interaction in reciprocal space

(here, Erecip). The short-ranged interaction, Ereal, can be summed over directly.

Erecip =

(

1

2

)

4π

V

∑

G

exp (−G2/4η)

G2
×
∑

i

∑

j

qiqj exp(−iGrij) (2.6)

Ereal =

∞
∑

l=0

∑

i,j

qiqjerfc
(

η1/2rij

)

rij
(2.7)

Here, erfc is the complementary error function. rij is the scalar distance between

atoms i, in the reference unit cell, and j, in the l-th unit cell. G is a reciprocal lattice

vector. η is a free parameter, which defines the distance for which interactions are

regarded as either short-range or long-range.

There are two further issues thrown up by this, however. Firstly, in the cell where

l = 0, i and j are the same atom. Therefore, the summation form above contains a

spurious self-interaction, which is necessary to make the reciprocal-space transfor-

mation; this must be accounted for, and we can do so by by taking the limit of the

above equations as r tends to zero. The resultant correction is known as the self

term.

Secondly, we need to consider what happens when G = 0. It turns out that in

the limit of G tending to zero, the value of the long-range term depends on the

direction G tends from; the G = 0 term is therefore regarded as a macroscopic
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field, and neglected in the energy calculation. However, this is particularly relevant

in the case of the Siesta code; it formulates the nucleus-nucleus interaction in a

manner which is strictly short-ranged [20], and therefore the Ewald summation is

only used in the context of the electronic calculation, Here, η can be set to zero

and the entire calculation performed in reciprocal space; therefore, this provides

a mechanism by which a homogeneous background charge can be imposed, as by

construction it corresponds to the G = 0 term in reciprocal space. We use this result

when considering WO3 later in this thesis.

The Ewald sum scales, computationally, as O
(

N3/2
)

with correct choice of η; this

is covered in some detail in Gale’s paper on GULP [21] and the GULP manual [25].

The short-range potential will converge rapidly in real space, and the long-range in

reciprocal space; hence, both can be truncated with acceptable loss of precision.

2.3 Classical force-field simulation

In what I have termed a classical simulation, the system is treated as being composed

of point atoms of defined charge. H(x) is then composed of two parts;

H(x) = S(x) + C(x)

where S(x) is the electrostatic part of the energy, and C(x) is the contribution from

additional terms; in essence, the bonding interactions between atoms in the system

are broken down into an electrostatic term and everything else. Consider each of

these separately; for the electrostatic interactions one can use the Ewald sum, as

above, but that leaves all other forms of atom-atom interaction.
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2.3.1 Other interactions

In this thesis, in the materials simulated using a classical forcefield – aluminosilicates

– there is an interplay between electrostatic factors, particularly with respect to

dopant species, and the predominantly covalent interactions within the (Si, Al)–O

framework.

To represent these interactions, the Buckingham potential is used, which has the

functional form

V (rij) = Aije

„

−
rij

ρij

«

−
(

Cij

rij

6)

where i, j are the indices of the two interacting atoms. This is physically motivated,

in that the two parts of the expression represent short-range repulsion and long-range

attraction respectively, but is essentially a phenomenological expression; values are

fitted to A, C and ρ in order to best reproduce the structure and physical properties

(bulk modulus, elastic constants, etc) of a range of structures related to the material

or materials which one wishes to study.

Many other potentials with different functional forms exist, such as the well-known

Lennard-Jones potential, and are commonly supported by a wide range of codes

(including GULP), but are not used in the present study.

In the present work, parameterisation developed by Calleja et al. [26] is used, adding

Li–Al and Li–Si interactions (by fitting to α–spodumene) to the forcefield developed

for silica glass by van Beest et al. [27]; I go into this in more detail in due course.

One weakness of which we should be aware is that the forcefield neglects the polar-

izability of oxygen; it is possible to extend this class of simulation by representing

oxygen as a positively-charged point core connected to a spherical shell of negative

charge by a fictional spring, but there are a number of reasons why this is not nec-

essarily a desirable approach. Firstly, it is somewhat more complicated to deal with

conceptually when designing algorithms, as the degrees of freedom of the nuclei and
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shells are necessarily very strongly coupled. Secondly, it is more computationally

intensive, as it would add three extra degrees of freedom for each oxygen atom in our

system. Thirdly, in any case, the potentials used are, even neglecting polarizability,

well-characterised and well-understood, and they give at least qualitatively accurate

physical behaviour for the systems this study is interested in.

2.4 Effective medium theory

The effective-medium theory [22] (EMT), as developed by Karsten Jacobsen and col-

laborators, is in some sense a middleground between entirely empirical, phenomeno-

logical forcefields (like those found in GULP) and fully self-consistent quantum-

mechanical methods. The total energy of any particular atom in a system is de-

termined by its local environment – what it bonds with or interacts with electro-

statically. Therefore, a reasonable approximation is to consider the atom as being

embedded in a homogeneous free electron gas, constructed from the electron density

of neighbouring atoms;

∆Etot =

N
∑

i=1

Ec,i(n̄i)

where Ec,i(n̄i) gives the embedding energy of atom i in a gas of density n̄i; n̄i is

given by the average density over the neighbouring atoms over the volume of space

occupied by atom i.

One can therefore attempt to propose a universal energy function Ec,i(n), describing

to a first approximation atom i’s bonding; this will only hold in situations where the

electronic structure of the system is reasonably well-described by the free electron

gas, which (in short) means conductors - particularly 3d and 4d transition metals.
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The full derivation of EMT is some distance outwith the scope of this thesis; in

the present work, it has been used solely as a test potential for calculations on the

Pt(001) surface, for which it is at least qualitatively reasonable. The EMT poten-

tial used is embodied in the ASAP code, part of the CAMPOS suite of materials-

simulation tools.

2.5 Density functional theory

Of the many quantum mechanical methods available to researchers in the solid-state

sciences, arguably density functional theory (DFT) is the most popular. In the form

used in this research, it possesses an excellent balance between computational cost

and accuracy of calculation, and is as such ideal for use as a probe of the behaviour

of valence electrons.

2.5.1 Born-Oppenheimer, the Hohenberg-Kohn theorem, and

the Kohn-Sham equations

In the previous section, it was assumed that atoms were embedded in a homogeneous

electron gas (in the case of effective medium theory), or that electrons and nuclei

were effectively fused into single entities (in classical lattice dynamics). In both these

cases, therefore, the effective position of electrons is defined by the nuclei. To move

to a fully quantum-mechanical treatment of the interactions between electrons and

nuclei, we must therefore consider the motion of the electrons – any model without

this cannot be better than phenomenological.

The quantum dynamics of the electrons and nuclei must be faced. This is a substan-

tial problem; however, it can be simplifed greatly by using the Born-Oppenheimer [28]

approximation. Note that nucleons (protons and neutrons) are around 1836 times

the mass of the electron; therefore, in response to a thermal pertubation of the
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system, the electrons reach thermal equilibrium much faster than the nuclei. It

follows that, under conditions relatively close to equilibrium, one can consider the

motions of electrons and nuclei separately; they move on different timescales, and

therefore (in particular) one can consider the motion of the nuclei in an effective

field of electron density defined by whatever the ground-state is for the electrons at

that instant in time. In a nutshell, we assume that the electronic system is always

at equilibrium. As a further approximation, the nuclei can be treated classically;

quantum behaviour of nuclei is negligible under the conditions (and for the species)

being studied in the present work.

The most popular quantum mechanical method by some distance for solid-state

simulation is density functional theory (DFT). The central theorems of DFT were

developed in two famous papers by (firstly) Hohenberg and Kohn [9], and (secondly)

Kohn and Sham [8]. Making the Born-Oppenheimer [28] approximation, Hohenberg

and Kohn proved the existence of a unique functional which takes the ground-state

electron density, n(r), as its free variable and returns the energy of the system;

E = E[n(r)] (2.8)

and that the ground-state electron density can be obtained variationally. It follows

from this that the ground-state density also uniquely defines the many-electron

ground-state wavefunction;

Ψ0 = Ψ0 [n0] (2.9)

Therefore, any observables of the ground-state wavefunction can be rewritten as

functionals of the ground-state electron density – most notably, the ground state

energy. Given such a functional, one could therefore invoke the variational prin-
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ciple to directly solve for the ground state electron density. In principle we have

collapsed the many-variable wavefunction problem into the single-variable problem

of the ground state electron density – but the Hohenberg-Kohn theory only proves

the existence of an energy density functional, rather than giving us any information

as to what it is!

Indeed, the exact form of the energy functional is not known; the best we have are

various approximations to the exact functional. The form of the approximations

used date back to earlier non-self-consistent approaches (such as Thomas-Fermi and

the Xα method), but were developed in their present form in the work of Kohn and

Sham.

Returning to the Hamiltonian - the Schrödinger [29] equation may be written as

follows:

HΨ = [T + V + U ] Ψ

where T is the kinetic energy operator, U is the electron–electron interaction, and

V is the static (thanks to Born–Oppenheimer) potential in which the electrons are

moving. T and U here are system-independent, whereas V is system–dependent -

however, once we fix a particular system, both T and V are straightforward to calcu-

late. U, which is the difference between the single-particle and many-particle case,

is the part of the many-body Hamiltonian which causes us difficulty. One approach

is to expand the wavefunction in terms of single-electron wavefunctions; the sim-

plest approach along these lines is Hartree–Fock theory, which exactly includes elec-

tron exchange but neglects electron correlation; so-called post-Hartree-Fock methods

(typified by the method of Configuration Interaction) include this effect, but at a

computational cost which scales substantially worse than the cube of the number of

electrons in the simulation, rendering them impractical for simulations of the size

undertaken here. Configuration Interaction, in particular, scales exponentially in its
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full form, as it amounts to a combinatorial expansion of the possible states of the

system.

Instead, using Hohenberg-Kohn, we know that the energy can be rewritten in terms

of the ground-state electron density, n;

E[n] = T [n] + U [n] + V [n]

The external potential is expressible directly in terms of the ground-state density;

V [n] =

∫

V (r)n(r)d3r

One therefore needs to minimize this expression with respect to n(r), the ground-

state density (invoking the variational principle, as mentioned above). Consider a

fictitious non-interacting system with energy Es and corresponding wavefunction

Ψs;

〈Ψs[n] |Ts[n] + Vs[n]|Ψs[n]〉

Setting Vs[n] = V + U + (T − Ts), it follows that for this non-interacting sys-

tem, the ground-state electron density ns(r) will be equal to n(r), the ground state

density of the interacting system; one can therefore solve the non-interacting sys-

tem self-consistently using iterative, self-consistent field methods, and obtain the

ground-state electron density of the fully-interacting, real system. Expanding the

non-interacting system in terms of single-electron functions ψi, known as molecular

orbitals, we write;
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−
[

h̄2

2m
∇2 + Vs(r)

]

φi(r) = ǫiφi(r)

These are known as the Kohn-Sham equations. Expanding Vs;

Vs = V + U + (T − Ts)

Vs =

∫

V (r)n(r)d3r +

∫

e2ns(r
′)

|r − r′| + VXC [ns(r)]

where the first term is the interaction of the electron density with the static external

potential of the atomic nuclei (which is known), the second term is the Coulombic

electron-electron interaction (also known exactly), and the third term is the so-called

exchange-correlation term; this third term includes all the many-body interactions,

but is not known exactly. Therefore, one must approximate VXC .

There are many approximations used for this part of the functional. The most

common strategy to use is to start, at least, with a parameterization of the ex-

change and correlation of the free electron gas, which can be calculated to a very

high degree of accuracy using methods such as quantum Monte Carlo [30]; if one

makes the approximation that the exchange and correlation energy at any point in

space is a functional of the density at that point in space only – the local-density

approximation [8] – we therefore have developed an approximate functional which

can actually be solved. Extended approximations, either by hybridising the func-

tional with exact exchange from Hartree-Fock (as in the B3LYP [31, 32] functional,

very popular in quantum chemistry) or by extending the local-density approxima-

tion by considering the gradient of the electron density as well (generalized gradient

approximations), exist, but because there is no systematic way of improving the ac-

curacy of a functional for any given system – which is a major drawback compared
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to the post-Hartree-Fock methods mentioned above – one cannot assume that any

given functional will give one better results than any other, and it is furthermore

impossible to estimate the errors arising from any given functional without recourse

to calculations using another method. The Perdew-Zunger [33] parameterization

of the local-density approximation is used for all quantum mechanical simulations

within this thesis; experience derived from many prior simulations by other authors

indicated that it was adequate for present needs.

2.5.2 Pseudopotentials

In any quantum-mechanical computation, the amount of CPU time taken for a

calculation to converge will be correlated, to some order, with the number of free

electrons; in the case of conventional DFT, the time taken scales as O(n3). As such,

the fewer electrons in the calculation, the better from the perspective of performance.

For heavy atoms, such as tungsten, the majority of the electrons play no part in

bonding; only the 6s2 and 5d4 electrons are relevant in this particular case.

Therefore, it would be good to design our simulation in such a way as to not include

these less-important electrons in our wavefunction. The pseudopotential approxima-

tion provides us with a way of achieving this. In essence, one divides the electrons

on a given atom into two groups, the valence and the core, and replace both the

potential arising from the bare nucleus of the atoms and the core electrons with a

single potential obtained from a calculation of the atom in isolation; thus, in the core

region, our valence wavefunction is replaced with a (smoother) pseudo-wavefunction,

with the restriction that the eigenvalues of the Schrödinger equation for the pseudo-

wavefunction acted on by the pseudopotential must be identical to those for the full

potential and true wavefunction. This approximation is acceptably accurate as long

as the core species really are uninvolved in the bonding scheme.

In the case of tungsten, the groundstate electron configuration is [Xe]4f 146s25d4,

where [Xe] represents the closed-shell electronic configuration of xenon. Here, the
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4f orbital is closed, and therefore can be regarded as part of the core; our valence

is therefore six electrons, as mentioned earlier, rather than 74. An all-electron

calculation for an isolated atom of W (in the gas phase) is performed, and at some

radial cutoff – which must be substantially shorter than any bonding interactions –

the pseudopotential is constructed so that this fictional potential matches the real

potential which would be observed at this cutoff, and so that the pseudopotential

has continuous derivatives at this point. Furthermore, the pseudopotentials used in

the present study are norm-conserving - in other words, up to this cutoff, rc, the

following integral is identical over both the real and pseudo-wavefunctions;

∫ rc

0

ψ∗
AE(r)ψAE(r)dr =

∫ rc

0

ψ∗
PS(r)ψPS(r)dr

Therefore, outside rc (and therefore in the region where bonding occurs), the real

and pseudo wavefunctions should be identical, and will generate identical charge

densities.

There is much more which could be written on this subject, as with much else in

this section, but pseudopotentials are not the main thrust of our research; in the

present work, norm-conserving Trouiller-Martins [34] pseudopotentials were used,

with partial core correction, in their fully non-local form, These were calculated

by the atm code of Alberto Garcia. It is necessary to use the same exchange and

correlation functional to generate the pseudopotential as is used in the simulation,

and therefore here the Perdew-Zunger LDA has also been used.

2.5.3 The Siesta method and code

All the DFT simulations in the present thesis were performed using the Siesta

(Spanish Initiative for Electronic Simulation with Thousands of Atoms) code, which

itself implements the Siesta [20] method. Siesta can perfom DFT simulations
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in two different modes; using a conventional self-consistent field/diagonalization

method to solve the Kohn-Sham equations, or by direct minimization of a modi-

fied energy functional [35]. In the latter case, the entire calculation simulation is

linear-scaling – the amount of time it takes is a linear multiple of the number of elec-

trons in the system, whereas in the former case the performance of the calculation

scales as the cube of the number of electrons, but with a smaller prefactor. (However,

it should be noted that in both cases, the construction of the exchange and overlap

matrices takes place in linear time – this arising from the use of a strictly localised

basis set.) In terms of performance, therefore, there is a crossover for medium-size

systems (low hundreds of atoms); as these are the size of systems I am investigating

in this thesis, the conventional solver was used for the simulations in the present

study.

As mentioned above, the heritage of Siesta as a linear-scaling code shows in its

choice of basis set; it uses a strictly-localised set of pseudoatomic orbitals, originally

proposed by Sankey and Niklewski [36] for the Fireball code, and performs over-

lap (and some of the Hamiltonian) integrals between these non-orthogonal orbitals

on a real-space grid. The effect of that is that when a given atom moves by a dis-

tance smaller than the space between two points on the grid, the points where the

nucleus (and, hence, the pseudopotential) and the orbitals overlap this real-space

grid change, leading to a periodic variation in the value of the integrals depending

on the grid; this variation is evident in both the total energy of the calculation and

the atomic forces, and is known as the eggbox effect.

The use of a real-space grid also affects choice of pseudopotential for a Siesta

simulation; the smoother the pseudopotential used, the smaller the eggbox effect

and the coarser a real-space grid can be used, reducing the computational difficulty

of the calculation.
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2.6 Dynamic languages and XML; rapid algorithm

design

2.6.1 Introduction

It is fair to say that most scientists lag some way behind the cutting edge of software

engineering technique. There are very good reasons for this; at present, the lingua

franca among scientific programmers is usually one of the dialects of FORTRAN.

In its favour, it has excellent library support and very good performance for its

intended purpose, heavyweight numerical algorithms, but by the standards of most

other commonly-used programming languages has I/O and network-programming

facilities which vary from somewhat lacking to non-existent.

Rather than attempting to extend the language to address these shortcomings, in

recent times there has been a move towards mixed-language development. Fortran

has undoubted strengths - excellent compilers, support for parallelization and vec-

torization, around thirty years of experience in performance tuning - and it makes

sense to make use of that, whilst writing non-performance-critical code in a more

expressive, higher-level language with the concomitant advantages in concision, un-

derstandability and maintainability of code.

In this chapter, two areas are briefly introduced in which new technologies have had

a substantial impact on the work in this PhD.

2.6.2 Python and high-level programming languages in nu-

merical computation

Python [37] is an interactive, object-oriented programming language originally de-

signed by Guido van Rossum at CWI in the Netherlands in the early 1990s. From

that base, it has become one of the most popular scripting languages (alongside
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Perl and TCL), particularly on Unix systems - however, it has been ported to every

major (and most minor) operating systems, from the Palm Pilot upwards.

Unlike C and Fortran, but similarly to Perl and TCL, Python is often classed as an

interpreted rather than compiled language; one runs Python programs directly with

a Python interpreter rather than compiling them to machine language first with a

compiler. The advantage of this is that you no longer need to recompile a program

after making a change in it; the trade-off for this gain in flexibility is that interpreted

languages tend to have poorer performance than compiled ones.

In fact, Perl and Python are typically compiled on-the-fly to an intermediate rep-

resentation (called a bytecode), and it is this bytecode which is actually executed

by the interpreter. Two other languages which take this intermediate-bytecode ap-

proach are Java and Visual Basic, but in both of those the bytecode compilation

and interpretation are decoupled.

Although Python has remarkably good numerical performance for a language of its

class (particularly when using the Scientific Python [38] extension libraries, which

provide Fortran-like array operations), it cannot directly compete with Fortran in

terms of raw computational power. However, it excels in other areas; by writing

the speed-critical parts of one’s code in a compiled language, and the remainder

in Python, one can gain the advantages in simplicity and expressiveness arising

from Python’s richer libraries, syntax, and object system as well as the ease-of-

development of an interpreted language. In particular, in the present work, there is a

very clear divide between the computationally intensive part of our work (evaluation

of the total energy and forces of a given atomic configuration) and everything else,

which makes this kind of strategy extremely attractive.

One project which uses this to its advantage is the CAMPOS [39] suite of open-

source software, primarily written by a group of researches at the Technical Univer-

sity of Denmark in Lyngby. The model taken by CAMPOS is to encapsulate the

energy-evaluation method in a Python object, and to implement everything else (op-

timization algorithms, workflow control, input/output, etcetera) in Python. This is
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done in such a way that the energy evaluator conforms to a generic interface regard-

less of what it actually is - it can be changed from a completely fictional potential

to a cutting-edge ab initio electronic structure package without the need to make

any alterations to any other algorithm in the simulation.

Therefore, the energy evaluator is reduced to being purely that; it is, effectively, a

function which takes a parameterized model of the system (atomic positions, unit

cell size, any necessary forcefields or pseudopotentials, etcetera) and returns the

energy of the system and the forces acting on any atoms within it. Control is then

returned to the Python program, which acts on this new information, typically by

deciding where to move atoms to for the next iteration; this can easily be written in

Python, as in general this process is many orders of magnitude less computationally

intensive than the energy evaluation itself. Therefore, the greater performance of

Fortran is irrelevant in this case; the optimization algorithm being used takes an

insignificant amount of the execution time of the entire run, so even if it takes ten

times longer than it would written in a more efficient language, that is more than

made up for by the time saved by the programmer by using a higher-level language.

Decoupling the energy-evaluation step from the optimization algorithm in this way

is extremely powerful for several reasons.

Firstly, it permits one to develop algorithms in a completely general, code-independent

way. In the case of the present work, it allowed me to write, again in Python, low-

dimensional analytically soluble energy surfaces which could be used to test my trial

transition-state discovery algorithms on, and then subsequently use exactly the same

code in order to try the algorithms on real systems using multiple different simula-

tion methods (classical forcefields, effective medium theory, up to DFT). This dra-

matically speeds the development and debugging of implementations of algorithms,

and encourages a sort of “experimental programming” which would be much more

arduous if one needed to go round the compile-debug-run-recompile cycle.

Secondly, it is good software-engineering practice; by encapsulating the details of

the atomistics in one place and the algorithm in another, it is easier to edit and
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correct either one in isolation. This, again, has obvious benefits in debugging and

ease of development.

Thirdly, it encourages code reuse; implementing a good, robust minimizer, molecular

dynamics, or similar is very difficult and detail-intensive. It is very desirable not to

have to reinvent the wheel each time one writes a new code; by modularizing the

design of a simulation in this way, one has an instant library of battle-tested routines

which can be pulled together on the fly to try out a new idea.

Fourthly, although this is not attempted in the present work, it becomes substantially

easier to write the necessary framework for a mixed-evaluator run (say, precondi-

tioning a system by energy minimization with a classical forcefield method before

switching to using an ab-initio DFT code for final optimization); the same atomic

configurations, data, and algorithms can be used immediately within the same run,

without having to interrupt a run and transcribe the output of one program into

the input format of another (either by hand or programmatically). This both makes

this kind of approach much more practical and makes it much less error-prone; even

conversion programs can fail - for example, in the event of a seemingly minor change

in the output format of one of the codes being used.

In the present work, calculations have been performed using simple analytic poten-

tials, the ASAP effective medium theory code, the GULP lattice-dynamics code,

and the SIESTA LCAO-DFT ab-initial total energy program; exactly the same op-

timization algorithms were used in all of these cases. The interface to the ASAP

code (and the ASAP code itself) comes with the CAMPOS distribution; I modified

the SIESTA interface in CAMPOS heavily for my needs, as will be touched on in

the next section, and the GULP interface was written by the present author.

It is particularly telling that the versions of GULP and SIESTA used in this work

were written in Fortran 90; ASAP in C++; and analytic potentials in Python –

yet using the CAMPOS framework lets us switch between any and all of these

transparently, without adapting the algorithms used. The immediate benefit of this

is that one can be certain that there are no differences in the implementation of our
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algorithm when used with each of these force evaluators; traditionally, it would have

been necessary to add code to each of these programs to carry out the algorithm

separately, opening up a much-increased risk of introducing new bugs in each of

these reimplementations. Also, it is much less effort - both because there is no need

to restate ourselves initially, but moreso in that any optimizations or bugfixes found

with one force evaluator are immediate available to all of them, and do not need to

be carried across to each code by hand.

2.6.3 Chemical Markup Language

The Chemical Markup Language (CML) [40] is a particular example of a family of

languages called XML [41] – Extensible Markup Languages - which also includes, for

example, XHTML [42] (the XML representation of the Hypertext Markup Language,

in which webpages are written).

These languages allow semantic markup of a document. For example, in the the-

sis you are currently reading, text can be classified into various kinds - headings,

footnotes, figure and table captions, body text, and so on – and each of these has a

different semantic context. This is independent of the layout of the document; the

semantics may be used to help define how an essay is typeset or not, but regardless

of that they exist independently of any particular visual representation.

In the case of CML and this project, there is a set of core concepts (atoms, unit

cells, and so forth and so on) which are common to all of the simulation codes

used – basically, the same core concepts which are encapsulated in the CAMPOS

framework. Therefore, for CMLised codes, it becomes much easier to write the “glue

code” – particularly, output parsers – necessary to tie it in to our simulations.

The critical problem is that many programs, particularly those written in FOR-

TRAN, have somewhat arcane input and output formats; FORTRAN 77-style fixed-

column layouts (where misplaced whitespace can break your input file) are still
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common, for example, and the documents are not structured so as to be machine-

readable. In practice, one has to write a parser for the particular idiosynracies of

every program’s input and output formats (usually by matching specific strings in

the output using regular expressions) – and any change, even a seemingly very minor

one, can break this in such a way as to break one’s programs (or, worse, cause them

to give inaccurate or misleading results). Also, as every code has its own conven-

tions, the glue-code written for one case is rarely, if at all, reusable. Essentially, one

has to start from scratch with every program.

XML, whilst not being a standard file format in the conventional sense, does have

a standard structure; it is composed of pairs of tags, of the form

<tag attribute1=’value’ attribute2=’value’> data </tag>

where tags may be nested (i.e. <t1><t2></t2></t1> is valid, but <t1><t2></t1></t2>

is not. A document which conforms to this (and the other rules of XML) is deemed

to be “well-formed”.

This property means that regardless of the meaning assigned to tags, which is de-

fined in CML, the mechanical process of reading an XML document – essentially, a

tree structure – can be abstracted into a library very easily. Unsurprisingly, this has

happened for every major programming language. This removes most of the diffi-

culty alluded to above; whitespace is not syntactic, for instance, so only changes to

the definition of the Chemical Markup Language need be accounted for, not trivial

changes in output format.

Two of the codes used in this work, GULP and SIESTA, can output CML, although

neither can read it; in practice, however, input file formats are substantially easier

to construct programmatically than arbitrary output file formats are to read. One

of these (GULP) was not previously supported by the CAMPOS framework, and

therefore it was necessary to write an interface to it; this was radically simplified

by the use of CML; also, the parser thus written for GULP’s CML output is eas-

ily portable to SIESTA’s CML output, and indeed to any future code using the
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language.

CML’s value lies in this extension of the toolset available; whereas now, visualization

programs (for instance) are often closely tied to one code in particular, meaning that

one needs to learn how to drive the software to interpret results for each code inde-

pendently, CML points towards a future where common semantics are defined across

a range of codes; this will make it easier to compare results, exchange and cross-

check work, and set up (again, for example) runs which switch between completely

different levels of theory at different stages of the calculation.



Chapter 3

Charge doping in WO3

3.1 Introduction

Tungsten trioxide, WO3, is a technologically-significant ceramic: it is electrochromic [11],

and the possibility of ion intercalation and deintercalation gives rise to several poten-

tial applications in devices (for instance, as a cathode of rechargable batteries [43]).

In particular, it is often used in optical applications due to the fact that the color

can be changed by doping with electrons. (This was first observed in 1815 by

Berzelius [44] in HxWO3). Bulk stoichiometric WO3 is yellow-green in hue, but the

sodium-doped tungsten bronzes, NaxWO3, exhibit most colors of the visible spec-

trum on varying Na concentration [45]. In addition, the optical absorbance and

reflectivity of the material can be modulated by injection or extraction of electrons

and ions, giving excellent control over and tunability to the optical properties [11, 12].

In addition to strongly affecting the color of the material, the incorporation of elec-

tron donating ions also has a strong effect on the structure. For example, complex

structural behaviour is observed on doping with electron donors, such as Na, Li

or H. Such dopants occupy the vacant perovskite A site and therefore they can be

easily introduced over a wide range of concentrations, from trace concentrations in

46
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the so-called ǫ phase up to the limiting case of the tungsten bronze, NaWO3. In

NaWO3, there is one donor per formula unit, and an aristotypic perovskite structure

is adopted [46]. Its structure is the same as that of ReO3, with both solids retaining

the ideal cubic perovskite structure at all temperatures. Indeed, assuming that in

NaWO3 the valence electron of Na is donated into the 5d-type conduction/antibond-

ing band of WO3, the two materials are isoelectronic. In contrast, WO3 displays both

off-centring of the W ion from its ideal centrosymmetric position, and Glazer [15]-

type tilting transitions. Studies on intermediate concentrations of NaxWO3 [47]

suggest a complex phenomenology, involving a consistent reduction in the degree of

polyhedral tilting with increasing dopant concentration. Notably, Clarke observed

that the room-temperature structures of NaxWO3 (0.62 < x < 0.94) are slightly

distorted from the high-symmetry Pm3̄m aristotype, and proposed a preliminary

phase diagram to explain the observed diffraction data [47].

There have been several prior computational studies on WO3, carried out at various

levels of theory. Here I summarize the results of the density functional theory (DFT)

studies from the literature. Perhaps the most relevant for this study is the work by

Corà et al. [48, 49] on the electronic structure of cubic WO3, ReO3 and NaWO3.

Using the full potential linear muffin tin orbital method, with the local density

approximation, they showed that the band structures of the three compounds are

very similar, with the extra electron in ReO3 and NaWO3 occupying the antibond-

ing conduction band and decreasing the metal-oxygen bonding strength. They also

showed that displacement of the transition metal from its centrosymmetric position

towards an oxygen ion causes increased overlap of the transition metal 5d t2g or-

bitals at the bottom of the conduction band with the O 2p orbitals at the top of the

valence band. This in turn lowers the energy of the top of the valence band, and

raises that of the bottom of the conduction band, explaining why metallic ReO3 and

NaWO3 remain cubic, whereas “d0” WO3 [50] has an off-centring distortion. Hjelm

et al. [51] used the same method to establish that, in LiWO3 and NaWO3, rigid band

filling of the WO3 conduction band occurs, whereas in HWO3 the hydrogens form

hydroxide units with the oxygen atoms and change the electronic structure. de Wijs
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et al [2] calculated the electronic properties of the various experimental structural

phases of WO3 using a plane wave ultra-soft pseudopotential implementation of

DFT within both the generalized gradient and local density approximations. They

found that increases in pressure are readily accommodated by tilting of the octahe-

dra, explaining the small experimental bulk modulus. Also, they observed large W

displacements, accompanied by strong rehybridization and changes in the electronic

band gaps. This latter observation is consistent with the anomalously large Born

effective charges calculated for cubic WO3 by Detraux et al. [52].

This chapter builds on these earlier theoretical studies by treating fractional doping

effects (i.e., the effect of electron concentrations between 0 and 1 per W ion) in

a fully self-consistent manner. My computational approach allows the isolation of

the effects of additional valence electrons from other factors, such as the presence

of donor cations and structural disorder at intermediate concentrations. Indeed,

it has already been shown that simple model calculations including only electronic

effects can reproduce some aspects of the observed structural behavior [48]. The

main result is that electronic effects are able to account fully for the experimentally

observed structural phase transitions.

3.2 Methodology

Calculations were performed using the Siesta implementation [53, 20], of density-

functional theory [9] (DFT), within the Perdew-Zunger [54] parametrization of the

local-density approximation [8]. Core electrons were replaced by norm-conserving

Troullier–Martins [34] pseudopotentials, factorised as prescribed by Kleinman and

Bylander. [55] The valence electrons were taken to be 2s22p4 for O, and 6s25d4 for

W. Wave-functions were expanded in a basis of numerical atomic orbitals of finite

support [56]. A double-ζ polarised (DZP) basis set was used, whereby two basis

functions per valence atomic orbital are included, plus extra shells of higher angular

momentum to allow polarization. This size of basis has been found, in prior studies,



CHAPTER 3. CHARGE DOPING IN WO3 49

Species n l r(ζ1) r(ζ2)
W 6 0 6.50 5.00

5 2 6.49 3.75
6 1∗ 6.49 n/a

O 2 0 3.31 2.51
2 1 3.94 2.58
3 2∗ 3.94 n/a

Table 3.1: Cutoff radii, r(ζ), for the basis sets corresponding to W and O species;
as the basis set is double–ζ polarized, there are two basis functions (and therefore
radii) per hypothetical atomic orbital, as specified by quantum numbers n and l.
All radii are given in bohr. The starred entries are polarization orbitals.

Species s p d f
W (5d46s2) 2.85 3.03 2.25 2.25
O (2s22p4) 1.15 1.15 1.15 1.15

Table 3.2: Confinement radii for each of the s, p, d, and f channels of the W
and O pseudopotentials. All radii are given in bohr. The W pseudopotential used
also included a partial-core correction, with a radius of 1.30 bohr, according to the
scheme of Louie et al [1].

to give results of similar quality to typical plane-wave basis sets in other major codes.

Details for the pseudopotentials and the basis sets are given in Tables 3.1 and 3.2.

For k-point sampling, a cutoff of 10 Å was used [57]; this gave 24 independent

k-points in the first Brillouin zone of the low-temperature monoclinic phase, cor-

responding to a 4×3×3 mesh. This is equivalent to 6 independent k-points within

the first Brillouin zone of a 64-atom supercell of the same structure, corresponding

to a 2×2×3 mesh (if one were to neglect degeneracy). Both k-point meshes were

generated by the method of Monkhorst and Pack [58]. The fineness of the real-

space grid used for numeric integration was set to correspond to an energy cutoff of

200 Ry. A grid-cell sampling [20] of four points (arranged on a face-centred cubic

lattice) was used to reduce the space inhomogeneity introduced by the finite grid.

All calculations were performed using variable-cell relaxation, with the convergence

criteria set to correspond to a maximum residual stress of 0.01 GPa, and maximum
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residual force component of 0.04 eV/Å.

In order to test the quality of the pseudopotential and basis set used, I first per-

formed calculations on the same phases as investigated by de Wijs et al. Results

of comparable quality to theirs were obtained (see table 3.3), although my results

tend to give the expected underestimation of the experimental lattice parameters

whereas theirs, even in the LDA, tend to overestimate.

In order to investigate the effect of additional dopant charge on the bonding character

and structure of WO3, a 2×2×1 supercell of the low-temperature monoclinic (ǫ)

phase was used (the aforementioned 64-atom supercell). This contains sixteen W

centres, and can be considered to be a 2
√

2 × 2
√

2 × 2 supercell of the aristotypic

perovskite structure. As such, it is sufficiently large to encompass all ground-state

symmetries experimentally observed in pure WO3. Additional charge was added by

the injection of extra electrons into the system, with charge neutrality over space

being ensured by a corresponding homogeneous positively-charged background; this

can be performed using the corrections to the Ewald sum outlined in Chapter 2.

3.3 Calculated phase diagram

I performed calculations for numbers of dopant electrons between 1 and 16 per

supercell, (corresponding to electron concentrations in the range 0 < x < 1 per

W centre) in single-electron steps. Full, variable-cell, structural relaxations were

performed for each doping level. A series of five phases was observed over the

doping range. Here, the five structures in turn are described, starting with the

highest doping level. I refer to figure 3.1, which shows (a) my calculated lattice

parameters (c’ is the c lattice parameter multiplied by
√

2 in order to normalize it

with respect to the a and b parameters), (b) my calculated unit cell volumes, and

(c) our W-O bond lengths. Suggested phase boundaries are also shown in figure 3.1

(a) as solid vertical lines.
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Table 3.3: Lattice parameters, experimental, from my simulations, and from the
work of de Wijs [2] for (hypothetical) cubic, low temperature monoclinic, room tem-
perature monoclinic, high-temperature tetragonal and room temperature triclinic
phases of WO3. All distances are given in Å. Note that de Wijs’ calculations were
performed under the local-density approximation for monoclinic phases, and under
the generalized gradient approximation for triclinic and tetragonal phases.
Phase a b c α β γ
Cubic

This work 3.81 3.81 3.81 90.0 90.0 90.0
Monoclinic LT

This work 5.15 5.05 7.63 90.0 92.6 90.0
de Wijs 5.34 5.31 7.77 90.0 90.6 90.0
Experiment [59] 5.28 5.15 7.66 90.0 91.8 90.0

Monoclinic RT
This work 7.30 7.49 7.32 89.8 90.1 90.0
de Wijs 7.37 7.46 7.64 90.0 90.6 90.0
Experiment [60] 7.31 7.54 7.66 90.0 91.8 90.0

Tetragonal
This work 5.31 5.31 3.91 90.0 90.0 90.0
de Wijs 5.36 5.36 3.98 90.0 90.0 90.0
Experiment [61] 5.27 5.27 3.92 90.0 90.0 90.0

Triclinic RT
This work 7.18 7.36 7.63 88.0 90.5 90.4
de Wijs 7.54 7.64 7.84 89.7 90.2 90.2
Experiment [62] 7.30 7.52 7.69 88.8 90.9 91.0
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Figure 3.1: (a) Lattice parameters (for normalized cubic supercell with respect to
the ǫ phase) of WO3. Phase boundaries are denoted by solid lines, and labelled with
their position (in electrons per centre); (b) Volumes of 2×2×2 supercell of WO3; (c)
Bond lengths within WO6 octahedra, all versus electron dopant concentration.
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At maximal doping, the perovskite aristotypic phase is obtained (i.e. the highest

symmetry phase in the series: in the case of perovskites, primitive cubic, a = b = c,

one formula unit per unit cell) structure, with space group Pm3̄m. The three lattice

parameters are equal, as are the W-O bond lengths.

With decreasing dopant concentration the unit cell volume decreases slightly, until

at x ≈ 11
16

, a symmetry-breaking transition is found – to an antiferroelectric tetrag-

onal phase with P4/nmm symmetry. The W atom moves off the centre of its O6

octahedron in the [001] direction [as shown in figure 3.2 (a)], resulting in different

W-O bond lengths and a lowering of the space group of the system. Interestingly,

all three lattice parameters continue to have the same effective length with respect

to the supercell (within the accuracy of the computations) in spite of the inequiva-

lence of one of them due to the reduction in symmetry. This can be ascribed to the

fact that the oxygen framework distorts very little in these transitions, and it is the

oxygen framework that is largely responsible for the volume and shape of the unit

cell. The antiferroelectric tetragonal phase persists down to a dopant concentration

of approximately 1
2

electron per W, with a gradual increase in off-centring with de-

creasing dopant concentration. By x = 1
2
, the off-centring of the W along the [001]

direction has increased to around 0.08 Å.

The antiferroelectric tetragonal phase becomes unstable under 1
2

electrons per W,

and an orthorhombic phase is stabilised. There is also a clear discontinuity in the

volume per unit cell at this doping concentration. This arises from a tilt of the WO6

octahedra towards [110]-type directions which in turn causes the loss of the four-fold

rotation in the c direction, lowering the space group to Pnma. Initially, the c′ and a

lattice parameters (within the pseudocubic supercell), despite being symmetrically

inequivalent, remain essentially equal in length; this can be ascribed to the absence

of distortion of the WO6 octahedra, which originally tilt (around an axis parallel

to b) as a rigid unit without substantial deformation. These parameters become

unequal at x ≈ 7
16

; however, I do not find a lowering of the space group caused by

this.
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(a) (b)

Figure 3.2: Offcentring in WO6 octahedra; (a) along [001], (b) along both [001] and
[110]-type directions
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Below x ≈ 3
8
, a monoclinic P21/c phase (similar to that identified by de Wijs [2]),

related to the low-temperature ǫ phase in WO3, is stable. The phase boundary

from the orthorhombic to monoclinic phase is characterized by an increase in the

W-O displacement along [001] (seen in the increased bond splitting in figure 3.1 (c))

as well as a marked rotation around z (loosely speaking in the x − y plane). The

Glazer tilt is expressible as a−b−c−. The monoclinic symmetry persists through the

remainder of the phase diagram; however an additional phase boundary exists at

x ≈ 1
4
. Here an additional splitting in the W-O bond lengths indicates offcentring

of the W atom in a [110]-type direction (as shown in figure 3.2 (b)) and there is also

a second discontinuity in the cell volume. This corresponds to a loss of screw axes

along b, and hence a further lowering of the space group to Pc, the ǫ phase.

Order parameters can be defined for the transitions between each of these phases as

shown in figure 3.3. The order parameter for the Pc to P21/c transition (figure 3.3

(a) )is the difference between the W-O bondlengths in the x − y plane (xy1 and

xy2). The order parameter for the P21/c to Pnma transition is, as expected, the

deviation of the β angle from 90 ◦; this goes sharply to zero at x ≈ 3
8

(figure 3.3

(b)). The order parameter for the Pnma to P4/nmm phase is the length difference

between the two remaining unequal lattice constants, |b−a| (figure 3.3 (c)). Finally,

the ideal cubic Pm3̄m perovskite structure is reached when the W moves to its

centrosymmetric position, and the order parameter for the tetragonal to the cubic

phase is the magnitude of the W off-centre displacement along [001] (figure 3.3 (d)).

As such, all the phase boundaries are well-defined, although further work could be

undertaken to locate them with greater precision. In the next Section I discuss the

effects giving rise to this phase structure in greater depth.

3.4 Discussion

There are two types of structural distortion occurring in WO3; rotation of the (al-

most rigid) octahedra, and displacement of the W ion from the centre of its oc-
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Figure 3.3: Order parameters for the doping-induced phase transitions in WO3.
(a) Pc – P21/c, in Å, where xy1 and xy2 are the inequivalent W-O bond lengths
in the the x − y plane; (b) P21/c – Pnma, in degrees; (c) Pnma – P4/nmm (in
Å); (e) P4/nmm – Pm3̄m (in Å), where z1 and z2 refer to the two W–O bonds
aligned predominantly with the z axis. Dashed vertical lines denote predicted phase
boundaries, and are labelled with their positions in electrons per centre.
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Figure 3.4: Polyhedral tilts in WO3, as varying with dopant charge. The charges
in each case are, in electrons per W atom, are; (a) 3/16, (b) 5/16, (c) 7/16, (d)
1/2, (e) 5/8, (f) 1; these correspond to, respectively, the monoclinic Pc phase; the
P21/c phase, approaching the Pnma boundary; the middle of the orthorhombic
phase; the Pnma – P4/nmm boundary; within the stability range of the tetragonal
phase; and the aristotype. It is clear that the distortions between some phases
are extremely small. This poses difficulties in ascertaining exactly where they are
located in composition space.
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tahedron. The occurrence or absence of W offcentring is known to be determined

by a balance between electronic Coulomb repulsions (which are minimized for the

centrosymmetric structure) and additional bonding considerations which might sta-

bilize the non-centrosymmetric phase [50]. In the case of WO3, off-centring of the W

ion results in additional overlap that lowers the energy of the O 2p-like valence band

compared with that of the centred structure, and raises the energy of the predom-

inantly W 5d t2g conduction band [48]. As the doping level is increased, and more

electron density is added to the conduction band, there is no energetic advantage

to this additional orbital overlap, and the W ion moves back to its centrosymmetric

position.

The fact that the small off-centring in the [110] direction is quenched first implies

that the antibonding orbitals corresponding to this covalent interaction are low-lying

in the conduction band and therefore filled first. The offcentring in the z direction

persists to higher doping concentrations and is only quenched out at ≈ 3
4

e− per

centre. This 75% concentration is clearly less than the value of 0.98 e− suggested

by Corà et al.’s analysis of one-electron energies for the displacement of Re along

[100] in ReO3 [48]; this accords with their suggestion, however, that crystal–field

effects would favour cubic structures, and thus any analysis under a rigid-band

approximation (or similar) would overestimate the degree of doping necessary to

cause the onset of cubicity.

There is strong evidence of a relationship between the polyhedral rotation and off-

centring mechanisms. In figure 3.4 sketches are shown of the structures at different

doping concentrations to illustrate the polyhedral tilting. At 3
16

doping (figure 3.4

(a)) one can see that the rotations are large around both axes. However in figure

3.4 (b) (by which the offcentring in the [110] direction has been essentially quenched

(x ≈ 5
16

)) one can see that the rotation of polyhedra in that plane also disappears,

whilst rotation of polyhedra between connections along the z axis persists, as does

the offcentring in that direction. This persists, with reducing magnitude, to x ≈ 7
16

(figure 3.4 (c)), but by 50% doping, (figure 3.4 (d)) any remaining tilt up the z axis

(out of the page) is extremely small. However, at this concentration, offcentring
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along [001] persists. Notice also that the majority of volume change in the unit cell,

which in perovskites is caused by changing of the rotation angles, has also occurred

by this doping level. Finally, any tilt systems in figures 3.4 (e) and (f), corresponding

to concentrations with centred W ions, are too small to observe in the figure.

It should be noted that the very small [100]-offcentring - less than 0.01 Å in mag-

nitude - which persists at high doping concentration does not appear to be a real

effect. In fact, both this and the small Jahn-Teller distortion at 100% doping appear

to be numerical artifacts related to the real-space mesh cutoff used: when the mesh

is increased to 500 Ry (from 200 Ry), both effects disappear. As it is computa-

tionally expensive, one cannot justify this level of convergence for all calculations,

particularly given that the order parameters delineating the phase boundaries in the

system are well-defined at the present level of accuracy. Even so, it is clear that

the system is very near the limits where Jahn-Teller distortion and/or offcentring

of the W atom become thermodynamically stable. As expected by analogy with

ReO3, WO3 doped with 1 electron is entirely cubic, with no Jahn-Teller distortion

or W off-centring. Since the transition metal, in both cases, has a formal d1 elec-

tron configuration (and d1 ions in octahedrally coordinated complexes do not have a

second-order Jahn-Teller distortion) the centrosymmetricity is easy to explain. The

lack of a true Jahn-Teller distortion (which is predicted for such a d1 ion in octa-

hedral coordination) is more subtle however, and is determined by a competition

between energy lowering through hybridization (strongest in the cubic structure)

and energy lowering through gap formation during the distortion. In bulk ReO3,

the broad bands and low density of states at the Fermi energy result in the cubic

phase having the lowest energy. In contrast, in a molecular complex the bands are

infinitely narrow and the Fermi energy density of states is infinitely large (favouring

Jahn-Teller distortion).

In figure 3.5 the calculated change in energy is plotted, as a function of the amount

of both Jahn-Teller distortion and transition metal off-centring, for WO3 doped with

one electron per W centre. In both cases a constant volume is maintained. The

x axis shows the fractional change in bond length; for the Jahn-Teller distorted
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Figure 3.6: Mean occupancy per W atom of 5d and 6s orbitals versus dopant charge.

structure both W-O bondlengths increase by this amount, and for the off-centred

structure one increases and the other decreases. Note that, by this measure, the

structure is stiffer to Jahn-Teller distortion than it is to off-centring. Also note that

the curvature for off-centring is very close to that of Cora et al. [48] for ReO3 (which

in turn is around half that for NaWO3).

A Mulliken analysis of the occupancy of the three families of bands due to W – 6s,

5deg
, and 5dt2g

– suggests that the occupancy of the 5d band is far from d0 in undoped

WO3, and far from d1 in the fully doped system. The occupancy of the d-band is

closer to four in undoped ǫ–WO3 (see figure 3.6) and increases by approximately

0.5 e− in the fully doped system. The remaining half of an electron, unsurprisingly,
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fills the antibonding bands formed by O(2p)–W(5d) overlap. Note that the mean

occupancy of the 6s orbital, which is ≈ 0.58 electrons per orbital in the undoped

system, hardly increases on addition of electrons. This implies a typical W valence

population of between 4.5 and 5 electrons, in contrast to the idealised purely-ionic

picture of a bare W6+ ion (with no valence electrons); this is yet further evidence

of a system remarkably dominated by covalent W–O interactions. It is clear from

further analysis that above 50% doping, dopant charge preferentially fills the 5dxz

and 5dyz bands; the other bands experience only a small change in total occupancy.

This accords well with the suggestion that bonding–antibonding splitting occurs

through O(2p)-W(5d) π-like overlap; the absence of change in xy bonding being

demonstrated by the absence in change of occupancy of the 5dxy band. However,

given the tilting transitions and highly-deformed structures, there is great difficulty

in assigning the occupancy of 5d orbitals; therefore, further studies of the influence

of band formation and orbital occupation on both first- and second-order Jahn-Teller

distortions are ongoing.

In terms of reconciling my calculations with previous experimental data [47], one

must be somewhat cautious. Clarke analyzed his results under the presumption

that there would not be significant offcentring of the W ion within WO6 octahedra,

which I believe to be incorrect: nevertheless, I believe that the calculated tetragonal

phase is consistent with collected data for his proposed cubic phase at high doping.

Furthermore, my calculations deliberately neglect the effects of defects, chemical

disorder, and other imperfections in the lattice.

Finally, it should be mentioned that the original motivation of our study was to

investigate possible self-trapping behaviour of charge in this material. Excess elec-

trons in the ǫ (low-temperature monoclinic) phase have been shown experimentally

to self-trap, forming polarons [59]. No localisation of charge or deformation (po-

laron formation) has been found in any of my calculations. This null result is of

some interest, but should not be taken to mean that polarons do not form in this

material; it is arguable that either the supercell used is too small to observe polaron

localisation, or that the LDA will underestimate the binding energy of a polaron



CHAPTER 3. CHARGE DOPING IN WO3 63

(thus causing it not to be a stable state of the system): further study is needed in

this area.

3.5 Conclusions

The main conclusion that can be drawn from these calculations is that the ex-

perimentally observed structural distortions induced in NaxWO3–type bronzes by

increasing doping are predominantly electronic in nature. By using my methodol-

ogy of adding electrons to WO3 without also adding Na atoms, I have removed any

possible structural/disorder effect caused by the Na+ cations on the A sites within

the structure. Therefore, given that my calculations reproduce the experimental

observed sequence of symmetries upon doping ((i) Monoclinic (Pc and P21/c); (ii)

Orthorhombic (Pnma); (iii) Tetragonal (P4/nmm); (iv) cubic aristotype (Pm3̄m))

I conclude that the effect of the Na+ cations on the structure must be small. In-

deed, this is not unexpected. Following the classification of Robin and Day [63], as

mentioned by Bersuker [64], NaWO3 is a good example of pure electronic doping;

there is complete transfer of the donated Na electron over to the WO3 sublattice

since the 3s band of Na lies well above the 5d-antibonding band from W.

Finally, I propose that these materials present interesting opportunities for future

experimental and theoretical study, given the degree of structural control that can be

gained from doping or substitution. In particular, the “quenching out” of polyhedral

rotation (and hence the opening of channels within the structure) may have effects

on diffusion and ion intercalation in these structures.



Chapter 4

Constrained Linear Maximization

4.1 Introduction

Within harmonic transition state theory (hTST) [65], there are two sets of key points

on the potential energy surface (PES) of any given system; the energy minima,

corresponding to the metastable states of the system, and the first-order saddle

points connecting them. Given these, it is possible to reconstruct every reaction

pathway in the system, and thus determine thermodynamic and kinetic behaviour;

in many ways, this complete prediction of reactive properties is one of the key

challenges for simulations in materials research.

It is therefore not surprising that many techniques have been proposed in order

to identify these key points. The techniques of energy minimization are very well

established; identification of saddle-points is substantially harder, and many inno-

vative techniques have been proposed. These can, essentially, be divided into three

varieties: biased dynamics (including Voter’s hyperdynamics [66] and Micheletti and

Laio’s history-dependent metadynamics [67] methods), which are primarily meth-

ods for performing long timescale simulations, but in so doing identify transition

states; two-basin direct searches, from the historical Intrinsic Reaction Coordi-

64
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nate [68] method to more modern Nudged Elastic Band [69] and Linear/Quadratic

Synchronous Transit approaches, which aim to locate the transition between two

known metastable states; and single-basin searches, which aim to find saddle points

based on no knowledge of any other stable states. Therefore, in terms of specific

motivation, single-basin direct searches and metadynamics methods have most in

common: they point towards a generalized mapping of the salient features of the

PES, rather than discovery of the most energetically favourable mechanism for one

specific transition on the surface.

I propose an extremely simple single-basin algorithm, derived from the old idea of

the Intrinsic Reaction Coordinate [68], for the location of first-order saddle points on

a PES, given only the ability to calculate the energy, and its first partial derivatives

with respect to position, of a given configuration of the system. By my method, the

Intrinsic Reaction Coordinate method is extended and generalised to the single-basin

case, and by so doing, a controllable, conceptually simple, and highly parallelisable

method for energy surface exploration is developed.

4.2 Constrained Linear Maximization

The algorithm is named constrained linear maximization (CLM).

Represent the configuration space of the system (containing N atoms) by a 3N -

dimensional state vector, x, composed of a list of the coordinates of each of the

atoms in the system (in some appropriate coordinate basis; for the present work, the

Cartesian basis is used). Assume that the total energy of the system is representable

as an (exact and deterministic) function, E(x).

In a chemical reaction, the path of least work (the path with the lowest maximum in

energy) is taken between the two basins. This path must pass through a first-order

saddle point on the PES, and therefore is at a maximum along one of the Hessian’s
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eigenvectors and a minimum along all the others. By identifying this point, one can

recover the entire reaction pathway.

Often, one cannot achieve this practically by direct calculation of the Hessian. For

extended systems, the Hessian is much too large to evaluate repeatedly; even a single

evaluation of the Hessian directly takes 6N force evaluations for a given system.

However, some number of atoms must participate in a given class of activated pro-

cesses (for instance, the diffusing atom in a diffusion process; other atoms may also

participate, but one can be certain of the involvement of some atoms), one selects

an “active subspace” within the system (consisting, for instance, of the degrees of

freedom of any atom within a fixed radius of the diffusing species).

This immediately suggqests an algorithm based on the above argument; choose a

random normalized vector within the active subspace, v, and choose the distance

along that direction, γ, which maximizes energy subject to the constraint that energy

will be simultaneously minimized along all the orthogonal degrees of freedom. This

can be achieved very simply by use of a simple hill-climbing search for a modified

potential.

To express this algebraically, define a space composed of the complement of the

complete configuration space and V; this can be represented by a basis of size 3N-1,

q0...q3n−1. Within this, one can easily define the modified potential:

E(γ) = min
q1...qn

E

(

vx0 + γv +
3n−1
∑

n=0

(knqn)

)

(4.1)

Therefore, for a transition state, one can argue that:

ETS = max
γ

[

min
q1...qn

E

(

vx0 + γv +

3n−1
∑

n=0

(knqn)

)]

(4.2)
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The best way to visualize this proposal is by considering its behaviour near a sad-

dle point on an idealized quadratic potential. In this spirit, consider an idealized

potential of the following form:

E (x1 . . . xn, y) =
n
∑

1

[

an (xn − xn0
)2]− b(y − y0)

2 (4.3)

which has a transition state at r0 = (x10
, x20

, x30
. . . y0). Choosing an arbitrary

direction v as above, any position r on the surface can be expressed as

r = γv +

n
∑

1

(qn)λn (4.4)

where {q1...n} comprises the set of unit vectors normal to v. One can recast equation

4.1 using Lagrange multipliers to embody the minimization constraint; noting that

r.v = γ (4.5)

where γ is the free parameter for maximization, it follows that

min
r,∆

Fγ (r,∆) = E (r − ∆ (r.v − γ)) (4.6)

∆ being the Lagrange multiplier, with partial derivatives

∂E

∂xi

∣

∣

∣

∣

min

= ∆vxi
(4.7)

which allows one to consider the potential under evaluation. Taking the partial

derivatives of Equation 4.3 with respect to xi and y, and equating to 4.7:
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∂E

∂xn
= 2an (xn − xn0

) = ∆vxn
(4.8)

∂E

∂y
= −2b (yn − y0) = ∆vy (4.9)

It follows from this that

∆vxn
= 2anxn − 2anxn0

(4.10)

⇒∆vxn

2an
= xn − xn0

(4.11)

⇒xn =
∆vxn

2an
+ xn0

(4.12)

⇒xnvxn
= xn0

vxn
+

∆v2
xn

2an
(4.13)

and, similarly,

yvy = vyy0 −
∆vy

2

2b
(4.14)

Bearing mind the constraint in equation 4.5, one observes that:
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γ = r.v =
n
∑

1

[

xn0
vxn

+
∆vxn

2

2an

]

+ vyy0 −
∆vy

2

2b
(4.15)

= r0.v +

n
∑

1

[

∆v2
xn

2an

]

− ∆vy
2

2b
(4.16)

= r0.v +
∆

2

[

n
∑

1

(

v2
xn

an

)

− vy
2

b

]

(4.17)

⇒2 (γ − r0.v) = ∆

[

n
∑

1

(

v2
xn

an

)

− vy
2

b

]

(4.18)

Making the substitutions derived above for xn and y into the potential, given in

equation 4.3):

E(γ) =
n
∑

1

(xn − xn0
)2 − b (y − y0)

2 (4.19)

=

n
∑

1

an

[

∆vxn

2an
+ xn0

− xn0

]2

− b

[

y0 −
∆vy

2b
− y0

]2

(4.20)

=

n
∑

1

[

∆2vxn

2

4an

]

− ∆2vy
2

4b
(4.21)

=
∆2

4

[

n
∑

1

(

v2
xn

an

)

− vy
2

b

]

(4.22)
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Therefore, substituting for the expression in square brackets:

2(γ − r0.v) = ∆

[

n
∑

1

(

v2
xn

an

)

− vy
2

b

]

(4.23)

⇒ 2

∆
(γ − r0.v) =

[

n
∑

1

(

vxn

2

an

)

− vy
2

b

]

(4.24)

⇒ E(γ) =
∆2

4
× 2

∆
(γ − r0.v) (4.25)

=
∆

2
(γ − r0.v) (4.26)

At a stationary point, ∂E/∂γ = 0 and ∂2E/∂γ2 < 0. It follows that:

2 (γ − r0.v) = 0

⇒ γ = r0.v

but as γ = rmax.v from equation 4.5, it follows that:

rmax.v − r0.v = 0

⇒ (rmax − r0)⊥v

⇒ rmax = r0

here. Thus, we have located the stationary point on the energy surface at r0. Of

course, one is then not certain of the character of the stationary point is, so we go

on to this problem next.

Consider a potential of the form
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E(x) =
n
∑

1

anxn
2 (4.27)

where

x = x0 + γv +

n−1
∑

1

λpqp (4.28)

analogously to above, which is equivalent to the above problem up to translation of

basis as long as a1 < 0 and a2...n > 0.

Choose an (arbitrary) component of x, xn; it follows that

xn = xn0
+ γvn +

p
∑

1

λpqpn
(4.29)

Substituting this into our potential, one finds that:

E =
n
∑

1

an

(

xn0
+ γvn +

n−1
∑

1

λpqpn

)2

(4.30)

Therefore:
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∂E

∂γ
=

n
∑

1

(

2vnan

(

xn0
+ γvn +

n−1
∑

1

λnqpn

))

(4.31)

⇒ ∂E

∂γ
=

n
∑

1

(

2γanvn
2 + 2anvnxn0

+ 2vn

n−1
∑

1

λnqpn

)

(4.32)

⇒ ∂2E

∂2γ
=

n
∑

1

2anvn
2 (4.33)

Therefore, if there is to be a maximum in energy with variation of γ, then ∂2E
∂2γ

< 0;

therefore

−a1v1
2 >

n
∑

2

anvn
2 (4.34)

This is a central result – it allows one to calculate, for this potential, demonstrating

the range of v for which IRC-style simple-minded maximization along a random vec-

tor will be effective. In other words, this allows us to quantify the angle of approach

to the transition state for which the maximization path through the transition state

will be continuous. One simple case is where −a1 = a2 = . . . = an;

v1
2 >

n
∑

2

vn
2
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but noting that (by definition),

v2
1 +

n
∑

2

vn
2 = 1

⇒
n
∑

2

vn
2 = 1 − v2

1

⇒ v1
2 > 1 − v2

1

It follows that:

⇒ v1
2 > 1/2 (4.35)

Of the two roots here, one points towards the transition state, and one away from

it; therefore one need consider only the positive root:

v1 >
1√
2

(4.36)

This lets one simulate the scaling of the success-rate of CLM with increasing dimen-

sional degrees of freedom, simply by generating normalized trial vectors and testing

them against this condition, as can be seen in Figure 4.2.

This is a more general result than it seems, given that all transition states tend

(within harmonic transition state theory) to being quadratic the closer you get to the

transition state. Therefore, this result shows that random selection of trial vectors

is not going to be good enough – Figure 4.2 shows that the scaling of probability

of sucessess with increasing dimensionality is such that the probability of success

rapidly tends towards zero.

In fact, so far, the method is exactly identical (mathematically) to the reaction
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Figure 4.1: Converged CLM runs on a 2D harmonic potential.
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coordinate (IRC) methods I have referred to above; where we differ is, firstly, in

selection of initial search direction. In IRC, the search direction used is a linear

interpolation between reactant and product basins. As I have demonstrated, this is

insufficient in many common cases; if the true reaction coordinate lies some distance

off this interpolated line (that is to say, the reaction coordinate is curved) then the

trajectory taken through the system becomes discontinuous as noted above.

Additionally, one does not necessarily, a priori, know the locations of two minima

on our PES; therefore in these cases some other process for selection of an initial

trial vector must be used. In most systems, one is most interested in the behaviour

of one particular atom or set of atoms (for instance, if one is investigating diffusion,

the position of the diffusing species is necessarily going to be involved in the reaction

coordinate); using this kind of knowledge of the system one can bias one’s initial

selection to fall within a small subspace.

However, it is still likely that the trajectory taken through the system will be discon-

tinuous (if it is not, we have successfully discovered a transition state). Therefore,

one needs to consider what happens in the case where my algorithm fails.

One can compare two paths (for increasing γ) on a simple 2D potential of the form

E(x, y) = x2 + (y2 − 1)2. This has a transition state at (0, 0) and minima at (0,−1)

and (0, 1); by starting the runs in the minimum at (0, 1), one produces trajectories

which can be seen in figure 4.2.

One of these runs is successful, passing through the transition state; for the other,

there is a discontinuity over the location where the transition state lies. This is visible

in plots of the system’s energy as a variable of γ for these two runs (figure 4.3); in the

successful case, E(γ) is maximised at the transition state, whereas in the unsuccessful

one there is a cusp.

However, we now have information which can enable us to orient our search vector

towards a direction which will converge on the desired transition state.In the discon-

tinuous case, the true transition state typically lies between the two end-points of
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the discontinuity (in the coordinate space of the system). This suggests a strategy.

Let the normalized vector between the discontinuity endpoints be k; therefore, take

our new trial vector to be:

v′ =
v + δk

((v + δk).(v + δk))1/2
(4.37)

This will rotate our search direction towards the transition state in the vicinity of

the transition. As was demonstrated by the critical-angle analysis above, this is the

central idea of this new method; the necessary convergence condition for my method

is that the search direction is oriented closely enough to the minimum-curvature

eigenvector at the TS.

As might be expected, the efficiency of this method depends strongly on the choice

of δ; this shall be examined in the next section, but it should be noted that (as-

suming δ is not excessively large) the method is self-correcting; as v′ approaches the

correct search direction, v′.k (for normalised k) approaches unity, and therefore the

magnitude of search vector rotation will decrease (leading to convergence).

The results of this can be seen in figure 4.4, and show that this is a viable strategy;

CLM with search update by interpolation is shown to be both effective and to scale

approximately linearly with degrees of freedom.

4.3 Constrained Linear Maximization: Further De-

tails

This is no use, however, unless it is easy to implement as a practical search algo-

rithm. This is, thankfully, the case. The algorithm decouples neatly into two stages,
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consisting of an outer maximization algorithm around an inner minimization (or,

to look at it another way, maximization of a modified functional which contains a

minimization stage).

First, let us consider the minimization stage. We must prevent energy minimization

along one specific direction (i.e., in the space of q1 . . .q3n−1⊥v), which can easily

be achieved by firstly applying a projection operator to the system’s forces;

F′(x) = F(x) − (v.F(x))v (4.38)

and, then, performing conjugate-gradient minimization of the energy using these

modified forces.

Using this, one can then maximize the value of equation 4.1 – the fundamental

equation of the algorithm, or in other words maximization of the energy of the

system along a given vector in space, here x, whilst minimizing in its tangent space

– with respect to γ. One approach would be to use bisection search; this is effective,

but is less efficient than an even simpler approach - simply taking the end-point of a

previous tangent minimization and iteratively displacing the system by some small

distance along the maximization direction. In this latter case, the system starts

much closer to the constrained trajectory, and therefore far fewer steps are needed

in the tangent space to minimize energy.

A further optimization is that when a discontinuity is detected, one can obtain a good

initial guess for the next maximisation iteration by first minimizing the discontinu-

ous endpoint closer to the origin in the subspace defined by the new maximization

direction; this, again, substantially improves the efficiency of the algorithm.

At a transition state, F (x) tends to zero, providing an obvious check on the quality

of convergence achieved.

Conceptually, this algorithm has some connection to the ART Nouveau [70] algo-

rithm of Mousseau and collaborators. ART Nouveau depends for efficiency on an
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“activation” step, where one displaces the system along some vector in configura-

tion space until a sufficiently-negative eigenvalue is observed (which can be shown

by direct calculation of the Hessian and use of (for instance) the Lanczos method,

as in their original paper, or by a variational method for partial Hessian evaluation

such as that of Munro and Wales [71]; from there, eigenvector-following will lead to

a transition state.

It is noteworthy that at no point in the CLM algorithm is the Hessian directly or

indirectly evaluated. The new method differs from both the above in that we avoid

the second part of their algorithms; instead, CLM searches for directions where

activation, constrained by minimization in the tangent space, will lead directly to

the transition state without the need for Hessian evaluation. This has one notable

advantage; the CLM method is much less sensitive to certain types of noise.

As mentioned, certain (in particular electronic-structure) codes cause an artefact in

their potential energy surface called “space-rippling”; this refers to the phenomenon

where the energy (and therefore forces) on the system varies with the position of

the system with respect to the origin. As we are working under periodic boundary

conditions (in the general case), the energy of the system should be invariant under

translation.

In the case of the Siesta code, this space rippling arises from the calculation of some

of the Hamiltonian and overlap matrix elements on a real-space grid (the advantage

of this being that it enables the “divide and conquer” strategy which enables linear

scaling). This is colloquially known as the “eggbox effect”.

Consider a hypothetical sinusoidal eggbox field of periodicity 0.1 Åand energetic

magnitude of 0.001 eV; these are realistic figures. Therefore, E(x) = 0.0055 sin(2πx/0.1)

and, therefore, d2E/dx2 = −1.97E(x); as can be seen, this therefore introduces spu-

rious eigenvalues of the exact magnitude one is looking for, polluting the search

methods proposed above (which depend, essentially, on being able to make an accu-

rate variational search for the lowest eigenvalue of the Hessian). Furthermore, the

larger the eggbox field in magnitude, or the shorter in period, the worse the problem
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gets; therefore the problem is worse when one trades off performance for accuracy,

making “quick and dirty” calculations entirely impossible.

This noise is an even greater issue in the methods of Henkelman and Jonsson and

that of Munro and Wales, which depend on reasonable accuracy in a local varia-

tional search for the minimum-eigenvalue mode of the system; our search is on a

much longer length-scale, and thus this becomes a non-issue - one simply neglects

oscillations in the total energy of the system on the scale of the “eggbox”, as we

explain later.

To justify this statement, note that the variational method of Munro and Wales de-

pends on minimization of the finite-differences approximation to the second deriva-

tive of energy with respect to a trial eigenvector of the Hessian;

∂2E

∂x2
=
E(x0 + ∆x) + E(x0 − ∆x) − 2E(x0)

(∆x)2
(4.39)

where x is the trial eigenvector and x0 is the position of the system. This is, for

constant ∆, essentially equivalent to the Henkelman and Jónsson formulation – the

Dimer Method [3] – as will now be demonstrated.

In the Dimer Method, the key quantity to be minimized in the eigenvector search

is energy of a “dimer”, defined as the sum of the energies of the two images of a

system, lying at +∆ and −∆ along a trial eigenvector of the Hessian from a given

configuration of the system. Let this configuration be x0; therefore, the quantity

minimized with respect to dimer rotation is E(x0 +∆x)+E(x0 −∆x) with respect

to x, the orientation of the trial eigenvector. In principle, upon minimization, this

dimer will be oriented along the lowest-eigenvalue eigenvector of the Hessian of the

system at that point. The actual minimzation of the energy of the dimer with respect

to rotation is performed by an ingenious and extremely aggressive approximation

(essentially, a modified Newton method); thus, for each dimer configuration, only
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one rotation is performed per dimer-centre, rather than the full determination of the

minimum eigenvector performed at each stage in the Munro-Wales method.

Returning to the Munro-Wales formulation, x0 is constant for any given eigenvector

search; therefore, minimization of the partial derivative reduces to minimization of

the numerator. This function is therefore identical to the quantity minimized in

Henkelman-Jónsson up to multiplicative and additive constants, and both methods

should return similar eigenvectors. Therefore, both these methods suffer from the

same drawback – tremendous sensitivity to the space-rippling originated in codes

which perform integrals on a real-space grid. Their primary differences come in how

the step-length along the eigenvector is chosen (the Dimer Method uses a standard

first-derivatives force-based minimization whilst reversing the force along the dimer

- essentially, driving the system uphill, rather than downhill, along the minimum-

curvature mode, whereas the Munro-Wales method uses a finite-differences approx-

imation to an ideal Newton-Raphson step along the eigenvector combined with

tangent-space minimization in the remaining degrees of freedom), and the aforemen-

tioned variation in approach to minimum eigenvector-finding at each stage. These

are significant details in terms of implementation – and performance! – but the

underlying ideas of both methods are remarkably similar.

One significant advantage, though, of CLM over these methods is that it is easier to

implement – writing a CLM optimizer is, compared to the above methods, trivial.

A standard conjugate-gradient minimizer from library code can be used, and all the

other routines are acceptably efficient even in naive implementations.

The other method with which CLM has some similarity is Mishin’s [72] algorithm,

which he used for simulations of grain-boundary diffusion in perovskites. In his

work, an ion is displaced along a fixed direction, and then the system is allowed

to relax, using the Metropolis Monte-Carlo algorithm, in the tangent space of the

atomic displacement. However, the present work has three advantages. Firstly, CLM

converges to a genuine transition state. Mishin’s method risks the same problem as

IRC (ie, CLM without iterative direction update) – that of maximising in a direction
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which lies outside the critical region of configuration space, and which will thus miss

the transition state. This is a very serious defect; Mishin’s method at best provides

an approximate upper bound to the true transition state energy. Secondly, CLM

uses a direct minimization method in the tangent space of our atomic displacement

(as Mishin’s studies concentrate on thermal effects, he is not able to do this), which

is substantially more efficient. Thirdly, the CLM formalism is defined for arbitrary

vectors in configuration space, rather than the displacement of a specific atom, which

is much more general. However, Mishin’s method does have one advantage over the

present work – it includes the effect of finite temperature; therefore, it can be used

to map the free energy surface directly, which this method cannot.

There is no guarantee that any given transition state found will be the lowest in

energy. This is, in fact, desirable; for this class of methods it is much more important

to find as many of the possible transition states from a given basin as possible; these

can then be used (in, for example, kinetic Monte Carlo simulations) to determine

the long-time-scale statistical thermodynamics of the system. If a specific transition

state is being searched for, two-basin search methods are still more efficient.

In my method, the transition state found is highly dependent on the initial direction

chosen; therefore, the algorithm parallelizes well, as one can simply select a random

distribution of vectors, one (or more) per process, from the active subspace. There

is still no guarantee that every (or any particular) transition state will be found,

but this is true of any algorithm of this class; only a complete mapping of the

potential energy surface can provide complete certainty, and that is only plausible

for extremely small systems or exceptionally simple potentials.
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4.4 Efficiency of Constrained Linear Maximisa-

tion

The efficiency of CLM as a method is primarily determined by three factors; the

initial step size used in my method; what CLM terms the bracketing tolerance; and

the algorithm used for reorientation of our search direction (and in particular the

magnitude of δ, as defined above).

Let us consider each of these in turn.

4.4.1 Step size

The naive assumption to make is that the larger the initial step size one can use, the

better; initially, one is attempting to bracket the transition state along our trajectory

through the system (in the sense of determining a point which lies directly before

it, and a point which lies directly after), and it seems obvious that the larger this

initial step, the sooner bracketing will occur.

Unfortunately, this is not the case for two reasons. Firstly, in some systems it is

possible to overstep the salient energetic features of the system. This will only occur

if the initial step is so grossly large as to be of the same (or larger) length-scale as

the distance between key features (transition states and minima) on the reaction

coordinate, but this is not always something which can be ruled out. It should be

noted that this can also prove to be an advantage if one has a spurious short-range

energetic feature which one wishes to ignore, such as the egg-box.

Secondly, and more importantly, each step in our process does not exist in isolation.

Consider Figure 4.5:

Firstly, the smaller step provides a tighter initial bracketing of the transition state.

Secondly, as can be seen, the smallter the step, the fewer minimization steps required
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Figure 4.5: Trajectories through the system for two different step sizes; dashed lines
represent minimization in the tangent space.
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in the tangent space to reach the minimum energy trajectory; therefore, there comes

a crossover point where the gain of locating the transition state in the linear space

is outweighed by the increased cost of the tangent-space minimization.

Although we reduce the step-size once a transition state has been bracketed, we

have not investigated the potential optimization of adapting the step size during

the initial bracketing search. It is thought unlikely, given the measured performance

data, that this will affect the efficiency of the method by an order of magnitude, but

it would probably provide measurable performance gains.

4.4.2 Bracketing tolerance

Consider Figure 4.6. When a transition state is found, we return to before the

transition state (by a distance of twice the curent step size to avoid misbracketing of

our transition state) and halve the stepsize. When the stepsize is equal to or smaller

than the bracketing tolerance (and the energy of the system appears to be continuous

in γ), we stop and return the current position. This is the primary control on the

accuracy of my method, as well as significantly affecting its efficiency; the looser the

bracketing tolerance the less accurate the method is, but the faster it will converge.

In the majority of cases, energy converges faster than distance from the transition

state; this is (of course) dependent on the curvature of the energy surface near

the transition state. If the imaginary frequency of the mode corresponding to the

transition state is small, a large bracket will provide reasonable accuracy in terms

of TS energy, but for a high-frequency mode the same bracket will give very poor

results.

At present, a fixed bracketing tolerance is used; therefore, for any given system we

must set our tolerance to be acceptably precise for all the transition states in the

system. Making this task more complex is the fact that one does not, a priori,

know what these are; therefore, one must be extremely conservative in setting the

algorithm’s bracketing tolerance, which costs us somewhat in terms of performance.
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Figure 4.6: As can be seen, the calculated path energy only falls at step 4; by this
point, one has already overshot the transition state.
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An adaptive bracketing scheme would therefore be ideal; this is a goal for future

research. One might, for instance, fit a quadratic to the last three points on the

system’s trajectory and from that estimate the curvature approaching the transition

state; this would allow one to estimate the potential error in energies. An approach

along these lines is likely to be rewarding in terms of improving the observed per-

formance of the algorithm.

4.4.3 Reorientation algorithm

As noted above, to a certain extent the reorientation process is self-correcting; as-

suming that discontinuities are being accurately detected, and that δ (the magnitude

of reorientation) is not excessively large, the system will tend towards the correct

orientation. However, it is obviously desirable that one does not over-rotate (caus-

ing the search direction to undergo what amounts to a damped oscillation about

the desired vector), or under-rotate (leading to slow convergence in the other limit);

one approach which can be taken here is to fit δ empirically for best performance

on a set of test potentials, and this is the approach the CLM algorithm has chosen

to take.

It is likely that, like the bracketing tolerance, an adaptive scheme would provide

better performance; this has, at present, not been investigated, though it would

provide an interesting task for future research.

Additionally, there is substantial room for increased performance here; my algorithm

is consciously very simple, and near to a transition state Hessian-based methods are

exceptionally efficient at identifying the desired search direction. It is likely that the

most efficient approach, in the long term, will be a hybrid - although at what point it

would be best to switch from my method to eigenvector-following is not immediately

obvious. Additionally, in the “eggbox effect” case, the effect of distortions of the

energy space could well render this difficult or impossible; the option remains, in that

case, to coarsely locate potential transition states at one, computationally cheap,



CHAPTER 4. CONSTRAINED LINEAR MAXIMIZATION 90

level of grid fineness, followed by performing variationally-based search with a much

finer grid tolerance (which reduces the scale of the eggbox) for configurations known

to be very close to transition states.

4.5 Tests on 2D potentials

My implementation of this algorithm was written using the CAMPOS framework.

CAMPOS is an open-source suite of software (in the Python programming language)

primarily written by the Centre for Atomic-Scale Materials Physics at the Technical

University of Denmark and a worldwide team of volunteers; it is freely available

for use and modification. Its primary feature is that algorithms such as ours can be

implemented in a totally force-evaluator agnostic way: the same implementation can

therefore be reused at all levels of approximation from entirely abstract potentials up

to DFT methods (at present, CAMPOS supports the Dacapo and Siesta codes).

Therefore, as a further test for my algorithm, two two-dimensional test potentials

were implemented. The quadratic potential has already been described above; the

oter is the modified 2D London-Eyring-Polanyi-Sato (LEPS) potential first intro-

duced by Jónsson, Mills and Jacobsen [69], and later modified by Henkelman and

Jónsson [3]. The LEPS potential itself, introduced by Sato as a modification of

the work of the other three eponymous scientists in 1965 [73], is a model for the

interaction of three atoms (A, B and C) confined to motion along a line. Only one

bond can be formed, between either of the pairs of adjacent atoms, AB and BC;

therefore, there are two degrees of freedom, rAB and rBC , to this problem. By fixing

the positions of A and C, this falls to one degree - the position of B on the line.

One can now reintroduce a second degree of freedom (producing a more complex,

and thus testing, energy surface), by coupling the 1D LEPS system to a harmonic

oscillator; the functional forms in question can be found in Henkelman and Jónsson’s

paper [3], but an isosurface plot of the energy surface can be seen in figure 4.7.
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Figure 4.7: 2D LEPS surface
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Table 4.1: Parameters for the Gaussian functions added to the modified LEPS
potential, after Henkelman and Jónsson [3].
i 1 2
Ai 1.5 6.0
x0i

2.02083 0.8
y0i

-0.172881 2.0
σxi

0.1 5.0
σyi

0.35 0.7

This surface only has one transition state and two minima, but even in this case

the na ive Intrinsic Reaction Coordinate method (taking the linear interpolation

between the minima the as our postulated reaction coordinate) fails. In order to add

extra transition states to this surface, Henkelman and Jónsson added two Gaussian

functions of the form

Gi(x, y) = Aie
−(x−x0i

)2/2σxie−(y−y0i
)2/2σyi (4.40)

where the values taken for the free variables are given in Table 4.1. The resulting

energy surface is shown in Figure 4.8.

This surface has three minima and four transition states.

In order to determine the performance of my algorithm, sets of 500 CLM runs

were calculated from each of these three basins. Runs which ran straight uphill

(determined by their reaching an energy 10 units greater than the initial basin) were

restarted on a new random maximization vector and their step-count reset to zero, as

in a real system the restriction of our initial maximization vector’s degrees of freedom

(and the use of periodic boundary conditions) make it extremely unlikely that such

a direction will be selected. The initial step-length was varied as denoted below.

A convergence tolerance of 0.01 units was used, providing accuracy of substantially
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Figure 4.8: 2D LEPS surface with added Gaussians
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Start basin TS1 (1.11) TS2 (1.55) TS3 (3.17) TS4 (3.96) Mean number of steps
1 93 138 232 37 639.9
2 92 156 218 34 607.4
3 0 0 360 139 452.4

Table 4.2: Results, stepsize=0.05; Note that transition states 1 and 2 are inaccessible
from basin 3.

Start basin TS1 (1.11) TS2 (1.55) TS3 (3.17) TS4 (3.96) Mean number of steps
1 151 124 37 514.3
2 137 139 222 2 534.3
3 0 0 332 154 481.6

Table 4.3: Results, stepsize=0.1; Note that transition states 1 and 2 are inaccessible
from basin 3.

better than 0.01 units in the calculated transition state energy. The results can be

seen in tables 4.2 and 4.3, and in figure 4.9.

As can be seen, and (indeed) as expected, the initial stepsize has a relatively small

effect on the performance of the algorithm. The impact of the bracketing tolerance

on the accuracy and performance of our method was investigated next. Starting

from Basin 1, sets of 500 runs were calculated with a stepsize of 0.05 and bracketing

tolerances of 0.01, 0.02 and 0.04; this caused a fall in mean-number-of-evaluations

from 640 to 513 in the latter case, as is represented in Figure 4.10.

There is a cost in terms of the well-convergedness of our transition states; this can

be seen in Figure 4.11, comparing the final converged transition state positions for

bracketing tolerances of 0.01 and 0.04 units. However, the latter is far from useless;

as can be seen, it still reliably locates the vicinity of the transition states, suggesting

our method has some value for a quick, approximate calculation.

One advantage my method possesses over Henkelman and Jónsson’s is the simplicity

of generating initial search directions; they start by displacing some number of atoms

around the minimum configuration and performing an initial dimer rotation, whereas

we simply need to select a vector in a subspace around the origin. The strongest
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Figure 4.11: Comparative positions of our calculated transition states on the modi-
fied 2DLEPS potential for bracketing tolerances of 0.01 and 0.04 units.

feature of my method is its algorithmic and conceptual simplicity.

Henkelman and Jónsson do not give specific numeric performance figures for the

efficiency of their method on this potential in their original paper. Assuming, as is

implied in their paper, that each dimer calculation takes six evaluations, consider-

ation of their presented trajectories implies that their successful calculations take

between 150 and 200 force evaluations on this surface. My method is around two

to two and a half times slower, but very little effort has been placed into optimizing

the algorithm; with careful choice of tolerances, CLM appears to be competitive,

and has the advantages mentioned previously which may make it a better choice for

some systems.

A key point to be made here is that one can conceptually divide the search for transi-

tion states into two parts; transition state location and transition state optimization.

Most methods excel at one or the other; close to a transition state, Hessian-based

methods (Rational Function Optimization (RFO) methods [74] (following from the

pioneering eigenvector-following work of Cerjan and Miller [75]), Newton-Raphson,

Munro-Wales, Henkelman-Jónsson Dimer, and so forth and so on) are most efficient,

because in the general case identifying the correct step direction (the eigenvector as-

sociated with complex frequency) is very easy. However, far from the transition
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states, these methods are often rather poor. The Dimer method requires very care-

ful selection of step-size and related parameters for best performance, both in terms

of number of force evaluations needed and in terms of number of transition states

found; transition state discovery can actually be harmed by overconvergence on the

minimum eigenvector at early stages in the calculation. This is best illustrated by

the review article of Olsen and collaborators published [76] published in 2004. In

the terminology introduced here, these methods are very good at transition state

optimization but less good at location.

My method has the other problem; it identifies the locales of transition states very

rapidly, but optimizing the final transition state is slow, and in systems with highly

curved energy spaces (high-energy events - for instance, results (presented later

in this work) pertaining to the simulation of self-diffusion in silica glass) can be

somewhat inaccurate. In the case of CLM, this is primarily due to the difficulty

of setting the free variables which detect the onset of a discontinuity in the search

direction; if one is missing small discontinuities close to the transition state one can

end up with a systematic overestimate of the transition state energy.

Also, the convergence of the method is poor close to the transition state; my method

excels at location, which is desirable when searching a large parameter space for

transition state basins, but in some cases needs to be paired with another method

to optimize the results within those basins.

Of course, as mentioned earlier, it is possible to switch methods, either by hand or

automatically; once a transition state has been bracketed to within a certain toler-

ance, one could easily switch to either a variational or explicit eigenvector-following

method. My work on framework silicates takes this approach; the transition states

presented were first identified with CLM and then optimized using the RFO method.

In the present work, the free parameters in CLM have been set throughout as out-

lined in the work on the LEPS2D potential above; this potential has the right length-

scale for interatomic processes (and, as a cheap-to-evaluate model, has allowed the

above extensive testing).



CHAPTER 4. CONSTRAINED LINEAR MAXIMIZATION 98

4.6 Platinum (001) surface

The (001) surface of face-centred cubic platinum, simulated using effective-medium

theory, was used to test the algorithm. It has been known since Kellogg and

Feibelman’s experimental paper of 1994 [77] that adatom surface diffusion does not

progress by simple hopping; rather, a concerted exchange mechanism takes place,

where the surface adatom forms a local dimer with another atom, kicking it out of

the surface layer and replacing it.

This was extended by Wei Xiao et al. [78], when they considered the effects of

strain; they found that extremely extended transition states, “crowdions”, existed

(by embedded-atom simulation). Therefore, this is an ideal test system – being able

to find these multi-atom transition states would demonstrate that the initially-local

choice of trial search direction in CLM is not a major weakness.

We used an 1806-atom slab of platinum, with one surface adatom and the lowest of

the five 19×19 slabs fixed. The lattice parameter was set to 3.975 Å, and a biaxial

strain was applied down x of 2%.

We found multiple transition states, including direct hopping, surface exchange, and

crowdion formation; this is a powerful demonstration of the effectiveness of CLM.

The energies of the transitions are not meaningful, given the inherent limits of the

forcefield used; it was sufficient for my purposes that multi-atom transition states

existed, and no more.
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Figure 4.12: Transition states on the Pt(001) surface; from the top, a crowdion, a
direct hop and a dimer exchange.



Chapter 5

Diffusion of Li+ in quartz,

cristobalite, and tridymite

5.1 Introduction

Silica (SiO2) is a key material in many modern engineering applications, whether as

a timing crystal (quartz), as the amorphous form in digital electronics, or in another

of its many applications. Additionally, the majority of technologically important

glasses for engineering applications are silicate-based; in these, doping to adjust cer-

tain physical properties (a trivial example being the lowering of the glass transition

temperature induced by alkali-ion doping in sodalime window glass) is essential, and

the diffusion of dopant species in silicate glasses has, as such, been been a subject

of active research for over forty years [79].

In this chapter, the diffusion of Li+ ions in crystalline SiO2 is considered. At labora-

tory conditions, the stable phase of SiO2 is the low phase, α-quartz [80]. Therefore, it

is this to which I pay most attention. I also perform comparative studies, in substan-

tially less detail, of low tridymite and low cristobalite; they have structures derived

from rings of SiO4 tetrahedra rather than the helices evident in quartz, and hence

100
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might be a better archetype for local environments for Li+ in glass (which I consider

in the next chapter). Past simulation studies of these classes of materials have used

either molecular-dynamics/forced-diffusion approaches [26] or approximate methods

based around rigid-unit relaxation of the tetrahedral Si–O framework [6]. Instead of

using these methods, I present results obtained from a direct search of the potential

energy surface as modelled by a classical forcefield.

From consideration of the connectivity of our library of identified stable sites and

transition states, one firstly identifies the complete mechanism for c-axis diffusion of

Li+ in α-quartz when it is unbound from Al3+, including accurate structures for all

the stable and transition states therein. The stable states along this pathway accord

well with experimental measurements of stable Li+ sites by X-ray diffraction. As

anticipated, a strong affinity between Li+ and (impurity) Al species is found; having

observed broken symmetry in the diffusion mechanism, we consider the problem of

comparatively-long-distance Li–Al interaction. By considering a situation where the

charge associated with the Al3+ defect is distributed over all the Si/Al sites in the

lattice, it is found that induced lattice distortion by Al/Si substitution is a more

significant effect than direct Coulombic interaction at Li–Al distances greater than

approximately 5Å and is sufficiently substantial to change the order of stability of

stable sites within [001] diffusion channels.

Further to this, simulations of lithium diffusion in two other silicate polymorphs,

low tridymite and low cristobalite, was performed; a comparative study of diffusion

in these structures is presented, as a precursor to considering the problem of Li+

diffusion in silica glass (in the next chapter).
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5.2 Method

5.2.1 Supercell and potential

For all the systems, a classical force-field was used; energies and atomistic forces

were calculated using GULP [21]. The potentials were derived by Calleja et al. [26],

building on the work of van Beest et al [27]. Van Beest’s potentials are known to

reproduce the structural and elastic properties of quartz to an acceptable degree of

accuracy; Calleja and colleagues then used this forcefield as a basis for theirs, relaxing

α-spodumene with their trial field and fitting the Li–O interaction to obtain good

correspondence with available experimental data.

The forcefield takes the form of a set of of Buckingham potentials (the first two

terms of the following equation), plus a Coulombic term to account for electrostatic

interaction:

V (r) = Aij exp
(

−rρ−1
)

− Cijr
−6 + q1q2r

−1 (5.1)

The parameterisation of this forcefield, and the value for formal charges used in

the simulation, is given in Table 5.1. The same forcefield was also used by Wells,

Sartbaeva et al. in their simulations [6, 17]; I refer to their results in due course.

Using this forcefield I constructed, as outlined below, a supercell of each of the

systems under study. Each supercell was then relaxed (using a variable cell) in

P1 symmetry; having performed this. a single substitution of Al for Si was made,

and a well-separated Li+ ion added to the system – thus retaining charge balance.

The generated system was then re-relaxed (this time keeping cell shape and volume

constant) before attempting transition state search. Periodic boundary conditions

were used for the simulation.

Initial calibratory runs were then performed, consisting of a Constrained Linear

Maximization (CLM) run directly followed by an energy minimization, until it was
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Species A(eV ) ρ(Å) C(eV/Å
6
)

O–Si 18003.757 0.205200 133.54
O–O 1388.7730 0.362320 175.00
Li–O 1149.4126 0.280490 0
O–Al 16008.535 0.208480 130.57
Li–Al 35985.486 0.215695 189.10
Li–Si 18080.333 0.206049 153.87

Species Charge (e−)
Li +1.0
Al +1.4
Si +2.4
O -1.2

Table 5.1: Parameters for the force-field used in these simulations.

clear that the system was well-minimized with the Li+ atom residing in a different

channel in the structure to the Al3+. This provided an initial configuration from

which to search.

Quartz cell

Quartz, under laboratory conditions, has two commonly encountered polymorphs; a

low-temperature trigonal phase (α-quartz) and a high temperature hexagonal form,

first identified by Le Chatelier in 1889 [81]. These are separated by a displacive

phase transition at 846K. This transition is driven by a soft rigid unit mode [82];

it preserves the Si-O-Si bond angle, and hence is low-energy, minimizes distortion

of the SiO4 polyhedra, and requires no change in the topology of the structure. As

this is a zone-centre transition [83], the unit cell contains the same atoms in both

the high and low phases; there are three formula units per unit cell, and hence nine

atoms.

Both these structures are composed of helices of SiO4 tetahedra, with channels down

the c-direction; this is to be contrasted with tridymite and cristobalite, both of which

are made up of rings of similar corner-linked SiO4 units.
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Simulated Undoped α-quartz at 20 K [80]

a (Å) 14.829 14.7057
b (Å) 14.832 14.7057
c (Å) 10.867 10.7976
α 89.69◦ 90◦

β 90.21◦ 90◦

γ 120.16◦ 120◦

Table 5.2: Parameters for the α-quartz supercell, compared against experiment. As
can be seen, c is 0.6% larger, and a 0.84% larger, in this doped cell than in the
experimental undoped values at 20 K measured by Tucker et al; this is regarded as
acceptable, certainly within the spirit of empirical-potential calculations.

The present study uses a 3×3×2 supercell of low quartz, which allows both the

Li+ ion not to self-interact in the z-direction – the predicted primary direction of

motion – and also for there to be one full channel between Li+ and Al3+ in the xy-

plane, minimizing the effect of Li–Al interactions. There were, therefore, 163 atoms

in the supercell used in the calculations; the geometry of the supercell is given in

Table 5.2.1.

The structures of tridymite and cristobalite

It is worth considering the structures of tridymite and cristobalite together. These,

similar to quartz, undergo displacive phase transitions driven by rigid unit modes [84,

85]; these lower the symmetry from hexagonal (high tridymite) or cubic (high cristo-

balite) to orthorhombic (although more on this later) and tetragonal respectively.

Both of these phases are metastable with respect to quartz at low temperature.

They are composed of sheets of hexagonal rings of SiO4, corner-sharing, with adja-

cent tetrahedra oriented alternately up and down [83]. The structures of both these

phases can be derived, topologically, from polymorphs of solid carbon; by replacing
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Simulated High-temperature aristotype, experimental [4]

a (Å) 18.693 20.20
b (Å) 19.393 20.20
c (Å) 16.074 16.48
α 90.11◦ 90◦

β 89.87◦ 90◦

γ 118.71◦ 120◦

Table 5.3: Parameters for the tridymite supercell; experimental data from Kihara
et al. [4]

C with Si, placing oxygen atoms between each Si–Si pair (expanding the structure so

that this is energetically reasonable), and allowing the structure to relax. In partic-

ular, tridymite can be derived from the lonsdaleite (hexagonal diamond) structure,

with adjacent layers stacked in an AB’AB’AB’ pattern; the B’ layers are laterally

translated and inverted A layers. Cristobalite can be derived from the silicon/di-

amond structure; it has an ABCABC stacking arrangement, and layers parallel to

the (111) plane.

Tridymite cell

A larger supercell of tridymite, containing 385 atoms, is used; this corresponds to

a 4×4×2 supercell of the high-temperature aristotype. The structure of tridymite

at low temperature is complex and heavily history-dependent [86], so in the semi-

quantitative spirit of these simulations it was decided to use a large supercell of

the high-temperature phase and simply relax it at low temperature rather than at-

tempting to recreate the incommensurate geometry of the low-temperature phase(s).

The geometry of the supercell is given in Table 5.2.1, with reference to the high-

temperature phase.
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Simulated Experimental [5]

a (Å) 14.765 14.871
b (Å) 14.765 14.871
c (Å) 13.202 13.7806
α 90.00◦ 90.00◦

β 90.00◦ 90.00◦

γ 90.00◦ 90.00◦

Table 5.4: Parameters for the α-cristobalite supercell; experimental data from Pluth
et al. [5]

Cristobalite cell

The cristobalite supercell used contains 217 atoms (a 3×3×2 supercell once again);

a substantial (around 4%) shortening was observed in the c lattice parameter, but

the topology of the structure remains correct; therefore, although our results are

approximate (which, given the potential, was always the case), this is acceptable

within the spirit of our efforts here.

5.2.2 Event discovery

The method of Constrained Linear Maximization, as derived in the last chapter, was

used to build a library of transition state events in each supercell. As the present

study is only, in the first instance, interested in events which result in a displacement

of Li+ from its original location within the lattice, initial trial displacement vectors

were constructed by choosing random unit displacements on the Li+ atom; however,

no constraint was placed on the ultimate value of the search vector, other than to

remove the possibility of choosing a vector corresponding to bulk translation of the

system by fixing the position of a single atom within each of the systems we consider.
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This removes exactly three degrees of freedom from the system, corresponding to

bulk translations along x, y, and z.

This is only half of the problem, though; although it is highly likely, it is not certain

that the transition states thus found are directly connected to the original minima

from which the searches were performed. Therefore, a three-stage protocol was

adopted throughout. Firstly, a set of candidate transition states were identified with

CLM. Secondly, to ensure extremely accurate convergence to the transition state,

we converged our candidate states using Rational Function Optimization [74] (in the

form of the RFO optimizer in GULP) to a saddle-point of order 1 (i.e., our transition

state); displacements and changes in energy were small (of the order of 0.01 eV), as

one would expect. It was then possible to take these refined structures and perform

an RFO optimization from the transition state to a minimum. The resulting set of

minima are connected to the transition state (which of the two minima connected

to a given transition state is selected by this procedure is essentially determined

by noise); it will not follow the steepest descent path during the optimization, and

hence will not follow the exact reaction pathway, but for present purposes – one is

solely seeking extrema – this is not an issue.

Thus, two sets of special points on the energy surface are obtained, minima and

transition states – and, also, a set of connections between members of these two

sets. These can therefore be represented as vertices on a graph, each transition state

being connected to at most two minima and each minimum being connected solely

to transition states. This presents the nature of any activated processes which may

have been found in a particularly clear way – any path between two minima on this

graph corresponds to a physically-possible diffusion pathway within the system.

This kind of graph layout can be automated; in the present work, we use the dot

language and the graphviz graph-layout suite [87] to produce our energy surface

diagrams. For small systems, it would be plausible to draw graphs by hand, but for

extended or disordered systems it would rapidly become time-consuming and error-

prone; instead, it is near-trivial to write a small program which outputs dot–format
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lists of vertices (both minima and transition states) and edges.

5.3 Quartz

5.3.1 Prior results

In quartz, it is well-known that diffusion is markedly more rapid along the c-axis

when compared to [110]-type directions, due to the presence of large channels in the

structure down the c-axis; these arise from the highly directional helical structure

of the material. Therefore, in looking at Li+ diffusion in this phase, our primary

goal was to attempt to identify the stable sites for Li+ in the primary channel in the

α-quartz structure (in other words, down the c channel in the structure), and the

transition states connecting these stable states.

Experimentally, Campone et al. [88] found an activation barrier of 0.25 eV in β-

quartz for c-axis diffusion, whereas Sartbaeva found 0.29 eV in β-quartz and 0.68

eV in the α phase. This process has also been simulated before; two approximate

methods have been used, in both cases using exactly the same forcefield as be-

ing used here. Firstly, there is an applied-electric-field forced-diffusion molecular

dynamics simulation by Calleja [26] et al.; secondly, a hybrid geometric-algebra ap-

proach taken by Sartbaeva et al [6, 17]. Calleja found than an unpinning energy

of 0.11eV was required to initiate Na+ diffusion (in the [001] direction) in α-quartz

at 300 K; Sartbaeva and Wells found that the minimum activation energy for Li+

diffusion, using the same potentials as the present study, was approximately 0.25

eV. The key insight of Sartbaeva et al.’s simulations [6, 17], however, is the role

of channel flexibility in the diffusion proces; with their geometric-algebra approach,

they suggest that oscillations in the position of oxygen atoms of up to 0.5 Å can be

accommodated at a cost of no more than approximately 0.5 eV. It is particularly

notable that the simulated values are substantially lower than the values identified

by experiment.
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5.3.2 Calculated activated pathways

The topology of the potential energy surface for α-quartz, in the presence of a single

Al3+ substitution, is presented in Figure 5.1. Looking at this, there is one clear

highly extended process; configurations on this on this are labelled M1 to M5 (and

T1 to T5. accordingly – M for minima, T for transition states). These correspond

to diffusion up the [001] direction, as presented in Figures 5.2 to 5.10. In all these

figures, oxygen atoms are red; silicon atoms are blue; lithium and aluminium atoms

(which should be unambiguous by context) are both purple. Each of these figures

consists of a pair of images of the same structure; one oriented down the [001]

direction (on the right), and one oriented so that [001] runs up the page (on the

left).

Therefore, the mechanism for diffusion up the c-axis, using the labels in figures 5.2

to 5.10, can be seen to be M5 (fourfold) to T5 (activation energy 0.053 eV) to M2

(fourfold) to T3 (activation energy 0.194 eV) to M3 (fourfold) to T4 (activation

energy 0.036 eV) to M4 (twofold); as we can see, that takes us through one full unit

cell in the c−direction, and diffusion will continue on upwards through a transition

state similar to T5.

It follows that an activation energy for this process (c−axis diffusion) of approxi-

mately 0.19 eV is therefore found, lying between the values found by Calleja and

Sartbaeva; a first move for [110] diffusion was also obtained, and thus one finds an

activation barrier for that process of 0.75 eV. This is substantially lower than the

transition-state energy found by Calleja, by molecular dynamics at 300 K under

applied field, of 1.55 eV; regardless, [110] is unambiguously the “slow” direction for

diffusion in this structure.
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Figure 5.1: Connectivity of minima and transition states found in singly Li+-doped
α-quartz; diffusion up the c-axis is shown in the labelled vertices M1–M5 and T1–T5.
Ellipses represent stable states, diamonds transition states; all energies are presented
in eV.
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Figure 5.2: Transition state T1 (0.750 eV), connected to M1 (the “wall” site, Fig-
ure 5.3). This is the activation barrier for diffusion through channel walls, and hence
in [110]-type directions in this structure.

5.3.3 Stable states

One point of interest arising from these calculations is that we identify a stable

state of the system which was not picked up by Sartbaeva et al [6]; whereas they

identify a twofold site (our Figure 5.8) and a fourfold site (our Figure 5.6), they

neglect our “wall” site. This may explain their overestimate, compared to present

simulations, of the activation energy for diffusion: under the assumption that the

system progresses directly from the wall site to the transition state leading to the

fourfold site, one would obtain an activation energy, from our calculations, of 0.22

eV (compared to Sartbaeva’s value of 0.19 eV). It is difficult to be certain, but given

the approximate nature of the method used in their work, it seems plausible that

this is one of the causes of the difference between our results and theirs.

The two low-energy stable sites, M1 (Figure 5.3, the wall site), and M2 (Figure 5.6,

the fourfold site), are extremely close in energy; the latter is metastable by only



CHAPTER 5. DIFFUSION OF Li
+

IN CRYSTALLINE SILICATES 112

Figure 5.3: Minimum M1: the lowest minimum found on the c-axis mechanisml
this is what has been dubbed a “wall” site, residing (as it does) in a [100]-channel
wall. Connected to T1 (Figure 5.2) and T2 (Figure 5.4, the twofold site using
Sartbaeva [6]’s notation.)
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Figure 5.4: T2 (0.053 eV): transition state connecting M1 (the wall site, Figure 5.3)
and M2, the twofold site (Figure 5.6.)

Figure 5.5: T5 (0.101 eV): this transition state, showing twofold linear coordination
of Li+ by Si4+, connects M2 (Figure 5.6 with the equivalent twofold site directly
below it (M5, not shown).
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Figure 5.6: M2 (0.028 eV): connected to M1, the wall site, by T2 (Figure 5.4). This
is Sartbaeva and Wells’ “fourfold” site, as can be seen on the left.

Figure 5.7: T3 (0.222 eV): connects M2 (Figure 5.6, the fourfold site, with M3, the
twofold site (Figure 5.8). This is the rate-determining step for [001] diffusion, with
an activation barrier of 0.194 eV.
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Figure 5.8: M3 (0.175 eV); this is Sartbaeva and Wells’ “twofold” site, with the Li+

ion directly between two oxygens, and is connected to the upper twofold site (M4,
Figure 5.10) and the lower twofold site (M2, Figure 5.6) through T4 (Figure 5.9)
and T3 respectively.
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Figure 5.9: T4 (0.211 eV): this is the transition between twofold M3 (Figure 5.8)
and and upper fourfold M4 (Figure 5.10).

Figure 5.10: M4 (0.053 eV): this is a fourfold site like M2 (Figure 5.6), connected
to twofold M3 by T4 (Figure 5.9).
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0.028 eV. They are separated by activation barriers of 0.053 eV (on the more stable

side) and 0.025 eV (on the less stable one). Therefore, calling these two activated

processes P1 (motion from M2 to M1 via T2) and P2 (M1 to M2 via T2), less stable

side (M2 side) first, and their corresponding reaction rate constants kP1
and kP2

;

kP1
= AP1

e−0.025/kT

kP2
= AP2

e−0.053/kT

⇒KP1,P2
=
AP1

e(0.025−0.053)/kT

AP2

⇒KP1,P2
=
AP1

AP2

e−0.028/kT

If one then assumes that AP1
≈ AP2

, and therefore that their ratio is approximately

1, one can plot the behaviour of the equilibrium constant – and therefore, the ratio

of the populations of M2 and M1 for this process against temperature (Figure 5.11).

This is, of course, just the Maxwell-Boltzman distribution.

This, of course, neglects the effect that changes in the Si–O lattice may have on

the relative activation energy of these two processes; still, it is clear that in lab

conditions (say, 300 K), the ratio Occupancy(M2)/Occupancy(M1) is around 0.3 –

i.e, the occupancy of M1 is around three times higher than that of M2, but both

will be clearly occupied in, for instance, diffaction patterns.

Therefore, this suggests that at room temperature there is substantial occupancy of

both these sites. One would expect to find evidence of this, and indeed, in the PhD

thesis of Asel Sartbaeva she found substantial evidence for disorder in the position of

the fourfold site via X-ray diffraction, and I believe that this provides a mechanism

by which that disorder can occur.
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Figure 5.11: Approximate equilibrium constant between the two most stable Li+–Si
sites in α-quartz
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5.3.4 Variations in channel width throughout the diffusion

process

In analysing the diffusion mechanism in this structure, it has been suggested [6, 17]

that the great flexibility of the quartz structure – arising from rigid unit modes [89,

90, 80] – is key. These low-energy vibrational modes control the width of channels in

the structure, what might be termed its “openness”, without requiring polyhedral

distortion; in the limiting model of rigid tetrahedra with force-free joints at the

corner, these whole-structure vibrational modes have zero frequency.

The central question is one of a chicken-and-egg nature, to an extent; what role

does channel distortion play in the motion of Li+ atoms up the [001] axis? One can

consider this from two directions; either flexion of the channel permits diffusion, or

motion of the diffusing species causes the distortion, with the barrier height being

controlled by the energetic cost of the induced strain.

Therefore, firstly, it is necessary to characterise the structural distortions occurring

during motion of Li+. This can be achieved by appropriate measurements of Si–Si

and O–O distances, as metrics for the channel width of the structure at each of the

critical points (minima and transition states) throughout the structure.

I consider these in three channels: the primary channel, containing the Li+ ion; the

secondary/adjacent channel, next to the primary channel; and the tertiary channel,

which is two channels away from the primary channel. The pairs of atoms considered

can be seen in Figures 5.12 and 5.14; the variations of the distance between them

are in Figures 5.13 and 5.15. The states are numbered in these graphs in terms of

the names assigned in the captions to Figures 5.2-5.10; states 2 (M2, Figure 5.6), 4

(M3, Figure 5.8), and 6 (M4, Figure 5.10) are stable states, with 1, 3, and 5 being

the transition states (T5, T3 and T4 respectively, as seen in Figures 5.5, 5.7 and

5.9) linking them.

It is worth noting at this juncture that the structure is, neglecting Al3+, approx-
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Figure 5.12: Three equivalent O–O pairs in three channels of α-quartz - primary
(containing Li), adjacent, and tertiary (two channels removed from Li). The two
oxygens selected are the primary oxygens in the “twofold” coordination site described
above.
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Figure 5.13: Distance between three equivalent O–O pairs in three channels of α-
quartz, for each of the six sites in our diffusion mechanism above; in order, sites T5,
M2, T3, M3, T4 and M4.
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Figure 5.14: Three equivalent Si–Si pairs in three channels of α-quartz - primary
(containing Li+), adjacent, and tertiary (two channels removed from Li+).
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Figure 5.15: Distance between three equivalent Si–Si pairs in three channels of α-
quartz, for each of the six sites in our diffusion mechanism above; in order, sites T5,
M2, T3, M3, T4 and M4.
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imately twofold rotationally symmetric around an axis perpendicular to [001] and

passing through the Li+ position in site M3 (Figure 5.8); therefore, transition states

T4 and T3, and stable states M2 and M4, are similar both in geometry and in en-

ergy. However, they are not identical; the symmetry of the syestem is broken by

the existence of the Al atom. This is apparent in Figures 5.12 and 5.14; in each of

these, the interatomic distances are approximately symmetric around site M3.

In all of these figures, variations in channel width are much less marked in non-

primary than primary channels, and fall in magnitude the further the channel is

from the primary channel; in the case of O–O distance, the channel varies by ap-

proximately 0.8 Å in the primary channel, which is around 25% of the mean channel

width, but by only 0.1 Å in the tertiary channel. This is much smaller than the

observed variation between pairs in the same primary channel, even when they are

some distance from the diffusing species; therefore, the distortion induced by the Li+

atom is strongly directional, favouring [001]. This may help explain the variation in

activation energy – it falls, dramatically, to the point where these systems become

fast-ion conductors – noted in heavily-doped derivative systems such as β-eucryptite.

One point immediately apparent from Figure 5.12 is that the O–O distance in the

primary channel is alternately maximised or minimized for the three transition states

observed; observation of the structure for state M3 in Figure 5.8 finds that the

distance is maximised when the Li+ ion lies linearly in between the two oxygen

species. This is held for all of the three stable minima identified in the structure, as

is shown in figure 5.16. Similarly, one should consider figures 5.17 and 5.18; these

demonstrate that the converse relationship holds for Si–Li–Si interactions, in that

these are linear at transition states and away from linear otherwise.

This is not in itself so surprising, given that one would anticipate that any Si–Li or

O–Li interactions would largely be electrostatic in nature; Si and Li repel each other,

whereas Li and O attract. What it does reveal, however, is quite subtle; given the

remarkably similar local environment experienced by Li+ across all three transition

states and all three minima any variation in transition state or stable state energies
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Figure 5.16: Distance between O–O pairs across our six sites in the diffusion process,
numbered 1-4, bottom-up (with the first stable state, M2 (Figure 5.6), lying between
Pair 1.)
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for sites on the main [001] diffusion path is largely, or entirely, dictated by the elastic

deformation – and rigid-unit-type relaxation – of the Si–O framework.

This is an interesting, if mainly semantic, reversal of the position taken by Sartbaeva

and Wells [17]; in their work, they proceed from the assumption that thermally-

induced vibrations in the Si–O framework, which will be large in amplitude given

the presence of low-frequency rigid unit modes, permitting enhanced motion of the

Li+ ion along [001] channels when the channel width is favourable. Our results are

not so much in disagreement with this as lending themselves to the same interpre-

tation backwards; diffusion is easy along [001] because the motion of Li+ can cause

extremely large – as one has seen, of the order of 25% – variations in channel width

without excess elastic strain and hence energy cost. The flexibility of the structure

along [100] and [001] directions due to the influence of the rigid-unit modes permits

it.

5.3.5 Li–Al interactions

One major factor, however, is still to be considered – the Li–Al interaction. Given

that our observed reaction path breaks substantially from the symmetry one would

expect if this interaction were negligible, as can be seen by the asymmetry in the

O–O and Si–Si distances, it is necessary to test our initial hypothesis that Al3+ and

Li+ were sufficiently separated within our supercell so as not to strongly interact.

One way of achieving this is by taking our set of transition states, replacing Al

with Si, and delocalizing the dopant charge previously concentrated on the Al –

one electron – over all the Si atoms in the system equally (thus setting z(Si) ≈
2.3815, while keeping the remainder of our forcefield the same; the remainder of the

parameters are in Table 5.1). Having done that, one can then reoptimise (using

RFO) the transition states and associated minima as above, under the assumption

that the transition state configurations in this new, modified forcefield will be close

to the transition states for the original forcefield. This turns out to be the case.
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Figure 5.17: The four Si–Si atom pairs relevant to our diffusion process; these are
numbered 1–4 from the bottom upwards.
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Figure 5.18: Distance between Si–Si pairs across our six sites in the diffusion process,
numbered as in Figure 5.17.
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Figure 5.19: Histograms of number-of-states versus activation energy for our sample
quartz configurations, with and without defect charge delocalization.

A histogram of transition state energies can therefore be plotted, as can (after iden-

tifying two states with the same local configuration) a plot of stable-state energy

versus activation energy. These appear in figures 5.19 and 5.20; looking at these,

it is firstly apparent that while the overall picture is not radically changed by the

inclusion of Al3+, there are variations in the fine detail of the reaction mechanism

(Figure 5.20 making this clearest.)

The only way to identify this fine detail is to analyse the transition states found as

above. Therefore, I replot the c−axis diffusion network first shown in Figure 5.1,

using the same labels for transition states and minima as before (and therefore, up

to optimization, the same structures as in Figures 5.2–5.10). This can be seen in

Figure 5.21. In short, there are two major results. Firstly, the energetic order of the

fourfold and wall sites is reversed; the twofold site remains the least stable, with the

fourfold site becoming most favourable (although the effect is small). Secondly, the

activation barrier for [001] diffusion is substantially lowered, falling to 0.09 eV (ap-

proximately half the prior value, and close to Calleja’s values for Na+ diffusion [26]);

a large part of the diffusion barrier must therefore be unambiguously due to the
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Figure 5.20: Absolute energy versus activation energy for our sample quartz config-
urations, with and without defect charge delocalization.

effect of Al3+.

The key question is “can the alteration in transition state energies between our

Li+ configurations be explained adequately purely by the change in electrostatic

environment caused by substitution of Al for Si, even if Al3+ and Li+ are well-

separated?” To answer this, one can calculate the Li–Al distances – allowing for

periodic boundary conditions – in each of our stable configurations, and then plot

energy against distance. If there is a clear electrostatic effect, this graph should be

approximately linear; any deviations from linearity should be of the order of diffusion

barriers in our delocalised-Al-defect system, and hence small for sites involved in

[001]-diffusion.

Firstly, postulate that the differences between Li+–Al and Li+–Si interactions are

primarily Coulombic in character. Therefore, one can fit f(x) = a + c/x to our

set of stable configurations, and use this to set a baseline for both our stable and

transition states. The result can be seen in Figure 5.22; the asymptotic standard

errors in a and c are both under 3.5%.
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Figure 5.21: Connectivity of minima and transition states found in singly Li+-doped,
Al3+-defect-delocalised α-quartz; diffusion up the c-axis is shown in the labelled
vertices M1–M5 and T1–T5. Ellipses represent stable states, diamonds transition
states; all energies are presented in eV.
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Figure 5.22: Absolute energy versus Li–Al distance; the curve is a functions of the
form a + c/x. Our fitted value for a is 0.886 eV; for c, -5.44 eV/Å.



CHAPTER 5. DIFFUSION OF Li
+

IN CRYSTALLINE SILICATES 133

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

C
or

re
ct

ed
 a

ct
iv

at
io

n 
en

er
gy

 (
eV

)

Uncorrected activation energy (eV)

Figure 5.23: Electrostatic-energy corrected activation energy versus uncorrected
transition energy; note the lack of deviation from x=1, showing that (apart from
three outliers) electrostatic Al–Li interactions have a negligible effect on the activa-
tion energies observed.

Having set this baseline, the activation energy for each event which has been identi-

fied is calculated. Plotting the corrected transition energies against the uncorrected

values, no significant deviation (at low activation energy) from linear behaviour is

found. (figure 5.23.)

After this, one can plot the magnitude of the corrections imposed by our model

against the (stable) Li–Al distance in Figure 5.24. The same three outliers seen

in Figure 5.23 are seen here; they are three of the four closest Li–Al pairings, and

furthermore suggests that the dissociation energy for an Li–Al pair will be of the

order of 1 eV; this accords well with Sartbaeva’s [6] experimental results. This leads

to the conclusion that Al affects the dynamics of our system in two ways; close

interactions, where Li–Al defect pairs form, and more distant situations – say, Li–Al

interactions greater than approximately 5Å – where distortion of the Si–O network

caused by substitution of Al for Si, rather than direct electrostatic interaction, is

the dominant effect in controlling diffusion dynamics.
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Figure 5.24: Transition-state electrostatic-energy correction (in eV) versus stable-
state Li–Al distance (in Å). Note the three outliers.

5.4 Cristobalite and Tridymite

As mentioned earlier, cristobalite and tridymite have similar local geometry; an

interesting question is therefore whether they exhibit similar stable and transition

states to each other. Searches found three unique barriers in our tridymite cell,

and five in cristobalite; undoubtedly, many more than this exist, but my searches

in these structures have been vastly less extensive than those performed on quartz.

The aim of this section was purely to collect a small, hopefully representative, set

of possible events, rather than to carry out an extensive mapping of the structure.

The activation barriers identified range from 0.30 eV to 1.25 eV in tridymite, and

from 0.48 eV to 1.19 eV in cristobalite; there is no low-energy diffusion direction of

the form seen in quartz, which is to be expected given the absence of channels in

these structures. Indeed, this is closer to the behaviour which one might expect to

see in glassy structures (which are also unlikely to have channels); that is considered

in the next chapter.



CHAPTER 5. DIFFUSION OF Li
+

IN CRYSTALLINE SILICATES 135

Figure 5.25: CM1 (0 eV): this is the lowest cristobalite minimum found.

We present the events found in the following figures; one point immediately worth

drawing attention to is that, considering the stable states alone, the two highest-

energy states in cristobalite include a substantial reorientation of an entire chain

of polyhedra, right across the supercell; this comes at a substantial energetic cost,

as the two states where this is observed are over 0.8 eV higher in energy than the

lowest minimum found. No similar states were found in tridymite, however; there,

the two minima we identify are only around 0.2 eV apart.

5.4.1 Cristobalite

Four distinct minima and five distinct transition states were found. These can be

seen in Figures 5.25 to 5.33. The large blue atoms are silicon; the smaller blue atom

lithium; the red atoms oxygen; and the purple atom aluminium.
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Figure 5.26: CT1 (0.665 eV): this transition state is connected to minimum CM1 in
Figure 5.25 with an activation barrier of 0.665 eV.

Figure 5.27: CT2 (0.692 eV): this transition state is, like CT1 (Figure 5.26), con-
nected to minimum CM1 (in Figure 5.25). The activation barrier for this process
would be 0.692 eV.
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Figure 5.28: CM2 (0.0271 eV): The second-lowest minimum found by my search in
cristobalite.

Figure 5.29: CT3 (0.584 eV): This transition state is connected to minimum CM2
in Figure 5.28 by an activation barrier of 0.557 eV.
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Figure 5.30: CM3 (0.794 eV): Note that in this minimum, and minimum CM4
(Figure 5.32, there is a reoriented chain of tetrahedra.

Figure 5.31: CT4 (1.360 eV): transition state connected to minimum CM3 in Fig-
ure 5.30. This move is similar to the CM1–CT1 (Figures 5.25 and 5.26) move above,
apart from the reoriented chain; the activation energy is also similar, at 0.566 eV.
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Figure 5.32: CM4 (1.024 eV): as in CM3 (Figure 5.30), a chain of tetrahedra is
reoriented with respect to the minimum-energy structure.

5.4.2 Tridymite

In tridymite, the search found two distinct minima and three transition states; these

are shown in Figures 5.34 to 5.38. As can be seen, the diffusion processes we have

found are predominantly in the xy-plane; some similarity, however, between the

moves found in tridymite and cristobalite is parent, purely by visual inspection of

the structures shown here. It is clear that Li+ diffusion is markedly more hindered

in these structures than it is in quartz; the steps made are more like those in [110]

directions in quartz (Figure 5.3, for example).

5.5 Conclusions

In this chapter, I have investigated Li+ motion in quartz in great detail, and also

made preliminary comparative studies of cristobalite and tridymite. Quartz, as
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Figure 5.33: CT5 (1.245 eV): transition state connected to minimum CM4 in Fig-
ure 5.32. This move, with a low activation energy, is particularly interesting - as it
causes the reoriented chain of polyhedra to return to their normal position with an
activation barrier of only 0.221 eV.

Figure 5.34: TM1 (0 eV): Lowest tridymite minimum found.
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Figure 5.35: TT1 (0.295 eV): transition state connected to TM1 (Figure 5.34), with
an activation energy of 0.295 eV. It is difficult to see the lithium ion in this picture;
it can be found just to the left of the centre of the image.

Figure 5.36: TM2 (0.206 eV): Of the two tridymite minima found, the higher in
energy.
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Figure 5.37: TT2 (1.283 eV): Transition state connected to TM2 (Figure 5.36), with
an activation energy of 1.077 eV.

Figure 5.38: TT3 (0.628 eV): like TT2, connected to TM3 (Figure 5.36), but with
a much lower activation energy of 0.657 eV.
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expected, has a fast direction for diffusion ([001]), due to the channels in its structure,

whereas cristobalite and tridymite do not demonstrate this; therefore, the low-energy

behaviour of quartz is radically more complex than in the other silica polymorphs

considered here.

Methods have also been introduced for identifying extended networks of events from

a library of minima and transition states; both the scientific insights gained into

diffusion behaviour in silica networks, and these techniques, will be used heavily in

the next chapter of this thesis.



Chapter 6

Li+ diffusion in SiO2 glass

6.1 Introduction

SiO2 glass typifies an important class of inorganic amorphous materials. Related

systems are, obviously, of exceptional technological importance – whereas, often, a

writer would advise his readers to “just look out of the window” to assess the value

of some material, in this case one needs only to ask you to look at the window itself!

Simulating extended amorphous systems has only recently become a tractable prob-

lem, and in this chapter I outline the problems faced in undertaking simulations of,

and further to of that transition-state search in, these kinds of materials. Following

this, mechanisms and energy barriers are presented for Li+ diffusion in silica glass, in

the spirit of the simulations of the crystalline phases of SiO2 in the previous chapter.

In simulating amorphous solids, one faces two major problems. Firstly, one must

consider size effects – conventionally, we simulate under periodic boundary condi-

tions, and if our system is not large enough, it will self-interact giving rise to spurious

long-range order. Secondly, the periodic boundary conditions are themselves a prob-

lem; this constrains the positions of atoms at the edges of the unit cell heavily. This

144
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is not in itself, from the perspective of local order, a problem – once the unit cell is

constructed, you can consider any point in it to be on the edge – but it does make

constructing the sample simulation cell difficult.

6.2 Method

The trial glass systems used here were generated by Dr. Kostya Trachenko [91]. The

method used is, in essence, fairly simple. Bulk Si has the same network coordina-

tion as the glasses we wish to study; thus, an amorphous sample of Si is generated

using the method of Wooten, Winer and Weaire [92]. This structure is then, geo-

metrically, expanded, and an oxygen atom placed between each pair of Si atoms;

this creates a fully-coordinated, if slightly aphysical, silica network under periodic

boundary conditions, which can then be equilibrated by molecular dynamics and/or

energy minimization under variable-cell conditions. This results in the creation of a

Zachariasen–type [93] continuous random Q(4) SiO2 network.

In construction of the glass supercell, and his research on this material, Dr. Tra-

chenko used Tsuneyuki’s [94] potentials; for consistency with the last chapter I,

instead, use Calleja’s potentials [26], which are derived from the potentials designed

for amorphous SiO2 by van Beest et al. [27]. Therefore, although this results in a

change in energy, I believe it has no significant effect on either the topology or the

behaviour of the glass under simulation. I used the 648-atom supercells generated

by Dr. Trachenko; the results of the previous chapter indicated that this would be

a good balance between performance and accuracy.

This glass was then modified by addition of a Li+ ion and replacement of one silicon

atom with aluminium; the resulting trial glass is, of course, not minimized in energy

- particularly as the present study uses a different potential. One needs to freeze the

system into a local minimum before performing simulations, and this was achieved

by BFGS energy minimization. This had no effect on the topology of the structure.
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Following this process, one can be confident that there is a Li+ dopant in the system,

and that it is in a physically reasonable position, but not that it is necessarily

in a reasonably likely one; therefore, it is necessary to perform some exploratory

transition state searches to “pre-condition” the system. One can achieve this by the

simple expedient of running transition-state searches to approximate convergence,

then minimizing the total energy of the system from the resulting transition states;

one can then choose the lowest energy minimum found, and iterate until stability

is achieved. This approach to global optimization is not new; it is similar to that

proposed by many previous authors, including both Wales [71] and the ART [70]

method of Mousseau and collaborators.

In calculating transition states, the Constrained Linear Maximization method was

used, which has described extensively throughout this thesis, with any further check-

ing and refinement of transition states by the Rational Function Optimization [75]

method within the GULP program. Indeed, as in the previous chapter, simulations

were performed using the GULP [21] code as an energy evaluator, and the CLM

algorithm implemented in the CAMPOS-ASE [39] architecture.

6.3 Calculated transition states

Following the same protocol as taken in the previous chapter, we obtain a set of 250

pairs of connected transition states and minima; this is a large, complex dataset, and

as such is essentially impossible to analyse by hand. One must resort to statistical

and computational methods to make headway in this forest of data. Therefore,

initially, I take the same graph-theoretic approach to representing the energy surface

as was taken in the previous chapter; again, the calculated library of minima and

transition states is transformed into a set of vertices (corresponding to said stationary

points on the energy surface) and edges (connecting pairs of transition states and

minima), and then plotted using an automated graph-drawing algorithm – again,

graphviz [87] was used.



CHAPTER 6. Li
+

DIFFUSION IN SiO2 GLASS 147

-12500.656 ts

-12503.352 min

-12500.886 ts

-12501.224 min

-12503.353 min

-12500.927 ts
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-12501.333 ts-12501.411 min -12501.502 ts

-12501.518 min

-12502.205 ts

-12503.327 min

-12502.933 ts

Figure 6.1: Extended event network in glass (i).

This identifies a number of connected subsets of transition states on the graph. Two

in particular are of great interest, ranging (as they do) over a fully 4 eV range;

extracting extended event networks of this range and scale from the simulation

is a result in itself. It is in extended systems like this where the value of this

kind of data analysis becomes self-evident; by comparison, α-quartz is a relatively

limited problem, given its smaller size and constrained symmetry (and thus lower

dimensionality). These are shown in Figures 6.1 and 6.2.

Two major questions present themselves; what can be learned about the number

and nature of the stable states in the glass, and about the number and nature of

the transition state events therein. In the remainder of this chapter, I present a

number of approaches to analysing this, and draw both some comparisons with the
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Figure 6.2: Extended event network in glass (ii).
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Figure 6.3: Histogram of stable states identified in our Li+-doped glass sample.

crystalline silica phases and some preliminary conclusions about diffusion behaviour

in this system.

6.3.1 Stable states; distribution and comparison with crys-

talline phases

In Figure 6.3, a histogram (with a bin-width of 0.1 eV) of the energies of the 250

stable configurations calculated is shown. There are two distinct energy bands whith

substantial occupancy - approximately -12500 to -12502 eV, and -12505 to -12506

eV, with three states dividing the gap between these two bands at around -12503

eV.

It is also worth plotting the stable states against the activation energies associated

with their connected transition states; this is shown in figure 6.4. Looking at this, it
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Figure 6.4: Spectrum of stable states and associated activation energies in our glass
sample.
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Figure 6.5: Distribution of activation barriers in SiO2 glass, quartz, tridymite and
cristobalite.

is notable that lower-energy transition states exist in the -12500 to -12502 eV band

than in the rest of the space, and that the transition state energies around -12503

eV are particularly high; this is a subject which will be returned to later in this

chapter.

It is worth comparing the distribution of activation energies in the glass with the

three crystalline phases earlier. Some authors – notably Keen et al. [95] – have

suggested some similarity between the immediate local structures of silica glass and

β-cristobalite; simulations in the last chapter were on the α (low temperature) phase,

rather than the β phase, but the spectrum should not be markedly different. It is

clear that the energy distribution of transition state events is much broader in the

glass than in any of the silica phases; furthermore, the large number of low-energy

events in the glass opens the question whether there are regions of glass which

are locally quartz-like (open, helical, channel-based) rather than ring-based, as in
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cristobalite and tridymite.

To approach this, it is necessary to consider some statistical measures of the local

environment around Li, and I turn to this next.

6.3.2 Transition state events; nature, and correlation with

stable states

Unlike in crystalline systems, where in general the coordination of one species by

another is well-defined, in a glass the system can be so profoundly disordered that it

is difficult to speak in terms of coordination spheres. The typical approach to then

take is the plotting of radial distribution functions; this is a sensible approach when

one has a lot of potential pairs to plot, as would be the case for Si–O in this system,

but this is not true with respect to Li.

Furthermore, defining a coordination is complicated by potential discontinuities in

many of the measures which could be used - counting all atoms less than a spe-

cific cutoff distance, for example, would suffer discontinuities with change of cutoff,

whereas counting all atoms of one species (in this case, O) closer to the Li atom

than the atoms of another (say, Si) would excessively penalise cases where an Si

atom happens to be relatively close to Li.

The measure thus invented is given in Equation 6.1. To explain, it is a sum over all

atoms of a given species; the Gaussian term evaluates to 1 when an atom is at 2.1

Å from Li, and falls rapidly after that point. From this, one can get a good idea of

the local oxygen (and silicon) environment around our Li dopant. Here, rx is the

position vector of species x.

η =

N
∑

1...nELEMENT

e−(2.1−|rn−rLi|)
2

(6.1)
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Figure 6.6: Coordination of Li by O (as defined in the text) in each of our stable
states.
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Figure 6.7: Coordination of Li by O in the stable state (as defined in the text) versus
activation energy for each process

Using this, the coordination of Li by O is plotted in Figure 6.6; it is notable that the

coordination is markedly lower in the -12503 eV states than in the other two bands.

This is of some importance, and will be returned to later. Plotting coordination

against activation energy, it is also evident that the higher the coordination, the

smaller (and lower) the spectrum of energies of transition state events is; this is

shown in Figure 6.7.

Plotting the relative Li-O and Li-Si coordination against each other, as in Figure 6.8,

we see that these are linearly correlated; this is what we would naively anticipate,

given that Si and O positions are strongly correlated by their being bonded to each

other, but it is worth checking. There is some scatter, as one would expect; some

local sites are slightly closer to Si or O, as in the quartz, and these display marginally

enhanced or diminished coordination as appropriate.
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Figure 6.8: Relative Li-O and Li-Si coordination in stable states in our glass

In figure 6.9, we show the mean Li–O distances for the ten closest oxygens to Li in

three energy ranges of stable states - around -12501 eV, -12503 eV, and -12505 eV.

From this, one can see some of the reasons for the variation in transition-state spectra

across the range; Li is markedly closer to its four nearest neighbouring oxygens in

the -12503 eV case than the others. The -12505 eV case gains energetically over the

-12501 eV case in the longer-range oxygens; the immediate, local environments are

broadly similar, but from oxygens 5–10 the lower-energy state consistently displays

shorter distances.

The next issue to consider is how coordination changes, relative to the stable state,

when the system moves to a transition state; this is plotted in Figure 6.10. Diffusion

events below 1 eV have a slight skew towards a decrease in the coordination of Li by

O; above 1 eV, the coordination invariably increases. In terms of the above, it can

be argued that in the latter case, the system is moving – relatively speaking –from

a short-bond, close-and-low-coordination-number configuration (like those around
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-12503 eV) to a larger, more diffuse locale (like those at -12501 or -12505 eV). It

would be interesting to study this in substantially more detail.

Another measure which can be defined is a local density (Equation 6.2); here, γ

controls the size of the environment summed over.

η =
N
∑

1...nELEMENT

edLi−Element/γ2

(6.2)

Using γ = 4Å, we can calculate a change in density for a given transition state

for each element; plotting the change in density for Si versus that for O for each

transition in our sample-set, we obtain Figure 6.11, normalizing the data by halving

the value of the O density (in light of there being twice as many O atoms as Si in

the system). From this, it can be concluded that oxygen atoms move more than
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Figure 6.11: Normalized change in density of Si and O around Li between stable
and transition states in glass

silicon atoms do in our transition states; this is suggestive of the presence of rigid-

unit type relaxation (as mentioned in the previous chapter in quartz). Imagine that

the glass is composed of rigid SiO4 tetrahedra, joined at the corners; many elastic

processes can therefore occur by pivoting of the tetrahedra around these corners,

moving the oxygen atoms substantially but not necessarily disturbing the relative

Si–Si positions. Therefore, there is value in seeking further evidence as to whether

this is, in fact, the case.

6.3.3 Role of network distortion in transition-state events

In order to consider the role of network distortion, it is firstly incumbent upon

us to work out over what distance the distortion of the Si–O network associated

with transition states extends. Consider each structure as a vector of length 3N ,
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composed of each atom’s coordinates in Cartesian space, and construct three unit

vectors in this space corresponding to translation of the entire system along each of

x, y and z. I call these px, py and pz. Taking our system and a reference system as

vectors S and SR;

δ = S − SR

δ1 = δ − px(px.δ)

δ2 = δ1 − py(py.δ1)

δ3 = δ2 − pz(pz.δ2)

S1 = SR + δ3

Here, S1 is the closest setting of system S to SR; that is to say, we have chosen

the unit cells for each of our systems for which the vectorial distance between S

and SR is minimized. If one performs this resetting neglecting the position of Li,

what is obtained is a vector representing the distortion of the Si–O network during

a transition event.

Consider figure 6.12; there is clearly some positive correlation – looking at the data,

arguably multiple overlaid correlations – between the magnitude of this vector, and

hence of the distortion of the Si–O network, and the energy of transition. The nature

of this correlation is unclear – to the naked eye, it appears to be supralinear, but

one cannot afford to simply trust one’s intuition. Therefore, one must investigate

further. If one plots the magnitude of Si–O distortion against the energy of the

stable site, one obtains Figure 6.13. Considering this figure, it is interesting to note

that in the more stable structures, a substantial distortion of the Si–O network –

at least 1Å – is required to initiate a transition process. This suggests that the

enhanced stability of the more stable sites comes from permitted elastic relaxation

of the Si–O network, not possible at the higher-energy metastable sites.
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in our sample, in Å, versus activation energy in eV
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Figure 6.14: Number of atoms displaced by more than 0.1 Å in a transition-state
event in our sample, versus activation energy in eV

An approach to take from here is to consider the number of atoms displaced in any

given transition event. Breaking the distortion vector obtained above down into its

atomic components, one can set some distance as a tolerance – say, 0.05 Å – and

count the number of atoms which are displaced by at least this distance. In the case

of 0.1 Å, and plotting number of atoms displaced versus activation energy, this gives

rise to Figure 6.14. What is immediately apparent is that the displacement of a

very large number of atoms is not necessarily a bar to a given transition event being

relatively low-energy; there appear to be several overlaid curves in this figure, but

considering the lowest, there is an event which causes the displacement of more than

140 atoms – around 25 percent of the entire cell! – yet is only 0.5eV. The simplest

explanation for this is the effect of long-range collective distortions – i.e., rigid unit

modes – in our system.

This opens the question of the size – in terms of unit cell volume – of low-energy
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diffusion events in our sample.

By varying the cutoff tolerance, the number of atoms displaced by more than some

given distance can be calculated for each of our transition state/stable state pairs.

Considering only the pairs of stable and transition states with an activation energy

under 0.5 eV, a plot of number of atoms versus cutoff (as in figure 6.15) is calculated

for each cutoff; it is found, as can be seen in this figure, that the number of atoms

placed by events of a given magnitude varies linearly with the cutoff. Therefore,

varying the tolerance and fitting the resulting data, by linear regression, to F (x) =

cx, a succession of gradients are obtained; each gradient therefore links directly the

number of atoms displaced by a given distance in an even with the magnitude of

that event.

These gradients can then be plotted against the cutoffs themselves, and this is shown

in figure 6.16.

It is apparent that this conforms to a function of the form F (x) = Ae−bx; the magni-

tude of displacement of Si and O atoms within a given transition state event conforms

to a power law distribution (equation 6.3, where γ is the cutoff, in Angstroms.)

N = 331.5 ± 25.3e(−29.4±1.5)γ (6.3)

Using this, it is possible to estimate of the size of a typical transition event. Using

the same set of transitions (those under 0.5 eV), it is found that there are 139 events

with a mean displacement of 1.09 Å; we then take the critical region to be all those

atoms displaced by more than 0.1 Å in a given event. These values can then be

substituted into Equation 6.3, which tells us that, on average, 19.1 Si and/or O

atoms are displaced in one of these events. The supercell used in our simulations

has volume 10146 Å3, and contains 648 relevant atoms; as such, a typical diffusion

event in the range of 0.5 eV in this sample has a strain field of volume 299 Å3 –

which, if the assumption is made that the strain field is spherical, corresponds to a

radius of 4.14 Å. Some events, of course, are enormously larger, as we have seen, but
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Figure 6.15: Number of atoms displaced by more than 0.1 Å in a transition-state
event in our sample, versus magnitude of Si–O lattice distortion (in Ang)
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it is unarguable that long-range strain effects will play a major part in determining

diffusion behaviour.

Considering this, the remarkable effect of even a single Al substitution on the tran-

sition states in quartz, observed in the previous chapter, becomes more explicable.

Even if a substitution has a minimal effect on the geometry of the system, it will

have some effect on the local elastic relaxation of the environment. Indeed, if noth-

ing else, the present work demonstrates how even such a seemingly local process as

motion of Li can be affected by the extended environment – at the very least, one

has to consider a sphere at least eight Å across in diameter around the stable state,

which is of the same order of magnitude, volume-wise, as the unit cell in α-quartz!



Chapter 7

Conclusions

If there is a recurring theme throughout this thesis, it is the interplay between the

local and the global; between short and long timescales and lengthscales. In each

of the systems I have studied, events or modifications on the atomic scale – doping

in WO3, crowdion formation on platinum surfaces, the interplay between structure

and (particularly) structural flexibility and light-atom diffusion in framework sili-

cates and silica glass – have had measurable, quantifiable long-range effects, whether

mediated through the effects of electron delocalization in WO3 or long-range strain

effects carried through rigid unit modes.

For scientists active in the area of solid-state simulation, the lengthscale and timescale

problems are among the most challenging we face on a daily basis. These are par-

ticularly pressing when one considers, as I have, disordered systems; one cannot

directly simulate the dynamics, because they happen too slowly, and one must al-

ways be wary of simulating too small a system and thus artifically imposing spurious

symmetry.

In the lengthscale case, the primary technique I have used to obviate the problem

(that is to say, to avoid having to use an extremely large supercell) is to treat

the doping process as symmetrically as one can get away with – in other words,

167
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(partial) delocalisation of the disorder (as in quartz and WO3). In the WO3 case, I

disentangled the effect of electron doping from chemical disorder and size effects; this

made the root cause of the complicated series of phase transitions observed on doping

explicit in a way which could not otherwise be achieved. Of course, great care needs

to be taken to ensure that this is a valid approximation for any given system, but the

results presented are very positive; in particular, the reinterpretation of the NaWO3

experimental record in light of our results is of interest. Since the publication of the

work in Chapter 3, I was pleased to note other authors [96, 97, 98, 99, 100, 101] have

taken up the method for study of related defects in WO3 and, in the case of Ferrari,

other perovskites; I believe it would be worthwhile to extend the study in the thesis

to further materials in that class in the future. Also, there is more to be said about

WO3, as the work of Lambert-Mauriat and others indicates; the work in this thesis

opens the debate, rather than closing it.

The lengthscale problem, of course, is still an issue when we move onto the work

presented on Li+ diffusion in silicates; the results in Chapter 5 show just how diffi-

cult it is to separate one effect (the Li–lattice interaction) from another (the Li–Al

interaction), and Chapter 5 and 6 both demonstrate just how large – spatially –

the strain field arising from even seemingly local events like a Li+ hop can be! The

main thrust of this work, however, has been overcoming the timescale problem and

through that saying something about the dynamics of diffusion in this material; of

course, this is a fiercely difficult problem which could occupy several PhD students

for far longer than any one PhD could take, but during the present PhD I have made

progress on several fronts.

Firstly, I have developed a new technique for transition state detection in general.

It has a few key differences from other techniques, such as the Dimer method [3],

as elucidated in Chapter 4; in some sense, the remainder of the thesis acts as an

extended field-trial of the method, and it is at least a viable option as of now for real

research. Additionally, as Chapter 4 demonstrates, for certain potentials – particu-

larly certain ab-initio codes – it has very real advantages over the methods currently

available. As of now, it is not numerically as efficient as competing methods, but
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very little effort has been placed into performance tuning; further development of

the CLM technique is one possible path in the future.

Secondly, our results on silicates and glasses (Chapters 5 and 6) are, in and of

themselves, interesting insights into the structure and behaviour of these systems;

regardless of the technique used, the work here stands by itself. The quartz results

accord well with the prior results of Calleja [26] and Sartbaeva et al. [6, 17], whilst

expanding substantially on their conclusions; the situation in glass is somewhat

more complex, but the approach taken has gone some distance in explaining the

role which cooperative distortion of the Si–O network (and by extension, rigid unit

modes) play in permitting diffusion in these types of materials. Once again, my

work on glass is a continuation of a scientific debate rather than the end of one,

but it points to approaches that may not previously have been seriously considered;

it would be worthwhile, for instance, to use a method like on-the-fly kinetic Monte

Carlo, similar to that proposed recently by Henkelman and Jonsson recently [102],

to obtain realistic predictions of diffusion coefficients.

In any case, it has been unambiguously established that direct simulations of glass

dynamics by using transition-state search are certainly reasonable: this opens up

many classes of disordered system to simulation. Indeed, one aspect which Chapter

6 makes very clear is that the primary challenge, in many ways, is not simulation

itself – we can easily generate gigabytes of data – but the analysis of the results. The

approaches taken in this thesis are effective, but another which may be fruitful in

the future for these kinds of network structures is the melding of geometric-algebra

methods, like that of Wells [103], with direct atomistic search of the kind I use. This

holds promise both for accelerated search and for analysing the resulting trajectories.

In conclusion, by using novel techniques and careful approximations, I hope I have

demonstrated some new approaches which can be used in the study of disordered

systems; the methods developed in this thesis are a contribution to the long process

of developing the appropriate computational and analytical techniques, and point to

new vistas of materials which we can now examine. There is much still to be done in
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these areas of work, whether by the present author or by other scientists; however,

through the work presented here, I hope that I have gone some way to clearing a

path ahead.
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