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Abstract

The microstructure of a steel is often developed by solid-state transformation

from austenite. The major transformation products are allotriomorphic ferrite,

pearlite, Widmanstätten ferrite, bainite and martensite, differentiated by mor-

phological features, and their nucleation and growth mechanisms. A steel often

consists of several phases as a result of dynamic evolution during continuous cool-

ing. The complexity of the calculation of all the transformations simultaneously

poses a challenge.

There have been a few attempts at integrating all these transformations into

an unified scheme. They involve varying degrees of empiricism. For the first

time, a model that can predict simultaneously the volume proportions of all the

major transformation products has been developed. The algorithm has taken full

account of the thermodynamics and kinetics of individual transformations, instead

of empirical equations, so the model should in principle generalise well.

The predictions of the model are based on a number of input parameters: the

chemical composition, austenite grain size and cooling conditions. The model can

simulate cooling at constant rates, or isothermal transformations. Therefore it

can also generate continuous cooling transformation (CCT), or time-temperature

transformation (TTT) diagrams.

The model has demonstrated a consistency in its predictions. The validations

of the model against published experiment data and experiments conducted in this

work have shown the predictions in most cases are reasonable with errors less than

a few volume percent. Further research opportunities presented by the work are

reviewed.
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Abbreviations

Term Meaning

2D 2 dimensional

BCC Body centred cubic

CCT continuous cooling transformation diagram

CR cooling rate

FCC Face-centred cubic

GB austenite grain boundaries

TTT time-temperature transformation diagram



Nomenclature

α allotriomorphic ferrite

α/γ interface between ferrite and austenite

α′ martensite

αB bainite

αW Widmanstätten ferrite

L̄ mean linear intercept for an equiaxed grain structure

x̄ average carbon concentration is steel

D̄ weighted average diffusivity of carbon

∆Eα/θ interfacial energy between ferrite and cementite in pearlite

∆Gγ→α driving force for diffusionless transformation from austenite to ferrite

∆Gγ→γ′+α driving force for reconstructive transformations

∆Gm maximum driving force for nucleation

∆Oe
i,y total extended area change of phase i on plane y

∆Oi,y real change in area of phase i on plane y at current time step

∆t time interval of calculation

∆ts time interval between two successive sub-units
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∆V e
i extended change in volume of phase i

∆Vi real change in volume of phase i at current time

∆y distance between two adjacent planes

∆H̄γ partial molar heat of solution of carbon in austenite

∆S̄γ partial molar non-configurational entropy of solution of carbon in austenite

∆G change of molar Gibbs free energy

ηαW ratio of thickness to length of a Widmanstätten particle

ηα ratio of radius to half the height of allotriomorphic ferrite

ηP ratio of radius to half the height of pearlite particle

γ austenite

HαW lengthening rate of a Widmanstätten plate

Hα 1D parabolic thickening rate of allotriomorphic ferrite

HP growth rate of pearlite at the direction of height

µC chemical potential of carbon

ν attempt frequency factor

ωα carbon-carbon interaction energy in ferrite

ωγ carbon-carbon interaction energy in austenite

ρ radius of curvature at the tip of Widmanstätten particle

ρc critical radius of curvature at the tip of Widmanstätten particle

σαγ energy per unit area of ferrite austenite interface

τdis transformation start time for the displacive transformations

τrec transformation start time for the reconstructive transformations
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aαC activity of carbon in ferrite

aγC activity of carbon in austenite

Bs bainite start temperature

D carbon diffusivity

G∗ activation energy of homogeneous nucleation

G∗het activation energy of heterogeneous nucleation

GN universal nucleation function

gP growth rate of pearlite

h Planck constant

HαB thickness of bainite sheaf

HαW thickness of Widmanstätten ferrite particle

Hα half-thickness of allotriomorph particle

HP half-thickness of a pearlite colony

i designated for any phase

I1 nucleation rate of allotriomorphic ferrite

I2 nucleation rate of Widmanstätten ferrite and bainite

Ii,k nucleation rate of phase i at time k

Is nucleation rate of sub-unit

k Boltzmann constant

k designated for the time a particle nucleates

lu length of a sub-unit

n current time interval
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Nv number density of nucleation sites

OB total area of austenite grain boundaries

P pearlite

p Péclet number

Q energy barrier for the transfer of an atom across the α/γ interface

R ideal gas constant

S0 interlamellar spacing of pearlite

Sα thickness of the ferrite lamella

Sθ thickness of the cementite lamella

SC critical spacing of lamellae of pearlite

Su intersection area of a sub-unit

T absolute temperature

Th the highest temperature at which displacive transformation starts

V total volume

V max
L maximum lengthening rate of Widmanstätten particle

V max
αB

the maximum amount of bainite possible at any temperature

Vi total volume of phase i

VL plate lengthening rate

Ws Widmanstätten ferrite start temperature

x mole fraction of carbon

xαm carbon concentration of the embryo having the maximum driving force

xαγ carbon concentration in ferrite in equilibrium with austenite
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xγα carbon concentration in austenite in equilibrium with ferrite

xγθ carbon concentration of austenite in equilibrium with cementite lamellae

y distance of the plane from the boundary
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Chapter 1

General overview

1.1 Introduction

The critical role that steel has played in the construction of our society is largely

due to its superior adaptation to the wide ranges of mechanical requirements. The

strength and toughness of steel can vary with changes in its microstructure, i.e.,

the size and shape of grains and the detailed arrangement of the atoms.

Pure iron experiences two solid-state transformations during cooling from the

melting temperature of 1538 ◦C. It transforms from δ-ferrite, a body-centred cubic

(BCC) structure, to austenite γ, a face-centred cubic (FCC) structure, at 1390◦C,

and then back into ferrite (BCC) α at 910 ◦C. Almost all steels rely on the trans-

formation between austenite and ferrite for obtaining the desired microstructure.

The transformation temperature between austenite and ferrite can be greatly

affected by the presence of solutes, such as carbon, silicon, manganese, nickel,

molybdenum, chromium and vanadium. For example, 0.8 wt % carbon lowers the

second solid-state transformation temperature from 910 ◦C to 723 ◦C.

The transformation temperature can also be altered by changing the cooling

rate from elevated temperatures. A rapidly cooled steel transforms at a lower tem-

perature, given the shorter amount of time available to accomplish the necessary

changes in atomic positions. The products of such transformation are metastable

phases. The advantage of fast cooling is that the structural scale is reduced, which

is conducive to greater strength and toughness.
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1.2 The Phase Transformations in Steel

As already emphasised, the properties and performance of a steel depend on its

microstructure. The major transformation products: allotriomorphic ferrite α,

pearlite P , Widmanstätten ferrite αW , bainite αB and martensite α′ are categorised

by the way in which atoms move in order to achieve the change in crystal structure.

1.2.1 Displacive and reconstructive transformations

Solid-state transformation from austenite to ferrite can proceed either by a de-

formation of the FCC structure of austenite into the BCC structure of ferrite,

a mechanism designated to be displacive. Alternatively, the transformation can

proceed by breaking all the atomic bonds and rearranging the atoms to form the

ferrite in a way which requires diffusion and which minimises strain energy. It is

designated to be reconstructive mechanism (Fig. 1.1).

Figure 1.1: Displacive transformation is achieved by a deformation. In contrast,
atomic bonds have to be broken in a reconstructive transformation and the diffu-
sion of atoms is necessary. (After Bhadeshia [1])

An unconstrained displacive transformation can affect the shape of a material

on a macroscopic scale. But when the material is constrained by the surrounding

matter during the process, the displacive transformation products are forced to

take the form of a thin plate, so the strain energy is reduced (Fig. 1.2).

Because the strain energy can largely be avoided in the reconstructive trans-

formation, it is favoured from the thermodynamic point of view, though it may

not be possible to sustain the necessary diffusion at low temperatures.
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Figure 1.2: Unconstrained displacive transformation can cause a shape change on a
macroscopic scale. When the displacive transformation is constrained by adjacent
material, the minimisation of strain energy forces the product to grow into the
shape of a thin plate. (After Bhadeshia [1])

1.2.2 The major transformation products in steel

As the name ‘allotriomorph’ suggests, this kind of ferrite does not exhibit obvi-

ous crystallographic facets. Allotriomorphic ferrite particles usually nucleate on

and grow across the austenite grain boundaries. As the growth rate along the

boundary is greater than that in the direction normal to the boundary, the shape

of allotriomorph is heavily influenced by the shape of austenite grain boundaries.

(Fig. 1.3).

Figure 1.3: Schematic illustration of allotriomorphic ferrite.

Pearlite colonies, P , have a lamellar structure of ferrite and cementite (Fe3C).
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As the spacing of the lamellae is often comparable with the wavelength of visible

light, it resembles the pearlescent colour of mother-of-pearl, from which it takes

its name. Pearlite nucleation can take place on an austenite grain boundary, on

cementite particles, or α/γ interfaces. The growth rate of pearlite is expected to

be a constant in a binary Fe-C steel, because the average composition in pearlite

equals that of the matrix austenite ahead of the advancing interface. However this

may not be the case in ternary or higher order alloys if the growth involves the

partitioning of substitutional solutes [2]. Being a reconstructive transformation,

pearlite can also grow on both sides of the austenite grain boundary on which it

nucleates (Fig. 1.4).

Figure 1.4: Schematic illustration of pearlite colonies. Pearlite has lamellar struc-
ture of ferrite and cementite (Fe3C). It is emphasised that the lamellae are con-
nected in three dimensions.

A Widmanstätten ferrite plate has the shape of a thin-wedge on a 2D metallog-

raphy image, which on closer examination, consists of two adjacent plates. Wid-

manstätten ferrite, forms either directly on the austenite grain boundary, called

primary αW or on allotriomorphic ferrite, called secondary αW . The plates grow

on well defined lattice planes of austenite [3]. Having two Widmanstätten plates

growing back to back results in a reduction of strain energy. This allows Wid-

manstätten ferrite to form at high temperatures with little driving force. Because

of the displacive mechanism, Widmanstätten ferrite can only grow on one side of

the austenite grain boundary (Fig. 1.5).

The microstructure of bainite consists of tiny platelets, called sub-units. The

sub-units grow in clusters, called sheaves. When there is sufficient carbon diffusiv-

ity at the transformation temperature, carbon will be partitioned into the adjacent

austenite, then precipitate as cementite. This form of bainite is called upper bai-
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Figure 1.5: Schematic illustration of primary Widmanstätten ferrite and secondary
Widmanstätten ferrite. The habit planes, on which the thin plates grow, belong
to the same crystallographic family [3].

nite. During the transformation, the substitutional alloying elements are unable

to partition during the time scale of the experiment, although carbon, which is

a fast diffusing interstitial element, redistributes and reaches equilibrium. The

mechanism is named ‘paraequilibrium’ [4].

The other form of bainite that is generated at lower temperature, called lower

bainite, is very similar in microstructure to upper bainite. The major difference

is that the cementite particles also precipitate inside the sub-units. A smaller

amount of carbon is partitioned into the residual austenite.

Bainite evolves in distinct stages beginning with a sub-unit being nucleated

at the austenite grain boundary. Each sub-unit can only achieve a limited size.

Then the next sub-unit will be nucleated in the carbon-enriched austenite. This

process ceases when the free energy of bainite is no less than that of austenite

of the same composition. Because of the displacive mechanism, bainite sheaves

are always limited to grow within the austenite grain in which they nucleate (Fig.

6.13).

Martensite is not directly calculated in the model that will be described later.

Unlike reconstructive transformations, martensite is generated by a combination

of shear and dilatation of the austenite lattice without any diffusion of atoms. The

strain causes large volume expansion, which can be indicated by a sharp dilatation

measure. Martensite reaction depends on the undercooling below the martensite-

start temperature. The transformation mechanisms of the phases discussed so far

are summarised in Fig. 1.7.
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Figure 1.6: Schematic illustration of bainite sheaves.

Figure 1.7: Transformation mechanisms of various phases in steel (after Bhadeshia
[1]).
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1.3 The Purpose

Most scientific subjects approach problems with the aid of modelling [5]. A model

is often based on a selection of observations and perhaps some assumptions. It is

an attempt to understand quantitatively some aspects of a infinitely varied reality.

The evolution of microstructure in steel is a complex and dynamic process

involving simultaneous transformations of different types of phases. All the prod-

ucts compete for the limited nucleation sites, resources and space. A fast cooling

condition can preserve the austenite into lower temperature regions, so that finer

structure prevail. When many transformations occur at the same time, the fast

reaction may consume much of the austenite. The migration of carbon through in-

terstices, the creation rate of nuclei on the austenite grain boundaries, the growth

rates of individual phases etc., all, react and interact with each other.

Previous attempts at integrating all these transformations into an unified scheme

have varying degrees of empiricism and none of these models have a simultaneous

transformation framework [6, 7, 8, 9, 10].

The research aim was to develop an algorithm which allows all of the key

transformations, particularly bainite to be integrated into an unified calculation as

a function of steel composition, austenite grain size and thermal processing. A logic

flow chart is presented in Appendix B. The intention was to permit all processes

to occur simultaneously at the rates consistent with the relevant thermodynamic

and kinetic parameters. It should then become possible to track the fractions of

each phase as the microstructure evolves.
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Chapter 2

The Driving Forces

The reaction rate of a transformation can be controlled by the available Gibbs free

energy, also referred to as the “driving force”, and by the diffusivity of carbon.

2.1 The Influence of Carbon in Steel

Carbon is the single most important element in steel. Even in concentrations

as low as 0.005 wt % it can dramatically change the strength of steel and cause

a sharp transition between elastic and plastic deformation (including the upper

and lower yield points A and B respectively in Fig. 2.1). The explanation of this

Figure 2.1: A typical tensile test result shown as stress versus strain. Point A is
the upper yield point, point B is the lower yield point, involving the propagation
of a Lüders band, i.e., a localised region of yielding which then spreads along
the gauge length of sample, point D is the ultimate strength and point E where
rupture occurs.
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phenomenon first came from a model introduced by Cottrell and Bilby [11]. Unlike

the larger substitutional alloying elements, carbon atoms occupy the octahedral

interstices of the ferrite lattice. The strain fields around carbon atoms interact

strongly with those of dislocations. When a carbon atom moves to the vicinity of

a dislocation, there will be an overall reduction of strain energy. Carbon atoms

tend to migrate towards dislocations until they form an ‘atmosphere’, which locks

the positions of the dislocations. It takes energy for any dislocation to break away

from its atmosphere, causing a sharp yield point.

2.1.1 The iron-carbon phase diagram

Features of the binary iron-carbon phase diagram persist in the whole variety of

complex steels. A knowledge of this system therefore forms the foundation on

which the effects of other alloying elements are interpreted. This makes the Fe-C

phase diagram the starting point in the study of steels. There are five single-phase

fields: molten steel (L), δ-ferrite, austenite (γ), ferrite (α) and cementite (C) (Fig.

2.2).

Figure 2.2: Schematic illustration of the iron-carbon phase diagram.

There are several critical temperatures to consider. Firstly, there is the Ae1

temperature (line A-P) of the eutectoid reaction. Then, there is the Ae3 tem-

perature (line A-B) at which ferrite transforms to austenite. Finally there is the
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Ae4 (C-D) at which austenite transforms to δ ferrite (Fig. 2.2). These critical

temperatures are diffusion controlled. Therefore, they are sensitive to heating and

cooling rates. Rapid temperature change allows less time for diffusion. The critical

temperatures at rapid heating Ac (arrêt chauffant), tends to be above those asso-

ciated with equilibrium, and rapid cooling tends to lower the critical temperatures

Ar (arrêt refroidissant). The Fe-C diagram enables the carbon concentrations of

austenite and ferrite to be evaluated at any temperature.

The equilibrium solubility of carbon in austenite is greater than ferrite. Dur-

ing, or subsequently to, the transformation from austenite to ferrite, carbon is

partitioned into the untransformed austenite. The ever increasing carbon concen-

tration in the austenite ahead of the moving α/γ interface retards the diffusion of

carbon, because it then needs to diffuse over a larger distance. As the diffusion

of carbon in austenite is the slower process, it control the growth rate of ferrite

particles.

2.1.2 The activities of carbon in ferrite and austenite

The activities of carbon in ferrite and austenite are needed in the later calculations

of diffusivity of carbon and driving forces. In the current work, the equation of

the activity of carbon in ferrite aαC comes from the model proposed by Lacher [12].

The equation has the form:

ln aαC = ln

[(
3− 4x

x

)3

exp

{
4ωα
RT

}(
δ − 3 + 5x

δ + 3− 5x

)4
]

+ C{T}

where T is the absolute temperature; R is the ideal gas constant; x is the mole

fraction of carbon; C{T} is a function of T ; and

δ =
(

12− 12x+ 25x2 + 12x exp
{
− ωα
RT

}
− 16x2 exp

{
− ωα
RT

})1/2

where the carbon-carbon interaction energy in ferrite ωα can be deduced by using

the quasi-chemical model [13, 14, 15], to measured data, for example, the results

of Lobo and Geiger [16]. It was, in this way, found to be 48570 J mol−1 based on

the average of the results calculated by Bhadeshia [17].
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Because of the very small solubility of carbon in ferrite, the value of the carbon-

carbon interaction in ferrite is not reliable. It has been suggested that an alter-

native way to calculate the carbon-carbon interaction in ferrite is through first

principles methods [18, 19].

The equation of the activity of carbon in austenite aγC can be found in the work

by Shiflet [20], and it has the form:

ln aγC = ln

[(
1− 2x

x

)5(
δ − 1 + 3x

δ + 1− 3x

)6
]

+
(∆H̄γ − 26800)− T (∆S̄γ − 12.29) + 6ωγ

RT

where the partial molar heat of solution of carbon in austenite ∆H̄γ is [16],

∆H̄γ = 35129 + 169105x J mol−1

the excess partial molar non-configurational entropy of solution of carbon in austen-

ite ∆S̄γ is [16],

∆S̄γ = 7.639 + 120.4x J mol−1

and

δ =
(

1 + 2x+ 9x2 − 4x exp
{
− ωγ
RT

}
− 8x2 exp

{
− ωγ
RT

})1/2

The carbon-carbon interaction energies in austenite ωγ in terms of the mole fraction

of other solutes is obtained empirically (Fig. 2.3) [20, 21, 22].

2.1.3 Carbon diffusivity in austenite

Consider the diffusion of carbon in an austenitic FCC lattice in the direction of

[100]. A carbon atom can jump either forward or backward. Diffusion is a measure

of average movements. The net flux of carbon J comes from a model due to Siller

and McLellan [24, 25, 26]

J = −kT
h

exp

{
−∆G∗

kT

}
λ2

3γ(
aγC

[
1 +

W (1 + x)

1− (0.5W + 1)x+ 0.5W (0.5W + 1)(1− φ)x2

]
+ (1 + x)

daγC
dx

)
∂x

∂z
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Figure 2.3: Variation of carbon-carbon interaction energy in austenite ωγ as a
function of the concentrations of various alloying elements [23].

where ∆G∗ is an activation free energy between neighbouring energy wells; k and

h are Boltzmann and Planck constants respectively; λ is the distance between

(002) austenite planes; γ is an activity coefficient; W is the number of octahedral

interstices around a single such interstice; x is the mole fraction of carbon; z is

position in real space; and φ = 1− exp {−ωγC/kT}.
Compare this equation with Fick’s first law

J = −D∂x
∂z

where D is the carbon diffusivity. Therefore carbon diffusivity in austenite has the

form

D(x, T ) =
kT

h
exp

{
−∆G∗

kT

}
λ2

3γ(
aγC

[
1 +

W (1 + x)

1− (0.5W + 1)x+ 0.5W (0.5W + 1)(1− φ)x2

]
+ (1 + x)

daγC
dx

)
. (2.1)
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Through a regression analysis with respect to experimental data, Bhadeshia found

[27].
∆G∗

k
= 21230 K

ln

{
λ2

γ

}
= −31.84

The carbon concentration profile ahead of the moving α/γ interface in austenite

follows a trend described by an error function (Fig. 2.4). A weighted average

Figure 2.4: The carbon concentration profile around the advancing α/γ interface.
Partitioned carbon from ferrite diffuses away from the interface into the austenite.
The far field concentration is x̄.

diffusivity D̄ can adequately represent the effective diffusivity, which is given by

integrating D (function of concentration) over the composition range xγα to x̄, and

then dividing the integral by this range [28].

D̄ =

∫ x̄

xγα
D

dx

x̄− xγα

2.2 Thermodynamics of Phase Transformations

2.2.1 Chemical potential and the common tangent con-

struction

The Gibbs free energy G was initially called ‘available energy’ by Josiah Gibbs,

who first formulated it. Only if the change in the Gibbs free energy ∆G of a
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process is negative, will that process occur spontaneously. A brief introduction of

thermodynamics is given here inspired by the book ‘Thermodynamics’ by Enrico

Fermi [29].

The molar Gibbs free energy of a pure substance, e.g., A, is defined as the total

Gibbs free energy divided by the total number of moles

GA =
GA

nA

Consider two pure substances A and B mixing together to form a solution. The

∆G of the process can be calculated by subtracting the proportional molar Gibbs

free energies of the pure substances from the molar Gibbs energy of the solution

∆G{xB} = Gmix(xB)− [(1− xB)GA + xBGB]

and the equation is illustrated in Fig. 2.5.

Figure 2.5: ∆G is the reduction of free energy mixing xB mole pure B and 1− xB
mole pure A. The molar Gibbs free energies of pure substance A and B are GA

and GB respectively.

Gibbs free energy is a state function, i.e., it depends only on the current state

of the system, not on the way in which the system got to that state. The Gibbs

free energy of a solution is a function of temperature T , pressure P and molar
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quantities of solutes ni. The differential form is

dG =

(
∂G

∂T

)
P,ni

dT +

(
∂G

∂P

)
T,ni

dP +
∑
i

(
∂G

∂ni

)
T,P,nj 6=i

dni .

If T and P are constant as often are, then

dG =
∑
i

(
∂G

∂ni

)
T,P,nj 6=i

dni .

Because of the importance of the partial molar quantity ( ∂G
∂ni

)T,P,nj 6=i , it is desig-

nated as chemical potential µi. The differential equation is then written

dG =
∑
i

µidni .

Written in the molar quantity form, it is

dG = µAdxA + µBdxB (2.2)

Furthermore, Gibbs free energy is an extensive quantity, i.e., it is proportional

to the size of or the amount of material in the system. For a solution of nA mole

of A and nB mole of B, the Gibbs energy equals

G = µAnA + µBnB

written in the molar quantity form (divided by nA + nB),

G = µAxA + µBxB

Solving this equation and Eqn. 2.2 (dG = µAdxA + µBdxB) gives the chemical

potentials µA and µB

µA = G− dG

dxB
xB

µB = G+
dG

dxB
(1− xB)

A geometrical representation of these two equations is illustrated in Fig. 2.6. The
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construct is named the Intercept rule.

Figure 2.6: A line tangential to the molar free energy curve of a solution of A and
B at the mole fraction xB meets the vertical free energy axes at two points. They
are the chemical potential of A and B, µA and µB respectively.

Consider a solution of A and B with composition x̄B becoming unstable and

decomposing into phase α and phase β (note α in this section is not ferrite). An

equilibrium between the two phases requires

µαA = µβA

µαB = µβB

The geometric interpretation of these two criteria is illustrated in Fig. 2.7. And

the construct is named the Common Tangent Method.

2.2.2 Activity

The chemical potential of A can be expressed as the molar Gibbs free energy of

pure A plus a term making up the difference

µA = GA +RT ln aA
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Figure 2.7: At temperature T , a solution of A and B with composition x̄B de-
composes into phase α and β, whose molar free energies are the two curves. The
equilibrium between the two phases requires the chemical potentials of A or B in
α and β are equal, which determines the composition of phase α and β are xαβB ,
and xβαB respectively.

where the term aA is called activity. It is related to the concentration xA by a

term called activity coefficient

aA = γAxA

Activity is the effective concentration of a solute in a solution. In the ideal solution

where all the bonds are equivalent, the activity equals the concentration aA = xA.

2.3 The Driving Forces

All spontaneous transformations in steel are driven by the reduction of Gibbs free

energy. This section discusses the driving forces of three different transformation

processes.

2.3.1 Driving force of diffusionless transformations

Diffusionless transformation from austenite in steel requires that the molar free

energy of ferrite be smaller than that of austenite of the same composition. The

driving force for diffusionless nucleation and growth, ∆Gγ→α, is given by the verti-

cal distance between the austenite and ferrite curves at the composition of interest
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shown in Fig. 2.8.

Figure 2.8: In a transformation from austenite to ferrite when there is no com-
position change, ∆Gγ→α is the free energy reduction for austenite of composition
x̄.

Alloying elements affect the driving force of transformation. Zener argued that

the free energy difference can be factorized into two components, the magnetic

∆Gγ→α
M and non-magnetic terms ∆Gγ→α

NM [30]:

∆Gγ→α = ∆Gγ→α
M + ∆Gγ→α

NM

The non-magnetic component varies approximately linearly with temperature, but

the magnetic component varies non-linearly (Fig. 2.9). This division of free energy

helps to account for the effects of alloying elements, via a modification of the

temperature at which the free energy is evaluated:

∆Gγ→α{T} = ∆Gγ→α
M {T − x∆TM}+ ∆Gγ→α

NM {T − x∆TNM}

∆TM and ∆TNM are temperature changes due to at. % change of alloying elements.

The values used in the model are given in Tab. 2.1.

2.3.2 Driving force for reconstructive transformations

The diffusion of solute in a reconstructive transformation may contradict the in-

tuition that atoms would migrate in the direction of lower concentration. Instead,

the diffusion direction is dictated by the tendency to lower the free energy.
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Figure 2.9: Suggested division of the free energy vs. temperature relation for pure
iron into magnetic and non-magnetic components (after Zener, 1955 [30]).

Alloying element ∆TM / K per at.% ∆TNM / K per at.%
Si -3 0

Mn -37.5 -39.5
Ni -6 -18
Mo -26 -17
Cr -19 -18
V -44 -32
Co 19.5 16
Al 8 15
Cu 4.5 -11.5

Table 2.1: Values of ∆TM and ∆TNM for one unit change of alloying elements [31].

In a reconstructive transformation from austenite with carbon concentration x̄

at temperature T , ferrite forms at a rate which allows carbon to diffuse into the

austenite ahead of the γ/α interface. The migration of carbon crossing the interface

is a relatively fast process. Therefore ferrite and austenite are in equilibrium near

the interface, where the common tangent method applies (Fig. 2.10)

The driving force of the transformation, ∆Gγ→γ′+α, is identified on Fig. 2.10.

The tangent points on the free energy curves indicate the carbon concentrations

of ferrite xαγ and enriched austenite xγα respectively, and they are functions of

temperature. These compositions can be plotted to form the boundaries on a

phase diagram.
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Figure 2.10: The top half shows the free energy change ∆Gγ→γ′+α in a reconstruc-
tive transformation. Austenite with carbon x̄ at temperature T decomposes into
ferrite with composition xαγ and austenite with composition xγα. The elements
can be used in the construction of phase diagram.

2.3.3 Maximum driving force for nucleation

The process of nucleation involves fluctuations of atom clusters, called embryos,

with different sizes and chemical compositions. Consider embryos materialising in

austenite with an initial carbon concentration x̄. The quantity of material involved

in forming ferrite embryos is so minute that it hardly affects the composition of

austenite. Therefore, in the free energy diagram of a reconstructive transformation

(Fig. 2.10), the carbon concentration of enriched austenite xγα is close to x̄. In the

limit, where xγα = x̄, the line linking the two concentrations becomes tangential

to the austenite free energy curve at x̄.

The embryo most likely to survive and develop into a nucleus is the one hav-

ing the largest reduction in free energy ∆Gm. Geometrically it can be found by

drawing a tangent line to the ferrite free energy curve, which is parallel to the

line on the austenite curve at x̄. This geometric construct is called the parallel

tangent method. The tangential line on the ferrite curve also yields the carbon

composition of the embryo, xαm (Fig. 2.11) [32, 33].
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Figure 2.11: An illustration of the parallel tangent method used to find the max-
imum reduction of Gibbs free energy, ∆Gm forming a embryo that is most likely
to survive and develop into a nucleus.

The parallel tangent method can be mathematically formulated, so ∆Gm and

xαm can be calculated [32]. The equations of the two tangents have the form

Gγ = (1− x)[Goγ
Fe +RT ln aγFe(1− x̄)] + x[Goγ

C +RT ln aγC(x̄)]

Gα = (1− x)[Goα
Fe +RT ln aαFe(1− x)] + x[Goα

C +RT ln aαC(x)]

where the superscription o refers to pure substances.

The difference between them gives the free energy change

∆G = Gα −Gγ

= (1− x)(Goα
Fe −G

oγ
Fe) + x(Goα

C −G
oγ
C )

+(1− x)RT ln
aαFe(1− x)

aγFe(1− x̄)
+ xRT ln

aαC(x)

aγC(x̄)
(2.3)

As the two tangents are parallel, therefore

[Goγ
Fe +RT ln aγFe(1− x̄)]− [Goγ

C +RT ln aγC(x̄)]

= [Goα
Fe +RT ln aαFe(1− x)]− [Goα

C +RT ln aαC(x)]
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where the terms are rearranged to have the form

(Goα
Fe −G

oγ
Fe)− (Goα

C −G
oγ
C ) +RT ln

aαFe(1− x)

aγFe(1− x̄)
−RT ln

aαC(x)

aγC(x̄)
= 0 (2.4)

Solving Eqn. 2.4 will give the composition xm of the favourable embryo. Sub-

stituting into equation 2.3 yields the maximum molar free energy change of forming

a ferrite nucleus ∆Gm

∆Gm = RT ln
aαC(xm)

aγC(x̄)
(2.5)
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Chapter 3

Rates of Transformations

Once the driving forces for transformations have been determined, consequently it

is time to formulate the nucleation and growth rates of transformations concerned

in this work.

3.1 Nucleation Rates of Phases in Steel

3.1.1 Classical nucleation for allotriomorphic ferrite and

pearlite

The outermost layer of atoms on an embryo forms an interface with a relatively

higher energy. In the formation of an embryo, there is a gain from materialising

the new phase, and a cost in the creation of the interface. The two factors reach

balance when embryo passes a critical size and becomes a stable nucleus. Once

over this activation energy, the newly formed nucleus carries on with a continuous

reduction in free energy.

Suppose there is a homogeneous spherical embryo with radius r (Fig. 3.1).

The change of the Gibbs free energy for forming such an embryo is

∆G =
4

3
πr3εαγ + 4πr2σαγ (3.1)

where εαγ (J m−3) is the free energy change for materialising the new phase; and

σαγ (J m−2) is the interfacial energy per unit area.
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Figure 3.1: A ferrite embryo consisting of a spherical cluster of atoms with radius
r enclosed in austenite.

The critical radius r∗ can be found by seeking the value of r at which the

derivative of ∆G with respect to r equals zero

∂∆G/∂r = 0

Substituting r∗ back into Eqn. 3.1 gives the activation energy G∗

G∗ =
16πσ3

αγ

3ε2αγ

It is illustrated in Fig. 3.2

Figure 3.2: The trade-off between the gain from forming new phase and loss from
creating interface causes an energy barrier, called the activation energy G∗. Em-
bryos with sizes larger than the critical radius r∗ are stable and can continuously
grow.

This is not how most nuclei are created. Nucleation is far more likely at

austenite grain boundaries, which can help reduce the activation energy. This is
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termed heterogeneous nucleation (Fig. 3.3). The benefit comes from the partial

Figure 3.3: The nucleation is far more likely to occur on the austenite grain bound-
aries. The destruction of high energy grain boundary helps reduce G∗.

elimination of the high energy grain boundary. This process, in effect, reduces

the activation energy required otherwise in a homogeneous nucleation by a factor

related to the shape of the embryo

∆G∗het = shape×∆G∗hom

The nucleation rate, following classical nucleation theory [34, 35], depends

on the attempt frequency ν, the number density of nucleation sites Nv and the

probability of successful attempts:

Is1 = Nvν exp

{
−∆G∗het +Q

kT

}
where Q is the energy barrier for the transfer of an atom across the α/γ interface.

There are many embryos having various sizes and compositions created by ran-

dom fluctuations. Say Zn is the number of embryos of n atoms. The distribution

of Zn may be approached slowly in a solid transformation, as there is an activation

energy barrier to add or remove an atom. So the above equation as a steady state

nucleation rate is inadequate. It is necessary to investigate the time-dependence

of the nucleation rate. This has been suggested to have the form [36, 37]:

I1 = Is1e
−τ/t

where τ is a characteristic time and t is the time elapsed since nucleation started.

τ =
n2
ch

4ackT
exp

{
Q

RT

}
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where nc is the number of atoms at the nuclei with critical size and ac is the

number of atoms at the interface of the critical nucleus.

In the present work, the nucleation rate of pearlite and allotriomorphic ferrite

is assumed to be related with a constant ratio.

3.1.2 Paraequilibrium nucleation for Widmanstätten fer-

rite and bainite

It has been demonstrated that Widmanstätten ferrite and bainite do not follow

classical nucleation theory involving heterophase fluctuations, but rather the nu-

cleation rate is directly related to the driving force [3], similar to that of martensite

[38, 39]. Unlike martensitic nucleation, carbon must be allowed to partition dur-

ing nucleation. The nucleation rate (m−2) has been suggested to have the form

[40, 41, 42].

I2 = K1ν exp

{
−K2

RT

(
1 +

∆Gm

K3

)}
where ν = kT/h is the attempt frequency factor, K1 = 3.049 × 10−2 m−2s−1,

K2 = 9.481× 104 J mol−1, K3 = 2540 J mol−1.

The same nucleus can develop into either Widmanstätten ferrite or bainite on

the conditions to be discussed later.

Universal nucleation function

Theoretically time-temperature transformation diagrams consist essentially of

two ‘C’ curves. The lower one has a characteristic flat top and represents the

highest temperature, Th, at which displacive transformation starts. Th can be

either the start temperature of Widmanstätten ferrite or bainite. In a plot of

the experimental data of maximum driving force for nucleation Gm versus Th, the

points fall on the same general line (Fig. 3.4) [43, 3].

The general line has been regarded as the universal nucleation function GN ,

which expresses the minimum free energy required to obtain a detectable amount

of Widmanstätten ferrite or bainite

GN = 3.637(T − 273.15) + 2540 J mol−1
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Figure 3.4: A plot of the experimental data of the maximum driving force for
nucleation Gm versus the Th. The points fall on the same general line.

where T is the absolute temperature.

Widmanstätten ferrite and bainite start temperature, Ws and Bs

The same nucleus can develop into either a Widmanstätten ferrite particle or

a bainite sheaf, depending on the following conditions. To achieve a detectable

nucleation rate for both phases, the maximum free energy of para-equilibrium

nucleation, ∆Gm, has to be less than the universal nucleation function GN .

∆Gm < GN (3.2)

The transformation starts only when there are enough energy for growth. The

strain energy stored in the transformation to Widmanstätten ferrite is estimated

to be 50 J mol−1 [3]. Therefore the condition for the growth of Widmanstätten

ferrite is

∆Gγ→γ′+α < −50 J mol−1 (3.3)

Therefore the Widmanstätten ferrite start temperature Ws is where Eqn.3.2 and

Eqn. 3.3 are simultaneously satisfied.

The stored energy for bainite has been estimated as 400 J mol−1 [3]. The

condition for bainite growth is

∆Gγ→α < −400 J mol−1 (3.4)

The bainite start temperature Bs is where Eqn. 3.2 and Eqn. 3.4 are simultane-
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ously satisfied.

3.2 Growth Rates of Phases in Steel

3.2.1 Growth for allotriomorphic ferrite and pearlite

Allotriomorphic ferrite

The growth rate of allotriomorphic ferrite is governed by the diffusion of carbon

in the austenite ahead of the α/γ interface. The profile of carbon concentration in

austenite follows an error function. Although a rigorous solution of error function

is used in the work, a simplified model is presented here, which captures the essence

of the problem (Fig. 3.5).

Figure 3.5: A schematic illustration of the carbon concentration profile ahead of
a moving α/γ interface, as an allotriomorph grows. The concentration gradient in
the austenite is assumed to be constant.

The two shaded areas in Fig. 3.5 must have the same size to ensure the con-

servation of mass:

z∗(x̄− xαγ) =
∆z

2
(xγα − x̄) (3.5)

Using Fick’s first law of diffusion, the rate at which the solute is pushed by the

interface must be equal to the rate at which the solute is carried away by the

diffusion (Fig. 3.6).

∂z∗(xγα − xαγ)
∂t

= D
xγα − x̄

∆z
(3.6)
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Figure 3.6: During a time interval dt, the α/γ interface has moved forward by a
distance dz∗.

where D is the diffusivity of carbon in austenite. Solving Eqns. 3.5 and 3.6 gives

z∗∂z∗ =
D(xγα − x̄)2

2(xγα − xαγ)(x̄− xαγ)
∂t

The coefficient part of ∂t in the above equation contains the one-dimensional

parabolic thickening rate Hα of allotriomorphic ferrite. The integral form of z∗ in

terms of t has the form

(z∗)2 = (Hα)2Dt

Which tells that the thickness of an allotriomorph particle has a parabolic relation

with time.

Pearlite

A pearlite colony has a lamellar structure of ferrite and cementite. The reaction

naturally involves the precipitation of both of the two phases. The difference in

carbon concentration of austenite at the vicinity of cementite lamellae, xγθ, and

the neighbouring ferrite lamellae, xγα, can induce a flux of carbon (Fig. 3.7).

The model first analysed by Zener [44] is adopted in this work, though the true

mechanism of the growth of a pearlite colony is still under debate.

Consider a growing pearlite colony with the inter-lamellar spacing S0

S0 = Sα + Sθ
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Figure 3.7: A pearlite colony with an interface advancing into austenite in Zener’s
pearlite growth model. S0 is the interlamellar spacing, δ is the depth.

where Sα is the thickness of the ferrite lamella; and Sθ is the thickness of the

cementite lamella. If growth is allowed to occur by dz in the direction normal to

grain boundary, then the volume of austenite transformed per lamellar spacing is

S0δ dz ρ, where ρ is the density. The free energy ∆G needed to form this volume

of pearlite has the form

∆G = ∆H

(
Te − T
Te

)
S0δ dz ρ

where Te is eutectoid temperature, T is the transformation temperature and ∆H

is the latent heat of transformation.

The formation of this new volume of pearlite causes an increase in interfacial

energy, Eα/θ, between new ferrite and cementite interfaces.

Eα/θ = 2σα/θδ dz

where σα/θ is interfacial energy per unit area.

Growth of lamellae can only occur if the increases in the surface energy is no

more than the decrease in free energy due to transformation. Therefore,

∆H

(
Te − T
Te

)
S0ρ = 2σα/θ
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This is a very simple treatment which neglects any strain energy term. Neverthe-

less, the equation predicts the pearlite spacing S0 decreases with transformation

temperature, as is observed experimentally.

Assuming that the diffusion flux equation for carbon in austenite at the vicinity

of a pearlite colony follows Fick’s first law

J = −D∂x
∂z

Zener proposed an equation of the carbon concentration difference dx over the

distance aS0

dx =

(
1− SC

S0

)
(xγα − xγθ)

where a is a dimensionless constant; SC is the critical spacing at which all the

driving force is consumed in the construction of interfaces. The values of xγα and

xγθ can be extrapolated from the austenite-ferrite and austenite-cementite phase

lines in the phase diagram first proposed by Hultgren [45] (Fig. 3.8).

Figure 3.8: The austenite-ferrite and austenite-cementite phase lines in the Fe-C
phase diagram are extrapolated to determine the xγα and xγθ in the non-equilibrim
region, as first proposed by Hultgren [45].

Therefore, the diffusion flux equation becomes

J = −D (1− SC/S0)(xγα − xγθ)
aS0
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On the other hand, the diffusion of carbon results in a planar growth of each

lath. The exchange of carbon between newly formed cementite and ferrite is

through the flux of carbon

J = −HP (xθγ − xαγ)

where HP is the growth rate of pearlite in the direction normal to the grain bound-

ary; xθα and xθγ are the carbon concentrations of ferrite and cementite in equilib-

rium with austenite respectively.

Solving the two equations of J gives the expression for the growth rate of

pearlite

HP = D
1

aS0

(
1− SC

S0

)
xγα − xγθ

xθγ − xαγ

The diffusivity of carbon in austenite can be written in terms of the interface-

boundary diffusivity of carbon in austeniteDb and the thickness of interface bound-

ary

D = Dbδ .

A more sophisticated model developed by Hillert, Cahn and Hagel, Kirkaldy

and Lundquist [46] gives

HP = Dbδ
S2

0

SαSθ

1

aS0

(
1− SC

S0

)
xγα − xγθ

xθγ − xαγ

3.2.2 Paraequilibrium growth for Widmanstätten ferrite

Unlike allotriomorphic ferrite, the growth rate of a Widmanstätten ferrite plate

can be constant, because carbon is partitioned to the side. Many models have

been reviewed by Christian [34]. The most comprehensive one was proposed by

Trivedi [47]. The plate is assumed to be in the form of a parabolic cylinder and to

be constant throughout growth (Fig. 3.9).

The plate lengthening rate vαW at temperature T for steady state growth is

obtained by solving the following two equations of supersaturation Ω

Ω =
xγ − x̄
xγ − xαγ
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Figure 3.9: A Widmanstätten ferrite particle is modelled as a paraboloid cylinder.

Ω = π1/2 exp {p} erfc{p1/2}
(

1 +
vαW

vαWρ=∞
ΩS1{p}+

ρc
ρ

ΩS2{p}
)

where p is the Péclet number, which is given by

p =
vαW ρ

2D̄

where D̄ is the weighted-average diffusivity of carbon in austenite; ρ is the radius

of curvature at the tip of the parabolic cylinder; and ρc is the critical radius when

growth ceases. The functions S1{p} and S2{p} depend on the Péclet number, and

have been evaluated by Trivedi. vαWρ=∞ is the velocity of a flat interface.

xγ is the carbon concentration in austenite at the plate tip. It may differ

significantly from the equilibrium carbon concentration xγα because of the Gibbs-

Thompson capillarity effect. An equation has been given by Christian for finite

plate tip radius [34]

xγ = xγα
(

1 +
Ccapillary

ρ

)
where Ccapillary is the capillarity constant. The equations indicates that xγ de-

creases as interface curvature increase.

Zener proposed that the plate should tend to adopt a tip radius which allows

vαW to be maximised. The maximum growth rate vαWmax is obtained when the

derivative of the growth rate with respect to ρ equals zero

∂vαW

∂ρ
= 0 .

47



This maximum lengthening rate is used as the growth rate for Widmanstätten

ferrite HαW in this work, though there is lack of experimental evidence to support

this hypothesis

HαW = vαWmax

3.2.3 The growth of bainite and the T ′0 condition

Oblak & Hehemann [48] first suggested that the bainite growth proceeds in a

step-wise manner, that new platelets or sub-units nucleate on the tips of existing

sub-units and each individual sub-unit grows without diffusion (Fig. 3.10). The

details have been reviewed by Hehemann [49]. The first theory based on this

mechanism emerged in 1982 by Bhadeshia [40]

Figure 3.10: Schematic illustration of a growing bainite sheaf over time in a step-
wise manner. A sheaf grows by the propagation of tiny thin plates, called sub-units,
which successively nucleate on the tip of previous sub-units.

The rate of the successive nucleation of sub-units Is can be described in the

same manner as the nucleation rate for a displacive transformation [50, 41]

Is = K ′4ν exp

{
−K5

RT

(
1 +

∆Gm

K3

)}
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The time interval between two successive sub-unit is

∆ts =
1

Is
=
K4

ν
exp

{
K5

RT

(
1 +

∆Gm

K3

)}
where K3 is 2540 J mol−1; K4 is 1.663×1013 J mol−1; and K5 is 6.233×104 J mol−1.

T′0 Mechanism

At temperature T , diffusionless transformation requires that the carbon concen-

tration is below xT0 , where

∆Gγ→α = 0 J mol−1

at xT0 . The points xT0 fall on a line called the T0 curve (Fig. 3.11).

Figure 3.11: Schematic illustration of the T0 construction on the Fe-C phase dia-
gram. Diffusionless transformation of a sub-unit occurs when the carbon concen-
tration in the austenite lies to the left of the T0 boundary.

Suppose in an isothermal transformation that a bainite plate forms without

diffusion from austenite with initial carbon concentration x̄, and any excessive

carbon is soon afterwards rejected into the residual austenite. The next sub-unit

has to grow from carbon-enriched austenite. This process must cease when the
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austenite carbon concentration reaches xT0 , corresponding to the T0 curve (Fig.

3.12).

Figure 3.12: In an isothermal transformation, sub-units are created from carbon-
enriched austenite until the carbon composition in the austenite eventually reaches
the T0 boundary, where diffusionless transformation becomes impossible.

Taking into account the stored energy 400 J mol−1, the diffusionless transfor-

mation under the new condition requires

∆Gγ→α < −400 J mol−1 .

This moves the T0 curve to a new position in phase diagram designated T′0 (Fig.

3.13). The T′0 mechanism sets a limit on the volume fraction of bainite V max
αB

at

any temperature

V max
αB
'

xT ′0 − x̄
xT ′0 − xαγ

(3.7)

where xT ′0 is the carbon concentration corresponding to the T ′0.
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Figure 3.13: A schematic illustration of the T ′0 construct which takes strain energy
into consideration. In an isothermal transformation at temperature T , bainite
sub-units are formed in carbon-enriched austenite until the carbon composition in
austenite reaches the T′0 boundary.
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Chapter 4

Modelling Simultaneous

Transformations

Once the nucleation and growth rates are established, it is time to deal with

overall transformation kinetics. There are a few simplifications in the scheme.

First it is assumed that the chemical composition, temperature, grain size and

the microstructure are homogeneous. Therefore the model does not represent the

entire body of a bulk, real material, which may have compositional segregation,

temperature gradients, and changes in the austenite grain size from the surface to

the core. Second the growth rate of any phase applies to all its particles, whether it

has existed for some period or has just been nucleated. This simplification deviates

from reality, as the local environment of any particle may be different. Finally,

in the numerical scheme, the particles of any phase nucleated in the same time

interval are identical. So they are grouped by their nucleation time.

4.1 General Kinetic Model

Hard-impingement between particles growing from different locations can be im-

plemented using Avrami theory [51, 52, 53, 54]. Further approximations are nec-

essary to account for the soft impingement in bainite transformation, such as the

assumption of a mean field, which describes the overlap of diffusion fields from

distant particles.
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4.1.1 Avrami model

Referring to Fig. 4.1, suppose that two particles exist at a time t; a small interval

∆t later, new regions marked a, b, c and d are formed assuming that they are able

to grow unrestricted whether or not the region into which they grow is already

transformed. This is the concept of extended space. However, only those compo-

nents of a, c and d which lie in previously untransformed matrix can contribute to

a change in the real volume of the product phase (α).

Figure 4.1: Concept of extended volume. New regions c and d are formed in the
interval ∆t as the original particles grow, and new particles a and b nucleate.
However, not all of the new regions are real.

The way to remove the impossible growth is to multiply the change in extended

volume dV α
e by the probability of finding untransformed regions. This has the effect

of excluding regions such as b in the Fig. 4.1, which clearly cannot contribute to

the real change in volume of the product:

dV α =

(
1− V α

V

)
dV α

e

where the subscript e refers to extended space; V α is the volume of α and V is

the total volume. It is assumed that the microstructure develops at random. For

such a random distribution of precipitated particles, this equation can easily be

integrated to obtain the real volume fraction

V α

V
= 1− exp

{
−V

α
e

V

}
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The extended volume V α
e is straightforward to calculate using nucleation and

growth models since it neglects completely any impingement effects.

Multiple reactions occurring simultaneously can be accounted for by forming

coupled equations [55, 56, 57, 36, 37]. Thus for two phases α and β

dV α =

(
1− V α + V β

V

)
dV α

e

dV β =

(
1− V α + V β

V

)
dV β

e

This can be done for any number of simultaneous reactions. Although analytical

solutions for simultaneous equations exist for trivial cases, they must in general be

solved numerically, which in fact has the advantage of permitting the boundary

condition to change as transformation progresses.

4.1.2 Numerical scheme

The nucleation and growth rate of any transformation product may change as

the composition of austenite and the temperature change. To model the gradual

development of microstructure, the calculation is divided into time steps. The size

of the time step may affect the accuracy of the calculation, if the value chosen is

not small enough.

The number of particles of phase i nucleated at time interval k is the product

of nucleation rate Ii,k (m−2s−1), the size of time interval ∆t and the total volume

V . The change of extended volume of these particles at the current time step n is

∆V e
i,k = Ii,kV∆t× Vi,n∆t

where Vi,n is the growth rate of phase i at the current time interval n.

The change in the extended volume of all the particles of phase i at the current

time step is

∆V e
i =

∑
k

(Ii,kV∆t)(Vi,n∆t) .
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The real change of volume in the current time interval is then

∆Vi =

(
1−

∑
i Vi
V

)
∆V e

i (4.1)

where
∑

i Vi sums the total transformed volume of all phases and V is the total

volume of the entire system. Finally this volume change is updated to the real

volume of phase i at the current time

Vi,n = Vi,n−1 + ∆Vi .

4.1.3 Grain boundary nucleated reactions

Since many reactions are nucleated at austenite grain boundaries rather than at

random locations, an adaptation to the extended space concept proposed by Cahn

[2] is used to deal with such reactions. Impingement then occurs in two forms, along

the grain boundary plane (dealt with the extended area concept) and between

particles originating from different boundaries [36, 37].

Consider a system of several phases with total area of austenite grain bound-

aries OB, which is a constant. It can be estimated using the stereological relation

that [58]

OB =
2

L̄

where L̄ is the mean linear intercept for an equiaxed grain structure (Fig. 4.2).

The model continuously tracks the volume fraction of any phase. The shape of

any phase are simplified to be constant throughout simulation, and it is fixed by

ratios of geometric parameters. Particles of any phase are grouped by nucleation

times, as particles nucleated at the same time interval are identical (Fig. 4.3).

A growing particle penetrates imaginary planes parallel to the grain boundary

(Fig. 4.4). On parallel plane y (y is the distance of the plane from the boundary),

new regions of transformation occur randomly. But not all regions contribute

to the new growth, as some are on the transformed area. An adaptation to the

extended volume concept is used to remove the regions in which transformation is

impossible.

Consider the change of extended area of phase i on plane y, ∆Oe
i,y. It is
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Figure 4.2: The mean linear intercept, L̄, is obtained by dividing the length of
the intercept line by the number of grain boundaries it crosses. The number is
the number of grains crossed by the line. A statistically significant number of
measurements must be made depending on the desired level of accuracy.

Figure 4.3: Particles of any phase are organised according to their nucleation time.
The shape of any particle are simplified as constant by fixed ratios of geometric
parameters. New particles are added into the system by nucleation.

obtained by adding the contributions of particles that have just reached and have

penetrated plane y

∆Oe
i,y =

∑
k

(Ii,k∆tOB)(Oi,n,y∆t) (4.2)

where Oi,n,y is the growth rate of area at current time n (m2s−1). The real-area

change at current time step is obtained by multiplying ∆Oe
i,y with the proportion
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Figure 4.4: The area of phase i on a imaginary plane y parallel to the grain
boundary (GB) (y is the distance of the plane from the boundary) is Oi,y. ∆y is
the distance between two adjacent planes, which was set as ∆y = 0.1 µm in the
work.

of total untransformed area on plane y

∆Oi,y =

(
1−

∑
iOi,y

OB

)
∆Oe

i,y (4.3)

where
∑

iOi,y sums all phases. The total area of phase i on plane y then is updated

Oi,y,n = Oi,y,n−1 + ∆Oi,y

The extended volume of phase i at current time step can be calculated by

V e
i,n = ∆y

∑
y

Oi,y,n (4.4)

where ∆y is the distance between adjacent parallel planes. The extended volume

change of phase i at current time step is

∆V e
i = V e

i,n − V e
i,n−1

On combining with Eqn. 4.1, the change of real volume of phase i is

∆Vi =

(
1−

∑
i Vi
V

)
∆V e

i
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Finally, the total volume of phase i at time n is

Vi,n = Vi,n−1 + ∆Vi

4.2 Kinetic Models of Individual Phases

The numerical Avrami scheme has provided the template for the treatment of any

of the phases concerned.

4.2.1 Allotriomorphic ferrite

Allotriomorphic ferrite particles are modelled as thin discs forming on the grain

boundary with aspect ratio ηα = 3, i.e., the ratio of radius to half the height

[59]. Because the ferrite forms by reconstructive transformation, an allotriomorph

particle can cross the grain boundary and continue its growth into the adjacent

grain [60, 35] (Fig. 4.5).

Figure 4.5: Model of an allotriomorphic particle

It is assumed that the growth of any allotriomorph on either side of the bound-

ary is symmetric, so the following calculation concerns only half of the particle.

The half-thickness in the direction normal to the grain boundary, Hα, has been

shown that it has a parabolic relation with time

Hα
τ (t) = HαD̄1/2(t− τ)1/2

where τ is the nucleation time of the particle; t is the current time; Hα is the one-

dimensional parabolic thickening rate; and D̄ is the weight-averaged diffusivity of

the carbon in austenite. The differentiation of this function with respect to time

is

dHα
τ (t) =

1

2
HαD̄1/2(t− τ)−1/2dt .
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In the language of numerical calculations, the change in the half-thickness of an

allotriomorph nucleated at time k, at the current time step n is

∆Hα
k =

1

2
HαD̄1/2(n∆t− k∆t)−1/2∆t

A small modification is needed to this equation for an allotriomorph just nucleated

∆Hα
k = HαD̄1/2∆t1/2 .

The change of half-thickness is then added to the half-thickness at previous

time to yield that at the current time

Hα
k,n = Hα

k,n + ∆Hα
k

The information of the half-thickness of a particle gives a measure of whether

the particle has reached the parallel plane under concern. Using Eqn. 4.2, the

extended area of a particle nucleated at k on plane y has the form

∆Oα,e
k,y = Iαk ∆tOB ×Oαn,y∆t (4.5)

where Oαn,y is the growth rate of intersection area at time n. As shown later, the

value of Oαn,y is a function of Hα and ηα = 3.

The equation of the change of extended area of those particles nucleated at k

on plane y depends the position of the plane. The particle has just reached the

plane, when Hα
k,n = y; has exceeded the plane, when Hα

k,n > y and is below the

plane, when Hα
k,n < y

∆Oα,e
k,y =



Iαk ∆tOB × π(ηαHα
k,n)2 Hα

k,n = y

Iαk ∆tOB × π(ηαHαD̄1/2∆t1/2)2 Hα
k,n > y

0 Hα
k,n < y

where the product ηαHα
k,n gives the radius of an allotriomorph disc. And the
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extended area of all allotriomorph particles on plane y is

∆Oα,e
y =

∑
k

∆Oα,e
k,y .

Substituting the value of ∆Oα,e
y into the equations in section 4.1.3 returns the

volume fraction of allotriomorphic ferrite at the current time. Because only half

the particle has been modelled here, the total volume is, by symmetry, twice as

much.

4.2.2 Pearlite

The shape of a pearlite colony is taken to be that of a cylinder with a fixed aspect

ratio ηP = 1, i.e., the ratio of radius to half the height. The shape is maintained,

as the particle grows proportionally in all directions. Like allotriomorphic ferrite,

pearlite also grows by reconstructive transformation, and hence can propagate

across austenite grain boundaries (Fig. 4.6).

Figure 4.6: Model of a pearlite colony.

The half-thickness of a colony HP nucleated at time τ has a linear relation

with time

HP
τ (t) = HP (t− τ)

whereHP is the growth rate in the direction normal to grain boundaries. As shown

later, the growth rate of the diameter of cylinder is a function of HP and ηP . The

corresponding numerical equation is

∆HP = HP∆t
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As pearlite can nucleate on ferrite as well as cementite, a new pearlite nucleus can

form on top of layers of transformed material accumulated on grain boundaries.

The distance from the boundary of a pearlite nucleus has to include the average

thickness of all the transformed material

∆HP = HP∆t+
∑
i

V e
i /OB .

The change of extended area of those pearlite particles nucleated at k on plane

y is one of the following equations on three exclusive conditions

∆OP,e
k,y =



IPk ∆tOB × π[ηP (HP
k,n −

∑
i V

e
i /OB)]2 HP

k,n = y

IPk ∆tOB × 2π(ηP )2[HP (n∆t− k∆t)]HP∆t HP
k,n > y

0 HP
k,n < y

For the case HP
k,n > y, the term with higher power of ∆t is omitted. Because

only half of the height of any colony is modelled, the equation of extended volume

needs to be multiplied by 2

V P,e = 2∆y
∑
y

OP
y .

4.2.3 Widmanstätten ferrite

The thin plates of Widmanstätten ferrite are modelled as tetragonal shape of

dimension a = b 6= c with aspect ratio ηαW = 0.05, i.e., the ratio of thickness to

length. [61]. Because Widmanstätten ferrite is a displacive transformation, the

plates are confined to the single grain in which it has nucleated (Fig. 4.7). The

change of thickness in the direction normal to the grain boundary at a time interval

is given by

∆HαW = HαW∆t

where HαW is the plate lengthening rate. Because Widmanstätten ferrite nucle-

ates on both the grain boundary and existing allotriomorphic ferrite, the distance
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Figure 4.7: Model of a Widmanstätten plate.

of a newly nucleated Widmanstätten ferrite particle has to include the average

thickness of the material that has already cumulated on the grain boundary

∆HαW = HαW∆t+
∑
i

V e
i /OB

The change of extended area of those particles nucleated at time k on the plane y

is given by one of three exclusive conditions

∆OαW ,e
k,y =



IαWk ∆tOB × ηαW (HαW
k −

∑
i V

e
i /OB)2 HαW

k,n = y

IαWk ∆tOB × 2ηαWHαW (n∆t− k∆t)HαW∆t HαW
k,n > y

0 HαW
k,n < y

where the high power term of ∆t is omitted. Combining it with the equations in

section 4.1.3 yields the volume fraction of Widmanstätten ferrite.

4.2.4 Bainite

A bainite sheaf is made up of many tiny sub-units. They are nucleated on the

tips of previous sub-units. The growing of a sub-unit is a process much faster

than the time lapse to nucleate the next sub-unit. Therefore, the growth rate of a

bainite sheaf is determined by the nucleation rate of sub-units. Bainite sheaves are

modelled as plates. They are confined to grow in one of the grains at a boundary

due to a displacive transformation mechanism (Fig. 4.8) [62, 63].

As sub-units nucleate and attach themselves on both sides and the top of a
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Figure 4.8: Model of a bainite sub-unit and sheaf.

sheaf, it grows in all dimensions (Fig. 4.9) [50].

Figure 4.9: The evolution of bainite sheaves is in a discontinuous fashion. The
condition for further growth is the comparison between the time lapsed since the
last nucleation and the required incubation time at the current time.

The incubation time required to nucleate the next sub-unite ∆ts is

∆ts =
1

Is
=
CαB

4

ν
exp

{
CαB

5

RT

(
1 +

∆Gm

CαB
3

)}
where CαB

4 = 1.663× 1013 J mol−1, CαB
5 = 6.233× 104 J mol−1 [50].

The empirical equations of the length and intersection area of a sub-unit are
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[59]:

lu =

{
10.0× 10−6(T−528

150
) T > 528

1.0× 10−7 T ≤ 528

Su =

{
2.0× 10−12(T−528

150
)2 T > 528

2.0× 10−16 T ≤ 528

These equations are based on experimental data by Chang and Bhadeshia for

steels containing 0.095-0.5 wt % C, transformed isothermally between 523 and 773

K [64].

For particles which had the last sub-unit added at time interval ks (k ≤ ks ≤ n),

if the time elapsed to the current time (n∆t − ks∆t) is greater then ∆ts, a new

sub-unit can then be added. On the other hand, if the time elapse is shorter, then

the sheaf is not permitted to grow at the current time. The change of the height

of a single bainite sheaf is

∆HαB
k,n =


lu (n∆t− ks∆t) ≥ ∆ts

0 (n∆t− ks∆t) < ∆ts

A similar treatment for the change of extended area of a single bainite sheaf nu-

cleated at k on plane y is given by

∆Osf,e
k,y =



Su ks = k + 1

θSu (n∆t− ks∆t) ≥ ∆ts

0 (n∆t− ks∆t) < ∆ts

where in the case ks = k + 1, a sheaf has just nucleated; The constant θ is chosen

to be 2, for preserving the shape of the sheaf.

The change of intersection area of all the sheaves nucleated at the same time
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k on plane y is given by

∆OαB ,e
k,y =


IαBk ∆tOB ×∆Osf,e

k,y HαB
k,n ≥ y

0 HαB
k,n < y

The change for all sheaves is then

∆OαB ,e
y =

∑
k

∆OαB ,e
k,y .

For the T ′0 mechanism, the volume fraction of bainite cannot exceed V max
αB

. To

implement this mechanism, instead of using Eqn. 4.1, for bainite, the volume

Avrami method has the form

∆VB =

(
1− VB

V max
αB

)
∆V e

B .
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Chapter 5

Validation of the Model: the

Trends

The model based on the theories discussed in the previous chapters has been vali-

dated by various methods. Before we can compare the model against experimental

data, it is necessary to validate separately the model on the factors that can affect

the microstructure of steels, so to assure that known physical phenomena are re-

peated. Some simple systems are selected for the purpose. Any variable under test

was altered systematically over a series of calculations, and the resulting trends

were examined.

5.1 The Effect of Carbon

To have a clean examination on carbon, a series of binary Fe-C systems were used

with carbon concentration ranging from 0.1 wt % to 0.7 wt % (Tab. 5.1). The

Carbon (wt %) 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Table 5.1: Carbon concentrations of the binary Fe-C steels used in the study on
the effect of carbon.

reason that hypereutectoid steels (carbon ≥ 0.8 wt %) were not included, was

because proeutectoid cementite would be produced firstly in a continuous cooling

transformation of a hypereutectoid steel and the model at the current status does
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not include the mechanism of forming proeutectoid cementite.

As shown later, cooling rate can greatly affect the transformation. A slow

cooling rate 0.05 ◦C s−1 was used and the austenite grain size was set as 30 µm.

The same inputs were applied to all the transformations considered. The time

step of any calculation was set in a way that the size of the time steps was small

enough to affect the predicted volume fraction by less than 0.002. This adjustment

procedure was performed before every calculation demonstrated in the thesis. The

predicted microstructures are listed on Tab. 5.2. As the carbon concentration

moves from 0.1 to 0.7 wt %, the transformation start temperature declines and

more pearlite is predicted to form. Pearlite is a fast reaction in the model.

C wt % α P αW αB Time / s
0.1 0.90 0.10 0.000 0.000 3714
0.2 0.77 0.23 0.000 0.000 3036
0.3 0.64 0.36 0.000 0.000 2574
0.4 0.54 0.46 0.000 0.000 2298
0.5 0.45 0.55 0.000 0.000 2058
0.6 0.36 0.64 0.000 0.000 1794
0.7 0.14 0.86 0.000 0.000 1074

Table 5.2: The predicted volume fractions of allotriomorphic ferrite (α), pearlite
(P ), Widmanstätten ferrite (αW ) and bainite (αB), and transformation finishing
time. The data are plotted in Fig. 5.1

All the transformations are completed with no austenite left. The pearlite

content steadily increases with rising carbon concentration. The transformation

start temperature decreases with increasing carbon.

For more detailed analysis, diagrams of volume fraction vs. temperature were

produced. Such a diagram first appeared in the paper by Jones and Bhadeshia [37].

Comparing the diagrams of 0.1 wt % carbon and 0.7 wt % carbon, allotriomorphic

ferrite forms much earlier, before pearlite, in the steel having 0.1 wt % carbon.

This is expected, as pearlite can only grow once the untransformed austenite is

adequately enriched with carbon (Fig. 5.2).
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Figure 5.1: Predicted volume fractions of allotriomorphic ferrite and pearlite.
Cooling rate was 0.05 ◦C s−1. Austenite grain size was 30 µm.

5.2 Substitutional Alloying Elements

Adding alloying elements to plain carbon steels can dramatically extend the prop-

erties of carbon steels and also introduce new properties. Alloying elements alter

the driving force of transformation (section 2.3) and the interaction energy between

carbon atoms (section 2.1.2). A thorough discussion of this subject is beyond this

thesis, but details can be found in the references [65, 66, 1].

Substitutional alloying elements to be discussed are silicon, manganese, nickel,

chromium, molybdenum and boron. One of their effects on steel is that they affect

the shape of the austenite γ field in the Fe-C phase diagram. According to a

scheme introduced by Wever, alloying elements expand or contract the γ field by

raising or lowering the Ae4 and the Ae3 temperatures. In extreme scenarios, the

austenite stabilising alloying elements can open the γ field, or the ferrite stabilising

elements can contract the γ field so much so that at a certain carbon concentration

and above, there is no solid-state phase transformation in steel (Fig. 5.3).

A ternary Fe-C-X system is used for the study, where X stands for any of the

six elements. Carbon concentration was set at 0.6 wt % and the cooling rate was

1.0 ◦C s−1. The austenite grain size was set at 30 µm. The predicted results are

summarised on Tab. 5.3.
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(a) Fe - 0.1 wt % C

(b) Fe - 0.7 wt % C

Figure 5.2: Comparison of the transformations in steels with 0.1 wt % carbon and
0.7 wt % carbon at a cooling rate 0.05 ◦C s−1.
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Figure 5.3: The extreme scenarios of the effects of substitutional alloying elements
on the austenite γ field in the Fe-C phase diagram [67].

Fe-(C) Fe-C-(Si) Fe-C-(Mn)
(wt %) 0.6 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
α 0.164 0.169 0.174 0.180 0.186 0.147 0.127 0.078 0.001
P 0.833 0.828 0.821 0.817 0.809 0.850 0.870 0.919 0.997
αW 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
αB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe-C-(Ni) Fe-C-(Mo)
(wt %) 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
α 0.150 0.137 0.125 0.112 0.161 0.158 0.155 0.152
P 0.846 0.860 0.872 0.886 0.834 0.839 0.843 0.844
αW 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
αB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe-C-(Cr) Fe-C-(B)
(wt %) 0.5 1.0 1.5 2.0 0.0005 0.001 0.0015 0.002
α 0.156 0.148 0.140 0.131 0.153 0.147 0.086 0.086
P 0.842 0.849 0.857 0.865 0.840 0.829 0.726 0.726
αW 0.000 0.000 0.001 0.001 0.003 0.021 0.186 0.186
αB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.3: The predicted volume fractions of various phases. The values in weight
percent are for the concentrations of any element in bracket (). The ferrite data
are plotted in Fig. 5.4.
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Figure 5.4: The comparison of the effect of alloying elements on ferrite formation.

The experimental work by Andrews [68] has shown the relative strengths of

alloying elements (Fig. 5.5). The predictions for Si, Mn and Ni of their effects and

the strength of the effects on austenite or ferrite are comparable with experimental

data. Mo and Cr are experimentally identified as ferrite formers. However the

calculations have shown that the presence of Mo and Cr has a slight negative

effect on ferrite formation.

Boron has been recently integrated into the model. The work of adding boron
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has not been completed, as the interaction of boron with titanium and nitrogen has

not been fully integrated into the model (Appendix A). Nevertheless, boron has

been correctly predicted by the model as having a negative effect on the formation

of allotriomorphic ferrite.

Figure 5.5: Relative strength of alloying elements as: (a) ferrite formers; (b)
austenite formers [68].

5.3 Grain Size

To study the effect of grain size, the choice of the chemical composition was a

mildly alloyed steel (Tab. 5.4). The tests were performed on transformations with

C Si Mn Ni Mo Cr V Cooling rate
0.2 1.21 1.382 0.1 0.32 1.19 0.0 2.0 ◦C s−1

Table 5.4: The chemical composition (wt %) of the steel sample used to explore
the effect of grain size.
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a cooling rate 2.0 ◦C s−1. The values of austenite grain sizes used in the tests are

listed on Tab. 5.5.

grain size (µm) 10 20 50 100

Table 5.5: The austenite grain sizes used in the test.

A grain boundary is the border between two crystals, a region in which atoms

are packed less perfectly than in the defect-free lattice. Such boundaries are good

places for heterogeneous nucleation. Steels having smaller austenite grains will

have a larger surface area of grain boundaries per volume (Fig. 5.6). Hence, small

Figure 5.6: Steel with smaller austenite grain size has larger gain boundary surface
area per unit volume.

austenite grains effectively increase the number density of nucleation sites and

should increase the fraction of α and P as the model has predicted (Fig. 5.7).
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5.4 Cooling Rates

The rate of transformation is greatly affected by the temperature at which it takes

place. For this reason, the cooling rate is an important factor in the development

of microstructure. The test was to validate the model whether it could reproduce

the effect of cooling rate as would be expected. The chemical composition was the

same as in Tab. 5.4. The value of cooling rates chosen for the tests are listed in

Tab. 5.6.

Cooling rate (◦C s−1) 0.1 0.3 0.5 1.0 1.5 2.5 3.5 4.5 8 15 25

Table 5.6: The cooling rates used in the test. The austenite grain size was set as
30 µm.

The predicted volume fractions are summarised on Tab. 5.7 and plotted in Fig.

5.8. They demonstrate that with increasing cooling rates, there is a decrease of

reconstructive transformation products (α and P ), and an increase of displacive

products (αW and martensite).

CR 0.1 0.3 0.5 1.0 1.5 2.5 3.5 4.5 8 15 25
α 0.658 0.501 0.426 0.345 0.306 0.264 0.236 0.236 0.174 0.122 0.091
P 0.340 0.307 0.287 0.247 0.220 0.063 0.009 0.009 0.000 0.000 0.000
αW 0.000 0.189 0.285 0.406 0.468 0.522 0.506 0.506 0.282 0.050 0.008
αB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
α′ 0.000 0.000 0.000 0.000 0.006 0.151 0.249 0.249 0.544 0.828 0.901

Table 5.7: Transformation products predicted from mildly alloyed steel (se Tab.
5.4). CR stands for cooling rate in unit ◦C s−1. Data are plotted in Fig. 5.8.
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Chapter 6

Experimental Validation of the

Model

The theory behind the microstructure model is based on decades of research in

Cambridge, and large parts of it have been validated independently through a

variety of experiments and theoretical assessments. The incorporation of bainite

is a major feature of the present work. This chapter describes new experimental

validation tests of the model. Some of the test samples and data were supplied by

Swiss Steel AG.

6.1 Transformations to allotriomorphic ferrite,

pearlite and Widmanstätten ferrite

Bainite was not included in the original model developed by Jones and Bhadeshia

[36, 37], who validated the work using the results by Bodnar and Hansen [69]. The

chemical composition of the steel used in the experiment was Fe-0.18C-0.18Si-

1.15Mn-0.003V wt %. A variety of austenite grain sizes and cooling rates were

applied (Tab. 6.1).

The level of agreement between the original model and experiment is illus-

trated in Fig. 6.1(a). Although the agreement was considered at the time to

be reasonable, there clearly are discrepancies and the data are not uniformly dis-

tributed about the line of perfect consistency between experiment and theory.
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austenite grain size / µm cooling rate / ◦C min−1

30 101 59 30 16 11
55 99 59 30 16 11
100 101 59 30 16 11

Table 6.1: The specifications of the experiments on steel Fe-0.18C-0.18Si-1.15Mn-
0.003V wt % by Bodnar and Hansen [69].

Better agreement has been achieved in the present work (Fig. 6.1(b)), in which

Most of the main program and some subroutines have been rewritten, though based

on the same theories. The improvement of the new results comes from merely the

improvement in the quality of program code.

Figure 6.1: (a) Comparison of calculated [37] and measured fractions [69] for the
original work by Jones and Bhadeshia. (b) Comparison of calculations produced
using the present work, with the Bodnar and Hansen data.

6.2 Isothermal Transformation to Bainite

The theory for bainite reaction used in this model was developed by Matsuda and

Bhadeshia [50]. Most of the constants used in the calculations were set by the

tests against published data from isothermal experiments on carbide-free bainite

78



[40]. The steel used in the experiments had chemical composition Fe-0.44C-1.74Si-

0.67Mn-1.85Ni-0.83Mo-0.39Cr-0.09V wt % and mean lineal austenite grain size of

86 µm.

The reasonable agreement obtained given the fitting parameters is not sur-

prising (Fig. 6.2). The model has captured the incomplete reaction phenomenon

accurately [4, 70]. It has also correctly predicted that the extent of reaction de-

creases when the isothermal temperature is increased towards the bainite start

temperature.

Figure 6.2: Comparison of experimental measurements [40] of the fraction of
carbide-free bainite as a function of the isothermal transformation temperature,
against computations (curves).

6.3 Case Hardening Steel

Samples of a case hardening steel were supplied by Swiss Steel AG [71]. The

molten steel was produced in an electric arc furnace from scrap, and then cast

continuously into 140×140 mm billets. These were then reheated to 1200◦C and

hot-rolled into wire-rods or bars. The final product was in the forms, 6.5 mm

diameter wire rod, 23.5 mm diameter wire rod and 36 mm diameter bar.
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6.3.1 Sample with 6.5 mm diameter

The 6.5 mm wire rod was processed in a Stelmor controlled-cooling conveyor. In

the Stelmor line, coils are separated and each ring of a coil is treated under the same

cooling condition. The cover of the production line allows slow and homogeneous

cooling. For wires at this diameter, the cooling rate is not expected to vary much

from the surface to the core of the wire. The chemical composition of the steel is

given in Tab. 6.2. The surface cooling rate between 800 ◦C and 500 ◦C measured

by a pyrometer was 0.34 ◦C s−1.

C Si Mn Ni Mo Cr V Cooling Rate / ◦C min−1

0.16 0.21 1.21 0.13 0.015 0.98 0 20.4

Table 6.2: The chemical composition (wt %) of the steel wire with the diameter
of 6.5 mm.

To determine the austenite grain size L̄, samples need to be taken just before

any phase transformation starts, prior to the last hot-rolling stage. The grain size

was then determined using an optical microscopy. It increases from the surface

(20±2 µm) to the core of the wire (36±4 µm) (Fig. 6.3).

(a) At the surface (b) At the core

Figure 6.3: The austenite grain size of the 6.5 mm sample is 20±2 µm on the
surface and 36±4 µm at the core (measured by Swiss Steel).

The experimental results and the corresponding predictions from the model
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are summarised in Tab. 6.3. The superscript in Ve
α refers to an experimentally

measured value, whereas the superscript in Vc
α stands for a calculated value.

grain size / µm Ve
α Vc

α Ve
P Vc

P Ve
αB

Ve
α′ Vc

αW
Vc
αB

Vc
α′

surface 20.3 0.75 0.66 0.21 0.24 0.01 0.02 0.10 0 0
1/2 radius 25.4 0.71 0.58 0.15 0.24 0.07 0.07 0.18 0 0

core 36.2 0.71 0.45 0.09 0.23 0.09 0.11 0.32 0 0

Table 6.3: Calculated and measured phase fractions on a 6.5 mm diameter rod
cooled at 0.34 ◦C s−1. The grain sizes presented are the mean values (measured by
Swiss Steel). The superscript in Ve

α refers to an experimentally measured value,
whereas the superscript in Vc

α stands for a calculated value. This convention
applies throughout.

The test shows there is a general decrease in the volume of allotriomorphic

ferrite and pearlite at the core compared with the surface. This trend is reproduced

in the predictions, because of the difference in the austenite grain size which leads

to corresponding variations in the development of microstructure.

The predictions at the core is relatively worse than that on the surface. The

same observation can be found in the following two samples with 23.5 mm and 36

mm diameter. The deviation may be due to the composition variance suggested

in some metallographic images, which are not accounted for in the model.

The discrepancy observed in the displacive transformations may be due to the

difficulty for Swiss Steel to differentiate Widmanstätten ferrite and bainite under

microscopy, or may be due to the growth rate of αW , which may be overpredicted.

The concern of αW will be discussed in the next section.

If the grain size at half radius is considered to represent the mean value in

the sample, the comparison between calculation and measurement is reasonably

good if in the former case the Widmanstätten ferrite, bainite and martensite are

combined (Fig. 6.4).

6.3.2 Sample with 23.5 mm diameter

The second trial, 23.5 mm wire rod, was performed in the Garrett coiling line. In

this line, the wire is coiled after hot rolling, which leads to a change in the cooling

rate between the outer and inner rings of a coil. Such a compact coil cools slowly
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Figure 6.4: Calculated and measured phase fractions for the 6.5 mm diameter
sample with a mean austenite grain size of 25.4 µm

and the measured cooling rate was 0.16 ◦C s−1. The composition of the steel is

given in Tab. 6.4.

C Si Mn Ni Mo Cr V Cooling Rate / ◦C min−1

0.2 0.19 1.23 0.11 0.017 1 0 9.6

Table 6.4: The chemical composition (wt %) of the steel from the 23.5 mm Garrett
rolling trial.

The sampling for the determination of austenite grain size was made after

coiling, and before the steel samples were quenched into water. The size changes

from 26±2 µm at the surface to 50±4 µm at the centre of the sample. Because of

the lower cooling rate at the core, a smaller amount of displacive transformation

products were observed there. The results are summarised in Tab. 6.5.

grain size / µm Ve
α Vc

α Ve
P Vc

P Ve
αB

Ve
α′ Vc

αW
Vc
αB

Vc
α′

surface 26 0.66 0.64 0.35 0.32 0 0 0.03 0 0
1/2 radius 31.8 0.57 0.58 0.41 0.32 0.02 0 0.10 0 0

core 49.5 0.78 0.42 0.22 0.32 0.01 0 0.26 0 0

Table 6.5: Calculated and measured phase fractions from a 23.5 mm diameter rod
cooled at 0.16 ◦C s−1. The grain sizes are mean values measured by Swiss Steel.

A reasonable overall agreement is obtained with the estimates from the model.

In the case of the microstructure at a depth equal to half the radius, a region which
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is considered to represent the mean grain size, there is a large discrepancy in the

prediction of remaining phases. A possible explanation is that although the model

can distinguish between phases, it may be difficult to do so in practice without the

use of a variety of techniques other than optical microscopy (Fig. 6.5).

Figure 6.5: Calculated and measured phase fractions for the 23.5 mm diameter
sample with a mean austenite grain size of 31.8 µm.

6.3.3 Sample with 36 mm diameter

In the third trial, a 36 mm bar was produced. The predictions for a thick bar can

be challenging, because the cooling rate varies much from the surface to the core,

with a large variation in the austenite grain size. The latter changes from 19 µm

at the surface, to 67 µm at the centre. The composition of the steel is given in

Tab. 6.6.

C Si Mn Ni Mo Cr V Cooling Rate / ◦C min−1

0.17 0.19 1.22 0.09 0.018 1.03 0 48

Table 6.6: The chemical composition (wt %) of the steel from a 36 mm diameter
bar. The cooling rate is measured on the surface. Because of the dimension of the
bar, the cooling rate can be expected to be lower in the core.

The combined bainite and martensite content at the surface is 23%. It is higher

than the smaller diameter samples, because of relatively higher cooling rate (0.8
◦C s−1) at the surface. Despite of slower cooling rate in the core, large grain size
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discouraged the nucleation of allotriomorphic ferrite and pearlite, hence there is

86% bainite and martensite at the core of the bar. The results are summarised in

Tab. 6.7.

grain size / µm Ve
α Vc

α Ve
P Vc

P Ve
αB

+Ve
α′ Vc

αW
Vc
αB

Vc
α′

surface 19.3 0.48 0.56 0.29 0.23 0.23 0.22 0 0
1/2 radius 47.8 0.34 0.27 0.09 0.21 0.58 0.51 0 0

core 66.9 0.13 0.20 0.02 0.21 0.86 0.58 0 0

Table 6.7: Calculated and measured phase fractions from a 36 mm diameter rod
cooled at 0.8 ◦C s−1

Considering the microstructure at half of the radius as the mean value, the

comparison between the predictions and measurements is illustrated in Fig. 6.6.

Figure 6.6: Calculated and measured phase fractions for the 36 mm diameter
sample, with a mean austenite grain size of 47.8 µm.

6.4 Continuous Cooling Transformation Diagrams

A continuous cooling transformation (CCT) diagram was produced (Fig. 6.7) on

a steel having the composition listed in Tab. B.3. The transformation time was

determined by dilatometry measurements conducted by Swiss Steel AG.

Pearlite was never observed in these tests. As sulphur can combine with man-

ganese to form MnS, the Mn content in solution was calculated using an empirical

equation (Mn wt %)−1.72×(S wt %) suggested by Hans Roelofs in Swiss Steel.

84



C Si Mn Ni Mo Cr V S Grain Size / µm
0.2 1.21 1.64 0.1 0.32 1.19 0.0 0.15 30

Table 6.8: The chemical composition (wt %) of the steel samples.

Because manganese sulphide acts as a heterogeneous nucleation site for ferrite,

the calculation should underestimate the ferrite content. Swiss Steel AG has ex-

pressed the concern that Widmanstätten ferrite and bainite can be challenging to

distinguish.

Figure 6.7: Measured continuous cooling transformation (CCT) diagram by Swiss
Steel AG.

The allotriomorphic ferrite start curve in the prediction extended into the high

cooling rate area where in the measured CCT diagram there is no ferrite trans-

formation (Fig. 6.8). This may be an issue in the growth rate of allotriomorphic

ferrite in the model. Pearlite is not predicted and this agrees with the experiments.

The displacive transform product was considered as bainite in the experiments,

whereas it is predicted as Widmanstätten ferrite by the model. Martensite start

curves have a good agreement between the measured and predicted data.
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Figure 6.8: Predicted Continuous cooling transformation (CCT) diagram by the
model.

6.5 Dilatometric Tests

6.5.1 The experiment

A 600 g steel ingot was made using refined iron and high-purity alloying elements

in an induction furnace to yield the composition shown in Tab. 6.9. It was melted

C Si Mn Ni Mo Cr V S
0.2 1.21 1.64 0.1 0.32 1.19 0.0 0.15

Table 6.9: The chemical composition of the ingot (wt %).

and cast into a cylinder 35 mm in diameter and 85 mm in length (Fig. 6.9).

To reduce segregation in the ingot, so samples cut from the ingot can have

similar composition, the ingot was homogenised at 1200 ◦C for 48 h. The ingot

was then wire-cut into dilatometry samples as circular cylinders of 12 mm in length

and 8 mm in diameter.

The dilatometry experiments were performed in a thermo-mechanical simu-

lator, THERMECMASTOR-Z. A sample was placed inside an induction coil in

vacuum. Then the machine implements a programmed thermal treatment on the
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Figure 6.9: The steel ingot made for the dilatometric tests 35 mm diameter and
85 mm length.

sample. It heats the sample generated by the induction coil and cools the sam-

ple using compressed helium gas. The surface temperature of the sample was

monitored continuously by a thermocouple welded on the side throughout the ex-

periment. The change in diameter was measured by a laser passing across the

sample.

In each test, a sample was heated from room temperature to 900 ◦C at a rate

of 10 ◦C s−1, then held at 900 ◦C for 10 min, then quenched from 900 ◦C to a

pre-set temperature at a rate of 40 ◦C s−1, and finally held at that temperature

for 120 min. The test temperatures were 750, 710, 670, 630, 610, 590, 550, 510,

470 and 430 ◦C.

The transformed sample was then cut at the point where the thermocouple

was attached (about half way along the length). Each half was mounted. The

cut surface was then ground, polished and etched using 2 % Nital (2 % nitric

acid in methanol) for about 20-30 s (samples tested at low isothermal temperature

required less time).

6.5.2 Austenite grain size

Two samples were tested to determine the austenite grain size at the end of the 10

min held at 900 ◦C. The austenite grains were preserved by quenching the sample

at rate 40 ◦C s−1 from 900 ◦C down to the room temperature.

Before the test, the sample was worn down at one side to create a facet, near
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which a thermocouple would be welded. The facet was then polished before the

sample was placed into the testing machine. The partial oxidation of the polished

surface at the austenitisation temperature reveals the prior austenite grains. This

method is called thermal etching.

The mean linear grain size is estimated as 30.9 µm (Fig. 6.10).

(a) L̄ = 28.7 µm (b) L̄ = 33.2 µm

Figure 6.10: Two examples to illustrate the method used to obtain the mean linear
grain size. The average value of L̄ is estimated as 30.7 µm.

6.5.3 Martensite temperature

Quenching the sample from 900 ◦C to room temperature at a rate of 40 ◦C s−1 in the

tests for the austenite grain size guarantees a completely martensitic microstruc-

ture. As martensite transformation causes a reverse change on the dilation-time

curve, The martensite-start temperature was determined as about 390 ◦C (Fig.

6.11).

Another martensite-start temperature was produced by the dilation-time curve

of the test at 590 ◦C. When the power was switched off at the end of the 2 h

isothermal transformation, the sample started to cool by radiation at a rate about

12 ◦C s−1. There was a reverse change on the dilation-time curve clearly revealed

at around 410 ◦C (Fig. 6.12).

The difference between the martensite-start temperatures obtained by the two

experiments is caused by the temperature gradients in the testing sample. When
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Figure 6.11:
Temperature
and dilation
vs. time for
the sample
quenched by
gas from 900
◦C at rate 40
◦C s−1. The
dilation-time
curve reverses
at about 390
◦C.

a sample is quenched at high rate, there is a larger temperature gradient from the

surface to the core. The transformation at the core of the sample is behind the

transformation on the surface. Therefore, the reading by the thermocouple, which

reads the surface temperature is below the real martensite-start temperature.
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Figure 6.12:
Temperature
and dilation
vs. time for
the sample
cooled by
radiation from
590 ◦C at
rate about 12
◦C s−1. The
dilation-time
curve reverses
at about 410
◦C.
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6.5.4 Results

The discussion in this section will be in two parts. The first part analysis is to

determine what phases are present in a metallographic image and how much of

each phase there is. To maintain readability, a large number of the metallographic

images and related plots of the dilation data are moved to the end of the chapter.

The second part discussion concerns the transformation-start time for each test

and the difficulty in estimating an accurate value.

The dilation data alone were inadequate to identify the phases. To have a more

definitive identification, micro-hardness tests were performed on some individual

grains of every testing sample. The results of micro-hardness tests on every sample

are summarised on Tab. 6.10.

Temp. / ◦C testing area test 1 test 2 test 3 test 4 average

750
light 262.4 238.6 258.1 253.0
dark 391.9 380.1 383.5 385.2

710
light 184.9 220.2 202.5
dark 494.3 478.8 486.5

670
light 199.1 177.2 146.5 174.3
dark 473.9 467.4 519.6 487.0
black 212.4 210.8 211.6

630
light 263.6 226.4 237.3 242.4
dark 436.4 436.3 416.8 408.6 424.5

610
light 214.0 195.7 204.8
dark 405.1 394.7 399.9

590 random 392.5 372.3 387.6 384.1
550 random 389.4 391.8 399.9 393.6
510 random 416.5 392.0 413.6 407.4
470 random 375.9 386.9 386.7 383.1
430 random 321.9 351.3 316.7 330.0

Table 6.10: Results of micro-hardness tests in Hv.

Microstructure analysis
The following analysis of the microstructure of every test is based on combined

information of hardness, dilation curve and metallographic features.
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750 ◦C

Referring to Fig. 6.18, there are two easily distinguishable phases. The average

hardness on the light areas is 253.0 Hv, and on the dark matrix is 385.2 Hv. The

dilation curve confirms some transformation during the 2 h isothermal treatment.

The method used to estimate volume percent is to randomly place a 10x10 grid

on the image, then count the numbers of boxes filled by any phase. The combined

information suggests the microstructure consists of 6 % allotriomorphic ferrite and

94 % martensite, which was formed from the untransformed austenite when the

sample was cooled from 750 ◦C at the end.

710 ◦C

Referring to Fig. 6.20, it has similar feathery morphology as 750 ◦C with ex-

tended light-coloured regions. The average hardness on the light area is 202.5 Hv

and on the dark matrix is 486.5 Hv. Using the same method in the previous test,

it was estimated that the microstructure consists of 23 % allotriomorphic ferrite

and 77 % martensite.

670 ◦C

Referring to Fig. 6.22, the light-coloured regions are further extended. There

are some very dark small areas which were not observed in the previous tests. The

hardnesses on these dark areas were 212.4 and 210.8 Hv, which suggests these dark

areas may be merely over-etched allotriomorphic ferrite. The average hardness on

the light areas is 174.3 Hv and on the dark matrix is 487.0 Hv. It was estimated that

the microstructure consists of 37 % allotriomorphic ferrite and 63 % martensite.

630 ◦C

Referring to Fig. 6.24, the size of the light regions appears smaller, which

reverses the trend set in the previous three tests. The average hardness on the

light area is 242.4 Hv and on the dark areas is 424.5 Hv. It was estimated that

the microstructure consists of 19 % allotriomorphic ferrite and 81 % fine-structure

material.
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610 ◦C

Referring to Fig. 6.26, the area of light regions is further reduced. The average

hardness on the light area is 204.8 Hv and on the dark 399.9 Hv. The microstructure

consists of 12 % allotriomorphic ferrite and 88 % fine-structure material.

590 ◦C

Referring to Fig. 6.28, the previously seen light-coloured regions have completely

disappeared. But the rising dilation curve suggests an other transformation had

occurred. Feather like features are visible on the metallographic image, which may

suggest bainite. The existence of martensite was confirmed, as the dilation curve

reversed and rose up at temperature 410 ◦C during the cooling after 2 h (Fig. 6.12).

The average hardness is 384.1 Hv. The entire microstructure is a fine-structure

material, which is believed to be a mixture of bainite and martensite. However,

these phases cannot be unambiguously determined from optical microscopy.

550 ◦C

Referring to Fig. 6.30, the microstructure is similar to that obtained at 590 ◦C

and is believed to consist of a mixture of bainite and martensite. Some transfor-

mation was confirmed by the slightly rising dilation curve. The average hardness

rose to 393.6 Hv, which may suggest more martensite formed from untransformed

austenite at the end of the test.

510 ◦C

The almost flat dilation curve can be hardly useful to confirm any transforma-

tion. Neither can it rule out transformation happened at all. The average hardness

is 407.4 Hv. The microstructure is again believed to consist of bainite and marten-

site. But it is hard to distinguish them in the metallographic images. To make a

definitive determination, it requires electron microscopy.

470 ◦C

From this temperature, the dilation curve rises again, which indicates some

transformation during the 2 h at 470 ◦C. The hardness result breaks the trend

93



and begins to decrease. The average hardness is 383.1 Hv. Like 510 ◦C, the

microstructure is believed to be a combination of bainite and martensite.

430 ◦C

Referring to Fig. 6.36, at higher magnification, transformed grains are found to

be confined only in one side of the austenite grain boundary and having feather-like

appearance (Fig. 6.13). The average hardness reduces further down to 330.0 Hv.

Figure 6.13: Bainite microstructure in magnitude 500X.

Judging by the time span of the dilation curve and the metallographic observations,

the transformation product is believed to be mainly bainite.

The microstructures of the samples tested are summarised in Tab. 6.11 together

with the predictions by the model. The pearlite predicted by the model was not

seen in the metallographic images.

Transformation start time
The transformation start time of each test was estimated based on the dilation

versus time curve. A rising dilation curve can indeed indicate a transformation

occurring inside a sample. But the dilation curves seem to be poor indicators of

the transformation start time. A crude model may be able to clarify this.

Consider a growing cube with edge length a, as one phase γ transforms to

another phase α inside the cube. The cube weighs M and the weight fraction of

α is x. The densities of the phases are ρα and ργ. The edge length a as a function

of x has the form

a3 =
Mx

ρα
+
M(1− x)

ργ
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Temp. / ◦C αe P e αeW + αeB + α′,e αc P c αcW + αcB α′,c

750 0.06 0.00 0.94 0.00 0.00 0.00 1.00
710 0.23 0.00 0.77 0.02 0.00 0.00 0.98
670 0.37 0.00 0.63 0.63 0.00 0.02 0.35
630 0.19 0.00 0.81 0.34 0.18 0.38 0.10
610 0.12 0.00 0.88 0.26 0.34 0.40 0.00
590 0.00 0.00 1.00 0.00 0.32 0.68 0.00
550 0.00 0.00 1.00 0.00 0.26 0.74 0.00
510 0.00 0.00 1.00 0.00 0.20 0.80 0.00
470 0.00 0.00 1.00 0.00 0.00 0.43 0.57
430 0.00 0.00 1.00 0.00 0.00 0.56 0.44

Table 6.11: The volume fraction of various phases. As it is extremely hard to
distinguish accurately between bainite, Widmanstätten ferrite and martensite, the
estimated value is a combined volume fraction of these phases. Superscription in αe

indicates estimated value and the superscription in αc indicates calculated value.

The edge length is three orders smaller than weight fraction. Furthermore, x

itself is a function of time. The growth of a new phase is often slow at the very

beginning of transformation, due to the incubation time. Therefore a could be a

few more orders smaller than t. It follows that the time lapse at the beginning of

a transformation can only lead to a very small change of edge length a, which is

measured as the dilation change in the experiments. It may be hard to detect the

rise of dilation at the beginning, as it is so many orders smaller than time.

The estimated start times of all the tests are collected in Tab. 6.12. For the

reason above, all the estimations of the transformation start time may be well

over-valued.

6.5.5 Comparison with predictions

It is not the intention of this experimental work to produce a rigourous time-

temperature transformation diagram for the steel. To determine the transfor-

mation start time for a TTT diagram, a better method would be to study the

metallographic image on a series of samples quenched after a gradually reduced

reaction time. And the tests have to be performed over a range of temperatures.

Such work would require far more tests and samples than we have.
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Temp. / ◦C estimated start / s predicted start / s
710 600 ∞
670 300 α: 6.5, αW : 228.0
630 50 α: 2.9, αW : 12.2
610 450 α: 2.8, P : 205.0, αW : 9.6
590 500 αW : 6.6, P : 80.5
550 200 αW : 5.1, P : 55.5
510 undetectable αB: 310.0, αW : 852.0, P : 896.0
470 200 αB: 216.0
430 20 αB: 130.0

Table 6.12: Comparison of the estimated transformation start time from the dila-
tion curve and predicted start time by the model.

Nevertheless, many features revealed from the experimental work are consistent

with the predictions by the model. Displacive transformation occurs at a temper-

ature as high as ∼ 600 ◦C. The dilation curve can hardly show any transformation

at 510 ◦C, which is also strongly supported by the long incubation time at this

temperature by the model. As the temperature moves from 510 to 430 ◦C, aver-

age hardness decreases which may suggest more bainite and less martensite in the

microstructure, though the accurate numbers of volume fractions of these phases

may be hard to estimate using a optical microscopy. This is supported by the T0

concept in the model that the maximum volume fraction of bainite decreases with

rising temperature (Fig. 6.14).
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Figure 6.14: The data in the red-framed boxes are experimental results. Time-
temperature transformation diagram predicted by theory at current work.
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6.6 Comparison against published Isothermal Trans-

formation Diagrams

The book “Atlas of Isothermal Transformation and Cooling Transformation Dia-

grams” by the American Society for Metals, contains numerous time-temperature

transformation (TTT) diagrams for a variety of steels [72]. Two carbon steels, two

nickel-chromium steels and two silicon steels were selected for comparison with the

predictions of the model. The two carbon steels were chosen as a low demanding

test of the model. The two Ni-Cr steels were selected because there is a clear sepa-

ration between the reconstructive and displacive transformations. The two silicon

containing steels were included as silicon would be expected to have a pronounced

effect on carbide formation. All six steels were fully austenitic prior to cooling.

The solid lines in the Fig. 6.15, 6.16 and 6.17 represent the transformation

start and end times of the experimental results and the points are the predictions.

To represent the transformation start time in the calculations, it was selected when

1 % of austenite had transformed. To help to see the reaction speed, the times

when 10 % and 40 % of austenite had transformed were included as well.

There are a few key observations in the six comparisons of isothermal transfor-

mation diagrams. First, the transformation of allotriomorphic ferrite and pearlite

agree well with the experiments in the two carbon steels and the silicon containing

steels, but overpredict the rate of formation in the Ni-Cr steels. As such it is

believed that the model may only be effective in the prediction of allotriomorphic

ferrite over a limited composition range.

Second, for the nickel-chromium steels, the model has successfully reproduced

the separation of the two ‘C’ curves. But the positions of the points of 10%

and 40% transformations suggest Widmanstätten ferrite may form too fast. This

could explain the discrepancy of bainite data observed in many predictions at the

previous sections, as Widmanstätten ferrite competes with bainite with resources

and nucleation sites.

Finally, the shape of the predicted transformation contours of bainite are differ-

ent from that of measurements. Bainite tends to form earlier at lower temperatures

in the model. The reasons may due to a larger driving force and increasing volume

fraction allowed by the T ′0 mechanism at lower transformation temperature. For
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the silicon steels, the bainite transformation start time seems overvalued in the

model.
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Figure 6.18:
Optical
micro-
graph
after
isother-
mal swell
at 750
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.19: Plot of dilatometry data for the sample isothermally transformed for
2 h at 750 ◦C.
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Figure 6.20:
Optical
micro-
graph
after
isother-
mal swell
at 710
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.21: Plot of dilatometry data for the sample isothermally transformed for
2 h at 710 ◦C.
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Figure 6.22:
Optical
micro-
graph
after
isother-
mal swell
at 670
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.23: Plot of dilatometry data for the sample isothermally transformed for
2 h at 670 ◦C.
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Figure 6.24:
Optical
micro-
graph
after
isother-
mal swell
at 630
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.25: Plot of dilatometry data for the sample isothermally transformed for
2 h at 630 ◦C.
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Figure 6.26:
Optical
micro-
graph
after
isother-
mal swell
at 610
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.27: Plot of dilatometry data for the sample isothermally transformed for
2 h at 610 ◦C.
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Figure 6.28:
Optical
micro-
graph
after
isother-
mal swell
at 590
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.29: Plot of dilatometry data for the sample isothermally transformed for
2 h at 590 ◦C.
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Figure 6.30:
Optical
micro-
graph
after
isother-
mal swell
at 550
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.31: Plot of dilatometry data for the sample isothermally transformed for
2 h at 550 ◦C.
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Figure 6.32:
Optical
micro-
graph
after
isother-
mal swell
at 510
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.33: Plot of dilatometry data for the sample isothermally transformed for
2 h at 510 ◦C.
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Figure 6.34:
Optical
micro-
graph
after
isother-
mal swell
at 470
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.35: Plot of dilatometry data for the sample isothermally transformed for
2 h at 470 ◦C.
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Figure 6.36:
Optical
micro-
graph
after
isother-
mal swell
at 430
◦C. The
number(s)
on the
figure is
(are) the
hardness
Hv of the
area(s).

Figure 6.37: Plot of dilatometry data for the sample isothermally transformed for
2 h at 430 ◦C.
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Chapter 7

Conclusion

Bainite has been integrated into a single modelling scheme, which previously in-

cluded only higher temperature transformation products of austenite [76]. The

model allows the temporal evolution of the microstructure in steels to be revealed

step by step during the simulation. The model can simulate cooling at constant

rates, or isothermal transformation. It follows that the more useful CCT and TTT

diagrams can also be produced.

The construction of the model has taken full account of the thermodynamics of

transformations, instead of empirical equations, so the model should in principle

generalise well. However, comparison with experiment suggests that, at present,

the model will provide more reliable predictions over a limited composition range.

The suggested limits of the input chemical compositions are listed on Tab. B.1.

Many adjustable parameters used in the model are listed on Tab. B.2, which could

be fine-tuned for a particular family of steels to achieve optimum performance.

The predictions of the model have been tested systematically, and it was found

to successfully capture well-known phenomena. The model has, to some extent,

also been validated against both published experimental data and experiments

conducted in this work. As the growth rate of one phase can affect the reaction

rate of the other phases, the accuracy of the predictions of one phase may be

further improved by the refinement of the other phase.

The output of the model is rich in information. Much of it, such as the driving

forces etc., is not easy to access experimentally. A calculation of a CCT diagram
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takes about 2 hours on a computer with a 2 GHz CPU. Compared with a typical

CCT measurement, which may require days or even weeks of work, the model can

potentially benefit the development of new steels. The model is ready to be used

by other applications, such as the modelling of segregation.

7.1 Further work

Evidently, the rapid growth rate of Widmanstätten ferrite may cause the discrep-

ancy observed between the bainite predictions and experiments. Further improve-

ment of the accuracy of bainite may lie in the improvement of the other phases,

as they all compete for the same resources.

The predicted transformation temperature of allotriomorphic ferrite and pearlite

can extend well below 600 ◦C in some calculations. This needs to be validated by

experiments. The prediction of Widmanstätten ferrite at high temperatures above

700 ◦C in some steels also requires confirmation.

The incorporation of other alloying elements can be an important development

of the model. The code for boron is incomplete, in the sense that the interaction

with titanium and nitrogen have not been taken into account. The input at the

moment assumes soluble boron.

Systematic tests are needed to determine the relative strength of many ad-

justable parameters, listed on Tab. B.2, on the volume fractions of transformed

products.

The code for inclusion nucleated transformations have been included in the

source code, but are inactive in the model. Further validation is required before the

calculations of inclusion nucleated transformations can be successfully integrated

into the grain boundary nucleated transformations.
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Appendix A

The Boron Effect

Boron has very low solubility in austenite, but its effect on transformations is

pronounced. Often ≈0.002 wt % boron concentration is sufficient in typical com-

mercial steels to have an impact on the ferrite formation. As boron reacts with

nitrogen to form boron nitride, BN, the dissolved active boron can be affected by

the presence of nitrogen. Comprehensive reviews on the effect of boron can be

found in literature [77, 78].

To investigate the effect of boron, two samples were prepared by Swiss Steel

AG, with chemical compositions listed in Tab. A.1. One of these had a deliberate

addition of boron.

C Si Mn Ni Mo Cr V B
No B 0.14 1.2 1.46 0.06 0.29 1.21 0.0 0.0

With B 0.14 1.23 1.5 0.06 0.3 1.22 0.0 0.003

Table A.1: The chemical composition (wt %) of the two steels.

Dilatometry experiment
Samples were prepared as described previously in Section 6.5, for studies using

a thermo-mechanical simulator, also described previously.

In each test, the sample was heated up to 900 ◦C, and held there for 30 min,

then quenched using helium down to a pre-determined isothermal temperature,

and held for 2 h. Experiments were repeated at each isothermal temperature to

verify the results.
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Discussion of the results
The data from the dilatometry experiments are plotted in Fig. A.1. From all of

these data, it can be seen that boron additions delay the microstructural changes

that lead to the dilatation observed.

Boron is believed to reduce the interfacial energy of austenite grain boundaries

[79, 78]. This in turn deters the nucleation of ferrite, as heterogeneous nucleation

benefits from the elimination of austenite grain boundaries. From the modelling

point of view, this is pragmatically equivalent to a boron-induced increase in the

α/γ interface energy.

An attempt has been made to add boron into the model. The predictions by

the model are consistent with the trends suggested by experiments (Fig. A.2). To

further the development, a comprehensive model about the chemical interaction

between boron, nitrogen and titanium is required.
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Appendix B

Documentation of

‘STRUCTURE’ Program

A program has been created for the model called STRUCTURE.

Purpose of code
To model simultaneous transformations from austenite to allotriomorphic ferrite,

pearlite, Widmanstatten ferrite and bainite nucleated at austenite grain bound-

aries.

Parameters descriptions
The input parameters are chemical compositions, austenite grain size and tem-

perature scheme. The limit of the chemical compositions are listed in Tab. B.1.

C Si Mn Ni Mo Cr V
lower limit 0.08 0.0 1.0×10−6 0.0 0.0 0.0 0.0
upper limit 0.8 2.5 3.5 4.5 1.5 3.5 1.5

Table B.1: The limits of the chemical compositions (wt %) that can be predicted
by the model.

The adjustable parameters of the program are listed in Tab. B.2.
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α/γ interface energy 0.022 J m−2

Activation energy for an atom to cross the α/γ interface 200 kJ mol−1

Factor of energy reduction due to heterogeneous nucleation 0.333
Fraction of effective boundary sites 1.0×10−8

The ratio of the nucleation rate of α to P 1.0×10−6

The shape ratio of α 3.0
The shape ratio of P 1.0

The shape ratio of αW 0.05
Length of a αB sub-unit below 528 Kelvin 1.0×10−7 m

Intersection area of a αB sub-unit below 528 Kelvin 2.0×10−16 m2

Table B.2: The adjustable parameters of the program.

Outputs information
The standard five output data are continuous cooling diagram, isothermal trans-

formation diagram, Temperature-Time Transformation diagram (TTT), continu-

ous cooling transformation diagram (CCT) and empirical TTT diagram.

A steel developed in Swiss Steel AG will be used for the purpose of demonstra-

tion. Its chemical composition and grain size are listed (Tab. B.3).

C Si Mn Ni Mo Cr V grain size / µm
0.23 0.96 1.56 0.08 0.14 1.53 0.0 30.0

Table B.3: The chemical composition (wt %) of the steel samples.
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The last diagram is an empirical TTT diagram theorised and verified by Bhadeshia

[32]. The transformation start time for the displacive τdis and reconstructive τrec

transformations are calculated using equations

τdis = exp

{
0.2432× 106

RT
− 0.135× 103 + 20 lnT − 5 ln |∆Gm|

}

τrec = exp

{
0.6031× 106

RT
− 0.1905× 103 + 20 lnT − 4 ln |∆Gm|

}
where T is the temperature in Kelvin.

Figure B.3: TTT diagrams based on empirical equations. The Widmanstätten,
bainite and martensite start temperature determined thermodynamically.

Logic Flow
The chart of logic flow of the program is presented in the Fig. B.4.
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Figure B.4: The logic flow of the program.
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