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Abstract

The stagnating increase in data transmission capacity in optical commu-
nication systems combined with the ever growing demand of transmis-
sion bandwidth is leading to an impending capacity crunch, referring to
the point in time after which the available bandwidth of the individual
user starts to decrease. To postpone this point in time, existing tech-
nologies in terms of data transmission through optical fibers must be
optimized and new degrees of freedom must be introduced to continue
the exponential increase in available bandwidth; space-division multi-
plexing is believed to be the strongest candidate for another degree of
freedom in transmission fibers.

This thesis is two-fold: firstly, starting at Maxwell’s equations and
basic principles of quantum mechanics, a semi-classical model of the
noise properties of fiber optical parametric amplifiers and frequency con-
verters is presented. The model accounts for multiple effects present in
nonlinear fibers such as four-wave mixing, Raman scattering, distributed
loss, and dispersion, and it is valid in the depleted pump regime. After
validating the model against well-known results of quantum models, the
model is used to predict the impacts of Raman noise, loss, and pump
depletion on the noise properties of parametric frequency conversion and
phase-insensitive and phase-sensitive parametric amplification.

An important part of realizing space-division multiplexing is the
ability of optical signal processing so the second part of this thesis ad-
dresses few-mode Raman fiber amplifiers and parametric amplifiers and
frequency converters. A model of weak random linear mode coupling in
the pump of a two-mode distributed Raman fiber amplifier is presented
and it is shown that an amplification noise figure induced by mode cou-
pling increases with the degree of mode coupling and that this tendency
increases as the pump depletes. Also, a very low mode-dependent gain
of 0.25 dB per 10 dB gain is experimentally demonstrated in a two-mode
distributed Raman fiber amplifier by exciting the pump in a combination
of two modes.

A comprehensive model of four-wave mixing in two-mode fibers ac-
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counting for six simultaneous processes is derived, and the conversion
efficiency from signal to idler in the four-wave mixing processes of phase
conjugation and Bragg scattering in two two-mode fibers with different
phase matching properties are experimentally investigated. A conver-
sion efficiency of > −2.70 dB is demonstrated for Bragg scattering in the
conversion of a signal in the LP01-mode to the idler in the LP11-mode;
the signal-to-idler separation is ∼ 25 nm. Good qualitative agreement
between experiments and theory is found for both processes in both
fibers.
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Resume (in danish)

Den stagnerende forøgelse af datatransmissionskapacitet i optiske kom-
munikationssystemer kombineret med den stadigt stigende efterspørgsel
p̊a transmissionsb̊andbredde er ved at føre til et forest̊aende kapacitets-
nedbrud, med hvilket menes det tidspunkt, hvorefter den enkelte brugers
tilgængelige b̊andbredde begynder at falde. For at udskyde dette tids-
punkt bør eksisterende teknologier i form af dataoverførsel i optiske fibre
optimeres, og nye frihedsgrader skal indføres for at fortsætte den ekspo-
nentielle stigning i tilgængelig b̊andbredde; rum-fordelt multioverføring1

menes at være den stærkeste kandidat til en ny frihedsgrad i transmis-
sionsfibre.

Denne afhandling har to fokuspunkter. Det første, som starter ved
Maxwells ligninger og grundlæggende kvantemekaniske principper, er
en præsentation af en semi-klassisk model for støjegenskaberne af fibe-
roptiske parametriske forstærkere og frekvensomformere. Modellen ta-
ger højde for flere effekter, som er til stede i ikke-lineære fibre, s̊asom
fire-bølgeblanding, Raman spredning, distribueret tab, og dispersion, og
den er gyldig i det regime, hvor pumpen mætter. Efter validering af
modellen imod kendte kvantemekaniske resultater er modellen anvendt
til at forudsige virkningerne af Raman støj, tab, og pumpemætning p̊a
støjegenskaberne i parametrisk frekvenskonvertering og fase-ufølsom og
fase-følsom parametrisk forstærkning.

En vigtig del af realiseringen af rum-fordelt multioverføring er mu-
ligheden for optisk signalbehandling, s̊a den anden del af denne afhand-
ling omhandler Raman fiber forstærkere og parametriske forstærkere og
frekvensomformere i fibre med f̊a tilladte optiske tilstande.2 En model
for svag tilfældig lineær kobling mellem optiske tilstande i pumpen i
en distribueret Raman fiber forstærker med to tilladte optiske tilstande
præsenteres, og det er vises, at et forstærkningsstøjtal fremkaldt af kob-
ling mellem optiske tilstande stiger med graden af tilstandskobling, og

1Det engelske space-division multiplexing er oversat til rum-fordelt multioverføring.
2Det engelske begreb mode er her oversat til en optisk tilstand
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at denne tendens øges i takt med, at pumpen mættes. Desuden p̊avises
en meget lav tilstandsafhængig forstærkning p̊a 0.25 dB pr 10 dB for-
stærkning eksperimentelt i en distribueret Raman fiber forstærker med
to tilladte optiske tilstande med pumpen fordelt i en kombination af to
optiske tilstande.

En omfattende model af fire-bølgeblanding i fibre med to tillad-
te tilstande, der tager højde for seks samtidige processer udledes, og
overføringsgraden fra signal til idler3 i de to fire-bølgeblandingsprocesser,
fasekonjugering og Bragg-spredning, i to fibre med forskellige fasetilpas-
ningsegenskaber bliver eksperimentelt undersøgt. En overføringsgrad p̊a
> −2.70 dB demonstreres for Bragg-spredning i overføringen af et signal
i LP01-tilstanden til idleren i LP11-tilstanden. Signal-idler adskillelsen
er ∼ 25 nm. God kvalitativ overensstemmelse mellem eksperimenter og
teori vises for begge processer i begge fibre.

3idler (den dovne) er det engelske begreb for en bølge som dannes i fire-
bølgeblandingsprocessen som følge af energibevarelse.
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Chapter 1

Introduction and
motivation

During the past three decades, most of the world has undergone dra-
matic changes that have affected how people live their lives [1], one of
the most important reasons being the development of the internet, which
has made possible a number of applications that today seem impossi-
ble to live without: instant global communication, globalized economy
and markets, social media, access to information and education in the
developing world, and instantaneous distribution of all kinds of digital
products such as software, banking, music and television. These highly
valued services consists of many layers of technology but the physical
infrastructure that binds the whole together today is fiber-optical com-
munication.

Since the 1980’s, information capacity in optical single-mode fibers
has grown exponentially but during the most recent decade, the increase
in capacity has started to saturate [2]. The reason is that the rate of data
transmission is approaching the theoretical capacity limit of single-mode
silica fibers, the nonlinear Shannon limit, which is a trade-off between
maximizing capacity with as high a signal-to-noise ratio as possible and
the penalties of nonlinear effects [3]. The combination of the stagna-
tion in the increase of bandwidth supply and the ever growing demand
eventually leads to the so-called capacity crunch [2, 4, 5], referring to
the point in time after which the available bandwidth of the individual
user starts to decrease. While the time horizon for the coming capacity
crunch remains unknown [5] it is clear that new technologies for increas-
ing transmission capacity must be developed.

The remainder of this introductory chapter motivates and puts this
thesis into context: the basic components of an optical communication
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system is presented with focus on fiber optical amplifiers and frequency
converters, which are the topics of this thesis, and space-division multi-
plexing is introduced and the important properties of multi-mode am-
plifiers are emphasized.

1.1 Components of an optical communication
system

Figure 1.1 shows a diagram of an optical communication system: a fiber-
coupled light source provides coherent light at one or several wavelengths
in the communication band (around 1550 nm); several wavelengths can
be achieved from the same source by exploiting super continuum genera-
tion [6] or optical frequency combs [7,8]. A modulator applies data from
the electrical domain to the optical domain using a chosen modulation
format [9, 10]; intensity modulation formats encode the information by
modulating the amplitude of the transmitted light and differential phase
shift keyed modulation formats rely on a phase shift to distinguish 1’s
and 0’s. Higher order modulation formats such as quadrature-amplitude
modulation enables transmitting more than one bit per symbol. Before
transmission, an optical amplifier, shown as the gray optical processing
unit in Fig. 1.1, may be employed to reach high enough power that the
signal can travel a long distance before regeneration or detection.

The modulated optical signal is then transmitted through extremely
low-loss fibers (about 0.2 dB/km) towards its destination, which may
be a few or thousands of kilometers away. Despite the low loss, the
optical signal must be amplified or regenerated every 50–100 km [11]
by either optical amplifiers or optical-electrical-optical repeaters. Since
the invention of the Erbium-doped fiber amplifier (EDFA) in the 1990’s
repeaters are not as widely used due to the difficulties of operating them
in wavelength-division multiplexed (WDM) systems and their high im-
plementation costs. However, all amplifiers add excess noise to the am-
plified signal so in long-haul transmission the signal-to-noise ratio of
any transmission eventually becomes too low for efficient detection and
therefore a repeater must be used to regenerate the signal.

In addition to amplification, optical processing units may perform
other tasks of interest in optical communication systems: wavelength
conversion is a critical feature of WDM networks because a signal often
has to pass through multiple network nodes on its way to its destination;
however, the same wavelength channel may not be available between all
nodes so fast and efficient wavelength conversion is desirable [12, 13].
Also, performance monitoring is important for amplifier control, channel
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Fig. 1.1: Illustration of an optical communication system; the gray
boxes are optical processing units, which are the focus of this thesis, and
they may be amplifiers, repeaters, wavelength converters, or monitors.

identification, and signal quality assessment [14].
This thesis focuses on all-optical silica-based fiber signal processing

units for optical communication, illustrated as the gray boxes in Fig.
1.1. The advantages of fiber-based solutions, compared to a chip-based
Silicon or Aluminum arsenide solutions, are that optical signals arrive by
fiber, which means that the signal is properly mode-matched to the fiber-
based processing unit, thus reducing transition losses; secondly, drawing
silica fibers is a mature technology that facilitates extremely low-loss
fibers with high uniformity. As already mentioned, signal processing
units may serve a number of purposes but this thesis studies only optical
amplification and frequency conversion.

1.1.1 Optical fiber amplifiers

Three kinds of fiber optical amplifiers are available today: EDFAs, Ra-
man amplifiers, and four-wave mixng (FWM) based parametric ampli-
fiers. EDFAs offer high gain in a broad band in the low-loss window of
silica fibers around wavelengths of 1550 nm [15] and are thus the most
widely used fiber amplifier toady. Raman fiber amplifiers do not require
doping in the fiber medium and is therefore used in a distributed config-
uration where stimulated Raman scattering compensates for fiber loss
through the whole transmission fiber; this configuration has superior
noise properties compared to discrete EDFAs [16]. Also, Raman ampli-
fiers are not bound to a specific band but amplifies in a broad band at
a certain frequency shift below the pump; 13.2 THz for silica fibers.

Fiber-opical parametric amplifers (FOPAs) offer a wide bandwidth

3



of high optical amplification [17,18]. Some of the advantages of FOPAs
are that the gain spectrum shape can be varied depending on the fiber
dispersion properties and that the center frequency correspondingly can
be decided through fiber design [19]; operated in a dual pump scheme,
the optical gain can be made constant over a much wider bandwidth
than EDFAs [20–23]; FOPAs can be operated both phase-insensitively
and phase-sensitively [17,24]; and finally, due to the ultra-fast response
of the Kerr nonlinearity all of these properties are conserved even at high
signal rates in the THz regime, which additionally enables the FOPA to
effectively become an optical processing unit, e.g. ultra-fast monitor or
switch.

FOPAs have been demonstrated to have excellent noise properties;
a noise figure (NF) of 3.7 dB has been measured in a phase-insensitive
amplifier (PIA) at ∼ 10 dB gain [25] and another NF of 3.8 dB was
measured at 40 dB gain [26]. PIAs are limited by a 3-dB quantum
induced NF [27] and the extra noise contribution in these measurements
are from pump transferred noise and spontaneous Raman scattering [28].
To understand these excess noise sources, quantum models have been
developed [29–32] but none of these models take into account all effects
of dispersion, loss, Raman scattering, pump noise, and the depleted
pump regime; therefore, one must rely on semi-classical models to get a
full picture; an example is seen in Ref. [33]. Such a semi-classical model
that describes all these effects is presented in Ch. 3 in this thesis.

1.1.2 Fiber parametric frequency conversion

Parametric processes in fibers also offer the possibility for frequency
conversion in both the classical and the quantum regime [29, 34, 35].
The generation of the idler in the amplification process of FOPAs is
sometimes in the literature referred to as frequency conversion [31, 36]
but the processes does not create the idler to be a copy of the input
signal but a copy of the output signal, both in terms of amplitude and
noise statistics. Frequency conversion, in which the output idler is a copy
of the input signal, is achieved by using a fundamentally different wave
configuration, which is called Bragg scattering (BS) in the literature and
has a special property: no additional noise is associated with the BS
process, which means that the output idler is copy of the input signal
[30]; the latter has the inherent property that BS enables frequency
conversion of quantum states of light without altering the other quantum
properties of the state [34]. However, the quantum descriptions behind
this prediction do not take into account fiber loss and Raman scattering,
just as is the case of the FOPA, so another of the goals of the semi-
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classical model of Ch. 3 in this theses is to quantify how these effects
distort the BS process.

The good noise properties of BS are widely recognized, and BS has
been investigated experimentally through the last decade: 180 nm sig-
nal conversion has been shown [37] and it has indeed been demonstrated
that BS has superior noise properties over frequency conversion by am-
plification [38] in the classical regime; in the quantum regime, frequency
conversion of weak coherent states has been done using BS but Raman
noise contaminates the purity of the conversion [39–41].

1.1.3 Multi-mode fiber amplifiers

Data transmission in single-mode and single-core fibers today use all
degrees of freedom to maximize capacity; wavelength, polarization, am-
plitude, and phase. Hence, to continue the exponential growth in ca-
pacity new degrees of freedom must be introduced [42]; space-division
multiplexing (SDM) is considered the foremost candidate for increasing
the capacity per fiber [43]. SDM refers to using space to distinguish
separate channels in shape of either parallel cores in the same fiber or a
single core guiding multiple spatial modes; one crucial demand for SDM
is that the cost per bit must be lower than simply distributing parallel
fibers [44].

The realization of SDM is dependent on the ability to optically am-
plify transmission signals, and multi-mode fiber amplifiers are believed
to be more pump power efficient than multi-core fiber amplifiers due to
the denser packing of the fiber modes [45]. Equal gain in all modes is
desirable [46] and it has already been demonstrated that it is possible
to tailor both fiber design and pump power distribution among modes
of Erbium-doped fiber amplifiers (EDFAs) to reduce mode-dependent
gain [47] and indeed EDFAs with low mode-dependent gain has been
demonstrated [48]. Also, few-moded distributed Raman fiber amplifiers
have been used to compensate for fiber loss in a two-mode fiber with
low mode-dependent gain by pumping in a higher order fiber mode [49].
It has been suggested that mode-equalized gain can be minimized in
few-mode Raman fiber amplifiers by designing the transverse doping
profile [50] or by pumping in a combination of modes [51]. The lat-
ter problem is addressed in Ch. 4 of this thesis where a record low
mode-dependent gain is achieved experimentally by pumping in a spe-
cific combination of mode in a two-mode fiber. Another challenge of
mode-multiplexed systems is random linear mode coupling; determinis-
tic mode coupling can be mitigated by multiple-input-multiple-output
techniques [52] but random mode coupling introduces a new source of
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noise. Chapter 4 of this thesis also investigates the impact of weak
random linear mode coupling in the pump of a two-mode Raman fiber
amplifier.

On top of the advantageous pump power budget, multi-mode fibers
also allow for nonlinear interaction among spectrally well separated
wavelength components through FWM [53] due to the different propaga-
tion constants of the fiber modes. This property is interesting for opti-
cal communication because, as mentioned above, the noise properties of
FOPAs are limited by pump transferred noise and Raman scattering. If
the pumps and signals could be separated spectrally, the contributions
from these noise source could be reduced. Also, quantum state pre-
serving frequency conversion could be realized by using BS as already
demonstrated in a dispersion shifted single-mode fiber over 4.7 nm [54];
multe-mode FWM could potentially enable much larger shifts. This
thesis addresses multi-mode FWM in Ch. 5 both theoretically and ex-
perimentally and presents investigations of phase matching bandwidths
of two inter-modal FWM processes in two different two-mode fiber.

1.2 Structure of thesis

The rest of the thesis is structures as follows:

Chapter 2 is an introduction to the theory that is needed as back-
ground for the rest of the thesis; Maxwell’s equations are stated
and the electric field and induced polarization are defined. The
chapter provides a detailed review of how Maxwell’s equations are
manipulated to calculate both full vectorial and linearly polar-
ized modes, and the modal properties of weakly guiding fibers are
derived in the scalar regime. Further, a general nonlinear propa-
gation equation for a continuous wave field in a specified mode is
derived in detail.

Chapter 3 presents a semi-classical model of quantum noise in
fiber parametric processes, which is used to predict the quantum
noise properties of parametric amplifiers and frequency converters.
The modeling includes the effects of Raman scattering, fiber loss,
and higher order dispersion as well as being valid in the depleted
pump regime.

Chapter 4 is a two-part discussion of few-moded fiber Raman am-
plifiers; firstly, the impact of weak random linear mode coupling in
the pump of two-moded Raman fiber amplifiers are modeled and
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analyzed using a statistical approach. Secondly, the problem of
equal modal gain in a two-mode Raman fiber amplifier is inves-
tigated experimentally, and a record low mode-dependent gain of
0.25 dB per 10 dB gain is demonstrated.

Chapter 5 presents a detailed investigation of inter-modal four-
wave mixing in a two mode fiber. Two theoretical models are
presented; analytic solutions are derived for the simplest, and
comprehensive numerical simulations are presented for the more
complicated. The results of the more complicated model are then
compared to the results of experiments also carried out for this
chapter in two different two-mode fibers.

Chapter 6 concludes the thesis and gives an outlook from the
results presented in Chs. 3–5.
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Chapter 2

Electromagnetic field
theory

This chapter reviews the classical theory of light that the reader must
be familiar with before reading on to the following chapters; fundamen-
tal equations are derived and basic assumption are accounted for here.
In optical fibers, Maxwell’s equations are divided in a transverse part
that describes the guiding of the light in the fiber including effective
index, dispersion and other modal properties, and a longitudinal part
that describes the evolution of the electric field amplitude through the
fiber including linear effects such as attenuation and effects of disper-
sion as well as nonlinear effects such as self- and cross-phase modulation,
four-wave mixing (FWM) and Raman scattering. Both schemes are im-
portant for the results of this thesis so a section is dedicated to each
scheme in this chapter after a more general section that starts from the
beginning: Maxwell’s equations.

2.1 Maxwell’s Equations

When electromagnetic waves propagate through a material they obey
a set of equations that relate the electric and magnetic fields to bound
and free charges as well as to the magnetizability of the medium. These
equations can be derived from basic principles of electro- and magneto-
statics [55] but here they are merely stated in the convenient form of
free charges and SI units: [56]

∇ ·D(r, t) = ρf , (2.1a)

∇ ·B(r, t) = 0, (2.1b)
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∇×E(r, t) = −∂B(r, t)

∂t
, (2.1c)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (2.1d)

where E and B are the electric and magnetic fields, respectively, r =
(x, y, z) is the spatial coordinate vector, t is time, ρf is the density of
free charges, J is the current density, and

D = ε0E + P, (2.2)

H =
1

µ0
B−M, (2.3)

are the displacement and the auxiliary magnetic fields, respectively, ε0
is the vacuum permittivity, µ0 is the vacuum permeability, P is the
electrical induced polarization, and M is the induced magnetization of
the material. Silica-based optical fibers are absent of free charges and
currents and are magnetizable to a negligible degree only, which means
ρf = 0, J = 0, and M = 0. Note that the analysis already at this
point is distinguished from semiconductor platforms such as Silicon and
Aluminium Galium Arsenide, in which ρf 6= 0. Thus, as the starting
point for the rest of this thesis, Maxwell’s equations take the form

∇ ·D(r, t) = 0, (2.4a)

∇ ·H(r, t) = 0, (2.4b)

∇×E(r, t) = −µ0
∂H(r, t)

∂t
, (2.4c)

∇×H(r, t) = ε0
∂E(r, t)

∂t
+
∂P(r, t)

∂t
. (2.4d)

The induced polarization P is not straightforward to determine so it is
custom to write it as a Taylor expansion in the electric field where each
term is easier to evaluate,

P(r, t) = P(0)(r, t) + P(1)(r, t) + P(2)(r, t) + P(3)(r, t) + . . . , (2.5)

where P(0) is the static polarization, P(1) is the linear induced polariza-
tion, etc.. The n’th order induced polarization is written in terms of the
electric field as [57]

P(n)(r, t) = ε0

∫ ∞

−∞
· · ·
∫ ∞

−∞
R(n+1)(t− τ1, . . . , t− τn) |

E1(r, τ1) . . .En(r, τn)dτ1 . . . dτn,

(2.6)
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where R(n+1) is an (n+1)’th order tensor that holds real and causal
response functions in its elements, and the vertical line denotes n’th
order tensor product. In silica, there is no static polarization and all even
ordered induced polarizations are zero due to silica being amorphous;
also, in this thesis 5’th and higher order are disregarded. This leaves only
the first and third order induced polarizations: the first order induced
polarization is usually assumed to have an instantaneous response due
to the response time of electrons in the few-femto second regime, and
all but the diagonal elements of the first order tensor are approximated
zero, which gives

P(1)(r, t) = ε0

∫ ∞

−∞
R(1)(t− τ1) |E1(r, τ1)dτ1

= ε0χ
(1)E1(r, t), (2.7)

where χ(1) ≡ χjj for j = x, y, or z is the time independent common
amplitude of the diagonal elements of the first order response function,
which is often called the linear susceptibility. The frequency dependence
of the linear susceptibility is disregarded by assuming the time-domain
response to be instantaneous.

The third order induced polarization is written as

P(3)(r, t) = ε0

∫∫∫ ∞

−∞
R(3)(t− τ1, t− τ2, t− τ3) |

E1(r, τ1)E2(r, τ2)E3(r, τ3)dτ1dτ2dτ3,

(2.8)

but further progress cannot be made without specifying a specific nonlin-
ear process, which is done in later chapters. Inserting Eqs. (2.5), (2.7),
and (2.8) into Eq. (2.4d) gives the final version of Maxwell’s equations

∇ ·D(r, t) = 0, (2.9a)

∇ ·H(r, t) = 0, (2.9b)

∇×E(r, t) = −µ0∂tH(r, t), (2.9c)

∇×H(r, t) = ε0n
2(x, y)∂tE(r, t) + ∂tP

(3)(r, t), (2.9d)

where n2(x, y) = 1+χ(1) is the refractive index of silica, which is assumed
to have no longitudinal (z) dependence in fibers. In the latter equations,
the notation of the derivative was simplified for convenience so that
∂/∂t→ ∂t.

2.2 Transverse equations: fiber modes

Many waveguides including fibers have geometries that favor a separa-
tion of Maxwell’s equations into a transverse and a longitudinal part;
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the transverse part determines the modal properties such as effective
area and waveguide dispersion and the longitudinal part determines the
evolution of the electric field amplitude through the waveguide.

Fiber mode properties are integral parts of inter-modal nonlinear ef-
fects through amplitude and intensity field overlaps and phase matching
so a thorough understanding of fiber modes is important. Therefore,
the mode properties of circular symmetric fibers are reviewed in the
following.

Rightfully, guided modes in fibers are of vectorial nature where each
mode has three spatial components. However, for many purposes in-
cluding communication, fibers are weakly guiding, which results in ap-
proximate modes with only one spatial component and that form mode
groups of 2 or 4 degenerate modes; these modes are called linearly polar-
ized (LP) modes. In this section, it is sketched how Maxwell’s equations
are manipulated to find the true vectorial modes and afterwards the
approximate LP modes are analyzed in more detail. Even though the
full-vectorial picture is not necessary to understand the results of this
thesis because all waveguides considered are weakly guiding, it is impor-
tant in many emerging waveguide structures to consider full-vectorial
effects [58]; hence, a short section is devoted to the subject here.

2.2.1 Vectorial modes

In a waveguide in general, the electric and magnetic field do not follow
the same equations due to the non-zero divergence of the electric field.
Therefore, one has to choose which one to eliminate and which one to
calculate; the other can always be calculated using Maxwell’s equations.
It turns out to be easiest to eliminate the electric field and calculate the
magnetic field; there is also the advantage of working with the magnetic
field that it is continuous over boundaries in the dielectric function,
which makes a numerical implementation of the equations easier.

The mode properties of a waveguide are calculated for a CW field
and nonlinear contributions are neglected; since communication fibers
are often circular symmetric, polar coordinates are preferred to take
advantage of the circular symmetry. With a harmonic time dependence

E(r, t) = An(r) exp(−iωnt) (2.10)

H(r, t) = Hn(r) exp(−iωnt), (2.11)

then taking the curl of Eq. (2.9d) and inserting (2.9c), the following
equation is achieved for the magnetic field

∇×∇×Hn(r) = k2
0n

2(r)Hn(r) +
1

n2(r)
∇n2(r)×∇×Hn(r), (2.12)
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where k0 = 2π/λ0 and λ0 is the vacuum wavelength. Changing the
equation to polar coordinates (x, y)→ (r, φ), where r is the radial coor-
dinated and φ is the angular, assuming a harmonic dependence on the
longitudinal component z in all components of the magnetic field, i.e.
exp(iβnz) where βn is the propagation constant at frequency ωn, and
using the divergence constraint of Eq. (2.9b) the equation for the radial
component of the magnetic field Hr(r, φ) (the subscript n now left out)
becomes

∂2
rHr +

1

r
∂rHr +

1

r2

(
∂2
φHr −Hr

)
− 2

r2
∂φHφ + k2

0εHr = β2Hr, (2.13)

where Hφ is the angular component of the magnetic field. Because of the
circular symmetry of the waveguide in consideration it is assumed that
the angular dependence of all components of the magnetic field is either
cos(mφ) or sin(mφ) where m is an integer. From Eq. (2.13) and the
divergence constraint it is clear if Hr ∼ cos(mφ), then Hφ ∼ sin(mφ) and
Hz ∼ cos(mφ) and vice versa where Hz is the longitudinal component of
the magnetic field. Inserting these angular dependencies the equations
for the radial and angular components of the magnetic field become

∂2
rHr +

1

r
∂rHr + k2

0n
2Hr −

(
m2 + 1

) Hr

r2
± 2m

r2
Hφ = β2Hr (2.14)

∂rrHφ +
1

r
∂rHφ −

m2 + 1

r2
Hφ ±

2m

r2
Hr + k2

0n
2Hφ

+
1

r

∂rn
2(r)

n2
(±mHr −Hφ − r∂rHφ) = β2Hφ,

(2.15)

where ∂rr means two times differentiation with respect to r, and ’+’
denotes Hr ∼ sin(mφ) and ’−’ denotes Hr ∼ cos(mφ). The z component
of the magnetic field is determined through the divergence constraint and
the electric field is calculated using Eq. (2.9d) (without the nonlinear
induced polarization), and these components are

Hz =
i

β

(
1

r
∂r {rHr} ∓

m

r
Hφ

)
(2.16)

Er =
i

ωε0ε

(
±m
r
Hz − iβHφ

)
(2.17)

Eφ =
i

ωε0ε
(iβHr − ∂rHz) (2.18)

Ez =
i

β

[
Er
∂rε

ε
+

1

r
(∂r {rEr} ±mEφ)

]
(2.19)
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The boundary conditions at the center of the circular symmetric fiber
for the magnetic field are [59]

∂r[Hr(0), Hφ(0)] = [0, 0], for m = 1 (2.20)

[Hr(0), Hφ(0)] = [0, 0], for m 6= 1. (2.21)

Far away from the fiber core all guided modes have per definition zero
amplitude. With Eqs. (2.14)–(2.19) and boundary conditions (2.20)–
(2.21) established, the full solution to the vectorial problem of electro-
magnetic modes in circular symmetric fibers is established. No restric-
tions has been put on the dielectric function in the radial direction.

2.2.2 Linearly polarized modes

Many waveguides including most silica fibers support only weak guid-
ance and the scalar approximation accounted for in this section therefore
turns out to very useful, which is widely appreciated because of the sim-
pler interpretation of the resulting modes.

By assuming harmonic time dependencies of both the electric and
magnetic fields, as in Eqs. (2.10) and (2.11), taking the curl of Eq.
(2.9d) (again neglecting the nonlinear induced polarization), inserting
Eq. (2.9c), and applying simple rules of calculus, the combined equation
becomes

∇×∇×Hn(r) =

− iωε0
(
n2(r)[∇×En(r)]−En(r)× [∇n2(r)]

)
.

(2.22)

The second term on the right hand side is complicated to evaluated
but it is also small for weakly guiding structures; for example in a step
index fiber it is zero except exactly at the boundary. Doing the scalar
approximation means to neglect that term. Doing so and using Eq.
(2.9c), Eq. (2.22) becomes the well-known Helmholtz equation

[
∇2 +

ω2

c2
n2(r)

]
Hm(r) = 0, (2.23)

where also the vector identity ∇×∇×V = ∇(∇·V)−∇2V where V is a
vector was used together with the divergence constraint of the magnetic
field. It is notable that if the magnetic field is eliminated instead of the
electric field, the same equation emerges under the scalar approximation.
Therefore, it is common to use the symbol Ψ instead of either the electric
or magnetic field. Changing to polar coordinates and, as for the vectorial
modes above, assuming a harmonic dependence on z and separating the
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radial and angular dependencies as Ψ = Rm(r) cos(mφ) exp(iβz), the
Helmholtz equation takes the form

r2∂
2Rm
∂r2

+ r
∂Rm
∂r

+
[
r2k2

0n(r)2 −m2
]
Rm = β2Rm, (2.24)

where it should be noted that the angular index m is not the same as
in the full-vectorial description. This equation is valid for all circular
symmetric refractive index profiles as long as the scalar approximation
is valid but it is difficult to get any further insight analytically from here.
However, if the fiber is assumed to be a step index fiber then n2 does
not depend on the radius r and Eq. (2.24) readily reduces to Bessel’s
equation. More precisely, the radial position r can be either smaller or
larger than the step index fiber core radius, a, which leaves two cases

r2∂
2Rm
∂r2

+ r
∂Rm
∂r

+
[
r2κ2 −m2

]
Rm = 0, r < a (2.25)

r2∂
2Rm
∂r2

+ r
∂Rm
∂r
−
[
r2σ2 +m2

]
Rm = 0, r > a, (2.26)

where

κ =
√
k2

0n
2
c − β2 (2.27)

σ =
√
β2 − k2

0n
2
cl (2.28)

and nc and ncl are the core and cladding refractive indexes, respectively.
Equation (2.25) is Bessel’s equation and Eq. (2.26) is Bessel’s modified
equation [60]; the physically interesting solutions here are the Bessel
function of the first kind, Jm(κr) for r < a, and the modified Bessel
function of the second kind, Km(σr) for r > a.

The propagation constant β is determined by matching the fields at
either side of the refractive index step using proper boundary conditions,
which in the scalar approximation are that the field Ψ is continuous and
differentiable across the boundary; this constraint leads to the condition
[61]

Jm(κa)

κaJm−1(κa)
= − Km(σa)

σaKm−1(σa)
(2.29)

from which β must be determined numerically.

2.2.3 Waveguide and mode properties

With the solutions to Eqs. (2.25) and (2.26) known to be Bessel func-
tions and the propagation constant determined from Eq. (2.29), both
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the waveguide dispersion (not material dispersion) and all modal prop-
erties of a given fiber is known under the scalar approximation. In the
following sections, basic properties of waveguide dispersion, field distri-
butions and overlaps, and higher order modes are reviewed.

Waveguide dispersion

Waveguide dispersion means that the propagation constant changes as
a function of the wavelength of the propagating light, which manifests
itself in the simplest form by causing propagating pulses to broaden in
the time domain, which is caused by the different frequency components
of the pulse traveling with different velocities. This thesis, however, only
considers CW fields but as will become evident later FWM requires
phase matching for which dispersion is a crucial concept. Dispersion
is quantified in terms of the propagation constant β but since a full
spectrum of β values is rarely needed in fiber optics for communication it
is custom to write β in a Taylor expansion around some central frequency
ω0

β(ω) ≈ β0 + β1(ω − ω0) +
β2

2!
(ω − ω0)2

+
β3

3!
(ω − ω0)3 +

β4

4!
(ω − ω0)4 + . . .

(2.30)

where β0 = ω0neff/c and neff is the effective index at ω0 of the mode
that β represents, and β1 is the inverse group velocity. The rest of the
coefficients do not have common names but are generally referred to as
higher order dispersion terms. However, in the wavelength domain it is
common to define a dispersion coefficient; making a Taylor expansion of
both sides of

β(ω) =
ωneff(ω)

c
(2.31)

one may derive the dispersion coefficient, defined as D = −λ
c ∂λλneff ,

β2 = −2πc

ω2
D (2.32)

where the usual reciprocal relationship between frequency and vacuum
wavelength is implied, λω = 2πc. It proves useful later to also relate
the third order dispersion β3 to parameters in the wavelength domain;
hence, one can further derive that

β3 =
λ4

(2πc)2

(
S +

2D

λ

)
, (2.33)
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Fig. 2.1: (a) Effective indexes for scalar modes LP01, LP11, LP21, and
LP02 vs. normalized frequency, V; (b) field amplitudes of LP01 and
LP11 in a step index fibe vs. normalized radial position in the fiber;
the black dash-dotted line is a sketch of the refractive index profile that
has core radius a; (c) 2D intensity distribution in a step index fiber of
LP01 (top) and LP11 (bottom) corresponding to (b); the black ring
denotes the step in refractive index.

where S = ∂λD. Figure 2.1(a) shows plots of the neff of the first four
guided modes, which were found numerically from Eq. (2.29) and (2.31),

vs. the normalized frequency V = 2πa
λ

√
n2

c − n2
cl in a weakly guiding

step index fiber with core radius a and a numerical aperture of NA =√
n2

c − n2
cl = 0.17, where nc and ncl are the core and cladding index

of the fiber, respectively; the modes are labeled LPml, where m is the
angular order defined above and l is an index referring to a specific
solution (β) given a defined m; there may be zero or many β-values for
every m depending on the waveguide geometry. The plot shows that all
dispersion curves of the four modes have the same effective index values
at very different normalized frequencies (or wavelengths). This property
leads to the possibility of phase matching FWM where the participating
waves are separated in wavelength by hundreds of nanometers [62]. In
Ch 5., FWM among waves in different modes is investigated.

In the scalar approximation of circular symmetric fibers each solu-
tion (set of m and l) come with both a sin(mφ) and a cos(mφ) solution
and they apply to two states of polarization, which means that all so-
lutions are four-fold degenerate; the LP0l solutions are only two-fold
degenerate, however, since they do not have a sin(mφ) solution. Gener-
ally in this thesis, only one state of polarization is considered but light
couples between the sin(mφ) and cos(mφ) solutions, usually designated
by a and b, on a short length scale in fibers due to fabrication imperfec-
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tions. For purposes of nonlinear interactions the coupling between the
two solutions does not matter for phase matching but the nonlinear field
overlap discussed below is affected significantly.

Field distribution and overlaps

Different modes have different field distributions as well as different prop-
agation constants; Fig. 2.1(b) and (c) show the field distributions of
LP01 and LP11a, which are the modes of most interest in this thesis,
in a step-index fiber. In a graded index fiber, the field distributions are
slightly different but qualitatively much alike. Field distributions are
important for nonlinear effects such as FWM and Raman scattering be-
cause these processes depend on the amplitude of the interacting light;
when two modes have different field distributions their degree of interac-
tion is not trivial. When inserting a nonlinear induced polarization into
the general propagation equation (2.50) (in the scalar approximation)
as derived in the next section a term containing the field distributions
appears,

f
(µνξζ)
ijkl =

∫∫
F

(µ)
i F

(ν)
j F

(ξ)
k F

(ζ)
l dxdy

(∫∫
F

(µ)
i

2
dxdy

∫∫
F

(ν)
j

2
dxdy

∫∫
F

(ξ)
k

2
dxdy

∫∫
F

(ζ)
l

2
dxdy

)1/2
,

(2.34)

where f
(µνξζ)
ijkl is the nonlinear field overlap and F

(α)
n (x, y) is the real

field distribution at frequency ωn in mode α corresponding to the plots

in Fig. 2.1(c); in terms of the description above, F
(α)
n (x, y) is defined as

Ψ(r)
(α)
n = F

(α)
n (x, y) exp(iβ

(α)
n z). The denominator is a normalization

term and the nominator determines the strength of the nonlinear inter-
action among the four fields. In circular symmetric fibers it is convenient

to write f
(µνξζ)
ijkl in polar coordinates, so

f
(µνξζ)
ijkl ∼

∫∫
rR

(µ)
i (r)R

(ν)
j (r)R

(ξ)
k (r)R

(ζ)
l (r)

× sin(mµφ) sin(mνφ) sin(mξφ) sin(mζφ)drdφ,

(2.35)

from which it is clear that f
(µνξζ)
ijkl is non-zero only if all of (mµ,mν ,mξ,mζ)

are equal or pairwise equal. This selection rule is very useful and reduces
the number of FWM terms considerably. For the rest of this thesis, the
only modes considered are those with l = 1 and all frequencies are in
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the communication band, which justifies neglecting the frequency de-

pendence of F
(α)
n (x, y), so the nonlinear field overlap can be reduced

to

f (µν) =

∫∫
F (µ)2

F (ν)2
dxdy

∫∫
F (µ)2

dxdy
∫∫

F (ν)2
dxdy

. (2.36)

If all four waves are in the same mode, f (µν) reduces to the the inverse

effective area A
(µ)
eff = 1/f (µ).

2.3 Propagation equation: nonlinear effects

In this section, the propagation equation that describes the longitudinal
evolution of the electrical field is derived. This may be done in different
ways where the most straightforward approach [56, 57] is to take the
curl of Eq. (2.9c) and insert Eq. (2.9d) into the resulting expression;
hence, the magnetic field is eliminated. A second approach is to use
the reciprocity theorem [63], which has been deployed earlier [58, 64].
A third approach is offered by Kolesik and Moloney [65] and used by
others [66–69], which turns out to be advantageous when the waveguide
supports multiple modes and this approach is thus the one followed here.

The derivation starts by expanding the real electric field in N CW
waves

E(r, t) =
1

2

N∑

n

[
An(r)e−iωnt + c.c.

]
, (2.37)

where n is the frequency index and the time independent electric field
An [V/m] is a sum of guided mode fields

An(r) =
∑

µ

F
(µ)
n (x, y)

N
(µ)
n

E(µ)
n (z)eiβ

(µ)
n z, (2.38)

where µ is the mode index, F
(µ)
n is the electrical vectorial transverse

mode distribution function, E
(µ)
n [
√

W] is the common (electric and mag-

netic) field amplitude, and β
(µ)
n is the propagation constant of mode µ

and frequency ωn. The normalization factor N
(µ)
n [m/

√
Ω] makes sure

that |E(µ)
n |2 is the power in watts carried by the electric field in mode

µ, and it is defined as [66]

1

4

∫∫ [
F(ν)
n

∗ ×H(µ)
n + F(µ)

n ×H(ν)
n

∗] · ẑ dxdy = δµ,νN
(µ)
n

2
, (2.39)
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where H
(µ)
n is the vectorial transverse mode distribution function of the

magnetic field defined in the same way as F
(µ)
n is for the electric field, ẑ

is a unit vector pointing in the longitudinal direction in the waveguide,
δµ,ν is the Kronecker delta, and the integration is performed over all
transverse space.

The derivation of the propagation equation is somewhat complicated
but outlined here: if (2.38) is inserted into (2.37) the term

E(ν)
m (r, t) = F(ν)

m (x, y)e−iωmt+iβ
(ν)
m z (2.40)

may be identified; that term is complex conjugated and multiplied onto

Eq. (2.9d) and the corresponding term for the magnetic field H(ν)
m =

H
(ν)
m e−iωmt+iβ

(ν)
m z is complex conjugated and multiplied onto Eq. (2.9c).

Using simple rules of calculus one gets [65]

∇ ·
(
H× E(ν)

m

∗)
+ H ·

(
∇× E(ν)

m

∗)
= ε0n

2E(ν)
m

∗ · ∂tE + E(ν)
m

∗ · ∂tP(3)

(2.41)

∇ ·
(
E×H(ν)

m

∗)
+ E ·

(
∇×H(ν)

m

∗)
= −µ0H(ν)

m

∗ · ∂tH, (2.42)

where all implicit space and time dependencies were left out for clarity.
Maxwell’s equations are then used on the second term on the left hand
side of each equations so

∇ ·
(
H× E(ν)

m

∗)− µ0H · ∂tH(ν)
m

∗
= ε0n

2E(ν)
m

∗ · ∂tE + E(ν)
m

∗ · ∂tP(3)

(2.43)

∇ ·
(
E×H(ν)

m

∗)
+ ε0n

2E · ∂tE(ν)
m

∗
= −µ0H(ν)

m

∗ · ∂tH, (2.44)

where it is noted that F
(ν)
m (x, y) does not depend on z and hence the

small contribution from the nonlinear induced polarization is neglected
(as is custom for calculating waveguide modes). Next, the two equa-
tions are subtracted and integration over a large window T in time is
performed; the window is finite but much larger than any period of time
considered otherwise, which makes it fair to assume that the fields that
are otherwise considered CW have decayed at the boundaries of the win-

dow. With this assumption the terms µ0H · ∂tH(ν)
m

∗
and µ0H(ν)

m

∗
· ∂tH

cancel when using integration by parts; the same goes for the terms

ε0n
2E(ν)
m

∗
· ∂tE and ε0n

2E · ∂tE(ν)
m

∗
. Then integration over all transverse
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space is performed and one gets
∫

T

∫∫
∇ ·
(
H× E(ν)

m

∗)−∇ · (E ×H(ν)
m

∗)
dxdy dt

=

∫

T

∫∫
E(ν)
m

∗ · ∂tP(3) dxdy dt.

(2.45)

The salient point of this approach to getting a propagation equation is
the integral theorem [63]

∫∫
∇ ·V dxdy = ∂z

∫∫
V · ẑ dxdy +

∮
V · n̂ dl, (2.46)

where V is a vector, the two double integrals are surface integrals over
all transverse space as in (2.45), and the closed integral is a line integral
along the boundary of the transverse space. For waveguides it is safe
to assume that all fields are zero along any boundary far away from the
waveguide, which means that in this thesis the second term on the right
hand side is always zero. With Eq. (2.46), Eq. (2.45) becomes

∂z

∫

T

∫∫ [
E(ν)
m

∗ ×H + E× H(ν)
m

∗] · ẑ dxdy dt

=−
∫

T

∫∫
E(ν)
n

∗ · ∂tP(3) dxdy dt.

(2.47)

Inserting (2.37) and (2.38) along with the same expressions for the mag-
netic field (not shown) into Eq. (2.47), using the orthogonality condition
(2.39) and that only terms with no explicit time dependence are non-zero
when integrating over time, Eq. (2.47) becomes

∂zE
(ν)
m = − 1

2TN
(ν)
m

∫

T

∫∫
eiωnt−iβ

(ν)
m zF(ν)

m

∗ · ∂tP(3) dxdy dt. (2.48)

Lastly, the induced polarization is written in a complex expansion like
the electric field

P(3) =
1

2

N∑

n

[
P(3)
n (r)e−iωmt + c.c.

]
. (2.49)

After differentiating, only the frequency component in the sum that
leaves a time independent term is non-zero when integrating over time
and the final propagation equation for the field amplitude at frequency
ωm in mode ν becomes

∂zE
(ν)
m =

iωme−iβ
(ν)
m z

4N
(ν)
m

∫∫
F(ν)
m

∗ ·P(3)
m dxdy. (2.50)
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In the following chapters where different processes are considered, the
corresponding nonlinear induced polarizations are derived and hence
specific propagation equations. It is at this point noted that it has not
so far been assumed that the waveguide is weakly guiding; the result
(2.50) is valid for vectorial modes as well as in the scalar regime. So
combined with Sec. 2.2.1, a complete framework for simulating nonlin-
ear propagation of full-vectorial modes in in-magnetizable waveguides
without free carriers is the result of this chapter.

2.4 Propagation equations for single mode para-
metric amplifiers

This section provides an example of how to derive specific propagation
equations from the general equation (2.50). The degenerate parametric
amplifier is considered, see Fig. 3.1(a), and consists of one strong pump
p and to side bands; a signal s and an idler i; furthermore, stimulated
Raman scattering is included to be used in Ch. 3. The configuration
called modulation interaction (MI) has energy conservation 2ωp = ωs+ωi

so two pump photons are annihilated while creating a signal and an idler
photon. The nonlinear induced polarization at the signal frequency is
found by inserting (2.37) into (2.8); it is assumed that the electric field

is polarized along the x direction only that only the χ
(3)
xxxx component of

the third order susceptibility is non-zero; this simple picture means that
An = xAn = x̂(F/Nn)En exp(iβnz). Using Eq. (2.49) the nonlinear
induced polarization in Eq. (2.50) becomes

P(3)
s = x̂

εχ(3)

4

∫
R(t− τ)

[
2
(
|As|2 + |Ap|2 + |Ai|2

)
As +A2

sA
∗
s e2iωs(t−τ)

+A2
pA
∗
i e−i(2ωpτ−ωst−ωit) + 2A2

pA
∗
i e−i(ωp(t+τ)−ωst−ωiτ)

+ 2As|Ap|2e−i(ωp−ωs)(t−τ) + 2As|Ai|2e−i(ωi−ωs)(t−τ)

+2As|Ap|2ei(ωp+ωs)(t−τ) + 2As|Ai|2ei(ωi+ωs)(t−τ)
]
dτ,

(2.51)

where the response tensor R(3)(τ1, τ2, τ3) = χ(3)R(τ1)δ(τ2)δ(τ3) was
used. To proceed, the response function R(τ) is specified to include
both the Kerr effect and stimulated Raman scattering [66]

R(τ) = (1− fR)δ(τ) +
3

2
fRhR(τ) (2.52)
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where fR ≈ 0.18 is the Raman fraction of the total susceptibility and
thus the nonlinear induced polarization becomes

P(3)
s = x̂

3εχ(3)

4

[
(1− fR)

(
|As|2 + 2|Ap|2 + 2|Ai|2

)
As + (1− fR)A2

pA
∗
i

+ fR(|As|2 + |Ap|2 + |Ai|2)As

+fR

(
|Ap|2h̃R(Ωps) + |Ai|2h̃R(Ωis)

)
As

]
,

(2.53)

where the Fourier transform of the time domain response function

h̃R(Ωps) =

∫ ∞

−∞
hR(t− τ)e−iΩps(t−τ)dτ, (2.54)

where Ωps = ωp − ωs. By inserting the obtained nonlinear induced po-
larization into the general propagation equation (2.50), the final propa-
gation equations for the signal in the MI configuration including Raman
scattering becomes

∂zEs = iγs

[
|Es|2Es + (2− fR)

(
|Ep|2 + |Ei|2

)
Es + (1− fR)E2

pE
∗
i e−i∆βz

+fR

(
|Ep|2h̃R(Ωps) + |Ei|2h̃R(Ωis)

)
Es

]
− αs

2
Es,

(2.55)

where γs = ωsn2/(cAeff) [1/(W m)] and n2 = 3χ(3)ε0/(4n
2
effc) [m2/W] is

the nonlinear refractive index. The linear loss term αs/2 is not derived
but added in the end. During the derivation of (2.55) it was also assumed
that the normalization factor Nn is independent of frequency and that
it for linearly polarized modes is calculated to be [66]

N2 ≈ cε0neff

2

∫∫
F (x, y)2dxdy. (2.56)

Lastly, the phase mismatch parameter for degenerate parametric ampli-
fication was introduced,

∆β = βs + βi − 2βp, (2.57)

and it is calculated in Ch. 3. By completely similar approaches the
equations for the pump and idler are derived,

∂zEp = iγp

[
|Ep|2Ep + (2− fR)

(
|Es|2 + |Ei|2

)
Ep + 2(1− fR)EsEiE

∗
pei∆βz

+fR

(
|Es|2h̃R(Ωsp) + |Ei|2h̃R(Ωip)

)
Ep

]
− αp

2
Ep,

(2.58)
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∂zEi = iγi

[
|Ei|2Ei + (2− fR)

(
|Ep|2 + |Es|2

)
Ei + (1− fR)E2

pE
∗
s e−i∆βz

+fR

(
|Ep|2h̃R(Ωpi) + |Es|2h̃R(Ωsi)

)
Ei

]
− αi

2
Ei,

(2.59)

The Raman response function in the frequency domain h̃R(Ω) can be
parameterized [70] from a measured curve [71].

23



Chapter 3

Raman and loss-induced
quantum noise of fiber
parametric processes

As already presented in the introduction, fiber parametric processes
(PP) have many potential applications in optical communication sys-
tems. Therefore it is an important task to analyze the noise properties
of PP since they determine how useful any application can be. Naturally,
much works has already been carried out in this regard and since the
main noise sources are of quantum nature, quantum optics approaches
have been widely deployed. Semi-classical descriptions have also been
developed and they are generally more simple than quantum approaches
and it is easier to include other processes that distort the PP. This chap-
ter presents such a semi-classical model that simultaneously describes
four-wave mixing (FWM), Raman scattering, fiber loss, dispersion, and
the regime of pump depletion, the combination of which no quantum
model so far has described.

This chapter is based on Refs. [72–76].

3.1 Quantum noise in parametric processes

Figure 3.1 shows a number of fiber PP with different pump(s), signal,
and idler configurations that have different properties in terms of am-
plitude and phase evolution of the signal and idler: parametric amplifi-
cation is the signature of diagrams (a) modulation interaction (MI), (b)
inverse MI, (c) outer band phase conjugation (PC), and (d) inner band
PC, in which the two pump photons annihilate and create a signal and
an idler photon (or two signal photons in (b)). The separate processes
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(e) 
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(d) 

p q s i 

Fig. 3.1: Different configurations of FWM using two pumps, p and q,
a signal, s , and an idler, i; (a) modulation interaction (MI), (b) inverse
MI, (c) and (d) phase conjugation (PC), outer and inner band, respec-
tively, (e) and (f) Bragg scattering (BS), distant and nearby, respec-
tively; (a)–(d) do amplification and (e)–(f) do frequency conversion.
The arrows indicate gaining (up) and losing (down) energy.

of (e) distant Bragg scattering (BS) and (f) nearby BS, however, do
frequency conversion since here a pump and a signal photon are anni-
hilated creating an idler photon and a photon in the other pump. The
idler wave is dotted in all diagrams because it may be present at input
or not; if it is not present the processes are phase-insensitive but if it is
present the evolution of the fields in the fiber depends on the relative
phases of the four input fields. In process (b), the idler and signal are
frequency-degenerate so inverse MI is always phase-sensitive.

A critical parameter of any amplifier is of course the magnitude of
gain achievable and the bandwidth of that gain. However, for many
purposes including optical communication a measure for the amount
of noise added in the amplification process is just as important. In
single-mode fiber amplifiers, the most significant noise sources are re-
lated to pump-signal interactions and therefore an integrated part of the
gain mechanism; this applies to all of EDFAs, Raman amplifiers, and
FOPAs. The quantum noise properties of parametric processes have
been described thoroughly in the literature: a phase-insensitive para-
metric amplifier (PIA) is a linear amplifier, and it was showed early on
that linear amplifiers are associated with a 3-dB quantum induced reduc-
tion in the signal-to-noise ratio [27,77]. During the 2000’s, the quantum
noise properties of all the parametric processes in Fig. 3.1(a)–(f) have
been studied thoroughly by C. McKinstrie [29, 30, 78–80] in idealized
cases without loss and Raman scattering and no pump depletion. For
the results presented in the following sections, one of the most important
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results is the quantum induced noise figure (NF) for phase-insensitive
MI and PC that depends only on the PIA gain, G, as also showed by P.
Voss et al. [29–31]

NFPIA =
1

G
+

2(G− 1)

G
, (3.1)

which is easy to compare the modeling here to; NFPIA is 1 for G = 1
and converges toward 2 for G→∞. Equation (3.1) sets a fundamental
quantum induced NF of PIAs. A similar expression for the NF of an
undepleted phase-sensitive parametric amplifier (PSA) (Fig. 3.1(b) and
(a) and (c)–(d) with idler input) can be derived and it depends on the
relative phases of all participating waves as well as on the PSA gain [30];
the NF of a PSA may be as low as 0 dB in the high gain limit.

Another conclusion from C. McKinstrie that is important for the
sections below is the conversion NF of BS that is expressed only in
terms of the conversion efficiency; if converting from a signal to the idler
in Fig. 3.1(e)–(f) with conversion efficiency CE, the NF is [30]

NFBS =
1

CE
, (3.2)

which implies that the NF is ∞ for CE = 0 and 1 for CE = 1; i.e. if full
conversion is achieved, the statistics of the output state equal those of
the input state. Naturally, one must expect that phase mismatch, loss,
and Raman scattering affects this results, which is demonstrated in the
following sections. The impact of stimulated and spontaneous Raman
scattering in both PIA and PSA have been investigated in the linear
gain regime [31, 81] using quantum approaches; it is found for MI (Fig.
3.1(a)) that Raman scattering induces a spectrally asymmetric increase
in the NF around the pump, and that the increase has a magnitude of
0.1–1 dB depending on the phase matching conditions of the FWM. For
PSAs, the NF increase due to Raman scattering is approximately the
same but it is symmetric around the pump.

It is generally accepted that semi-classical methods can reproduce
the quantum results of Eqs. (3.1) and (3.2) in the large photon ap-
proximation [78] and indeed such methods has been used to predict the
quantum noise properties of cascaded PIA and PSAs [33, 82]. Semi-
classical methods has the advantage over quantum approaches that it is
simple to include multiple effects simultaneously, such as FWM, Raman
scattering, fiber loss, higher order dispersion, and pump depletion, which
remains difficult if not analytically impossible for quantum approaches
(quantum approaches have the advantage that they are superior models
of the quantum nature of light; thus the semi-classical models must be
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validated against quantum approaches). However, to the knowledge of
the author, no one has presented a semi-classical model of the effects
of quantum noise in parametric processes that includes all these effects;
such a model is presented in the following section.

In the 1990’s and early 2000’s, FOPAs with very good noise prop-
erties were experimentally demonstrated [25, 83, 84] (compared to the
noise properties of EDFAs) operating closer to the fundamental quan-
tum limit; in the early 2010’s, much work was carried out to understand
the origin of the remaining excess noise in FOPAs [28, 82, 85], and four
sources of noise were identified: 1) quantum noise (amplified vacuum
fluctuations), 2) spontaneous Raman scattering, 3) pump residual noise,
and 4) pump transferred noise. Number 1) quantum noise is included
in the modeling presented here by defining an ensemble of fields that
simulates vacuum fluctuations; 2) spontaneous Raman scattering is in-
cluded by adding fluctuations terms from the pump to the propagating
signal through the fiber; 3) pump residual noise is additional noise that
stems from generating a high power pump, e.g. amplified spontaneous
emission in a preceding EDFA, but it can be reduced significantly by
proper filtering so it will not be considered any further here; 4) pump
transferred noise is a results of large pump amplitude fluctuations that
gives rise to fluctuations in the signal amplitude (and phase) through the
amplification process; the effect is in principle included in the modeling
presented here but focus is put on the effects of 1) and 2).

3.2 Semi-classical modeling of quantum noise

In this section, a semi-classical model of quantum noise in parametric
processes is presented. FWM, stimulated Raman scattering, classical
loss, and dispersion are included through the deterministic equations
that were derived in the previous chapter. The quantum nature of loss,
i.e. coupling to the vacuum state, vacuum fluctuations on the input
coherent states, and spontaneous Raman scattering are included in the
model as described below. But firstly, a brief review of quantum optics
is given.

3.2.1 Brief review of quantum optics

In the completely separate quantum description of optics, the modeling
of light is inspired by classical theory in terms of energy: the total
field energy of classical a single-mode field (mode refers here to all of
polarization, spatial mode, and frequency) that propagates in the z-
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direction is [86]

H =
1

2

∫

V
ε0|Ex(z, t)|2 +

1

µ0
|By(z, t)|2dxdydz, (3.3)

where V denotes all space. By stating the time dependence of Ex and By
explicitly in the functions k(t) and q(t) proportional to the amplitudes
of Ex and By, respectively, and with proper normalizations, the total
field energy reduces to

H =
1

2

(
k2 + ω2q2

)
, (3.4)

where ω is the frequency of the single-mode field and k and q can be
identified as the position and momentum of an oscillator (like light is an
oscillator in classical Maxwellian optics). Using the quantum mechanical
correspondence principle, the total energy of the field must be the same
in the low energy regime described by quantum optics so the scalar
observable values of H, k and q can be replaced with operators

Ĥ =
1

2

(
k̂2 + ω2q̂2

)
. (3.5)

The Hamiltonian Ĥ here proves more useful if put in a different form:
the two non-observable operators â = (2~ω)−1/2(ωq̂ + ik̂) and â† =
(2~ω)−1/2(ωq̂ − ik̂) are introduced and the Hamiltonian becomes

Ĥ = ~ω
(
â†â+

1

2

)
. (3.6)

The eigenvectors of the Hamiltonian are called number states, |n〉, and
the corresponding eigenvalue is the energy, En = ~ω(n + 1/2), where
n is the number of photons in the given number state. It is from this
expression that one notices the so-called vacuum energy by considering
the case of zero photons, n = 0, where the total energy is still E0 = ~ω/2.

Even though the photon is commonly used in conceptual explana-
tions of many optical phenomena, the photon number state is a quantum
mechanical state that cannot be understood in terms of classical elec-
tromagnetism. Unlike electromagnetic waves, the photon does not have
a phase; in terms of quantum fluctuations, the energy of the photon
is completely determined while its phase is completely undetermined.
Electromagnetic waves always have both a phase and an amplitude so it
proves difficult to simulate such a quantum mechanical state in a semi-
classical manner, which is the goal here. Therefore, a different state is
studied: the much more classical coherent state.
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The two operators, â and â†, are called the annihilation and creation
operators, respectively, due to their properties [86]

â|n〉 =
√
n|n− 1〉 (3.7)

â†|n〉 =
√
n+ 1|n+ 1〉. (3.8)

Evidently, the photon number state is not an eigenstate of either of
the two operators but it turns out that the actual eigenstate of the
annihilation operator is very useful. Initially, one may write

â|α〉 = α|α〉, (3.9)

which defines the coherent state |α〉 and its eigenvalue α. Remembering
that the Hamiltonian must be a hermitian operator due to the demand of
real eigenvalues (the energy is an observable), the photon number states
form an orthonormal basis in which the coherent state is expanded,

|α〉 =
∞∑

n=0

Cn|n〉, (3.10)

where Cn are expansion coefficients. By operating on this state with
the annihilation operator, using its property (3.7), and enforcing the
normalization 〈α|α〉 = 1, it may be shown that the coherent state can
be expressed in terms of photon number states and its eigenvalue, α,

|α〉 = e−α/2
∞∑

n=0

αn√
n!
|n〉. (3.11)

Calculating the probability of measuring n photons in a coherent state,
one finds

Pn = |〈n|α〉|2 = e−n̄
n̄n

n!
, (3.12)

which shows the commonly known property of shot noise, i.e. that the
number of photons in a coherent state is random and follows a Poisson
distribution with mean value n̄ = |α|2. A special property of the Poisson
distribution is that the ratio of mean number to standard deviation
squared is equal to the mean number,

(
n̄

σn

)2

=
n̄2

Varn
= n̄, (3.13)

where σn is the standard deviation on the number of photons and Varn
is the variance, which means that expected number of photons becomes
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relatively increasingly more determined with increasing photon number;
this is in accordance with the correspondence principle. Correspond-
ingly, it may be shown that the phase of |α〉 also follows a localized dis-
tribution around some mean value, φ, and that also the expected value of
the phase becomes relatively increasingly more determined with increas-
ing photon number. For these reasons the coherent state is commonly
known as “the most classical” state.

Looking a bit more into the quantum mechanics of the coherent state,
one may define the quadrature operators,

x̂ =
1

2

(
â+ â†

)
(3.14)

p̂ =
1

2i

(
â− â†

)
, (3.15)

which readily correspond to the real and imaginary parts if â and â† had
been complex numbers. Operating with x̂ and p̂ on the coherent state,
the variance of the electric field in each quadrature can be calculated [86],

Var(x̂) = Var(p̂) =
1

4
, (3.16)

which is the same as the variance of the electric field in vacuum (inde-
pendent on the amplitude α); conclusively, the coherent state can also
be viewed as vacuum displaced in a phase-space diagram (or ultimately
as a classical field with an amplitude and a phase with vacuum fluctu-
ations on top). This property and the ones outlined above are used to
define the semi-classical model of quantum fluctuations presented below.

3.2.2 Simulation of a coherent state

In the semi-classical scheme, a coherent state of light is simulated by
defining an ensemble of classical fields that exhibits the same statistics
in terms of amplitude and phase fluctuations as those associated with
quantum fluctuations. The field ensemble has a mean amplitude cor-
responding to α above and mean phase φ; for large values of α, the
ensemble mean values should be interpreted directly as the classical am-
plitude and phase of an electromagnetic wave, respectively.

The classical field ensemble that resembles a coherent state can be
defined as [72,73]

Aens = x0 + δx+ i(p0 + δp), (3.17)

where the variables x0 and p0 are the quadrature mean values (real
and imaginary part of the classical electric field) and δx and δp are the
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quadrature fluctuation variables that resemble the vacuum fluctuations
of the coherent state. They follow Gaussian distributions with zero
mean value and variance of 1/4 in photon number units in accordance
with (3.16); however, since the field amplitude has the unit of

√
W the

variance of δx and δp is rightfully

Var(x̂) = Var(p̂) =
1

4
~ωB0, (3.18)

where B0 is a small frequency bandwidth of consideration for which 12
GHz is used. It is then straight forward to calculate the mean photon
number in the ensemble (3.17),

nens =
〈|Aens|2〉
~ωB0

= (x2
0 + p2

0)/(~ωB0) +
1

2
, (3.19)

where the 1/2 term denotes the explicit inclusion of the vacuum energy,
which results from adding the fluctuation terms δx and δp in (3.17).
To compare with the quantum result of Eq. (3.13), the variance of the
ensemble absolute value squared, Varens, is calculated and the signal-to-
noise ratio (SNR) is defined as

SNRens =
〈|Aens|2〉2

Varens
. (3.20)

With Varens = 〈|Aens|4〉−〈|Aens|2〉2 the SNR of a coherent state ensemble
in the large photon number regime becomes

SNRens ≈
x2

0 + p2
0

~ωB0
, (3.21)

which is the photon number nens for large photon numbers. Note that
to obtain reliable statistics ensembles of 5 · 104 elements are used in all
simulations. In all of the following, the usual definition of the NF is
used,

NF =
SNRin

SNRout
, (3.22)

where SNRin and SNRout are the SNRs of the input and output ensem-
bles, respectively.

3.2.3 Fiber loss

In classical electromagnetic theory, fiber loss is usually modeled with a
linear loss term in the differential equations describing the propagation of

31



Coherent

state ensemble

(i)

Loss in classical

equations

(ii)

Addition of loss

fluctuations

(iii)

Fig. 3.2: (i) A coherent state ensemble visualized in a phase-space dia-
gram, (ii) how the ensemble is affected by loss in the classical equations,
and (iii) the effect of adding loss fluctuations.

the field. In quantum optics, loss can be modeled as a beam splitter [32]
that couples the propagating field to the vacuum state. However, for the
purpose here it is simpler to consider the variance of each quadrature,
which may not decrease below 1/4 due to loss alone. In purely classical
modeling, large losses implies that all fields decay asymptotically to zero,
hence also the quadrature variances of the ensembles. A semi-classical
model that takes vacuum fluctuations into account must therefore add
a fluctuation term to all propagating fields. This fluctuation term is
added in each numerical step to both the real and imaginary parts of all
ensembles and the statistical properties of the term are

〈δaloss〉 = 0, (3.23)

Var(δaloss) = ~ωB0α∆z/4, (3.24)

where ∆z is the step size and α is the loss coefficient. This value of
the fluctuation variance ensures that the quadrature variances decay to
1/4 in the limit of large losses. It is also noted that a passive device
(e.g. a fiber with attenuation) is well-known to influence a transmitted
signal with a signal-to-noise degradation equal to the loss. It was sub-
sequently verified that the model of LIN presented here captures this
result correctly.

The effect of adding fluctuations during propagation is visualized in
Fig. 3.2: in diagram (i), a coherent state ensemble of Eq. (3.17) is visu-
alized in phase space and in (ii), the ensemble is attenuated (blue→red)
through the classical, e.g. Eq. (2.55). Loss is classically a linear and
phase-insensitive process, so all elements of the ensemble are translated
directly towards the origo of the phase space; of course this process is
not physical because the coherent state is squeezed in all directions. In
diagram (iii), the effect of adding the loss fluctuation of Eqs. (3.23)–
(3.24) is seen to undeterministically keep the shape of the coherent state.
The addition of the fluctuation ensures at the same time automatically
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that the change of the SNR is equal to the loss as expected of a passive
device.

3.2.4 Spontaneous Raman scattering

Spontaneous Raman scattering has been studied earlier [87], and a model
for the accumulation of amplified spontaneous emission (ASE) seeded by
the Raman process at frequency ωm on the Stokes (S) side of a given
pump at frequency ωn of power Pn is

PASE,S(z) = ~ωmB0(n
(nm)
T + 1)g

(nm)
R Pn z, (3.25)

where B0 is the bandwidth at frequency ωm, g
(nm)
R = 2γmfRh̃R(Ωnm) is

the Raman gain coefficient, and n
(nm)
T (Ωnm) = [exp(~|Ωnm|/kBT )−1]−1

is the phonon equilibrium number at a pump-signal frequency separa-
tion of Ωnm, where ~ is Plancks reduced constant, kB is Boltzmanns
constant, and T is the temperature [88]. On the anti-Stokes (AS) side,
the corresponding expression is

PASE,AS(z) = ~ωmB0n
nm
T |g(nm)

R |Pn z. (3.26)

The (n
(nm)
T + 1)-term in (3.25) means that SpRS on the S side does not

require any phonons present but on the AS side the n
(nm)
T -term gives

SpRS a proportional dependence on the number of phonons. The rates

of SpRS for the S and AS processes are defined as (n
(nm)
T + 1)g

(nm)
R and

n
(nm)
T |g(nm)

R |, respectively, and they are plotted in Fig. 3.3, which shows
these quantities at room temperature (solid blue) and at liquid nitro-
gen temperature (dashed red) vs. frequency shift Ωnm from one of the
pumps, p or q. Contrary to SRS, the rate of SpRS is asymmetric around
the pump, which is important to consider when small signals are situ-
ated simultaneously on both sides of the pump, e.g. as they may be in
FWM. Lowering the temperature reduces the rate of SpRS significantly
on the AS side as expected, whereas on the S side a significant reduction
occurs only close to the pump.

Because the rates of spontaneous Raman scattering on the S and AS
sides are unequal, different fluctuation terms must be assigned to them:
on the S side of a wave component n of power Pn, in every numerical step
of size ∆z the fluctuation δaRaman,S must be added to each quadrature
of a field m with the properties (calculated in Appendix A.1)

〈δaRaman,S〉 = 0, (3.27)
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〈δa2
Raman,S〉 ≈

[
g

(nm)
R Pn∆z(n

(nm)
T + 1)/2− g(nm)

R Pn∆z/4
]
~ωmB0,

(3.28)

where n
(nm)
T and g

(nm)
R depend on the frequency shift as explained above

and ∆z is assumed small. On the AS side of wave component n, the
corresponding fluctuation, δaRaman,AS, has the properties

〈δaRaman,AS〉 = 0, (3.29)

〈δa2
Raman,AS〉 ≈

(
|g(nm)

R |Pn∆z n
(nm)
T /2 + |g(nm)

R |Pn∆z/4
)
~ωmB0.

(3.30)

The addition of Raman fluctuations can be visualized in the same way
as done for loss fluctuations in Fig. 3.2, only the Raman fluctuation
will increase the size of the ensemble and hence the variance. It was
confirmed in subsequent simulations (not shown here) and calculations
that adding the fluctuations of Eqs. 3.27 and (3.28) produces the correct
NF of a single-mode Raman amplifier (see Eq. (3.48) and Ref. [31]).

3.3 Degenerate parametric amplification

Degenerate parametric amplification, MI in see Fig. 3.1(a), is the sim-
plest way of realizing a PIA experimentally, and it has the simplest
theoretical description. Inverse MI of Fig. 3.1(b) is on the other hand
a phase-sensitive process that despite the similar mathematical appear-
ance turn out to be much more difficult to describe. In this section, the
basic properties of MI are given initially; secondly, the semi-classically
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model presented above is applied to a case of MI and fiber loss and
Raman scattering are included in turn and their impacts are explored;
thirdly, it is investigated how the field fluctuations behave in the de-
pleted pump regime.

3.3.1 Analytic solutions

The three equations of MI are given in Eqs. (2.55)–(2.58) and (2.59)
along with the phase mismatch in (2.57); in the case of a PIA and
by disregarding loss and the stimulated Raman term (but keeping the
(1 − fR)-factor on the FWM term), they are solved in the undepleted
pump regime as showed in Appendix A.2

GPIA =
Ps(z)

Ps(0)
= 1 +

ηsηi

g2
sinh2(gz), (3.31)

where ηj = γj(1 − fR)Pp is the nonlinear coefficient for pump, signal
and idler, j = p, s, and i, Pp is the constant pump power, and

g2 = ηsηi −
(κ

2

)2
(3.32)

is the gain coefficient, where κ = ∆β + 2ηp. In the absence of compre-
hensive dispersion data from the nonlinear fiber in question, the phase
mismatch is readily calculated to [17]

∆β = −2πc

λ2
0

∂D

∂λ
(λp − λ0)(λp − λs)2, (3.33)

where λ0 is the zero dispersion wavelength, ∂D/∂λ is the dispersion
slope, λp is the pump wavelength, and λs is the signal wavelength. Fig-
ure 3.4 shows plots of the analytic PIA gain (3.31) and the analytic NF
of Eq. (3.1) for typical parameters for a dispersion shifted highly nonlin-
ear fiber (given in Tab. 3.1 in the next section) at the signal wavelength
of optimal phase matching, ∆β = −2ηp. Figure 3.4(a) shows the expres-
sions through the fiber; as the gain increases the NF converges towards
3 dB. Fig. 3.4(b) has a fixed length of L = 500 m and varies the signal
wavelength λs in Eq. (3.33).

More complicated expressions for the PSA gain are derived in [82]
for the linear gain regime; in general the phase-sensitive amplification
process depends also on the input idler phase and amplitude, whereas
the phase-insensitive process does not. However, if ideal phase matching,
∆β = −2ηp (which determines the signal wavelength relative to the
pump wavelength for a specific fiber) is assumed, and the relative phase
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Fig. 3.4: (a) Analytic PIA gain and NF vs. position in the fiber, Eq.
(3.31), at the signal wavelength of optimal phase matching; (b) analytic
PIA gain and NF spectrum; parameters are taken from Tab. 3.1.

of the pump, signal and idler is chosen to be θrel = 2φp−φs−φi = −π/2,
the signal and idler grow according to

Ps(z) =

(√
GPIA(z)Ps,0 +

√
(GPIA(z)− 1)Pi,0

)2

, (3.34)

Pi(z) =

(√
GPIA(z)Pi,0 +

√
(GPIA(z)− 1)Ps,0

)2

, (3.35)

where Ps,0 and Pi,0 are the signal and idler input powers, respectively.
The PS parametric gain is then GPSA(z) = Ps(z)/Ps,0.

3.3.2 Effect of fiber loss

Light attenuation in silica fibers is a relatively small effect with loss
coefficients < 1 dB/km in highly nonlinear fibers and < 0.25 dB/km in
standard single-mode fibers. It may however be useful in some cases to
know some qualitative trends of the effects of loss on the NF of a PIA;
for example higher order spatial modes can be used to achieve phase
matching outside the Raman spectrum of the pump in silica, and if the
pump, signal and idler are separated more than 20 THz it is likely that
at least one of them resides in a part of the spectrum where silica has a
high attenuation. In this section, Raman scattering is disregarded.

To simulate the gain and NF vs. position in a PIA of Fig. 3.1(a),
Eqs. (2.55) and (2.58)–(2.59) are solved using a 4th order Runge Kutta
method with a step size of 5 m; the process has energy conservation
2ωp = ωs + ωi. At the input, ensembles of Eq. (3.17) are prepared for
each of pump signal and idler and each element in all three ensembles are
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propagated in parallel. During propagation, loss fluctuations are added
as described in Sec. 3.2.3 to each quadrature of the field ensembles. Re-
alistic parameters for a nonlinear fiber are used, and table 3.1 shows the
parameters used for all simulations in this section; the fiber nonlinearity
n2/(cAeff) = 8.223 × 10−3 ps/(W km) corresponds to a nonlinear coef-
ficient of 10 (W km)−1 at the pump frequency; the signal wavelength
is chosen to fulfill optimal phase matching, ∆β = −2ηp, and the signal
input power is −20 dBm, which is so low that any pump depletion ef-
fects due to FWM is avoided. This phase matching condition has two
solutions (S and AS) for the signal wavelength but in the absence of
Raman scattering they give identical results so the solution on the AS
side is chosen.

Figure 3.5(a) shows the PIA gain GPIA (blue) and NF (red) vs.
position in the fiber z for two different losses, α = 1 db/km and α = 5
dB/km; recall that the quantum induced NF of a PIA is 3 dB in the high
gain limit. The gain of the low loss simulation (dots) is 8 dB higher at
z = 500 m than the high loss simulation (empty circles), which is due to
the high loss reducing the pump powers. From expanding the analytic
solution Eq. (3.31) one finds GPIA − 1 ∝ (PpL)2, which means the fiber
loss has more than a linear effect on the gain. The two corresponding NF
curves (stars and empty squares), however, are only ∼ 0.4 dB different
so even a large loss of 5 dB/km does not induce a significant NF in
a relatively short PIA; this is because the loss only impacts the NF
linearly.

In Fig. 3.5(b), the loss coefficient is varied to find out how much
larger losses affect the NF; two different signal wavelengths are sim-
ulated to investigate if the former conclusion only holds for optimal
phase matching. The gain of the optimally phase matched curve at
λs
∼= λp − 17 nm (blue dots) is naturally higher than that of the slightly

Symbol Value

Fiber length L 500 m

Fiber nonlinearity n2/(cAeff) 8.223 × 10−3 ps/(W km)

ZDW λ0 1559 nm

Dispersion slope S 0.03 ps/(nm2 km)

Pump wavelength λp 1561 nm

Pump power Pp 0.7 W

Table 3.1: Nonlinear fiber parameter values used in this section for
degenerate PA; ZDW, zero-dispersion wavelength.
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Fig. 3.5: (a) PIA gain and NF vs. position in fiber for two different
loss coefficients; the difference in gain is 8 dB but the difference in
induced NF is only ∼ 0.4 dB; (b) PIA gain and NF vs. loss coefficient
for two signal wavelengths with different phase matching.

phase mismatched curve at λs = λp − 5 nm (blue empty circles), but
they decay off to negative gain values more similarly; in fact, the curves
are crossing at α ≈ 10 dB/km, which is most likely due to the nonlinear
phase modulation also being affected by the loss.

Like in Fig. 3.5(a), the NFs in Fig. 3.5(b) are not affected by low
losses (NF = 3 dB), and they are affected less by the increasing loss
that the gain; but above α ≈ 5–10 dB/km the NFs increase because
the losses become so high that the signal and idler essentially do not
experience any gain. Hence, the signal should have a NF going towards
the loss like any passive device, which is seen as the steep increase in Fig.
3.5(b). Most notably, the NFs of the two cases of phase matching are
very equal as long as the loss is small. After the NF starts to increase
a difference of up to 1 dB is observed. In conclusion, realistic values of
the loss coefficient in nonlinear silica fibers have only a minor effect on
the parametric gain and no observable effect on the NF.

3.3.3 Effect of Raman scattering

Stimulated and spontaneous Raman scattering are important to consider
when doing FWM; especially in silica because of its broad (∼ 20 THz)
and strong (Raman fraction of the third order susceptibility fR = 0.18)
Raman response. In this section, the Raman contribution to the gain
and NF of MI operated as a PIA of Fig. 3.1(a) is simulated. In the
same fashion as in the previous section, Eqs. (2.55) and (2.58)–(2.59)
are solved numerically for three field ensembles now including Raman
scattering and Raman fluctuations are added in every step. To isolate
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Fig. 3.6: (a) PIA gain and (b) NF spectra with and without Raman
scatteing; parameters taken from Tab. 3.1.

the effect of Raman scattering, fiber loss is disregarded. Simulation
parameters are taken from Tab. 3.1.

The phase matching of the PIA and both stimulated and spontaneous
Raman scattering depend on the signal wavelength shift from the pump
so to understand their interaction, gain and NF spectra are plotted. Fig-
ure 3.6(a) shows the PIA gain with and without Raman scattering in a
fiber of the parameters shown in Tab. 3.1. The analytic curve is a plot
of Eq. (3.31). The effect of Raman scattering is a slightly asymmetric
gain spectrum where the parametric gain is increased/decreased on the
S/AS side by up to 2 dB with these parameters. The wider the band-
width of phase matching is, the larger the effect of Raman scattering
becomes (until a signal–pump shift of ∼ 13 THz, which is a very large
shift for FWM applications in single-mode fibers).

Figure 3.6(b) shows the NF spectrum corresponding to the gain spec-
trum in Fig. 3.6(a) with and without Raman scattering. Without Ra-
man scattering (dots) the simulated NF agrees very well with the an-
alytic quantum NF of Eq. (3.1), which confirms that a semi-classical
model like the one used here can predict the quantum noise properties
of PP accurately. Including Raman scattering induces an asymmetric
NF, which remarkably is lower on the S side where more Raman noise
is present, which is in accordance with earlier measurements [89]. The
asymmetry of the Raman-induced NF is expected since the rate of spon-
taneous Raman scattering is asymmetric as shown in Fig. 3.3. However,
to understand why the NF is largest on the AS side one must appreciate
why a NF is induced by the PIA in the first place: as stated in Ref. [30]
the SNR of the signal is degraded because of coupling to the vacuum
fluctuations present in the idler. In classical terms, this coupling can be
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viewed as the PIA operating as a semi-PSA because inputs are now in
principle present in all of pump, signal, and idler; the vacuum fluctu-
ations in the idler have a small amplitude and a random phase which
makes the gain slightly random; hence, the variance of the output signal
is a factor 2 larger than if no vacuum fluctuations were present in the
idler, thus giving a NF of 3 dB.

The larger NF on the AS side can thus be explained by a larger
amount of spontaneous Raman scattering going into the idler on the S
side. The larger random fluctuations in the idler in the first meters of
the fiber leads to a more random gain in the signal and hence a larger
output power variance. The observed asymmetric Raman-induced NF
is thus a combined Raman and FWM effect.

The local increase in the NF around the pump does not agree with
existing results from quantum models [28, 31] in which the Raman con-
tribution to the NF is vanishing near the pump. There is, however, an
explanation why the local increase exists: the input signal has a circular
shaped ensemble of a certain size in phase space, being a coherent state,
and when it is amplified by the PIA the ensemble is moved to a larger am-
plitude while at the same time blown up; this is a simple consequence of
the process being phase-insensitive. The amplified ensemble has a larger
variance than the input ensemble so adding a Raman fluctuation of a
certain variance has a smaller effect than adding the fluctuation to the
input ensemble. Since the signal is phase matched differently at different
wavelengths and thus increases in amplitude and variance with different
rates through the fiber, adding the same amount of Raman fluctuations
through the fiber has different impacts; if the PIA is phase matched, the
signal ensemble is amplified within a short distance in the fiber and the
distributed addition of Raman fluctuations has only a significant impact
within that distance. If the PIA is not optimally phase matched, which
is the case close to the pump, the signal ensemble is amplified through
a longer distance in the fiber and more Raman fluctuations are thus
added. At the time of writing, the author of this thesis does not know
the reason why the quantum models do not show the increase in NF
around the pump.

The higher peaks on the edges of the NF spectrum are due to poor
phase matching in the PIA for which Raman scattering naturally has a
more pronounced effect.

3.3.4 Phase-sensitive operation

A special characteristic of PP is that they can operate phase-sensitively
[24, 82]; if all four fields participating in the FWM are present at the
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input, the transfer of energy between pumps and side bands depends
on the relative phases of the fields. This property makes it possible
to control the gain of the amplifier by varying the input phases [24]
thus realizing a PSA. In terms Fig. 3.1, the (a) and (c)–(f) are PS if
both signal and idler are present at input; (b) is signal-degenerate and
therefore always phase sensitive. PSAs have been predicted to have a
0-dB NF when the relative phase is such that maximum gain is achieved
[82].

PSAs are more difficult to analyze numerically but Tong et al. [82]
have calculated the PSA NF using a semi-classical approach and assum-
ing that the FWM process is phase matched and that the relative phase
of the pump, signal and idler is θ = 2φp − φs − φi = −π/2, so

NFPSA(z) =
(Ps,0 + Pi,0)

(Ps + Pi)2
·
[(√

GPs +
√

(G− 1)Pi

)2

+
(√

GPISPi +
√

(GPIA − 1)Ps

)2
]
.

(3.36)

This NF is based on the SNR being defined for combined signal and
idler inputs, i.e. [81]

SNR =
〈|Aens,s|2 + |Aens,i|2〉2

Var(|Aens,s|2 + |Aens,i|2)
. (3.37)

Note that in the case of equal signal and idler input powers, the PS NF
reduces to 1 (0 dB) independent of the gain. A PSA is simulated here
by solving Eqs. (2.55) and (2.58)–(2.59) for MI of Fig. 3.1 but this time
preparing an ensemble for the idler at input with the same amplitude
as the signal; the relative phases of the input waves are chosen such
that θ = −π/2. Loss is disregarded to isolate the effect of Raman
scattering. Fluctuations of spontaneous Raman scattering are added
during propagation. The parameters used are the same as in the previous
section of the PIA.

Figure 3.7 shows the PS gain and NF spectra with and without
Raman scattering for the same parameters as used in Fig. 3.6; the PI
analytic gain and NF are also shown for reference. At the wavelength
shifts of optimal phase matching, ∆β = −2ηp (maximum gain), the
simulations of gain and NF agree well with the analytic predictions of Eq.
(3.34) and Eq. (3.36), respectively. In the high gain limit the gain of the
PSA is 4× the gain of the PIA as expected from Eq. (3.34). Stimulated
Raman scattering causes an asymmetric gain spectrum similar to the
PIA but the NF is now symmetric around the pump. This latter feature
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Fig. 3.7: (a) PSA gain and (b) NF spectra with and without Raman
scatteing; parameters taken from Tab. 3.1.

is no surprise since the evaluation of the SNR, Eq. (3.37), is symmetric
in signal and idler.

It is notable that besides the NF being zero at the point of optimal
phase matching, which only allows for one channel to be amplified, the
PS NF is below the 3-dB limit of the PIA at all other wavelengths inside
the gain spectrum as well; including Raman scattering only increases the
PS NF above the 3-dB limit very close to pump.

3.3.5 Quantum fluctuations in pump depletion

One characteristic common for all quantum models of quantum noise
is that they fail to describe the depleted pump regime. This is due to
the difficulties of solving the quantum version of the complete set of
coupled equations that describe FWM; the pumps are always assumed
to be classical and of constant amplitude. In the classical equations used
in this semi-classical model, however, pump depletion is an integral part
that is included in the numerical solution.

To explore the depleted pump regime a PIA with parameters from
Tab. 3.1 is simulated in the same manner as above, only the signal input
power is changed to 0 dBm and the fiber length is increased to L = 1000
m; Raman scattering and loss are omitted. Figure 3.8(a) shows the
power of the pump (blue), signal (red), and idler (green) through the
fiber; the signal wavelength was chosen to fulfill optimal phase match-
ing in terms of maximum undepleted gain, but as is clearly visible in
Fig. 3.8(a) maximum gain before depletion does not mean maximum
achievable gain in depletion. The phase matching condition for full con-
version from pump to signal and idler must be found by analytically
studying the set of equations (2.55) and (2.58)–(2.59) without making
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the undepleted pump approximation.
The NF of the signal is plotted in Fig. 3.9(a) vs. position in the

fiber; the PIA gain is included for reference: in the linear gain regime,
the NF is 3 dB as expected but as the pump start to deplete the NF
drops to large negative values. After the signal and idler starts giving
back to the pump the NF returns to 3 dB. The explanation for the dras-
tic decrease in NF is found in Fig. 3.9(b) where constellation diagrams
of the signal are shown; (i) in the linear gain regime, (ii) and (iv) in inter-
mediate positions around maximum depletion, and (iii) at the point of
maximum depletion; the black dotted lines point toward the origo of the
phase spaces. The mechanism behind the decreasing NF is amplitude
squeezing of the signal ensemble when pump depletion is approached.
Notice however that as the signal enters the depleted regime after being
amplified, its fluctuations are much larger than those of vacuum. There-
fore, the squeezed states shown in diagrams ii)-iv) do not show quantum
squeezing in which the fluctuations of one quadrature are smaller than
the vacuum fluctuations at the cost of larger fluctuations in the other
quadrature. The results of Fig. 3.9 of the semi-classical model are al-
ready known as the concept of amplitude regeneration of optical signals;
in gain-saturated parametric amplifiers it has been demonstrated several
times [90–93].

It was verified in Ref. [72] that Raman scattering has no significant
effect on the results above before and specifically at the point of maxi-
mum; after this point, however, the S and AS sides of the pump behave
very different. It was further shown in [72] that also the pump ensem-
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Fig. 3.9: (a) Gain and NF vs. position in fiber in a PIA operated
in the depleted pump regime; (b) constellation diagrams of the signal
ensemble at the designated points (i)–(iv); the black dottes lines point
toward the origo of the phase spaces

ble changes shape and gets squeezed when the regime of depletion is
engaged.

3.4 Parametric frequency conversion

As explained above, BS is a noise-less process that enables frequency
conversion of quantum states. However, other physical effects are present
in silica fibers, which distort the performance of BS. In this section, the
impacts of fiber loss and Raman scattering on BS is simulated. Both
nearby and distant BS was shown in Fig. 3.1 but in this section only
nearby BS is investigated. Figure 3.10 shows the two possible cases of
nearby BS, one where the signal and idler are on the S side of the pumps,
case (i), and one where the signal and idler are on the AS side of the
pumps, case (ii). Cases (i) and (ii) have the same FWM properties but
different Raman interaction. The parameters δ and ∆ are the frequency
separations between the signal and idler (and between the two pumps)
and the separation between the zero dispersion frequency ω0 and the
closet wave component on either side, respectively. The symmetry ωs −
ω0 = ω0 − ωq ≡ ∆ is implied.

3.4.1 Propagation equations and analytic solutions

In Sec. 2.4 in Ch. 2, the propagation equations for MI were derived.
Using the same approach but instead considering the energy conserva-
tion ωp + ωs = ωq + ωi valid for BS as shown in Fig. 3.1(e)–(f), the
propagation equations for the electric field amplitude at frequency ωn
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Fig. 3.10: Wave configurations of the two BS processes investigated
in Sec. 3.4; (i) and (ii) have the same FWM properties but different
Raman interactions.

becomes

∂zEp = iγp


|Ep|2Ep + (2− fR)


 ∑

k=s,q,i

|Ek|2

Ep

+2(1− fR)EqEiE
∗
s ei∆βz + fREp


 ∑

k=s,q,i

|Ek|2h̃R(Ωkp)




 ,

(3.38)

∂zEs = iγs


|Es|2Es + (2− fR)


 ∑

k=p,q,i

|Ek|2

Es

+2(1− fR)EqEiE
∗
pei∆βz + fREs


 ∑

k=p,q,i

|Ek|2h̃R(Ωks)




 ,

(3.39)

∂zEq = iγq


|Eq|2Eq + (2− fR)


 ∑

k=p,s,i

|Ek|2

Eq

+2(1− fR)EsEpE
∗
i e−i∆βz + fREq


 ∑

k=p,s,i

|Ek|2h̃R(Ωkq)




 ,

(3.40)

∂zEi = iγi


|Ei|2Ei + (2− fR)


 ∑

k=p,s,q

|Ek|2

Ei

+2(1− fR)EsEpE
∗
qe−i∆βz + fREi


 ∑

k=p,s,q

|Ek|2h̃R(Ωki)




 .

(3.41)
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If only the FWM terms is considered, it is instructive to express the CE
in terms of the phase mismatch. It is assumed the two strong pumps to
have constant amplitudes such that

Ep(z) =
√
Pp exp(iγp[Pp + (2− fR)Pq]z), (3.42)

Eq(z) =
√
Pq exp(iγq[Pq + (2− fR)Pp]z), (3.43)

where Pp and Pq are the constant pump powers and γj = n2ωj/(cAeff).
By solving the resulting equations for the signal and idler, neglecting
loss and Raman scattering, one easily finds

CE(z) =
|Ei(z)|2
|Es(0)|2 =

η2
i

(κ/2)2 + ηiηs
sin2(gz) (3.44)

where ηj = 2(1 − fR)γj
√
PpPq is the effective nonlinear strength, g2 =

ηiηs + (κ/2)2 is the phase-mismatched conversion coefficient, and κ =
∆β + (1 − fR)(γp + γq)(Pq − Pp) − (1 − fR)(γiPq − γsPp). The phase
mismatch, ∆β, can be expressed in terms of δ and ∆ as

∆β ≈ −β4

12
δ(2∆ + δ)

(
2∆2 + 2∆δ + δ2

)
. (3.45)

where β4 is the fourth order dispersion; all odd ordered dispersion terms
fall away due to the symmetry of the BS configurations (i) and (ii).
Maximum conversion from signal to idler is achieved for κ = 0, which
gives CE = ηi/ηs, which further is the same as full conversion in photon
numbers. This condition can be met experimentally by adjusting the
difference in pump powers to counter-balance the phase mismatch if
the values of δ and ∆ are not too large relative to the fourth-order
dispersion. Alternatively, a broad bandwidth of phase matching can
be achieved through dispersion engineering, as demonstrated recently
in a dispersion shifted fiber [54], or special phase matching properties
across small [94] or large [62] bandwidths can be achieved using higher
order modes. If κ ≈ 0 is valid, one may derive an approximate analytic
expression for the CE, where Raman scattering and loss are included.
By assuming no energy exchange among the pumps, disregarding the
effect of loss on the phase modulation terms in the pump equations, and
neglecting the Raman interaction between the signal and idler, the CE
becomes (after some calculations)

CE =
|Ei(z)|2
|Es(0)|2 =

η2
i

µ2
exp [(fs + fi)zeff ] exp(−αz) sin2 (µzeff) (3.46)

≈ η2
i

µ2
exp [(fs + fi − α)z] sin2(µz), (3.47)
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Fig. 3.11: (a) CE va. position in fiber of BS for perfect phase match-
ing; (b) corresponding NF. Parameters are seen in Tab. 3.2.

where µ2 = ηiηs−(fi−fs)
2/4 is the phase matched conversion coefficient,

zeff = (1 − exp[−αz])/α is the effective position in the fiber, and fi =
iγifR(h̃R(Ωpi)Pp + h̃R(Ωqi)Pq) and fs = iγsfR(h̃R(Ωps)Pp + h̃R(Ωqs)Pq)
are the Raman contributions to the signal and idler, respectively. In
expression (3.47), it was assumed that αz � 1.

3.4.2 Quantum fluctuations—conservation of statistics

As another validation of the semi-classical model of this thesis, the noise
properties of BS are simulated without any distorting effects. Equations
(3.38)–(3.41) are solved numerically with field ensembles for p, s, and
q as input like described in the previous section but no fluctuations are
added; loss and Raman scattering are disregarded. Phase matching is
forced numerically by setting β4 = 0 and having equal pump powers
so κ ≈ 0 is valid; hence, the performance of BS does not depend on
which frequency configuration (i) or (ii) (or any other BS configuration)
is considered.

Figure 3.11 shows the analytic and simulated CE (a) and NF (b) of
BS. The CE oscillates between 0 and (approximately) 1, meaning that
light is transferred efficiently between signal and idler. At the same
time the same amount of light is transferred between the pumps. The
NF oscillates in phase with the CE between infinity and 0. The fact
that the NF becomes zero at every full conversion is a signature of the
noise-less conversion property of BS. The simulated CE agrees well with
the analytic result of Eq. (3.44), and the simulated NF equally well
with the quantum result of Eq. (3.2); hence, it is again confirmed that
the present semi-classical model can predict quantum noise properties
of fiber PP. The parameters used in this section are seen in Tab. 3.2.
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Symbol Value

Fiber length L 4 km

Fiber nonlinearity n2/(cAeff) 8.223 × 10−3 ps/(W km)

Frequency shift ∆/2π 1 THz

Frequency shift δ/2π 1 THz

4th order dispersion β4 0 ps4/km

Pump p power Pp 0.2 W

Pump q power Pq 0.2 W

Temperature T 300 K

Table 3.2: Nonlinear fiber parameter values used in this section for
BS.

3.4.3 Effect of fiber loss

As explained above, fiber loss couples the propagating field to the vac-
uum state, which not only results in a reduction of the average number
of photons but also an addition of fluctuations from the vacuum state.
In the context of realizing quantum state preserving frequency conver-
sion, it is of interest to investigate how fiber loss affects the performance
of BS, so Raman scattering is excluded and it is assumed that κ ≈ 0 by
one of the approaches discussed above.

Figure 3.12 shows the results of a simulation of the set of Eqs. (3.38)–
(3.41) and the addition of fluctuations during propagation with α =
1 dB/km for all wave components, which implies that the results do
not depend on which case (i) or (ii) is considered and only slightly on
the values of δ and ∆ through the frequency dependence of γj for j ∈
{p, q, s, i}, which is usually neglected [56]. The CE vs. position in the
fiber is plotted in Fig. 3.12(a) (blue dots) together with the analytic
result of Eq. (3.46) (solid black), where excellent agreement is found.
The red-dashed line compares the simulated CE to the approximation of
Eq. (3.47), which gives the same as if losses on the pumps are neglected
entirely; for small αz the approximation is seen to be reasonable. The
importance of the solid-red line, the loss factor, is seen in Fig. 3.12(b) in
which the loss-induced NF is plotted: the blue dots show the simulated
NF vs. position in the fiber where each local minimum corresponds to
maximum CE in Fig. 3.12(a). The solid-red line thus marks a loss-
induced noise floor that equals exp(αz). However, increasing the pump
powers gives a shorter conversion distance since the conversion coefficient
is µ2 = ηiηs ∝ PpPq, thus the accumulated signal and idler losses become
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Fig. 3.12: (a) CE vs. fiber length with optimal phase matching and
without Raman scattering. The red lines visually illustrate the effects
of loss on the CE. (b) The same for the conversion NF. Parameters are
seen in Tab. 3.2.

smaller.
To investigate how the loss-induced noise couples between the signal,

the idler, and the two pumps, the loss coefficient is set to zero at the
different components in turn and repeat the simulation above (not shown
graphically). If the losses of the signal and idler are excluded while
keeping the losses of both pumps, the CE oscillates between 0 and 1 as
if no loss was present, but the oscillation is still slowed by the loss in the
pumps. The NF follows the CE, thus oscillating between infinity and 0.
Hence, the loss-induced fluctuations in the pumps do not couple to the
signal and idler. Turning on the loss in either of the signal or idler gives
indistinguishable results, the characteristics of which are intermediate
between turning the losses on or off in both. Consequently, the loss-
induced fluctuations in the signal couple to the idler. If only the losses
of the pumps are excluded, the slowing of the CE and NF oscillation
disappears and the solution of Eq. (3.47) is very accurate, but the NF
observed in Fig. 3.12(b) is not decreased, which confirms that no pump
fluctuations were coupled to the signal and idler through FWM.

3.4.4 Effect of Raman scattering

SRS and FWM have a complicated interplay because they depend differ-
ently on the frequency shifts ∆ and δ: FWM requires phase matching,
while SRS, which is anti-symmetric around the pumps, has a compli-
cated material response in the frequency domain; furthermore, SpRS is
asymmetric around the pumps. To isolate the effects of SRS and SpRS
in the FWM process, loss is disregarded henceforth and it is assumed
again that κ ≈ 0.
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Fig. 3.13: (a) CE vs. fiber length for case (i) (top) and (ii) (bottom);
both simulation (dotted blue) and analytic result (3.46) are shown;
the legend applies to both plots, and the thick red line is the Raman
amplification term. (ii) The same for the NF; the analytic Raman NF
(solid black) is Eq. (3.48) and Eq. (3.49) for the top and bottom plots,
respectively; the dashed green line is the Raman NF at 0 K. Parameters
are seen in Tab. 3.2.

Figure 3.13 shows the results of solving Eqs. (3.38)–(3.41) and
adding Raman fluctuations at T = 300 K during propagation in cases
(i) (top) and (ii) (bottom); Fig. 3.13(a) shows the CE vs. position in
the fiber, and the simulated (dotted blue) and the analytic (solid black)
results agree very well. After ∼ 2 km the two curves start differing sig-
nificantly because no energy exchange among the pumps was assumed
in the analytic expression. The actual energy exchange between the
pumps in form of Raman scattering taking place in the simulation has
two impacts on the conversion efficiency due to SRS transferring energy
to the lowest frequency pump, which is p in these cases: firstly, the dif-
ference in pump power causes a phase mismatch cf. the definition of κ;
secondly, the conversion coefficient µ2 ≈ ηiηi ∝ PpPq becomes smaller
because the product of two functions that have a constant sum is largest
when values of the functions are equal.

In case (i), where the signal and idler are on the S side of the pumps,
the CE grows through the fiber, essentially experiencing Raman ampli-
fication. That is, a CE higher than unity means that the signal and
idler have been amplified by SRS to a higher output than the signal
input. The red curve denotes the Raman amplification term. The NF
oscillates in phase with the CE, but the lowest achievable point increases
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according to the S side Raman-induced NF (calculated in Appendix A.1)

NFS =
1

G
+

2[G− 1](nT(Ωpi) + 1)

G
, (3.48)

where G = exp[gpi
R (Pp +Pq)z] is the mean Raman gain of the signal and

idler from the two pumps as explained in the Appendix. The dashed
green line of Fig. 3.13(b) (top plot) marks the Raman-induced NF at 0
K, so the region between that curve and the solid black curve is the NF
induced by the existence of thermally excited phonons.

In case (b), where the signal and idler are on the AS side of the
pumps, the CE drops exponentially off because energy flows towards the
pumps through SRS. The NF on the AS side is different from that on the
S side for two reasons: firstly, since the AS process requires the presence
of phonons, AS SpRS cannot occur at 0 K (as discussed above), and
secondly, Raman depletion removes photons from a wave component so
the SNR must change accordingly (much like the effect of losses). Hence,
the AS Raman-induced NF is (also calculated in Appendix A.1)

NFAS =
1

L
+

2[1− L]nT(Ωip)

L
, (3.49)

where L = exp[−gip
R (Pp + Pq)z]. The dashed green line of Fig. 3.13(b)

(bottom plot) represents the minimum Raman NF of the AS side as
caused by Raman depletion, and the region between that curve and the
analytic curve is the entire SpRS contribution.

Having established that Eq. (3.46) is a good description of phase
matched BS in the presence of loss and Raman scattering and that the
S and AS NFs of Eqs. (3.48) and (3.49) accurately predicts the NF of
BS at the points of optimal conversion, these analytic expressions are
used to analyze the frequency and temperature dependencies of the BS
CE and NF. Figure 3.14(a) and (b) shows the CE of Eq. (3.46) vs.
∆ of cases (i) and (ii) of Fig. 3.10, respectively, at the fiber length
of the first optimal conversion point, L = π/(2µ); κ was assumed to
be zero and the other parameters were taken from Tab. 3.2 (except
the temperature T , the frequency shift ∆, and the fiber length L). In
Fig. 3.14(a) and (b), the CE is in both cases essentially showing the
signal and idler average Raman amplification (a) and depletion (b) that
they receive from the two pumps; for these realistic parameter values,
stimulated Raman scattering is a significant effect (in both cases up to a
factor ×2.5) that must be taken into account in silica fibers. Note that
the frequency separation between the pump and the side band that are
closest together is 2∆.
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Fig. 3.14: (a) and (b) CE of Eq. (3.46) of cases (i) and (ii) of Fig. 3.10,
respectively; (c) and (d) NFs of Eqs. (3.48) and (3.49), respectively,
color scales are in dB.

Figure 3.14(c) and (d) show the NF of cases (i) and (ii), respectively,
i.e. Eqs. (3.48) and (3.49) vs. ∆ and the temperature, T ; the color
scalings on the two plots are equal. On the S side of the pumps, case
(a), the NF does not vary much with neither ∆ nor T ; for low T and low
∆ (lower left corner) the NF takes values around 1 dB, for T ∼ 300 K
and small ∆ (upper left corner) the NF takes values around 1.9 dB, and
for high ∆ the NF is approximately 1.7 dB for all T (right side). This
behavior is expected from the explanation of the rates of SpRS in Fig.
3.3: the rate of SpRS does not converge to 0 with decreasing temperature
but towards the Raman gain coefficient, and even for ∆→ 0 one of the
side bands is still separated δ and 2δ from the two pumps, respectively,
thus receiving SpRS from them.

On the AS side of the pumps, on the other hand, the NF depends
much more on both ∆ and T . For low T , the rate of SpRS is zero and
the induced NF is only due to Raman depletion; even for ∆ → 0, the
signal and idler are depleted slightly by the furthest separated pump.
For higher T , Raman depletion still increases with ∆ but the rate of
SpRS decreases with ∆ so a trade-off resulting in a local minimum in
NF around ∆ = 2 THz is observed. In the minimum at T = 300 K,
the NF is approximately 2.6 dB. Given these numbers, the S side seems
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advantageous with lower NF but an important note on the difference
in origin between the S and AS NFs should be taken. The S NF is
solely induced by SpRS, which increases the power variance of a signal
ensemble due to the random phase of the spontaneous decay; the AS NF
is composed of both SpRS and the effect of Raman depletion. The rate
of SpRS is always smallest on the AS side so the power variance increases
less there and in the total NF of 2.6 dB at 300 K in Fig. 3.14(d), SpRS is
only responsible for 1.4 dB of the total NF. This number is found using
Eq. (3.49) by setting nT = 0 and recognizing the remaining part as the
Raman depletion contribution, and then subtracting that number from
the total NF.

Specific, realistic parameters where chosen in all simulations con-
ducted in this chapter but it has been verified in subsequent simulations
that the presented results do not change notably by changing the γj and
the pump powers by an order of magnitude. Changing δ significantly
naturally leads to a different Raman interaction, especially between the
pump and the side bands that are separated the most.

3.5 Partial conclusion

In this chapter, the quantum noise properties of parametric amplification
using degenerate four-wave mixing and parametric frequency conversion
in form of Bragg scattering in silica fibers were investigated. A versatile
semi-classical model that accounts for all of four-wave mixing, Raman
scattering, fiber loss, and dispersion, which no quantum model to the
knowledge of the author does, was presented and it was demonstrated to
a great extend that the semi-classical model agrees with existing quan-
tum models.

It was demonstrated that while loss plays a minor role for phase in-
sensitive parametric amplifiers, Raman scattering has an important im-
pact on the noise properties. An asymmetric noise figure spectrum was
predicted and it was explained why the spectrum is reverse asymmetric
compared to what might be expected from the asymmetry of sponta-
neous Raman scattering. An increased NF around degenerate pump was
observed which is not predicted by quantum approaches. In the depleted
pump regime, the semi-classical model predicts amplitude regeneration
of the signal ensemble even in the presence of Raman scattering. The
special noise properties of phase-sensitive parametric amplification was
also investigated and it was shown that even in the presence of Raman
scattering, phase-sensitive amplification still has a < 3 dB noise figure,
which is the lower quantum limit of phase-insensitive amplifiers.
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For Bragg scattering, it was shown that loss in the signal and idler
reduces the conversion efficiency and induces a noise floor equal to the
common loss factor, and that loss in the pumps reduces the angular
velocity of the energy oscillation between the signal and idler. Further
elaboration showed that the pump losses do not induce a noise figure in
the signal and idler; on the other hand, loss in either of the signal and
idler induces a noise figure in the other component.

Both stimulated and spontaneous Raman scattering were shown to
have a significant impact on the frequency conversion of Bragg scat-
tering: stimulated Raman scattering affects the conversion efficiency as
one would expect from Raman amplifiers, the higher wavelength com-
ponents receive energy from the lower wavelength components. SpRS,
which is asymmetric around the pumps, induces a noise figure of 1.7–1.9
dB on the Stokes side of the pumps, case (i) of Fig. 3.10, for one full
conversion from signal to idler at room temperature; on the anti-Stokes
sides of the pumps, case (ii), a total noise figure of 2.6 dB to > 3.5 dB
is predicted for the same conditions. Lowering the temperature reduces
SpRS on the Stokes side of the pumps but does not remove it; on the
anti-Stokes side, SpRS is removed completely when lowering the tem-
perature but the effect of Raman depletion is still present. Thus, the
theoretical predictions confirm that the presence of Raman scattering in
silica fiber-based four-wave mixing in form of Bragg scattering contami-
nates the quantum noise-less frequency conversion to a significant degree
that is comparable to the 3-dB noise figure induced by amplifiers such
as parametric amplifiers, Raman and Erbium-doped fiber amplifiers.
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Chapter 4

Linear mode coupling and
mode dependent gain in
few-mode Raman fiber
amplifiers

Individual spatial modes in few-mode fibers (FMF) have been shown
to hold great promise as a means to enhance the capacity in an opti-
cal communication system since they form a basis in a space division
multiplexed (SDM) communication system. Each individual mode is
ideally orthogonal to all other modes and capable of carrying informa-
tion. However, one challenge in such systems is optical amplification.
An amplifier in an SDM system must preferably be able to amplify indi-
vidual modes with the same gain and with the same noise performance
in all modes and at multiple wavelengths at the same time. This chap-
ter deals with two aspects of Raman fiber amplifiers that are introduced
along with the presence of multiple propagation modes: the distortion
of unwanted linear mode coupling and the challenge of achieving equal
gain in all modes. The first is investigated theoretically by stochastic
modeling in forward pumped distributed Raman fiber amplifiers; for the
second task, an experimental framework for measuring the Raman inten-
sity overlaps in a fiber is presented and it is shown how this data is used
for achieving record low mode-dependent gain (MDG) in a backward
pumped distributed Raman fiber amplifier.

This chapter is based on Refs. [95–97]
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4.1 Review of recent work on multi-mode Ra-
man fiber amplifiers

Recent SDM transmission system experiments have included discrete
few-moded Erbium-doped fiber amplifiers (EDFAs) and distributed Ra-
man fiber amplifiers. In 2012, N. Bai et al. investigated in [98] a few-
moded EDFA that supported three spatial modes, LP01, LP11a and
LP11b. Here and in the following, the notion of LP modes refer to scalar
linearly polarized modes as they exist in weakly guiding stepindex op-
tical fibers [61]. The amplifier was used to boost the signal just before
the input of the receiver. The impact of using different spatial pump
modes was considered and the MDG, i.e. the difference in gain between
the LP01 and the LP11a and LP11b modes across the entire C-band,
was shown to be 1 dB when the pump power was in the LP21 mode
for an average modal gain of ∼ 7 dB. V.A.J.M Sleiffer et al. demon-
strated in [99] the use of an in-line few-moded EDFA, providing gain for
the spatial modes: LP01, LP11a and LP11b. The amplifier provided a
modal gain of around 17 dB across the full C-band with a MDG close
to 2 dB.

R. Ryf and co-workers demonstrated in 2011 [49] the use of dis-
tributed Raman amplification to counteract loss in a 137 km long FMF.
The signals were situated in both the LP01-mode and the LP11-mode
while the pump was launched only into the LP11-mode. The Raman
fiber amplifier used in their experiment provided a maximum gain of
about 8 dB in the wavelength range from 1550 nm to 1570 nm with a
variation in gain between modes of less than 0.5 dB. In 2012, R. Ryf
and et al. [52] showed a transmission through a 209 km long FMF us-
ing distributed Raman gain to counterbalance intrinsic fiber loss. The
signal consisted of polarization multiplexing of the three spatial modes
LP01, LP11a and LP11b. The backward pumped distributed Raman
fiber amplifier provided around 10 dB of gain at 1550 nm, obtained by
using 800 mW of pump power coupled into the LP11 mode.

As already pointed out, one challenge in using optical FMF ampli-
fiers is the MDG. In discrete Erbium-doped fiber amplifiers, Q. Kang et
al. [100] have proposed a fiber design that has enabled a 6 mode group
amplifier providing a gain around 25 dB for all 6 modes with a maximum
gain difference among the 6 modes of only 0.6 dB. R. Ryf et al. ana-
lyzed MDG theoretically in a distributed Raman fiber amplifier in [101].
Among four mode groups a MDG of 0.13 dB, for a Raman gain of 10
dB on each signal mode group, was predicted. To achieve this result,
the pump power was distributed among two different mode groups.
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The task of minimizing the difference in gain among different signal
modes at different signal wavelengths is a challenging problem. The so-
lution is either to optimize the fiber design for minimum MDG [102] or
to adjust the configuration of the pump at the amplifier input; for exam-
ple distributing the pump power among different wavelengths or spatial
modes. For the latter solution, a numerical approach to optimizing the
pump power distribution in different spatial modes has been proposed
by J. Zhou in [51], and an experimental approach has been proposed by
Christensen et al. where a minimum MDG of 0.25 dB per 10 dB gain
was demonstrated [97].

In analogy to the MDG, the noise performance of few-mode ampli-
fiers is also mode dependent. However, evaluating the gain and noise per-
formance is further complicated since the power distribution within indi-
vidual modes, be it signal or pump modes, may shift during propagation.
This linear and distributed mode coupling is not caused by the amplify-
ing mechanism but for example due to small perturbations in the fiber,
splices between fiber segments, or due to the fact that scalar LP modes,
as is considered in the following, are composed of several spatial and po-
larization degenerate modes that couple strongly to each other during
propagation. Thus, mode coupling exist in space division multiplexed
systems even without amplification. This type of coupling is determin-
istic in nature and may be mitigated by using MIMO techniques [103].
However, the complexity of using MIMO scales quadratically with the
number of modes and even though the impact of mode coupling may be
mitigated, mode coupling still results in a transmission penalty [104].
Consequently low linear mode coupling is desirable [104–106].

Another class of mode coupling is random linear mode coupling
(RLMC) that happens because of stochastic perturbations along the
fiber, as for example stochastic mechanical perturbations or tempera-
ture perturbations; the impact of RLMC in a single amplifier is a new
noise source introduced in multi-mode systems. RLMC cannot be miti-
gated by MIMO and its impact is enhanced in amplifiers as for example
a Raman fiber amplifier [107]. The reason for this is that in a system
relying on distributed Raman amplification, the random mode coupling
not only impacts the statistics of the output power of the signal due to
mode dependent loss but even more dramatically, the signal is impacted
by a random distributed mode coupling of the pump power as it couples
between different modes each having a different Raman gain coefficient
to individual modes.

As a means to minimize linear mode coupling, deterministic as well
as random mode coupling, a fiber may be designed with a large separa-
tion between the effective refractive index of each mode. This has been
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investigated by L. Grüner-Nielsen et al. [104] and K. Jespersen et al. [108]
and likewise its impact on the Raman gain [69] by C. Antonelli et al..
It has been demonstrated that the linear mode coupling decreases with
increasing mode index difference, and it has been demonstrated that an
index difference of ∆n = 1.3 · 10−3 result in a linear mode coupling of
−18.2 dB, measured in a 500 m fiber, whereas an index difference of
∆n = 2.8 · 10−3 reduces the linear mode coupling to −25 dB, measured
in a 30 km long fiber [104,108].

4.2 Random linear mode coupling in a two-mode
Raman fiber amplifier

In this section, a model for calculating the induced excess noise of dis-
tributed few-mode Raman fiber amplifiers due to linear mode coupling
in the pump is presented. A scheme with parameters that may be de-
rived from experimental data is presented, and the results are quanti-
fied in terms of mode differential gain and an induced noise figure (NF).
Since deterministic mode coupling in the signal can be well mitigated
by MIMO processing [103], only mode coupling among the pump modes
is included; and because little is usually known about where in the fiber
mode coupling takes place, the pump mode coupling is as a first approx-
imation regarded to be of random nature. Amplified spontaneous emis-
sion is omitted from the investigation for simplicity and should thus be
considered an additional source of noise. The model of linear mode cou-
pling is defined to represent the weak coupling regime where only a small
amount of electromagnetic energy is expected to couple from one pump
mode to another while propagating through the fiber; this is in contrast
to earlier works that focus on the strong coupling regime [109–111].

4.2.1 Theory of inter-modal Raman amplification

Inter-modal stimulated Raman scattering is described using the general
propagation equation Eq. (2.50). The nonlinear induced polarization is
written as [66]

P(3)(r, t) = ε0χ
(3)E(r, t)

∫
R(t− τ)|E(r, t)|2dτ (4.1)

where only one component of the susceptibility tensor χ
(3)
ijkl is included,

i.e. the χ
(3)
iiii ≡ χ(3) where i = x or y and χ(3) is the total susceptibility

(sum of Kerr and Raman susceptibilities). The response function is
R(t) = 3

2fRhR(t) where fR = 0.18 is the Raman fraction of the total
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susceptibility and hR(t) is the normalized time domain Raman response,
which is parameterized as shown in Ref. [70]. The analysis is simplified if

it assumed that all electric fields are linearly polarized such that F
(µ)
n =

F
(µ)
n x̂ where x̂ is a unit vector in the x direction; this simplification is

convenient for communication fibers, which are often weakly guiding.
First inserting the electric field expansions Eqs. (2.37) and (2.38) into
Eq. (4.1) and only collecting terms that oscillate at ωn; then inserting
Eq. (4.1) into the general propagation equations and using that terms
that require phase matching fall out, the final propagation equation
becomes (see Ref. [112] for a similar process)

∂E
(µ)
n

∂z
=
iωnn2fR

c
E(µ)
n

∑

m

∑

ν

f (µ,ν)|E(ν)
m |2h̃R(Ωmn) (4.2)

where n2 = 3χ(3)/(4ε0cn
2
eff) where neff is the effective index of mode µ

at frequency ωn, f (µ,ν) is the nonlinear mode overlap integral defined as
in Ch. 2

f (µ,ν) =

∫
|F (µ)|2|F (ν)|2dxdy∫

|F (µ)|2dxdy
∫
|F (ν)|2dxdy , (4.3)

where the subscript on F(µ) was removed, thus assuming that the field
distribution functions are equal at all wavelengths; since no wave com-
ponents in this work (and for Raman amplifiers in silica in general) are
separated by more than ca. 100 nm, this is a decent approximation. The
function h̃R(Ωmn) [70] is the frequency domain Raman response func-
tion; Ωmn = ωm − ωn is the frequency shift from ωn to ωm. The set of
equations (4.2) are readily converted to power by multiplying with the

complex conjugate modal field amplitude E
(µ)
n

∗
and adding the complex

conjugate of the resulting equation to itself, i.e.

∂P
(µ)
n

∂z
= −α(µ)

n P (µ)
n +

2iωnn2fR
c

P (µ)
n

×
∑

m

∑

ν

f (µ,ν)P (ν)
m Im{h̃R(Ωmn)},

(4.4)

where |E(µ)
n |2 = P

(µ)
n was used. The usual linear loss term with attenu-

ation coefficient α
(µ)
n was added by hand to account for distributed fiber

losses. The two degenerate modes LP11a and LP11b form a mode group,
which makes them more strongly coupled to each other than to modes
outside the mode group. To take this unavoidable mode coupling into
account one may average the Raman terms of the LP11a and LP11b in
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Eq. (4.4) by assuming that through a small piece of fiber, the propagat-
ing light has spent approximately equal time in both modes [69]. Such
an averaging is not necessary in our modeling since an ensemble that
approximately represents the whole LP11 mode space (i.e. all combina-
tions of LP11a and LP11b) is propagated through the fiber; thus, the
average of the ensemble represents the same value that comes out of the
averaged Raman propagation equations of Ref. [69].

4.2.2 Two mode-group system

Several experiments of transmitting data through few-mode fibers have
been conducted [52,113] and distributed Raman amplification has been
used to mitigate fiber attenuation [49]. Based on Eq. (4.4) conditions
for achieving equal modal gain in a system of two mode groups, LP01
and LP11, are derived. As stated above, only one state of polarization
is considered. If a signal s at a single wavelength is amplified by a pump
p at a single wavelength both occupying the three spatial mode in a
loss-less fiber, then in the undepleted pump regime, the solutions for the
signal modes are all on the form

P (µ)
s (z) = P (µ)

s (0)eG
(µ)z, (4.5)

where

G(µ) =
2ωsn2fR

c
Im{h̃R(Ωps}

∑

ν

f (µ,ν)P (ν)
p (4.6)

and P
(µ)
p is the constant power of pump mode µ. Equating the gain of the

LP11a and LP11b modes and using that f (11a,11a) = f (11b,11b) ≡ f (11,11)

one gets

(
f (11,11) − f (11a,11b)

)(
P (11a)

p − P (11a)
p

)
= 0, (4.7)

from which it is immediately concluded that P
(11a)
p = P

(11b)
p since f (11,11)

and f (11a,11b) are rarely similar. Then equating the gains of the LP01 and
LP11a modes, the condition for equal gain in all three modes becomes

P (11a)
p =

f (01,01) − f (01,11)

f (11,11) + f (11a,11b) − 2f (01,11)
P (01)

p (4.8)

where f (01,11a) = f (01,11b) ≡ f (01,11) was used. It follows from this results
that f (11,11) + f (11a,11b) > 2f (01,11) is a requirement for equal gain to be
possible, since f (01,01) > f (01,11) always applies in circular symmetric
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fibers; if this condition is not met in a given fiber, equal gain among

LP11a and LP11b is still achievable for P
(11a)
p = P

(11b)
p .

In a situation where the equal gain condition is not met by the
fiber but equal gain among LP01 and LP11a(b) is desired, the power
of LP11b(a) must be zero, and the power of LP11a(b) becomes

P (11a)
p =

f (01,01) − f (01,11)

f (11,11) − f (01,11)
P (01)

p . (4.9)

A transparent transmission line, i.e. each of the output signal modal
powers equal each of the input signal modal powers, is achieved by using
Eq. (4.8), equating the LP01 signal gain and the total loss, and assuming
that all pump and signal modes have the same attenuation coefficient,
αp and αs, respectively. The LP01 pump input power is then found to
be

P (01)
p =

αsL

γ̄Leff
, (4.10)

where L is the fiber length, Leff = [1 − exp(−αpL)]/αp is the effective
fiber length, and

γ̄ =
2n2ωs

c

[
f (01,01) +

2
(
f (01,01) − f (01,11)

)
f (01,11)

f (11,11) + f (11a,11b) + 2f (01,11)

]

× fRIm{h̃R(Ωps}.
(4.11)

The two mode-group system described here is investigated numerically
by solving the set of equations (4.4) using a 4th order Runge-Kutta
algorithm through an L = 100 km fiber in 50 steps with a nonlinear index

n2 = 2.6×10−20 m2/W, an LP01 effective area A
(01)
eff = 80 µm2, realistic

nonlinear mode overlaps f (01,11) = 0.5f (01,01), f (11,11) = 0.76f (01,01),
f (11a,11b) = 0.3f (01,01) [114], common attenuation coefficients αp = αp =
0.2 dB/km, pump and signal wavelengths λp = 1450 nm and λs = 1550
nm, and LP01 and LP11a and b pump powers from Eq. (4.10) and (4.9),
respectively.

The result is shown in Figure 4.1: the top plot shows the power
evolution of all six fields in the undepleted pump regime; all the signal
modes are indistinguishable in the plot as a consequence of the equal
gain condition calculated above, and the LP11a and LP11b pumps are
indistinguishable because they follow identical equations when their at-
tenuation coefficients and all signal powers are equal. In the top plot, a

signal input power of P
(01)
s = P

(11a)
s = P

(11b)
s = Ps,in = −10 dBm was

used and since the pumps remain essentially undepleted by the signals,
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Fig. 4.1: Power evolution through fiber operated in the linear gain
regime (top) and in the depleted pump regime (bottom); the curves for
the LP11a and b pumps, and the curves for the LP01, LP11a and b
signals, repsectively, are indistinguishable in the plot.

the transmission line is transparent as dictated by Eq. (4.10). In the
bottom plot, the signals were initiated with a power of Ps,in = 10 dBm
and the pumps are immediately affected and start to deplete; conse-
quently, not enough energy remain in the pumps to compensate for the
attenuation in the rest of the fiber, and hence the signals arrive with
almost 10 dB lower power than at input.

4.2.3 Random linear mode coupling

Mode coupling has been modeled in different ways [110, 115, 116] but
the mechanisms behind mode coupling are presently not well under-
stood [117]. Therefore, it is difficult to define properties of couplings
taking place at specific positions in the fiber. In practice one needs to
measure the output modal contents—e.g. by S2 measurements [118]—
with little knowledge about where in the fiber the coupling has taken
place. Hence, a numerical investigation of the statistical properties of
the mode coupling must treat the fiber as a series of statistically iden-
tical sections. Since the pump must be assumed to take many different
modal combinations through the fiber—due to both deterministic and
random mode coupling—and an amplified signal experiences many of
these, it is assumed that all mode coupling in the pump can be viewed
as random. Thus, mode coupling in the pump is modeled as a transfer
of a random proportion of the total mode power to other modes; since
the weak coupling regime is considered it is implied that only a fraction
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Fig. 4.2: Illustration of the random linear mode coupling model: the
two horizontal lines represent two fiber modes in which the fields couple
with mean rate w

(µν)
k in each section. The plot is a sketch of the power

probability density in mode ν given the overall coupling degree w(µν)

and standard deviation σ(µν). The dashed arrows indicate possible
backcoupling, which is neglected in the model. PD, photo detector.

of the light in a given mode has changed to another mode through the
entire fiber. The fiber sections are assumed uncorrelated, which implies
that the correlation length of the perturbations that are responsible for
mode coupling is much shorter than the length of one section. By choos-
ing a suitable coupling probability distribution, the parameters of the
individual, identical sections are calculated directly from the measurable
output power statistics of the modes that were coupled to. Hence, the
degree of mode coupling between two modes is a stochastic variable but
it is calculated through a well-defined mean and variance.

The model of RLMC is illustrated in Figure 4.2: light is initiated only

in mode µ and in each step a random proportion with mean value w
(µν)
k

of the power in mode µ couples to mode ν. The random proportion of
power that couples must be chosen from a probability distribution that
has support on the continuous interval [0, 1]; the Beta distribution is
often used to model random proportions [119],

Beta(x|a, b) =
xa−1(1− x)b−1

B(a, b)
, (4.12)

where B(a, b) is a normalization constant. The stochastic variable x
is the random proportion of power that changes mode, and it has the
properties

〈x〉 =
a

a+ b
≡ w(µν)

k (4.13)

〈(x− 〈x〉)2〉 =
ab

(a+ b)2(a+ b+ 1)
≡ σ(µν)

k

2
, (4.14)
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where w
(µν)
k and σ

(µν)
k are the mean value and the standard deviation of

the random coupling in the identical sections, and a and b are positive
shape parameters. At the output of the fiber, the power mean value
and standard variation in mode ν can be measured, and relative to the
mean input power they are named the overall coupling degree w(µν) and
overall standard deviation σ(µν), where superscript (µν) denotes that the
parameter belongs to coupling between mode µ and ν. This procedure
may be repeated for any number of modes. The connection between

w(µν), σ(µν), w
(µν)
k , and σ

(µν)
k is simple because the output in mode ν is

a sum of a large number of independent, identically distributed random
numbers so due to the Central Limit Theorem, the output is normally
distributed and the mean value and variance are the sums of the mean
values and variances of each section, so

w
(µν)
k =w(µν)/K (4.15)

σ
(µν)
k =σ(µν)/

√
K, (4.16)

where K is the number of sections, which is a numerical parameter
that must be assumed to be large, e.g equal to the number of steps in
the numerical algorithm for solving the set of equations (4.4). In the
relations (4.15) and (4.16), it was assumed that no significant amount
of light couples back to the initial mode as shown by the dashed arrows
in Figure 4.2 that points from mode ν to mode µ. From simulations
not shown here, it is found that this approximation is fair as long as
w(µν) < 0.1, which underlines that the simple interpretation of w(µν)

and σ(µν) is valid only in the weak coupling regime. The linearity of the
random mode couplings implies that the model is valid in the depleted
pump regime as well as in the undepleted pump regime.

4.3 Impacts of pump mode coupling and pump
depletion

To quantify the amount of noise that mode coupling in the pump adds
during amplification, the input signal must be initiated with a well de-
fined signal-to-noise ratio (SNR). The number of photons in a coherent
state follows a Poisson distribution [86], so an input ensemble of fields
in every mode of both pump and signal is generated by calculating the

mean number of photons, n̄
(µ)
n , pull out 20× 103 numbers from a Pois-

son distribution with n̄
(µ)
n as the mean number, and then convert every

element back to optical power units as done in Sec. 3.2.1.
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The signal-to-noise ratio, SNR, is defined at every point in the fiber
as

SNR(µ)
n =

〈P (µ)
n 〉2

Var
(
P

(µ)
n

) (4.17)

and the mode coupling-induced noise figure (NF) is defined as the rela-
tive change in SNR, NF = SNRinput/SNRoutput. In the two mode-group
case already considered, six ensembles are propagated in parallel through
Eqs. (4.4).

4.3.1 Mode-dependent Gain

Recent works have focused on the possibilities of achieving mode equal-
ized gain [49, 51, 102] using theory similar to what is presented above.
However, it remains unclear what the impacts of pump depletion and
pump mode coupling are on the NF and the prospects of achieving
mode-equalized gain in Raman fiber amplifiers, which is what is in-
vestigated here: simulations both with and without inter-mode-group
mode coupling is conducted such that firstly only the LP11a and LP11b
in the pump couples (intra-mode-group mode coupling); secondly, also
the LP01 mode couple to the LP11 mode-group (inter-mode-group mode
coupling).

In the model of weak RLMC, all modes need not couple to the same
overall degree, and indeed intra-mode-group mode couplings in the LP11
mode-group are expected to be stronger than inter-mode-group mode
couplings between LP01 and LP11 mode-groups. Initially, it is assumed
that inter-mode-group mode coupling is negligible and simulations in the
same fashion as in Figure 4.1 is done; both the signal input power and
the degree of intra-mode-group mode coupling, w(11a,11b), are varied; the
pump mode powers are again chosen to satisfy equal modal gain in all
signal modes and to make the transmission line transparent.

Figure 4.3 shows the MDG, i.e. the signal gain of LP11a (blue solid)
and LP11b (green dashed) relative to the gain of LP01, respectively. The
many curves of each mode represent a range of different w(11a,11b) values
from -40 dB to -10 dB; no significant difference can be observed in this
interval. In the undepleted gain regime, the MDG is fluctuating around
zero as expected from the equal modal gain conditions; in the depleted
pump regime (Ps,in > −5 dBm), an increasing MDG is observed but
it is still somewhat smaller than the lowest MDG of few-mode Raman
amplifiers measured in the undepleted pump regime toady of 0.25 dB
per 10 dB gain [97]. Our analysis shows that intra-mode-group mode
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Fig. 4.3: lP11a (blue solid) and LP11b (green dashed) relative to LP01
mode-dependent signal gain vs. signal input power, Ps,in; the many
curves in each mode represents a range of different w(11a,11b) values
from -40 dB to -10 dB.

coupling in the pump plays a minor role for MDG even in the depleted
pump regime.

Next, inter-mode-group mode coupling is included by setting the
degree of inter-mode-group mode coupling, w(01,11), to be non-zero.
The degree of intra-mode-group mode coupling w(11a,11b) is kept at
the maximum value of -10 dB since in all cases the intra-mode-group
couplings must be stronger than the inter-mode-group couplings. Fig-
ure 4.4 shows the MDG of all three signal modes at w(01,11) = −40 dB,
w(01,11) = −25 dB, and w(01,11) = −10 dB relative to the LP01 signal
gain at w(01,11) = −40 dB, which is so low that all behavior is expected
to be the same as if it was not present. These values of w(01,11) are
equivalent to those demonstrated in the literature of -18.2 dB [108] and
-25 dB [104].

Indeed, the MDG curves of LP11a and LP11b (middle and bottom
plots) at w(01,11) = −40 dB are very similar to those in Figure 4.3; the
same are those at w(01,11) = −25 dB, which means that an inter-mode-
group mode coupling degree of −25 dB in the pump is not detectable
in the LP11 mode-group in our analysis even in pump depletion. For
the LP01 mode (top plot), however, a slight increase in gain relative
to the w(01,11) = −40 case is observed; at w(01,11) = −10, the increase
in MDG is 0.3 dB, which cf. [97] might be detectable experimentally.
The reason for this increase in gain for larger values of w(01,11) is that
light is transferred between the to mode groups; indeed, light couples
between the LP01 mode and the LP11 mode group to the same degree
in our model but the LP11 pumps are initiated much stronger than
the LP01 pump, as is evident in Figure 4.1, to obey the equal modal
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of inter-mode-group mode coupling w(01,11) relative to the LP01 gain
at w(01,11) = −40 dB.

gain condition. Hence, effectively light is coupled from the LP11 mode
group to the LP01 mode and that causes the gain in the LP01 signal to
increase. That is also the reason that the LP11a and LP11b MDG have
decreased in Figure 4.4 for increased values of w(01,11). As the pump
depletes, however, these tendencies disappear because the pumps are
saturated before the mode coupling effectively takes place.

The effects described in Figs. 4.3 and 4.4 are clearly visible in the
plots but are of very modest magnitude. Hence our analysis has shown
that weak linear mode coupling in the pump (coupling degrees between
modes up to -10 dB) has only a minor impact on the conditions for equal
modal gain in distributed Raman amplifiers even in the depleted pump
regime.

4.3.2 Pump mode coupling induced noise figure

The noise properties of few-mode Raman fiber amplifiers are impor-
tant for their potential in future optical communication systems; one
of the great advantages of backward-pumped single-mode Ramam fiber
amplifiers is their superior noise properties to EDFAs [16] If few-mode
Raman fiber amplifiers are to be used in communication systems, the
presence of mode coupling should not introduce too much excess noise.
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Fig. 4.5: NF vs. overall degree of inter-modal mode coupling w2 and
input signal power Ps,in (undepleted pump regime top, and depleted
pump regime bottom) for LP01 (a) and LP11a(b). Three separate
regions (A)–(C) with different characteristics are identified; see the text.

In this section, only a forward pumped few-mode Raman fiber amplifiers
is modeled due to the difficulties of applying statistical models in the
backward pumped configuration.

The NFs of all three signal modes are evaluated using Eq. (4.17);
if inter-mode-group mode coupling is neglected, i.e. w(01,11) = 0 as in
Figure 4.3, no mode coupling induced NF for any w(11a,11b) values are
found in the undepleted pump regime (the depleted pump regime is
discussed below). The reason is that the LP11 pumps were initiated
with the same power according to the equal gain condition so therefore
no light is effectively transferred between the two modes; however the
randomness of the mode coupling induces an increased power variance in
the pumps which consequently increases the variance in the signal and
hence the NF but this effect is not strong enough to matter in the weak
coupling regime. If the pumps are initiated with asymmetric power, a
larger NF is indeed induced as verified in simulations not shown here.

Including inter-mode-group mode coupling, the induced NF of the
LP01 and LP11a signals are shown in Fig. 4.5(a) and (b) as functions
of signal input power and the degree of inter-mode-group mode coupling
w(01,11); the data are extracted from the same simulation that produced
Figure 4.4; the color bar shows the NF in dB. The NF for LP11b is
indistinguishable from that of LP11a so it is omitted here.

In both figures, the NF in (Ps,in, w
(01,11))-space can be divided in

three regions with different characteristics, A, B, and C. Region A is
the regime that corresponds to usual single-mode operation; the pump
is undepleted and mode coupling is so low that the modes approximate
separate single mode channels (intra-mode-group mode coupling is still
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w(11a,11b) = −10 dB). In this regime, the mode coupling induced NF is
predicted to be zero; the mode coupling is simply too small to matter. In
region B, the NF increases to more than 10 dB due to higher inter-mode-
group mode coupling; the line between regions A and B shows how much
input power in the signals that can be tolerated under a certain degree
of mode coupling (given the input powers used in our simulation). The
line has a positive slope in (Ps,in, w

(01,11))-space because the NF becomes
more sensitive to mode coupling in the depleted pump regime.

Region C, in which inter-mode-group mode coupling is very small
and the amplifier is depleted, contains negative NF values. It was al-
ready established above that intra-mode-group mode coupling did not
induce any NF in the undepleted pump regime but as the pump de-
pletes the NF becomes negative due to a decrease in the signal power
variance. This decrease is a simple consequence of the nature of Raman
scattering; when the pump is being depleted, the variance of the signal
goes asymptotically towards the variance of the pump power at input
because energy only flows from one component to the other. This effect
is also predicted [72] and measured [90, 91, 93] in fiber optical paramet-
ric amplifiers operated in the depleted pump regime. The line between
regions B and C denote the point where inter-mode-group mode cou-
pling becomes so significant that the intensity regenerative property of
operating the pump in depletion is destroyed. At this point it is recalled
that spontaneous emission is not included in the modeling but that it is
well-known that amplified spontaneous emission increases the NF when
a Raman amplifier is operated in depletion [120].

The importance of the existence of the low NF region A described
here should be seen in light of the fact that the model of the pump
fluctuations assumed that all pump mode couplings were completely
random. Thus, even the low NF regions represent a worst case scenario
of addition of excess noise from pump fluctuations in the weak coupling
regime.

It should be noted that regions A and C are slightly larger in Fig-
ure 4.5(b) for the LP11 mode group than in Figure 4.5(a) for the LP01
mode, which indicates that signals transmitted in LP11a and LP11b
modes are more resistant to the effects of pump mode coupling.

4.4 Experimental investigation of mode-dependent
gain in a two-mode Raman fiber amplifier

Focus is now turned to the problem of experimentally achieving equal
modal gain. As already discussed above, it is an important challenge
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of mode-division multiplexing (MDM) systems to realize optical am-
plifiers that have mode-equalized amplification of all spatial modes to
compensate for example for distributed fiber loss and to maximize capac-
ity [46]. As for traditional single-mode systems, discrete Erbium-doped
fiber amplifiers have been applied to multi-mode systems as well and
low MDG has been achieved for some of the modes in fibers with spe-
cially designed Erbium-doping profiles [48, 121, 122]. The approach for
counter-balancing fiber losses discussed in this chapter is distributed Ra-
man amplification, which is widely used already in single-mode networks
due to its superior noise properties in the backward-pumped configura-
tion [16]. Furthermore, it has been shown theoretically that minimal
MDG is possible by coupling pump power into a specific combination
of spatial modes [51], or by designing doping concentrations [50], which
makes Raman amplifiers a promising candidate for realizing low-loss,
multi-mode transmission links over large distances.

Earlier work has demonstrated Raman gain between higher-order
modes with the pump in only one mode [52, 123, 124]. Besides the ob-
vious challenges related to exciting the pump in a specific combination
of modes, it may often also prove difficult to determine the exact mode
combination that leads to the lowest possible MDG because the required
fiber data are unavailable from the fiber supplier. In this section, an
experimental characterization of the intermodal Raman intensity over-
lap of the guided modes of a two-moded few-mode fiber (FMF) using
mechanically induced long-period gratings (LPGs) to excite the higher-
order modes is presented. Using the obtained results, backward pumped
Raman amplification of a continuous wave (CW) signal through 10 km
of a two-moded fiber with a very low MDG of 0.25 dB per 10 dB gain
is demonstrated by pumping in a combination of the LP01 and LP11
modes. The MDG obtained required no prior knowledge about the Ra-
man intensity overlaps of the fiber.

4.4.1 Inter-modal Raman gain

The goal is now to express the Raman gain of a mode µ in terms of
the modal combination of power in the pump of a backward pumped
distributed Raman amplifier. The set of equations (4.4) derived in the
previous section are valid only for the forward propagating pump but in
Ref. [97] it is shown that the signal gain in mode µ is

G(µ) = exp
(
γRLeff

[
ηpf

(µ,11) + (1− ηp)f (µ,01)
]
Pp

)
, (4.18)

where γR is proportional to the Raman response h̃R of Eq. (4.4), Leff

is the effective length defined in Eq. (4.10), ηp is the mode conversion
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Fig. 4.6: Experimental setup for measuring two-mode Raman gain;
full line, single mode fiber; dashed line, two-mode fiber; PC1(2), polar-
ization controller 1(2); LPG1(2), long-period grating 1(2); OSA, optical
spectrum analyzer; the number on the LPGs is the gratig pitch.

degree (MCD) of the pump from LP01 to LP11 (ηp = 0 when all the
pump power is in LP01, and ηp = 1 when all the pump power is in
LP11) and Pp is the total input pump power in all modes.

4.4.2 Experimental setup

The intermodal Raman gain is measured using the experimental setup
shown in Fig. 4.6. The setup is a distributed backwards pumped two-
mode Raman amplifier with a CW laser operated at 1550 nm as the
signal source and an unpolarized 1455 nm Raman fiber laser the pump
source. The fiber characterized here is a 10 km, 2-moded graded-index
fiber. The polarization controller 1 (PC1) allows for adjusting the polar-
ization of the input signal before the first long-period grating (LPG1),
which is polarization dependent. The isolator protects the OSA and
signal source from the strong backward propagating pump. The splice
is between a single-mode fiber and the FMF under investigation

The excitation of the LP11 mode is achieved by use of mechanically
induced LPG. The LPG is created by pressing the fiber between a pe-
riodically grooved aluminum block and a rubber pad. This creates a
periodic perturbation in the fiber index, which induces mode coupling if
the pitch of the induced gratings matches the difference in propagation
constants of the modes [125]. Using a broadband supercontinuum source
at the signal input the mode-converted wavelengths are observed in the
OSA2 as a drop in the power spectrum due to the FMF-to-single mode
fiber splice working as a mode filter. The effective pitch of the LPG is
changed by adjusting the angle of the grooves with respect to the fiber,
until maximum mode conversion is achieved at the signal wavelength.
The use of a supercontinuum source for calibration is not strictly neces-
sary if the difference in propagation constant for the modes of interest is
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known, but it facilitates the excitation process. Based on the knowledge
of the propagation constants the pitch for the pump wavelength was
calculated to be 527 µm, which is in good agreement with the 523 µm
pitch experimentally observed at maximum conversion. More details on
the setup is given in Ref. [97].

4.4.3 Results: Raman intensity overlaps

Using the setup in Fig. 4.6, 65 measurements of the signal on/off gain
were carried out with 5 different pump MCD and 13 different pump
power levels varying from 0 to 1200 mW for each MCD. From the ex-
pected form of the gain, Eq. (4.18), a function of the following form was
fitted to the data

G(01) = (c1 + c2ηp)Pp, (4.19)

where G(01) in this case has the unit of dB, and c1 and c2 are fitting
parameters. The result is presented in Fig. 4.7(a) where data and fitting
lines are shown at the five different values of ηp. The obtained values
for the fitting parameters are c1 = 8.50 dB/W and c2 = −4.48 dB/W.
The theoretical expression is in excellent agreement with the obtained
data with these values of the fitting parameters. From these values the
ratio of the Raman intensity overlaps between the LP01-LP01-modes
and LP01-LP11-modes is obtained

f (01,11)

f (01,01)
= 1 +

c2

c1
= 0.47 (4.20)

by comparing Eqs. (4.18) and (4.19). This result agrees well with the
value of 0.48 obtained from simulated mode-profiles provided by the
fiber supplier. Subsequently, the signal was coupled to the LP11-mode
with the highest attainable efficiency, (ηs > 0.99 where ηs is the signal
MCD), and the pump was converted to the LP11-mode with an efficiency
of ηp = 0.925 and the Raman gain of the LP11-signal was measured vs.
the input pump power. A linear function of the type

G(11) = c3Pp (4.21)

was fitted to the data. From this the ratio f (11,11)/f (01,01) is calculated,
taking into account the pump conversion degree: the slope obtained
from the fit to the LP11-LP11-data was c3 = 4.74 dB/W. It is assumed
that the overlap integrals are wavelength independent (i.e. that the
LP01-LP11 and LP11-LP01 overlaps are identical). By comparison of
Eqs. (4.21) and (4.19) to (4.18) it is clear that c1 = kf (01,01) and c3 =
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Fig. 4.7: (a) Measured Raman gain vs. input pump power for five
different pump MCD, ηp; the lines result from the two-parameter fit
evaluated at each MCD. (b) Measurements of Raman gain for signal
and pump in LP11. For comparison is shown the measurement with
pump in LP11 and signal in LP01.

k(f (01,11) + ηp(f (11,11) − f (01,11))) with k = 10log10(e)γRLeff . Using Eq.
(4.20) for the ratio f (01,11)/f (01,01), these two expressions is rearranged
to give [97]

f (11,11)

f (01,01)
=

c3

c1ηp
− 1− ηp

ηp

(
1 +

c2

c1

)
= 0.56 (4.22)

This is compared to the simulated values for LP11a-LP11a and LP11a-
LP11b of 0.72 and 0.24, respectively. The measured overlap is, as ex-
pected, an intermediate value that depends on the mode coupling within
the LP11 mode-group.

4.4.4 Results: equal modal gain

Since the intensity overlaps f (01,11) and f (11,11) often turn out to be very
similar in FMFs, relatively low differential gain can be obtained by sim-
ply launching the pump completely into LP11. This was experimentally
verified by R. Ryf et al. [52] where a differential gain of 0.5 dB per 10
dB of gain was observed. For the fiber used in this work, such a scheme
results in a differential gain of 1 dB per 10 dB of gain as obtained from
the data shown in Figure 4.8(b) (the differential gain in the figure is
slightly lower since the pump is only converted 95 % into LP11). Using
our knowledge of the intensity overlap integrals, the condition for equal
signal gain across the two signal-modes, G(11) = G(01), can be written
as

ηpf
(11,11) + (1− ηp)f (01,11) = ηpf

(01,11) + (1− ηp)f (01,01). (4.23)
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Fig. 4.8: Raman gain for both a LP01 and LP11-signal with a pump
in the mixture of 83 % LP11 and 17 % LP01; (b) mode-differential gain
between the two signal modes for pump almost completely converted
to LP11 and pump in the mixture of 83 % LP11 and 17 % LP01. A
line for 0.5 dB gain difference per 10 dB gain is included for reference.

This equation can be solved, using the experimentally obtained values
for the ratios f (11,11)/f (01,01) and f (01,11)/f (01,01), to obtain an equal-
gain pump conversion of

ηp,eq =
1− f (01,11)/f (01,01)

1 + f (11,11)/f (01,01) − 2f (01,11)/f (01,01)
= 0.854, (4.24)

where ηp,eq is the pump MCD that gives equal modal gain. In Fig.
4.8(a), the results of measuring a signal launched first completely in
LP01 and then completely in LP11 with a pump conversion of ηp = 0.83,
i.e. slightly below the optimal value, are shown. From the figure it is
clear that very little MDG remains (compare to Fig. 4.7(b)). The MDG
as a function of the mean gain is seen in Fig. 4.8(b), showing a residual
MDG of only 0.25 dB per 10 dB of Raman gain as obtained from the
fitted lines. The reason for the fluctuation in MDG is most likely due to
mode coupling between LP11a and LP11b, and the LPG preferentially
only couples one of them to the LP01 mode, which is detected in the
OSA. This means that any mode coupling between LP11a and LP11b in
the amplified signal shows up as a small oscillation on the OSA. In the
ηp = 0.83 measurement (blue dots) the back coupling is slightly more
unstable compared to the ηp = 0.95 measurement (red circle). This is
due to the different configuration of the back coupling in LPG2.
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4.5 Partial conclusion

In this chapter, two important aspects of few-moded Raman fiber am-
plifiers were investigated: noise due to random mode coupling in the
pump and the challenges of achieving equalized modal gain.

The impact of linear mode coupling in the pump of few-moded dis-
tributed Raman fiber amplifiers was analyzed. After deriving basic prop-
agation equations and conditions for equal modal gain and equal input
and output signal power, a numerical model of weak random mode cou-
pling was presented. This model was used to analyze the impacts of
mode coupling in the pump of a two-mode-group Raman fiber amplifier;
in the presence of intra-mode-group mode coupling (LP11a–LP11b cou-
pling) but absence of inter-mode-group mode coupling (LP01–LP11 cou-
pling) a mode-dependent gain < 0.1 dB and no mode coupling induced
NF was found. When inter-mode-group mode coupling was included our
simulations showed a mode-dependent gain of 0.3 dB when the degree
of mode coupling was large (−10 dB); the mode coupling induced noise
figure was as large as > 10 dB for increasing degrees of mode coupling;
operating in the depleted pump regime tended to increase the mode
coupling induced noise figure.

Thereafter, the inter-modal Raman overlaps in a few-mode fiber was
characterized experimentally by varying the input pump power and the
mode conversion degree of the pump and signal using mechanically in-
duced long-period gratings for mode excitation. The overlap integrals
(relative to the LP01-LP01 overlap) for all modal combinations were ob-
tained in this way for a specific two-mode fiber. By use of the obtained
overlaps, it was further demonstrated how a mode-dependent gain of
only 0.25 dB per 10 dB overall gain is obtained by pumping in a specific
combination of the LP01 and LP11 modes.
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Chapter 5

Inter-modal four
wave-mixing in two-mode
fibers

The phase matching requirement of four-wave mixing (FWM) in single-
mode waveguides can only be fulfilled by operating all four waves near
the zero-dispersion wavelength. The bandwidth of phase matching de-
pends delicately on the dispersion slope and for communication wave-
lengths near 1550 nm it is only possible to achieve bandwidths much
larger than a few nanometers in specially designed highly nonlinear
fibers with a very low dispersion slope; separating the signal more than
∼ 50 nm from the pump(s) remains difficult due to higher order disper-
sion terms.

However, if a fiber guides multiple spatial modes each mode is as-
sociated with its own propagation constant, which makes phase match-
ing achievable in regimes with large dispersion; the mathematics be-
hind this property is elaborated in Sec. 5.1.3. Further, wave compo-
nents that are separated hundreds of nanometers may also be phase
matched [53, 62, 126]. As explained in the introduction, it remains an
critical task in optical communication to avoid excess noise from strong
pumps when carrying out signal processing using FWM; especially in the
spectral vicinity of any pump is noise a substantial problem, partly due
to spontaneous Raman scattering and partly due to pump generation
noise (amplified spontaneous emission from e.g. Erbium-doped fiber
amplifiers). Inter-modal (IM) FWM enables a pump to be separated
from the optical signals while still performing nonlinear processing. The
advantage of operating in a regime of large dispersion is that optical sig-
nals that are launched in the same mode do not crosstalk through intra-
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modal FWM. IM FWM was demonstrated a long time ago by R. Stolen
et al. [126] at visible wavelengths and has recently been demonstrated
by R.-J. Essiambre et al. [127, 128] at communication wavelengths but
a detailed investigation of the bandwidth of phase matching has not, to
the knowledge of the author, been done. In-fiber mode conversion is an-
other application of IM FWM that has been successfully demonstrated
recently [129].

In this chapter, two IM-FWM processes are considered (in the scalar
approximation throughout the chapter): phase conjugation (PC) and
Bragg scattering (BS) as seen in Fig. 3.1(d) and (e). In both cases
an LP01 pump (pump 1) and an LP01 signal (s) are launched into the
FMF together with a LP11 pump (pump 2), all at different frequencies;
an idler is then generated at the frequency determined by the energy
conservation of either process in the LP11-mode due to the field overlap
conditions discussed in Ch. 2. The aim is to quantify theoretically and
experimentally the conversion efficiency (CE) from signal to idler and
whether the two schemes agree; also the bandwidth of phase matching
is investigated thoroughly. Two fibers with different modal dispersion
properties are under investigation, which leads to confirm that IM-FWM
is equally effective at different wavelength separations as long as the
phase matching conditions are fulfilled. The results of this chapter show
that it is indeed feasible to do nonlinear signal processing using IM-
FWM.

This chapter is based on and extended from Refs. [94, 130,131].

5.1 Theory of two-mode four-wave mixing

The two IM-FWM processes under investigation in this chapter, PC and
BS, are modeled independently in the first subsection below, while as
it turns out that they are not separable under experimental conditions
the following section develops a more comprehensive theory that takes
six observed processes into account simultaneously. Lastly, the third
subsection explains the nature of two-mode phase matching in detail.

5.1.1 Four-field interaction: analytic solutions

The wavelength diagrams of the two FWM processes PC and BS are
shown in Fig 3.1(d) and (e) but they are repeated in Fig. 5.1 for clar-
ity with mode designations. The equations that describe PC and BS
separately may be derived from the general propagation equation (2.50)
derived in Ch. 2 but suitable equations are given directly in Agrawal [56]
so they are used here instead. In both cases the two strong pumps are
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Fig. 5.1: Wavelength configurations of PC and BS with mode desig-
nations.
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where it was assumed that the field amplitudes of the signal and gener-
ated idler are much smaller than the pump amplitudes, which is a very
good approximation in the experiments presented below. For PC, the
signal, s, and idler, i, follow the equations
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where ∆β is the phase mismatch calculated below; the signal and idler
follow very similar, yet not identical, equations for BS and they become
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The field overlaps f (µ,ν) are defined in Eq. (2.36). The field profiles are
not known in either of the fibers investigated here but the effective areas
are. Thus, assuming that the field profiles are approximately Hermite-
Gaussian, which decently approximate the Bessel functions discussed in
Ch. 2, it is possible to calculate the width of the Hermite-Gaussian
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beam from the effective area; the Hermite-Gaussian beam TEM00 is
used to approximate LP01 and TEM01 is used for LP11. With the field
profiles of both LP01 and LP11 approximated, all field overlaps can be
calculated.

Appendix A.2 shows how to solve the equations of a pump degenerate
PIA as investigated in Ch. 3; the Eqs. (5.1)–(5.6) are solved very
similarly for both PC and BS; since PC is a weak amplification process
in this context, the CE rather than the gain is calculated to be

CEPC(z) =
|Ei(z)|2
|Es(0)|2 =

[
η

g
sinh(gz)

]2

, (5.7)

where g is the conversion coefficient and η is the IM nonlinearity as
defined below. The CE of the BS process from signal to idler is

CEBS(z) =
|Ei(z)|2
|Es(0)|2 =

[
1−

(
κ

2g

)2
]

sin2(gz), (5.8)

where κ is the phase mismatch parameter. The parameters in (5.7) and
(5.8) are defined as

g2 = η2 ∓ (κ/2)2 (5.9)

η = 2Γf (01,11)
√
Pp1Pp2 (5.10)

κ = ∆β ± Γ
(
f (01,01)Pp1 ± f (11,11)Pp2

)
, (5.11)

where ’−’ and ’+’ in g2 refer to PC and BS, respectively, and vice versa
in κ, Pp1 and Pp2 are the constant powers of pump 1 and 2, respectively,
f (µ,ν) is the intensity overlap between modes µ and ν, and Γ = n2ω0/c
is the fiber nonlinearity evaluated at frequency ω0, since the frequency
dependence on the fiber nonlinearity was neglected in Eqs. (5.7) and
(5.8). These expression may be recognized from standard single-mode
cases, only with η and κ different. Note that the highest CE is achieved
for κ = 0 and not ∆β = 0. However, for multi-mode fibers ∆β may vary
so much with wavelength shift that the nonlinear contribution to κ is a
negligible.

Table 5.1 shows the specifications of the two fibers under investiga-
tion used for simulations in this and the following section. The relative
inverse group velocity (RIGV), i.e. the difference in inverse group ve-
locity between the LP01-mode and the LP11-mode, is found from mea-
surements in Sec. 5.2.1. The dispersion D(µ) and the the dispersion
slopes S(µ) at 1550 nm of each mode is achieved by simulations from
the fiber supplier, and the overlaps 1/f (µ,ν) are determined as explained
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[
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[
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]
D(11)

[
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]
S(01)

[
ps

km nm2

]
S(11)

[
ps

km nm2

]
F1 96 19.8 21.9 0.068 0.063

F2 500 20.2 20.2 0.0663 0.0649

1/f (01,01) [µm2] 1/f (11,11) [µm2] 1/f (01,11) [µm2] L [km]

F1 161 170 258 1

F2 96.7 187 193 1

Table 5.1: Specifications of Fiber 1 (F1) and 2 (F2) at λ = 1550 nm;
the relative inverse group velocity (RIGV) is the difference in inverse
group velocity between LP01 and LP11, D(µ) and S(µ) are the disper-
sion and dispersion slope, respectively, of mode µ, and 1/f (µ,ν) is the
overlap/effective area of modes µ and ν. Regular font numbers are sim-
ulated valued from the fiber supplier; bold font numbers are calculated
as explained in the text; italic font numbers are measured in Sec. 5.2.1.

above. The two main differences between the two fibers are the much
larger RIGV of the LP01-modes and LP11-modes and that the modal
dispersions are more equal in Fiber 2, as compared to Fiber 1. As will
become clear in Sec. 5.1.3, these two properties leads to larger sepa-
ration between the interacting waves of the IM-FWM and a different
signal bandwidth. For Fiber 2, a more comprehensive set of simulated
dispersion data was available and hence Fig. 5.2 shows (a) the inverse
group velocities of the two modes and (b) the difference in dispersion
between the two modes. The absolute dispersion data are also available
but it is the difference between them that determines the bandwidth of
phase matching. It is the data shown in Fig. 5.2 that is used to do
simulations of Fiber 2.

Figure 5.3 shows contour plots of the analytic results (5.7) (left)
and (5.8) (right) for Fiber 1; the parameters used are n2 = 2.6 ×
10−20 (W m)−1, Pp1 = Pp2 = 26.5 dBm, a fiber length of L = 1 km, and
λ0 = 1550 nm in ω0 = 2πc/λ0; the phase mismatch ∆β is calculated as
shown in Sec. 5.1.3. On the x- and y-axes are the wavelengths of the
LP01 input signal and the LP11 pump 2, respectively, and the LP01
pump 1 has λp1 = 1549 nm in all cases.

Much understanding can be gained from the expressions (5.7) and
(5.8) but here emphasis is put on the signal bandwidth of phase match-
ing. PC and BS have opposite properties in terms of varying the pump
2 and signal wavelength: in PC, phase matching can be obtained in a
nm-sized interval of pump 2 wavelength values but the signal is only
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Fig. 5.2: (a) Inverse group velocity curves of Fiber 2 for LP01 and
LP11, where the difference at 1550 nm is 500 ps/km; (b) Modal dis-
persion difference between LP01 and LP11; the absolute dispersion of
each mode is shown at 1550 nm. Data are simulated valued from the
fiber supplier.
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(b) BS; Fiber 1.

Fig. 5.3: Analytic results of four-field IM-FWM; the color scale show
G for PC and CE for BS in linear units; the scaling on the two axes is
the same on each of the two PC plots and BS plots, respectively.

phase matched in a very narrow window of width ∼ 0.1 nm, and ad-
ditionally the window center moves with changing pump 2 wavelength.
It is notable that PC has one solution to the phase matching condition
for pump 2 wavelength shifts below 4.5 nm but above this value it has
two; in BS, phase matching is achieved only in one very narrow interval
of pump 2 wavelengths, while in this interval the signal bandwidth is
much broader. This inverse trend of PC and BE has been predicted
before [114] and it is qualitatively elaborated below in Sec. 5.1.3.

As a last remark, it is clear when comparing PC and BS for each of
the fibers that the two processes overlap in (λs, λp2) space, which means
that they cannot be observed independently in experimental investiga-
tions. Therefore, before moving on to the details of the phase matching,
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Fig. 5.4: Sketch of how three four-field descriptions, MI (left), PC
(top), and BS (bottom), is merged into a six-field description; full lines
denote input waves while dashed lines denote generated waves; the
different dashed line lengths indicate that the processes occur with
different efficiency.

a more comprehensive six-field theory is developed in the next section
to gain more accurate theoretical predictions.

5.1.2 Six-field interaction: simulations

So far in this thesis three separate FWM processes have been studied:
single-mode MI in chapter 3 and two-mode PC and BS in the previous
section. All three are observed simultaneously in the experimental data
presented below so a unified description is needed to analyze the data
properly. The two approaches that are directly available are using the
multi-mode generalized nonlinear Schrödinger equation (MM-GNLSE)
[66], which has been done in Ref. [130], or using the general nonlinear
propagation equation (2.50) in the CW regime; the latter approach is
pursued here.

Figure 5.4 illustrates the idea of the unified theory and also gives the
new six-field arrow diagram (right). Many FWM processes take place
among six field that can all be in two modes so a few simplifications
must be made: firstly, as indicated in the figure, the three lower wave-
length components are taken to occupy only LP01 and the three higher
wavelength components are taken to occupy only LP11; this is a good
approximation partly because the wave components are launched in this
configuration and an excellent mode excitation purity has been achieved
experimentally (as shown in Fig. 5.13) and partly because IM-FWM
processes that involve lower wavelength components in LP11 and higher
wavelength components in LP01 are poorly phase matched. Secondly,
the two pumps are assumed much stronger than the four side bands so
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only FWM processes that involve two pump waves are included.
To use Eq. (2.50) the nonlinear induced polarization must be written

down; by studying Fig. 5.4 six remaining processes are identified, two
of each of MI, PC, and BS, and they are

2ωp1 = ωs + ωMI (5.12a)

2ωp2 = ωPC + ωBS (5.12b)

ωp1 + ωp2 = ωs + ωPC (5.12c)

ωp1 + ωp2 = ωMI + ωBS (5.12d)

ωp2 + ωs = ωp1 + ωBS (5.12e)

ωp1 + ωPC = ωp2 + ωMI, (5.12f)

where Eqs. (5.12a)–(5.12b) are intra-modal MI, Eqs. (5.12c)–(5.12d)
are IM PC, and Eqs. (5.12e)–(5.12f) are IM BS. The nonlinear induced
polarization for ωMI, given as an example here, is found by inserting
Eqs. (2.37) and (2.38) into Eq. (2.8) with

R(3)(t1, t2, t3) = χ(3)
xxxxδ(t1)δ(t2)δ(t3), (5.13)

where χ
(3)
xxxx ≡ χ(3) is defined as in Sec. 2.4. Assuming that the electric

field is polarized in the x direction only, the result becomes
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(5.14)

where the implicit x, y, z dependencies was left out for clarity. Inserting
this expression into (2.50) the equation for ωMI is easily derived; fol-
lowing the same procedure for all components and assuming that the
pumps have high enough power to be considered constant in amplitude,
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the six-field equations are
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where the phase mismatch parameters correspond to the frequency con-
servation equations (5.12a)–(5.12f),

∆βi = β
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MI + β(01)

s − 2β
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p1 (5.21i)
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p2 (5.21ii)
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(a) PC, Fiber 1.
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(b) BS, Fiber 1.
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(c) PC, Fiber 2.
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(d) BS, Fiber 2.

Fig. 5.5: Analytic results of six-field IM-FWM; the color scale show
the CE of PC and BS in dB and is the same in all plots

∆βvi = β
(01)
MI + β

(11)
p2 − β

(01)
p1 − β

(11)
PC . (5.21vi)

Approximate expressions for ∆βi−vi are calculated in the next section.
Like in the previous chapters Eqs. (5.15)–(5.20) are solved using a 4th
order Runge-Kutta algorithm with n2 = 2.6 × 10−20 (W m)−1, con-
stant pump powers Pp1 = Pp1 = 26.5 dBm, a fiber length of L = 1 km
in 200 steps, and λ0 = 1550 nm in ω0 = 2πc/λ0, where the non-
linear parameter Γj = ωjn2/c is simplified to be the same for all of
j ∈ {MI, p1, s,PC, p2,BS}. The fiber parameters are taken from Tab.
5.1 and Fig. 5.2.

Figure 5.5 shows the CE vs. wavelength shift of the signal and pump
2 from pump 1 of PC and BS for both fibers from solving Eqs. (5.15)–
(5.20). In the six-field theory, the CE is defined as

CE =
|Ei(L)|2
|Es(L)|2 , (5.22)

i.e. the output idler relative to the output signal because this is how the
CE is measured experimentally. The difference from the 4-field theory is
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Fig. 5.6: Comparison of six-field (solid) and four-field (dashed) theory
in Fiber 1; (a) PC and (b) BS CE vs. signal wavelength shift for
λp2 = 1553.5 nm.

that more contours have appeared in the areas where multiple processes
are phase matched. The difference between Fiber 1 and Fiber 2 is that
Fiber 1 is phase matched at a 4.5 nm separation between pump 1 and
pump 2 while Fiber 2 is phase matched at a separation of 25 nm; this
is due to a larger RIGV between the modes in Fiber 2. Also, since the
effective mode areas are smaller in Fiber 2, the CE is higher (lighter
yellow).

To better appreciate the six-field theory, the CE of both the six-field
and the four-field theory for PC and BS is plotted in Fig. 5.5(a) and (b),
respectively, vs. signal wavelength shift from pump 1 for λp2 = 1553.5
nm in Fiber 1. The six-field theory has more features than the sim-
ple 4-field, and as becomes clear in below these feature are important
experimentally. In Fig. 5.5(a) and (b), BS shows the largest differ-
ence between the two descriptions but for other values of the pump 2
wavelength it is opposite. Note that in this specific plot, the CE of the
six-field process is calculated as |Ei(L)|2/|Es(0)|2 to better compare to
the four-field theory.

5.1.3 Phase matching in two-mode fibers

The phase matching parameter, ∆β(ωn, ωm, ωk, ωl), is in all cases above
calculated by expanding the wavenumber of each participating wave in
a Taylor series around frequency ω0,

β(µ)(ωn) = β
(µ)
0 + β

(µ)
1 (ωn − ω0) +

β
(µ)
2

2!
(ωn − ω0)2 +

β
(µ)
3

3!
(ωn − ω0)3 + . . .

(5.23)

where β
(µ)
i (ω0) as the i’th order expansion coefficient in the Taylor ex-

pansion of the wavenumbers for mode µ evaluated at frequency ω0. The
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terms with i = 0 cancel from ∆β, the terms with i = 1 are the inverse
group velocity, and the terms with i = 2 represent the chromatic disper-

sion of mode LPµ through D(µ) = −(2πc/λ2
0)β

(µ)
2 . If it is assumed that

pump 1 and signal s are in the LP01 mode and pump 2 and idler i are
in the LP11 mode, the phase mismatch (as also calculated in Ref. [127])
for the IM FWM processes of PC and BS becomes

∆β =

[
β

(01)
1 + β

(01)
2

(
∆ωs + ∆ωp1

2

)

−β(11)
1 − β(11)

2

(
∆ωp2 + ∆ωi

2

)]
(ωs − ωp),

(5.24)

where the wave numbers were expanded to second order and ∆ωj =
ωj − ω0 for j ∈ {p1, p2, s, i}. The important point to take from the
phase mismatch is that it vanishes when the inverse group velocities
of each mode evaluated at the average wavelength of the waves in the
same mode are equal. Figure 5.7 illustrated this point for PC: the inverse
group velocity at the average wavelength of pump 1 and the signal s in

mode LP01, λ
(01)
a , has to lie on the same horizontal line as the inverse

group velocity of the average wavelength of the idler i and pump 2, λ
(11)
a ,

to achieve phase matching. Figure 5.8 shows the same for BS where it
should be noted that phase matching is conserved perfectly when tuning
the signal wavelength if the two RIGV lines are parallel (same dispersion)
and without curvature (negligible dispersion slope); this property is due
to energy conservation, which makes the idler change wavelength along
with the signal such that also the wavelength averages in each mode
moves together. In Fig. 5.7 the same property does not apply; the signal
and idler moves in opposite directions so only at one signal wavelength
is phase matching fulfilled.

Finally, note in Eq. (5.24) that the last factor also makes the phase
mismatch become small when the signal and pump p have similar fre-
quencies, which follows trivially from the consideration that when two
photons are annihilated, the two new photons are generated in the same
modes at the same wavelengths.

The phase mismatch for the intra-modal FWM processes of Eqs.
(5.21i) and (5.21ii) are calculated in the same way as is done in the
single-mode case of Ref. [17], only in these cases the wave components are
not near the zero-dispersion wavelength of the fiber. For the processes
considered here, the phase mismatch of mode µ becomes

∆β(µ) = β
(µ)
2 (ωs − ωj)2 + β

(µ)
3 (ωs − ωj)2(ωj − ω0), (5.25)
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where ωj = ωp1 for µ being LP01 and ωj = ωp2 for µ being LP11, and
the wave number expansion coefficients are related to the wavelength
domain parameters as show in Ch. 2 in Eqs. (2.32) and (2.33).
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Fig. 5.9: Sketch of the time-of-flight measurement setup. BPF, band-
pass filter; OSA, optical spectrum analyzer; FUT, fiber under test.

5.2 Experimental setups

Two setups are used to perform IM-FWM: the first does a time-of-flight
(ToF) measurement two find the inverse group velocity vs. wavelength
for both modes from which the phase matching properties of interest are
extracted; the second does the actual FWM experiment with multiplex-
ing and demultiplexing of the two modes.

5.2.1 Time-of-flight measurement

A sketch of ToF setup is shown in Fig. 5.9: a fs laser is used as source
and from it a pulse trigger is sent directly to the sampling scope to the
far right; the fs laser source has a broad spectrum, ∼ 15 nm, so a tunable
band-pass filter (BPF) cut up each fs pulse in smaller spectral fragments
of approx 1 nm; the 30/70 fiber coupler divides the output of the BPF
into a monitoring arm that goes to both an OSA and the sampling
scope as a reference pulse and towards the fiber under test (FUT); the
launching of the LP01 and LP11 modes is shown schematically in a box
but in the actual experiment the simultaneous launching of both modes
was generated by misaligning the incoming single-mode fiber (SMF) a
slightly from the FUT; the FUT is one of the fibers mentioned above,
Fiber 1 and Fiber 2, in turn; the small cross denotes a rough, slightly
misaligned splicing that allows light from both modes of the FUT to
propagate into the SMF that is connected to the sampling scope.

The output of the sampling scope of a single setting of the BPF
(one wavelength) is seen in Fig. 5.10. The light pulses of the LP01 and
LP11 modes of the fiber, which were perfectly overlapping at input, are
approximately 100 ps apart at the output. The reference pulse is outside
the time interval shown here but it is needed to capture the movement
of both pulses in time. The exact position on the time axis of each pulse
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Fig. 5.10: Time trace from the sampling scope in Fig. 5.9. The time
lag between the two pulses represent the diffrence in group velocity
between the LP01 and LP11 modes.

is calculated by a weighted average over the entire pulse.
This procedure is carried out for a number of wavelengths on both

fibers, and the RIGV (time separation between the pulses of the FUT
and the reference pulse divided by fiber length) is plotted in Fig. 5.11
for (a) Fiber 1 and (b) Fiber 2. In both plots, the pulses in the LP01
and LP11 modes are shown with red squares and blue dots, respectively.
The difference between the to curves is shown with gray stars. Second
order polynomial fits are applied to the data from which the slope is
identified as the absolute dispersion and the curvature the dispersion
slope. The wavelength interval that was accessible using the fs laser
source was too small to capture an accurate value of the dispersion slope.
As shown in the plots, the measured dispersion values were D(01) = 18.7
ps/(nm km) and D(11) = 21.3 ps/(nm km) for Fiber 1 and D(01) = 18.5
ps/(nm km) and D(11) = 18.0 ps/(nm km) Fiber 2; these values are in
reasonable agreement with the simulated values provided by the fiber
supplier shown in Tab. 5.1 but generally the measured dispersion values
are smaller. It turns out that the simulated values of the dispersion
of both modes fit better with the experimental data below than the
measured values; that is the reason that the simulations in the previous
sections were done with the simulated dispersion values.

The vertical separation between the LP01 and LP11 mode curves
(the RIGV) is found to be 96 ps/km for Fiber 1 and 500 ps/km for Fiber
2. The corresponding simulated values from the fiber supplier were 60
ps/km and 467 ps/km, respectively, which are significantly different.
The experimental data shows great deviance from the simulated RIGV
but a much better agreement with the measured RIGV. Therefore, the
simulations done in the previous sections were done with the measured
RIGV.
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Fig. 5.11: RIGV vs. wavelength for (a) Fiber 1 and (b) Fiber 2 of
both the LP01 mode (red squares) and the LP11 mode (blue dots); the
difference between the two cuves is marked by gray stars.

The horizontal separation of the RIGV curves determines the wave-
length separation between the two pumps, cf. Figs. 5.7 and 5.8. The
measurements in Fig. 5.11 shows a 4.4 nm separation between the LP01
and LP11 modes at 1550 nm for Fiber 1 and a 25 nm separation for
Fiber 2. These values are important for the choice of pump wavelength
values in the experimental section below.

5.2.2 Two-mode four-wave mixing

The experimental setup for measuring and characterizing IM FWM is
shown in Fig. 5.12; the nonlinear medium is one of the two aforemen-
tioned two-mode fibers, Fiber 1 and Fiber 2, in turn. Three tunable laser
sources are used to generate the inputs, i.e. pump 1 (TLS 2), pump 2
(TLS 1), and signal s (TLS 3), and a 95/5 coupler is used to achieve
a 22 dB power difference between pump 1 and s. All inputs are time
gated with a 10% duty cycle and a repetition rate of 10 MHz to avoid
stimulated Brillouin scattering and to increase the peak powers (this
time gating results in 10 ns pulses separated by 100 ns). Two polariza-
tion controllers are used to co-polarize the waves in the LP01 and LP11
optical paths, respectively, which is ensured by the polarization beam-
splitter (PBS) after beam combination in the 50/50 non-polarization
beam-splitter. Erbium-doped fiber amplifiers (EDFAs) amplify the in-
puts to achieve pump average powers after the fiber of 20.5 dBm in
both pumps; the loss of the fiber was verified to be ∼0.2 dB/km in both
modes.

Pump 1 and signal s are launched in the LP01 mode while the sec-
ond pump 2 is launched into the LP11 mode using a mode-multiplexer
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Fig. 5.12: Sketch of the experimental setup; thin solid line, single-
mode fiber; thick solid line, TFM; dashed lines, free space; TLS, tunable
laser source; MMUX, mode-multiplexer; EDFA, Erbium-doped fiber
amplifier; 50/50, 3-dB non-polarization beam-splitter; PBS, polariza-
tion beam-splitter; PP, phase plate; TMF, two-mode fiber; MDMUX,
mode-demultiplexer; OSA, optical spectrum analyzer.

(MMUX) based on a phase plate (PP), which shifts the phase of half
the beam front in the transverse plane by π. The launching purity of
the LP11 mode was tested by wrapping the end of the TMF around a
cylinder with a diameter of ∼ 2 cm, which attenuates the LP11 mode
but not the LP01 mode, and a change in power in the LP11 mode of -28
dB was measured directly at the output of the TMF; by only launching
the LP01, a change in power of < 0.2 dB was measured by wrapping the
TMF. At the output of the fiber, it was also verified that the LP01 and
LP11 pulses had optimal temporal overlap.

The modal content of the output of the TMF is analyzed in a mode-
demultiplexer (MDMUX) by separating the beam into three using two
3-dB beam splitters as shown in Fig. 5.12. The first beam measures
the the power in the LP01 mode of the TMF by coupling directly into a
single-mode fiber that does not allow the content of the LP11 mode in
the TMF to propagate. The other two beams are used in combination
to measure the power in the LP11 mode: one PP is placed in each
beam path in order to phase shift the wave of the LP11 mode back to
a constant phase front and simultaneously avoid collection of light from
the LP01 mode; using one PP only is not sufficient since the orientation
of the LP11 mode at the output of the TMF is impractical to control.
The two PPs are hence orthogonally orientated, effectively projecting
the LP11 mode onto two orthogonal transverse directions, which are
collected in the two LP11 ports, respectively. The sum of the powers
measured in the two LP11 ports is thus independent on the LP11 mode
orientation. Lastly, an optical switch is used for quick sampling of all
three ports on the optical spectrum analyzer (OSA).

The mode-separation performance of the MDMUX was investigated
and Fig. 5.13 shows the LP01 port (left) and the sum of the two LP11
ports (right) for a typical measurement where the wavelenghts of the
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Fig. 5.13: Performance of the MDMUX after Fiber 1; the LP01 port
(left) extinguishes the LP11 mode by 25 dB, and the LP11 port (right)
extinguishes the LP01 mode by 18 dB.

input LP01 pump 1 and signal s and LP11 pump 2 were λ
(01)
p1 = 1549

nm, λ
(01)
s = 1550.15 nm, and λ

(11)
p2 = 1553.45 nm, respectively: the

data is normalized to the LP01 and LP11 pump powers in each graph,
respectively. The LP01 port extinguishes the LP11 mode by 25 dB while
the LP11 port extinguishes the LP01 mode by 18 dB.

5.3 Results: conversion efficiency of two two-
mode fibers

The final purpose of this chapter is to measure the phase matching
bandwidth of PC and BS and compare to the theoretical predictions of
the six field theory. To do so, the setup in Fig. 5.12 is used and spectra
like the ones in Fig. 5.13 are recorded on the OSA for a range of signal
s wavelengths and the processes is repeated for a number of pump 2
wavelengths. These sets of data is then compared to the corresponding
simulated values along horizontal lines in Fig. 5.5.

5.3.1 Fiber 1: small differential group delay

In this section, Fiber 1, which has the smallest RIGV of the two fibers
that leads to a wavelength separation of 4.4 nm, is discussed. The pump
p2 wavelength values are hence chosen in a series of values around a
separation of 4.4 nm from the pump 1 wavelength as shown in Tab. 5.2;
the pump1 wavelength is λp1 = 1549 nm is all cases (a)–(f).

To find the experimental value of the CE of PC for Fiber 1, the power
of the LP01 signal is read off of the LP01 port as shown in Fig. 5.13(a)
and subtracted (in logarithmic units) from the value of the LP11 PC
idler, which is read off of the LP11a+LP11b ports. This procedure work
because the pumps have the same output power of the FUT. In Fig. 5.14,
the measured CE vs. signal wavelength shift from pump 1 is plotted for
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λp2 [nm] λp2 - λp1 [nm]

(a) 1553.00 4.00

(b) 1553.40 4.40

(c) 1553.5 4.50

λp2 [nm] λp2 - λp1 [nm]

(d) 1553.75 4.75

(e) 1554.50 5.50

(f) 1554.70 5.70

Table 5.2: Pump p2 wavelengths used in experiments for Fiber 1;
pump p1 is λp = 1549 nm in all cases.
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Fig. 5.14: Measured CE for PC vs. signal wavelength for cases (a)–(f)
of pump q wavelengths corresponding to the values given in Tab. 5.2.

all choices of pump 2 wavelengths, i.e. cases (a)–(f), together with the
corresponding simulated curve from Fig. 5.5 of the six-field theory. As
explained above, the CE of PC has different characteristics (vs. signal
wavelength) for values below and above λq ≈ 1553.5 nm; below, the CE
has only one peak and the width of that peak increases with λp2; above,
the CE has two peaks and the peaks separate more in wavelength with
increasing λp2.

The experimental results in Fig. 5.14 replicate these characteristics
well. In cases (a)–(d), the width of the CE peak is increasing from 0.25
nm to 0.75 nm in accordance theory. In case (d), it is observed that the
single peak of phase matching is starting to split up in two peaks. In
the two remaining cases of (e) and (f), two clearly separated peaks are
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observed; the peak close to λs−λp = 0 is present due to PC being phase
matched because the (ωs − ωp)-term in Eq. (5.24) is small; the other
peak is present due to the first term in square brackets in Eq. (5.24)
is small. It should be noted when comparing the experimental data to
the theoretical curves that the pump powers in the simulations were
adjusted to 26.5 dBm even though the output pump average power was
measured to be 20.5 dBm in both modes; with a 10% duty cycle, the
peak power of the pump pulses is expected to be 30.5 dBm. There are
two reasons that this adjustment is justifiable: 1) the theory assumes
that all propagating fields are co-polarized through the whole fiber, but
any drift in polarization reduces the strength of the IM FWM in the
experimental data; 2) the pump output peak power of 30.5 dBm is only
valid of the pulses are perfectly square, but in reality the pulses are not
shaped perfectly square by the amplitude modulators so the peak power
is likely to be smaller than 30.5 dBm. Hence, a good agreement between
experimental and simulated CE is obtained if pump powers of 26.5 dBm
are used.

The highest CE is found experimentally in case (c) where -7.4 dB
is achieved at λs − λp ≈ 0.4 nm. However, the CE is evaluated as the
output idler power relative to the output signal power and not the input
signal power, which is not possible to evaluate in the experimental setup
at this time. A problem arises because the signal is amplified through
the fiber through intra-modal degenerate FWM by pump 1; hence the
generated component below λ = 1548 nm in Fig. 5.13. Therefore, we
compare the output idler to a too large value when evaluating the CE,
and it is thus concluded that the measured CE is > −7.4 dB.

The CE of BS is evaluated in the same way as for PC in the same set
of measurements, only reading off the power of the LP11 BS idler of Fig.
5.13 instead of the LP11 PC idler; the results are shown in Fig. 5.15 in
the same manner as the PC results in Fig. 5.14. As already explained,
the phase matching characteristics of BS is different from PC: only in
a narrow interval of pump p2 wavelengths close to λq ≈ 1553.5 nm is
any phase matching bandwidth in terms of signal wavelengths expected.
On the other hand, this bandwidth is predicted to be significantly larger
than any bandwidth observable in PC.

Indeed, the measured CE for cases (a)–(f) confirm these predictions
in decent agreement with theory. Case (a), pump 2 wavelength being
below ∼ 1553.5 nm, has a narrow bandwidth compared to cases (b)
and (c), which have pump 2 wavelengths inside the region of a wide
bandwidth of phase matching, as seen in Fig. 5.5(b). The maxima
around λs − λp = 0.5 nm in (b) and (c) are predicted by the six-field
theory (but not the four-field theory) and is a result of a combination
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Fig. 5.15: Measured CE for BS vs. signal wavelength for cases (a)–(f)
of pump q wavelengths corresponding to the values given in Tab. 5.2.

of phase matched PC, BS, and MI. The CE bandwidths of (b) and (c)
are the widest observed in Fiber 1 in good qualitative agreement with
theory, and clearly wider than any bandwidth observed for PC. The
pump 2 wavelengths of case (d) lies on the upper edge of the region of
a wide bandwidth of phase matching, and indeed the bandwidth of the
CE diminishes. Cases (e) and (f) are above the region of phase matching
so the bandwidth of the CE becomes gradually smaller.

The largest CE of > −6.3 dB is found in case (b) where evidently the
same problem with evaluating the CE based on the input signal power,
as explained for PC above, is the reasons for the >-sign.

5.3.2 Fiber 2: large differential group delay

Attention is now turned to Fiber 2, which has a larger RIGV that leads
to a wavelength separation of 25 nm; the purpose of this section is to
investigate if the performance of the IM-FWM processes PC and BS are
qualitatively the same as for Fiber 1 when the wavelengths separation
is larger. Since one of the potential applications of higher order modes
in fibers is enabling FWM among a broad spectrum of wavelengths,
it is important that the efficiency of IM-FWM is not degraded at large
wavelengths separations due to for example dispersion fluctuations. The
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λp2 [nm] λp2 - λp1 [nm]

(a) 1559.3 22.9

(b) 1562.2 24.8

(c) 1562.4 25.0

λp2 [nm] λp2 - λp1 [nm]

(d) 1563.0 25.6

(e) 1564.3 26.9

(f) 1565.3 27.9

Table 5.3: Pump p2 wavelengths used in experiments for Fiber 2;
pump p1 is λp = 1537.4 nm in all cases.

-50

-40

-30

-20

-10

0
λp2 = 1559.3 nm λp2 = 1562.2 nm

C
on

ve
rs
io
n
effi

ci
en
cy
,
C
E
[d
B
]

-50

-40

-30

-20

-10

0
λp2 = 1562.4 nm λp2 = 1563.0 nm

0 1 2 3 4

-50

-40

-30

-20

-10

0

λp2 = 1564.3 nm

Signal wavelength shift, λs − λp [nm]

0 1 2 3 4

λp2 = 1565.3 nm

(a) (b)

(c) (d)

(e) (f)

Fig. 5.16: Measured CE for PC vs. signal wavelength for cases (a)–(f)
of pump q wavelengths corresponding to the values given in Tab. 5.3.

pump 1 wavelength was changed to 1537.4 nm (since both pumps should
preferably lie inside the amplification spectrum of an EDFA), and the
pump 2 wavelengths chosen of measurements are shown in Tab. 5.3.

Figure 5.16 shows the measured CE vs. signal wavelength shift in
the same fashion as Fig. 5.14. For all cases (a)–(f), the measurements
follow the general trends predicted by the theory but quantitatively the
agreement it not as good as for Fiber 1. In (b)–(d), the measured peak
is wider than expected, which are likely not explained by simultaneous
IM FWM since the six strongest (phase matched and non-cascaded) pro-
cesses are included in the theory. The explanation is most likely that
neither the ToF measurements nor the simulated dispersion data from
the fiber supplier has given a sufficient insight into the dispersion prop-
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Fig. 5.17: Measured CE for BS vs. signal wavelength for cases (a)–(f)
of pump q wavelengths corresponding to the values given in Tab. 5.3.

erties of the fiber, so the theory is not calculating the phase matching
spectra accurately .

The experimental data of cases (e) and (f) also show some deviance
from theory which are most likely due to dispersion fluctuations. Clearly,
any fluctuations due to fabrication imperfections in the dispersion pa-
rameters such as inverse group velocity, dispersion coefficient, or dis-
persion slope through the fiber leads to critical changes in the phase
matching condition of IM FWM. Thus, one must expect that any ex-
perimental investigation that tries to map out the CE in Fig. 5.5 will
find a more blurred picture with broader and lower amplitude features.

The results for the CE of BS as shown in Fig. 5.17 confirm the trends
observed for PC. Firstly, a good quantitative agreement between exper-
iments and theory is found; a wide conversion bandwidth is measured
in (b) and (c) as theory predicts, and in the rest of the cases he conver-
sion bandwidth is much smaller. However, (c) and (d) show the same
wider bandwidth experimentally than theoretically, which confirms the
hypothesis that the theoretical curves are inaccurate.

The largest CE measured in Fiber 2 is CE > −3.25 dB for PC in
case (c) and CE > −2.70 dB for BS in case (b), where the >-signs are
there for the same reason as explained for Fiber 1. These CE values are
higher than those reported for Fiber 1 due to the smaller effective modal
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areas of Fiber 2 as seen in Tab. 5.1. Also, stimulated Raman scattering
was not included in the theory, and pump 2 and the idler are situated at
a 25 nm higher wavelength than pump 1 so a small amount of Raman
amplification is expected; this might explain why the results of Fiber 2
are generally above the theoretical curves.

5.4 Partial conclusion

In this chapter, inter-modal four-wave mixing was discussed theoreti-
cally and experimentally. Two models of inter-modal four-wave mixing,
a simple four-field model and a more comprehensive six-field model,
were derived and the their differences were highlighted. The phase
matching properties of two-mode fibers fiber were analyzed in detail
and both mathematical and conceptual conditions for efficient phase
matching were discussed. The models were used to predict the con-
version efficiency from signal to idler in two separate four-wave mixing
processes, phase conjugation and Bragg scattering, in two fibers with
different phase matching properties. The dispersion properties of the
two fibers were such that the signal is converted to the idler over 4.4 nm
in Fiber 1 over 25 nm in Fiber 2.

Secondly, inter-modal four wave mixing experiments were carried out
in the two fibers 1 and 2. The conversion efficiency of both phase conju-
gation and Bragg scattering was measured in both fibers and compared
to the theoretical predictions of the six-field theory; it was found by
comparing the two models that the four-field theory did not describe
important features observed experimentally. A good qualitative accor-
dance between experiments and theory was observed for both processes
in both fibers though a detailed quantitative agreement was only ob-
served for some cases of pump 2 wavelength values in Fiber 1. The most
important reason for the deviance of the results in Fiber 2 is believed
to be dispersion fluctuations along the fiber and Raman amplification
from the pump with the smallest wavelength.
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Chapter 6

Conclusion and outlook

This final chapter concludes all the former chapters of the thesis and
suggests in an outlook ideas on how to continue the work that was
carried out.

6.1 Conclusion

Starting at Maxwell’s equations, this thesis provided a thorough intro-
duction to electromagnetic theory in the context of fiber waveguides.
Transverse equations were derived for both full-vectorial and linearly
polarized modes, and a general propagation equation was determined
from which all other propagation equations in the thesis were derived.

In Ch. 3, a semi-classical model of quantum noise in fiber paramet-
ric processes that accounts for the impacts of Raman scattering, fiber
loss, dispersion, and the depleted pump regime was presented. No ex-
isting quantum models account, to the knowledge of the author, for
all these effects simultaneously. The semi-classical model was validated
against simple results of quantum models and excellent agreement was
found. A phase-insensitive parametric amplifier in shape of modulation
interaction was modeled and it was demonstrated that loss plays only a
minor role for the noise properties phase insensitive parametric ampli-
fiers. An asymmetric Raman-induced noise figure spectrum was found
and it was explained why the spectrum is reverse asymmetric compared
to what might be expected from the asymmetry of spontaneous Raman
scattering. One of the most interesting results of this chapter was that
spontaneous Raman scattering induced an increased noise figure close
to the degenerate pump, a results not predicted by quantum models;
an argument was given in favor of the existence of such an increase. In
the depleted pump regime, the semi-classical model predicts amplitude
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regeneration of the amplified signal even in the presence of Raman scat-
tering; it was noted that such amplitude regeneration has already been
measured.

For parametric frequency conversion in form of Bragg scattering, it
was shown that loss induces a noise figure floor that can only be avoided
by converting in a shorter piece of fiber such that the accumulated loss
is smaller. Raman scattering was found to induce a noise figure com-
parable with the 3 dB noise figure of parametric amplification, thus de-
stroying the favorable noise less frequency conversion property of Bragg
scattering. It was also shown that on the anti-stokes side of the pumps,
the noise figure depends more on the pumps-to-side bands wavelength
separation and the temperature than on the Stokes side.

Ch. 4 discussed two challenges associated with few-mode Raman
fiber amplifiers: weak random linear mode coupling and mode-dependent
gain. Equations for multi-mode Raman fiber amplification were derived,
conditions for equal modal gain were calculated, and a model for weak
random linear mode coupling was defined. These models were used to
simulate the excess noise induced by random mode coupling in the pump
of two-mode distributed Raman fiber amplifiers. It was shown that in
the weak coupling regime intra-mode-group mode coupling has no ob-
servable effect on the mode-dependent gain and that inter-mode-group
mode coupling has only a minor effect of < 0.3 dB in a case where dis-
tributed Raman amplification compensated for 20 dB of loss. The noise
figure was simulated under variation of the signal input power and the
degree of inter-mode-group mode coupling and for both signal modes
three separate regimes were found in the space of these two parameters;
the three regimes represent no induced noise figure, amplitude regenera-
tion as for the parametric amplifier, and a large mode coupling induced
noise figure, respectively.

Mode-dependent gain was also investigated experimentally in a two-
mode Raman fiber amplifier. A scheme for measuring the Raman inten-
sity overlaps in the fiber and using these for calculating the pump power
distribution among the guided modes to achieve equal modal gain in
the signal was presented. Using this scheme a mode-dependent gain of
only 0.25 dB per 10 dB gain was demonstrated by launching the back-
ward propagating pump into a specific combination of modes (17% in
the LP01-mode and 83% in the LP11-mode).

In Ch. 5, inter-modal four-wave mixing was modeled and experi-
mentally investigated. The goal was to find the conversion efficiency
from signal to idler and the phase matching properties of two four-wave
mixing processes, phase conjugation and Bragg scattering, including the
bandwidth of phase matching for the signal. Two two-mode fibers with
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different dispersion properties were investigated; the most significant dif-
ference between the fibers was the relative inverse group velocity of the
two guided modes, which lead to the idler being generated in the LP11-
mode with a wavelength separation of 4.4 nm from the signal in the
LP01-mode in Fiber 1, and the idler being generated with a wavelength
separation of 25 nm from the signal in Fiber 2 in the same mode config-
uration. For both fibers, the conversion efficiency of phase conjugation
and Bragg scattering was measured for a range of signal wavelengths
and pump-to-pump wavelength separations, and the highest conversion
efficiencies found were > −7.4 dB for phase conjugation and > −6.3
dB for Bragg scattering in Fiber 1 and > −3.25 dB for phase conjuga-
tion and > −2.70 dB for Bragg scattering in Fiber 2. The simulated
bandwidths of phase matching for the signal showed a good qualitative
agreement with the experimental data; good quantitative agreement is
believed to be limited by insufficient dispersion data, dispersion fluctu-
ations through the fibers and Raman amplification from the pump with
the smallest wavelength.

6.2 Outlook

The work carried out in this thesis is far from complete and there are
more than a few ways to proceed at this point. In this final section,
some comments on further work is given.

For the semi-classical modeling presented in Ch. 3, one obvious step
forward is developing quantum models that describe all the regimes that
the were presented in this thesis. However, until such models are devel-
oped, experimental verification of the semi-classical model is needed to
confirm its validity; especially the noise properties of Bragg scattering
have not been studied much so noise figure measurements for that par-
ticular process has value. Concerning modeling, the semi-classical model
would find more use if it was defined for pulses instead of only CW. It
remains, however, unclear how to define field ensembles for a continuum
of frequencies. The most interesting angle, in the view of the author,
is investigating the increasing Raman induced noise figure close to the
degenerate pump in the phase-insensitive amplifier. Existing quantum
models do not predict an increase in the noise figure around the pump so
an interesting question is: is the semi-classical model not able to predict
the noise figure of the combined effects of four-wave mixing and Raman
scattering correctly, even though it predicts them correctly separately,
or are the existing quantum models incomplete?

In Ch. 4, the model of weak random linear mode describes effects
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that have not been given much attention in the literature so far. There-
fore, the most important thing to do in a next step is to validate the
model against other models or preferably experimental data. While it is
difficult to prove that random linear mode coupling has a small impact
on the mode-dependent gain as predicted in Ch. 4, it would be more
feasible to experimentally verify the existence of the three regimes of the
noise figure in the space of signal input power and degree of inter-mode-
group mode coupling. However, since the degree of mode coupling is
not a variable this investigation may be cumbersome. In terms of mod-
eling, the model would be improved much if it was to be defined for a
backward propagating pump. This, however, is problematic because one
would have to guess the output photon number distribution of the pump
(at signal input) to ensure both that the pump has a Poisson distributed
number of photons at input (signal output) and that the signal has the
measured distribution at the output.

The experimental investigation of equal modal gain in a two-mode
Raman fiber amplifier of Ch. 4 has a more exciting potential. As a first
thing, a better measurement of the output modal content is needed.
This may be done by properly de-multiplexing the signal modes at the
fiber output with phase plates as it is done in Ch 5. This improvement
would remove the oscillations observed in the mode-dependent gain, and
a better value for Raman intensity overlaps will most likely be achieved.
Thus, an even lower mode-dependent gain should be achievable. The
next step is to send actual data through a long two-mode fiber instead of
a continuous wave signal, and then demonstrate that a better transmis-
sion can be achieved with a backward propagating pump in the correct
combination of two modes to give equal modal gain.

In Ch. 5, the performance of the inter-modal four-wave mixing
can be improved significantly by performing the same experiments in
a shorter fiber with higher power (such that the same accumulated non-
linearity is achieved). A shorter fiber has multiple advantages: lower
linear mode coupling, less polarization drift, and (presumably) a smaller
degree of dispersion fluctuations. All of these effects, though to a small
degree the mode coupling, are limiting the results presented in Ch. 5 at
the moment. The next exciting step is do inter-modal four-wave mixing
in fibers that have even larger separations in wavelength between the
inverse group velocity curves; one goal that is worth pursuing is realiz-
ing four-wave mixing where the side bands are separated more than 20
THz from the pump(s) such that all Raman noise is avoided. Such a
configuration could unlock the noise-less frequency conversion property
of Bragg scattering in silica fibers.
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Appendix A

Supplementary material for
chapters

A.1 Statistical derivation of the noise figure of
a Raman amplifier

Given an ensemble of electromagnetic fields defined as Eq. (3.17), we
may apply a constant Raman gain G in power to one signal provided by
one pump, which leaves the SNR unchanged (signal and noise are am-
plified equally), but spontaneous emission from the pump is also present
and that changes the SNR. In this semi-classical model, we add fluc-
tuation variables after having applied the gain and then calculate the
corresponding change in the SNR. The output field ensemble of a Raman
amplifier in the linear gain regime is

Aout = G1/2 [x0 + δx+ i(p0 + δp)] + δa1 + iδa2, (A.1)

where δaj is the fluctuation in quadrature j of the spontaneous emission
associated with the physical process that provided the gain. Defining
the SNR as Eq. (3.20) and the Raman NF as the ratio SNRin/SNRout,
we get

NF =
SNRin

SNRout
≈ 1 +

4〈δa2〉
G ~ωB0

, (A.2)

where a large photon number was assumed and it was furthermore as-
sumed that the statistics of the fluctuations in both quadratures are
equal, so 〈δa2

1〉 = 〈δa2
2〉 = 〈δa2〉. To evaluate the NF the variance of δa,

which is equal to the second order moment 〈δa2〉 because δa has zero
mean value, must be determined.

104



Classical photon number equations describing the Raman interac-
tion among two waves at different wavelengths are shown in textbooks
on nonlinear optics [57] and it is custom to approximate the lower wave-
length component (the anti-Stokes component or pump in the context
of Raman amplifiers) by a constant but here we also need to consider
the opposite case of the higher wavelength component (the Stokes com-
ponent) being much stronger than the lower wavelength component and
hence approximate that by a constant. Likewise, the mean output power
of (A.1) is

〈|AS,out|2〉 = G(x2
0 + p2

0) + ~ωSB0G/2 + 2〈δa2
S〉 (A.3)

〈|AAS,out|2〉 = L(x2
0 + p2

0) + ~ωASB0L/2 + 2〈δa2
AS〉, (A.4)

where (A.3) describes the weak Stokes component that receives Raman
gain G from the strong anti-Stokes component, and (A.4) describes the
weak anti-Stokes component that depletes a factor L by giving energy to
the strong Stokes component. The second term of each equation is the
amplification/depletion of the vacuum fluctuations explicitly included
in (A.1) and they are artifacts of the semi-classical modeling; 〈δa2

S〉
and 〈δa2

AS〉 should be chosen to counter-balance these terms as well as
including spontaneous emission. If 〈δa2

S〉 and 〈δa2
AS〉 are chosen to be

〈δa2
S〉 = ([G(z)− 1](nT + 1)/2− [G(z)− 1]/4) ~ωSB0 (A.5)

〈δa2
AS〉 = ([1− L(z)]nT/2 + [1− L(z)]/4) ~ωASB0, (A.6)

and they are inserted into (A.3) and (A.4), then one gets the equivalent
of what may be derived from the classical equations. The Raman NF of
a signal on either side of a strong pump is now easily calculated using
(A.2) to be

NFS =
1

G(z)
+

2[G(z)− 1](nT + 1)

G(z)
→ 2(nT + 1) (A.7)

NFAS =
1

L(z)
+

2[1− L(z)]nT

L(z)
→ (1 + 2nT)/L(z). (A.8)

The arrows indicate the tendencies in case of large Raman interaction,
i.e. G � 1 and L � 1. In the limit of low temperature, nT ≈ 0, these
formulas give the expected results of a 3-dB NF on the S side and a NF
equal to the depletion on the AS side.

Considering case (i) and case (i) of Fig. 3.10, in which there are
two pumps and two small signals, the results (A.7) and (A.8) do not
immediately apply. However, if one regards the two pumps as one wave
component with power P = Pp + Pq and the signal and idler as one
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small signal, one has an artificial two-component system that may be
described by the results of this appendix. The frequency separation
between the two components is Ωpi = ωp−ωi in case (a) and Ωip in case
(b).

A.2 Analytical solutions to single-mode four-
wave mixing equations

This appendix shows how to solve the four-wave mixing (FWM) equa-
tions in the case of degenerate amplification MI. The equations are de-
rived in Ch. 2, and they read

∂zEs = iγs

[
|Es|2Es + (2− fR)

(
|Ep|2 + |Ei|2

)
Es + (1− fR)E2

pE
∗
i e−i∆βz

+fR

(
|Ep|2h̃R(Ωps) + |Ei|2h̃R(Ωis)

)
Es

]
− αs

2
Es,

(A.9)

∂zEp = iγp

[
|Ep|2Ep + (2− fR)

(
|Es|2 + |Ei|2

)
Ep + 2(1− fR)EsEiE

∗
pei∆βz

+fR

(
|Es|2h̃R(Ωsp) + |Ei|2h̃R(Ωip)

)
Ep

]
− αp

2
Ep,

(A.10)

∂zEi = iγi

[
|Ei|2Ei + (2− fR)

(
|Ep|2 + |Es|2

)
Ei + (1− fR)E2

pE
∗
s e−i∆βz

+fR

(
|Ep|2h̃R(Ωpi) + |Es|2h̃R(Ωsi)

)
Ei

]
− αi

2
Ei,

(A.11)

where γj = ωjn2/(cAeff) [1/(W m)] and n2 = 3χ(3)ε0/(4n
2
effc) [m2/W] is

the nonlinear refractive index. Ignoring the Raman scattering and loss
terms, then in the undepleted pump regime where the pump is always
of much larger amplitude than the two side bands the pump equation
reduces to

∂zEp = iγp|Ep|2Ep, (A.12)

which has the simple solution

Ep(z) =
√
PpeiγpPpz, (A.13)

where Pp is the constant pump power. Inserting this result into the
signal and idler equations and neglecting terms that do not hold the
pump amplitude squared, then

∂zEs = iγs(2− fR)PpEs + iγs(1− fR)PpE
∗
i e−i∆βz+2iγpPpz, (A.14)
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∂zEi = iγi(2− fR)PpEi + iγi(1− fR)PpE
∗
s e−i∆βz+2iγpPpz. (A.15)

Making the following transformations

Ej = Aje
iγj(2−fR)Ppz (A.16)

for both j ∈ {s, i}, Eqs. (A.14) and (A.15) become

∂zAs = iξsA
∗
i e−iκz, (A.17)

∂zAi = iξiA
∗
s e−iκz, (A.18)

where ξj = γj(1−fR)Pj for both j ∈ {s, i} and κ = ∆β+2γp(1−fR)Pp.
Differentiating Eq. (A.17) and using both Eqs. (A.17) and (A.18), one
finds

∂zzAs + iκ∂zAs − ξsξiAs = 0, (A.19)

where ∂zz denotes double differentiation with respect to z. Solving this
simple second order differential equation with the initial conditions ap-
propriate for the degenerate PIA, As(0) = A0 and Ai(0) = 0, the solution
is

As(z) = A0

(
cosh(gz) +

iκ

2g
sinh(gz)

)
e−i

κ
2
z, (A.20)

where g2 = ξsξi − (κ/2)2. The difference between Aj and Ej is just a
phase factor so the gain can be found directly by

G(z) =
|As(z)|2
|As(0)|2 = 1 +

ξsξi

g2
sinh2(gz). (A.21)

The other FWM processes can be solved in a similar way.

107



Appendix B

Submitted paper:
Experimental
characterization of Raman
overlaps between
mode-groups

108



Experimental characterization of Raman overlaps
between mode-groups
Erik N. Christensen1,+,*, Jacob G. Koefoed1,+, Søren M. M. Friis1, Mario A. Usuga
Castaneda1, and Karsten Rottwitt1

1Department of Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
*ench@fotonik.dtu.dk
+These authors contributed equally to this work

ABSTRACT

Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition,
distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise proper-
ties and the possibility of mode-equalized gain. In this paper, we present an experimental characterization of the intermodal
Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power
and the degree of higher order mode-excitation for the pump and the signal in a 10 km long two-mode fiber, we are able to
characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement
and demonstrate a mode-differential gain of only 0.25 dB per 10 dB overall gain. This is, to the best of our knowledge, the
lowest mode differential gain achieved for amplification of mode division multiplexed signals in a single fiber.

Introduction
During the past decade, the increase in data capacity per fiber has slowed relative to the rapid progress in the 1990’s while,
at the same time, the demand for capacity continues to grow exponentially.1 Current methods for signal multiplexing, i.e.
wavelength-, polarization-, time-, and quadrature-division multiplexing, are approaching their fundamental limits so new
means of multiplexing are needed. Space-division multiplexing2 in the form of multi-core fibers has already been used to
achieve new heights in data capacity from a single laser source;3, 4 in single-core fibers supporting multiple spatial modes,
long-distance propagation of optical signals has been demonstrated;5, 6 and recently, data transmission in a few-mode multi-
core fiber was presented.7 One important challenge of mode-division multiplexing (MDM) systems is building multi-mode
optical amplifiers, that have mode-equalized amplification of all spatial modes, to compensate for example for distributed fiber
loss; it is desirable for a multi-mode amplifier to avoid mode-dependent gain (MDG) in order to maximize capacity.8 As for
traditional single-mode systems, discrete Erbium-doped fiber amplifiers have been applied to multi-mode systems as well and
low MDG has been achieved for some of the modes in fibers with specially designed Erbium-doping profiles.9–11

Another approach to counter-balance fiber losses is distributed Raman amplification, which is also widely used already in
single-mode networks due to its superior noise properties in the backward-pumped configuration.12 Furthermore, it has been
shown theoretically that minimal MDG is possible by coupling pump power into a specific combination of spatial modes,13

or by optimizing fiber design,14 which makes Raman amplifiers a promising candidate for realizing low-loss, multi-mode
transmission links over large distances.

Earlier work has demonstrated Raman gain between higher-order modes with the pump in only one mode.5, 15, 16 Besides
the obvious challenges related to exciting the pump in a specific combination of modes, it may often also prove difficult to
determine the exact mode combination that leads to the lowest possible MDG because the required fiber data are unavailable
from the fiber supplier. In this paper, we present an experimental characterization of the intermodal Raman intensity overlap
of the guided modes of a two-moded (6 modes counting polarisation and LP11a and LP11b) few-mode fiber (FMF) using me-
chanically induced long-period gratings (LPGs) to excite the higher-order modes. Using the obtained results, we demonstrate
backward pumped Raman amplification of a continuous wave (CW) signal through 10 km of a two-moded fiber with a very
low MDG of 0.25 dB per 10 dB gain by pumping in a combination of the LP01 and LP11 modes. The mode-differential gain
obtained required no prior knowledge about the Raman intensity overlaps of the fiber.



Results
The purpose of the present work is to characterize the intermodal Raman overlaps and use them to achieve a minimal MDG in
a backward-pumped Raman fiber amplifier. This is done by coupling the pump light into the fiber in the correct combination
of the LP01- and LP11-modes. As will be discussed in the Methods section below, due to strong mode-coupling, the two-fold
quasi-degenerate LP01-modes and four-fold quasi-degenerate LP11-modes are simply considered as two distinct groups of
modes. We carry out two measurements: Firstly, the Raman gain of a continuous wave signal in the LP01-mode is measured
vs. total pump input power for five different modal compositions of the pump, i.e. different combinations of the LP01- and
the LP11-modes. Secondly, both pump and signal are converted to LP11. This data is used to calculate the Raman intensity
overlaps relative to the LP01-LP01-overlap, which is all that is needed to find the correct combination of pump modes.

Raman intensity modal overlaps
Assuming both pump, and signal to be CW sources, the signal power Ps

i , in spatial mode i, and the counter propagating Pp,−
j

and copropagating pump power Pp,+
j , in spatial mode j, is governed by17

dPs
i

dz
=−αsPs

i + γR

(
∑

j
Fi, j(P

p,+
j +Pp,−

j )

)
Ps

i , (1)

dPp,±
j

dz
=∓αpPp,±

j ∓ λs

λp
γR

(
∑

j
Fi, jPs

i

)
Pp,±

j (2)

where αs and αp are loss coefficients for signal and pump wavelengths λs and λp, and γR is related to the spontaneous Raman
scattering cross section. Note that γR and αp,s are assumed mode-independent. The intensity overlap integrals are defined as

Fi, j =

∫
IiI j dA

∫
Ii dA

∫
I j dA

, (3)

with Ii being the intensity of mode i integrated over the entire fiber cross section. Solving (1) and (2) using the undepleted
pump approximation, we arrive at an expression for the on/off gain

Gi =
Ps

i (L) (pump on)
Ps

i (L) (pump off)
= exp

(
γRLeff

(
∑

j
Fi, jP

p,+
j (0)+∑

j
Fi, jP

p,−
j (L)

))
, (4)

where Leff = (1−exp[−αpL])/αp is the effective fiber length and L is the physical fiber length. The setup used is a backwards
pumped configuration, where the pump has only two different spatial profiles (corresponding to LP01 and LP11), so Eq. (4)
can be reduced to

Gi = exp
(
γRLeff [ηpFi,11 +(1−ηp)Fi,01]Pp

)
, (5)

for the signal in mode i, where ηp is the degree of conversion of the pump from LP01 to LP11 (ηp = 0 when all the pump power
is in LP01, and ηp = 1 when all the pump power is in LP11) and Pp is the total input pump power (in all modes). Using the
setup which is described in the methods section below, 65 measurements were carried out with 5 different conversion degrees
and 13 different pump power levels varying from 0 to 1200 mW for each conversion degree. From the expected form of the
gain, Eq. (5), we fitted a function of the form

G(dB)
01 = (c1 + c2ηp)Pp (6)

to the data, where c1 and c2 are fitting parameters. The result is presented in Figure 1a where data and fitting lines are shown
at the five different values of ηp. The obtained values for the fitting parameters are c1 = 8.50 dB/W and c2 = −4.48 dB/W.
The theoretical expression is in excellent agreement with the obtained data with these values of the fitting parameters. From
these values the ratio of the Raman intensity overlaps between the LP01-LP01-modes and LP01-LP11-modes is obtained

F01,11

F01,01
= 1+

c2

c1
= 0.47, (7)

by comparing (5) and (6). This result agrees well with the value of 0.48 obtained from simulated mode-profiles provided by
the fiber supplier.
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Figure 1. (a) Measured Raman gain vs. input pump power for five different pump conversion degrees, ηp; the lines result
from the two-parameter fit evaluated at each conversion degree. (b) Measurements of Raman gain for signal and pump in
LP11. For comparison is shown the measurement with pump in LP11 and signal in LP01.

Table 1. Measured values for overlap integrals relative to the LP01-LP01 overlap.

LP01-LP01 LP11-LP01 LP11-LP11

Measurement 1 0.47 0.56

Subsequently, the signal was coupled to the LP11-mode with the highest attainable efficiency, (ηp > 0.99), and the pump
was converted to the LP11-mode with an efficiency of ηp = 0.925, see the Methods section for details, and the Raman gain of
the LP11-signal was measured vs. the input pump power. A linear function of the type

GdB
11 = c3Pp, (8)

was fitted to the data. From this the ratio F11,11
F01,01

is calculated, taking into account the pump conversion degree. The slope
obtained from the fit to the LP11-LP11 -data was c3 = 4.74 dB/W. We assume wavelength independence of the overlap
integrals (i.e. that the LP01-LP11 and LP11-LP01 overlaps are nearly identical). By comparison of Eqs. (8) and (6) to (5)
we note that c1 = kF01,01 and c3 = k(F01,11 + ηp(F11,11 −F01,11)) with k = 10log10(e)γRLeff. Using Eq. (7) for the ratio
F01,11/F01,01, these two expressions can be rearranged to give

F11,11

F01,01
=

c3

c1ηp
− 1−ηp

ηp

(
1+

c2

c1

)
= 0.56. (9)

This is compared to the simulated values for LP11a-LP11a and LP11a-LP11b of 0.72 and 0.24, respectively. The measured
overlap is, as expected, an intermediate value that depends on the mode-coupling within the LP11 mode-group. In table 1 the
measured overlaps are summarized, and in table 2 the simulated overlaps are shown. Notice that the overlaps are normalized
so that the LP01-LP01-overlap equals one.

Mode-equalized Gain Based on Measured Overlaps
Since the LP11-LP11 and LP11-LP01 intensity overlaps often turn out to be very similar in FMFs, relatively low differential
gain can be obtained by simply launching the pump completely into LP11. This was experimentally verified by R. Ryf et al.6

where a differential gain of 0.5 dB per 10 dB of gain was observed. For the fiber used in this work, such a scheme results in a
differential gain of 1 dB per 10 dB of gain as obtained from the data shown in Figure 2b (the differential gain in the figure is
slightly lower since the pump is only converted 95 % into LP11). Using our knowledge of the intensity overlap integrals, the
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Table 2. Simulated overlap integrals for all modes.

LP01 LP11a LP11b

LP01 1 0.48 0.48
LP11a 0.48 0.72 0.24
LP11b 0.48 0.24 0.72
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Figure 2. (a) Raman gain for both a LP01 and LP11-signal with a pump in the mixture of 83 % LP11 and 17 % LP01
demonstrating near-equal gain for the two signals. (b) MDG between the two signal modes for pump almost completely
converted to LP11 and pump in the mixture of 83 % LP11 and 17 % LP01. A line for 0.5 dB gain difference per 10 dB gain is
included for reference.

condition for equal signal gain across the two signal-modes, G11 = G01, can be written as

ηpF11,11 +(1−ηp)F01,11 = ηpF01,11 +(1−ηp)F01,01. (10)

This equation can be solved, using the experimentally obtained values for the ratios F11,11/F01,01 and F01,11/F01,01, to obtain
an equal-gain pump conversion of

ηp,eq =
1−F01,11/F01,01

1+F11,11/F01,01 −2F01,11/F01,01
= 0.854 (= 8.35 dB conversion). (11)

In Figure 2a the results of measuring a signal launched first completely in LP01 and then completely in LP11 with a pump
conversion of ηp = 0.83, i.e. slightly below the optimal value, are shown. From the figure it is clear that very little mode-
dependent gain remains (compare with Figure 1b). The mode-differential gain as a function of the mean gain is seen in Figure
2b, showing a residual MDG of only 0.25 dB per 10 dB of Raman gain as obtained from the fitted lines. This differential
mode gain is, to the best of our knowledge, the lowest that has so far been experimentally demonstrated. The reason for the
fluctuation in MDG is most likely due to mode coupling between LP11a and LP11b. The LPG preferentially couples to the
LP01 mode that we detect in the optical spectrum analyzer (OSA), as explained in the Methods section. This means that any
mode coupling between LP11a and LP11b shows up as a small variation in the measured amplified signal. In the ηp = 0.83
(blue dot) measurement the back coupling is slightly more unstable compared to the ηp = 0.95 (red circle). This is due to the
different configuration of the back coupling LPG.

Methods
The intermodal Raman gain is measured using the experimental setup shown in Figure 3. The setup is a distributed backwards
pumped multi-mode Raman amplifier with a CW laser operated at 1550 nm as the signal source, and an unpolarized 1455 nm
Raman fiber laser used for optical pumping. The characterized fiber is a 10 km, 2-moded graded-index fiber.
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Higher-Order Mode excitation
The excitation of higher-order modes is achieved by use of mechanically induced LPGs, which are created by pressing the
fiber between a periodically grooved aluminum block and a rubber pad. This creates a periodic perturbation in the fiber in-
dex, which induces mode coupling if the pitch of the induced gratings matches the difference in propagation constants of the
modes.18

Using a broadband supercontinuum source at the signal input the mode-converted wavelengths are observed in the OSA2
as a drop in the power spectrum due to the FMF to single mode fiber splice working as a mode filter. The effective pitch of the
LPG is changed by adjusting the angle of the grooves with respect to the fiber, until maximum mode-conversion is achieved
at the signal wavelength. The use of a supercontinuum source for calibration is not strictly necessary if the difference in prop-
agation constant for the modes of interest is known, but it facilitates the excitation process. Based on the knowledge of the
propagation constants the pitch for the pump wavelength was calculated to be 527 μm, which is in excellent agreement with
the 523 μm pitch experimentally observed at maximum conversion. The LPGs are polarization dependent,18 so a polarization
controller (PC) is used to optimize conversion of the polarized signal source. After propagation through the fiber the signal is
converted back to the fundamental mode using a second LPG.

From standard mode-coupling theory the coupling strength between the modes in a step-index fiber is given by19

K(z) =
π

λncore

∫
Δε(r,φ ,z)ψ1(r,φ)ψ2(r,φ) dA∫

ψ2
1 (r,φ) dA

, (12)

where ψ1,2 are the scalar mode profiles of the fiber. Since the grooves of the mechanical block are only applied to the fiber
from one direction, the perturbation Δε(r,φ ,z) is asymmetric with respect to this direction. Since the LP01 mode is a circularly
symmetric mode, we expect that mainly the LP11 mode which is spatially asymmetric with respect to the pertubation direction
is excited in the induced grating. However, since we use an unpolarized pump, both polarizations of this spatial mode are
excited resulting in an almost equal excitation of the four full-vectorial modes (TE01, TM01, HE21a and HE21b) that constitute
the pseudo-LP11 modes. The strong coupling between these modes is expected to quickly smooth out any difference in the
excitation.17 Thus, following a similar approach as Antonelli et al.,20 we only consider the excitation of the quasi-degenerate
groups of modes, LP01 and LP11, consisting of two and four nearly degenerate modes, respectively. In this regard, the
measured overlaps are essentially an average over these groups.

Characterization of fiber under test
For all measurements the signal power launched is 0.4 mW, and the launched pump power is varied from 0 to 1200 mW. For
each pump power the on/off gain is measured by OSA2. The ratio of the LP01-LP01 and LP01-LP11 overlaps is found with
the signal in LP01 and the pump in varying mixtures of both LP11 and LP01 by adjusting LPG2 to the desired pump mode
conversion.
For the LP11-LP11 gain measurement LPG1 and PC1 were adjusted to obtain more than 99% signal conversion, and LPG2
was adjusted to obtain a maximum of ηp = 0.92 pump conversion; The lower pump conversion is due to the pump being
unpolarized. The LPG2 conversion bandwidth is large enough such that, by optimizing PC2, 12 dB of the signal is converted
back to LP01. The back conversion is necessary due to the mode-filtering effect of the single-mode to multi-mode fiber splice.
The gain of the back converted signal is the LP11-LP11 gain.

Equal modal gain measurement
To equalize the modal gain, we first adjust LPG2 so that we are pumping in a combination of the LP11 and LP01 modes very
close to the optimal value 85% conversion as obtained from the previous measurements, see Eq. (11). We then first adjust
LPG1 and PC1 to maximize signal conversion (ηp > 0.99) and measure the gain of this mode. Then LPG1 is lifted so that the
signal is a pure LP01-mode and the gain for this mode is measured. The difference in the gain for these two signal-modes then
gives the mode-differential gain.

Conclusion
We have experimentally characterized the intermodal Raman overlaps in a few-mode fiber by varying the launched pump
power and the conversion efficiencies of the pump and signal using mechanically induced long-period gratings for mode
excitation. The overlap integrals (relative to the LP01-LP01 overlap) for all modal combinations were obtained in this way
for a specific few-mode fiber. By use of the obtained overlaps, it was further demonstrated how a mode-differential gain of
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Figure 3. The experimental setup used for all measurements. ISO: Isolator, OSA:optical spectrum analyser, PC:
polarization controller, LPG: long period grating, FMF: few-mode fiber. Red lines signify FMF and black lines single mode
fiber with crosses indicating splices. The number on the gratings indicate pitch.

only 0.25 dB per 10 dB overall gain is obtained by pumping in a specific combination of the LP11 and LP01 modes. In the
specific few-mode fiber under test, the differential gain was shown to be significantly lower when pumping in the determined
combination of modes compared to when pumping only in LP11.
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Noise Contributions of Linear Pump Mode
Coupling in Few-Mode Raman Fiber Amplifiers

Søren M. M. Friis and Karsten Rottwitt

Abstract—We review recent work on few-mode Raman fiber
amplifiers and address some of the connected challenges: mode
dependent gain and linear mode coupling. Deterministic linear
mode coupling in a transmitted signal can be mitigated by
multiple-input multiple-output processing techniques in linear
transmission systems but if distributed Raman amplification is
employed, mode coupling introduce a new source of amplification
noise. We employ a model of few-mode Raman amplification and
a numerical implementation of random linear mode coupling in
the pump to study fundamental limiting effects of few-moded
Raman fiber amplifiers. Conditions for equal modal gain and
balance between Raman gain and fiber attenuation are derived.

By quantifying the degree of both intra- and inter-mode group
linear mode coupling, we show how the signal-to-noise ratio of
a transmitted signal is affected by the presence of linear mode
coupling in the pump in the depleted as well as in the undepleted
pump regime.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

INDIVIDUAL spatial modes in few-mode fibers (FMF)
have been shown to hold great promise as a means to

enhance the capacity in an optical communication system
since they form a basis in a space division multiplexed
(SDM) communication system. Each individual mode is ide-
ally orthogonal to all other modes and capable of carrying
information. However, one challenge in such systems is optical
amplification. An amplifier in an SDM system needs to be able
to amplify individual modes with the same gain and with the
same noise performance and at multiple wavelengths at the
same time.

Recent SDM transmission system experiments have in-
cluded discrete few-moded Erbium-doped fiber amplifiers and
distributed Raman fiber amplifiers. In 2012, N. Bai et al.
investigated in [1] a few-moded Erbium-doped fiber amplifier
that supported three spatial modes, LP01, LP11a and LP11b.
Here and in the following, the notion of LP modes refer to
scalar linearly polarized modes as they exist in weakly guiding
stepindex optical fibers [2]. The amplifier was used to boost
the signal just before the input of the receiver. The impact
of using different spatial pump modes was considered and
the mode dependent gain, i.e. the difference in gain between
the LP01 and the LP11a and LP11b modes across the entire
C-band, was shown to be 1 dB when the pump power was
in the LP21 mode for an average modal gain of ∼ 7 dB.

S. M. M. Friis and K. Rottwitt are with the Department of Photonics Engi-
neering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
e-mail: karo@fotonik.dtu.dk.

Manuscript received April 19, 2005; revised August 26, 2015.

V.A.J.M Sleiffer et al. demonstrated in [3] the use of an in-
line few-moded Erbium-doped fiber amplifier, providing gain
for the spatial modes: LP01, LP11a and LP11b. The amplifier
provided a modal gain of around 17 dB across the full C-band
with a mode dependent gain close to 2 dB.

R. Ryf and co-workers demonstrated in 2011 [4] the use of
distributed Raman amplification to counteract the loss in a 137
km long FMF. The signals were situated in the LP01, and the
LP11 mode while the pump was launched into the LP11 mode.
The Raman fiber amplifier used in their experiment provided
a maximum gain of about 8 dB in the wavelength range from
1550 nm to 1570 nm with a variation in gain between modes
of less than 0.5 dB. It is noted that in their experiment the
signals experienced an effective noise figure, as defined in [5],
of -1.5 dB in the same wavelength range. In 2012, R. Ryf and
et al. [6] showed a transmission through a 209 km long FMF
using distributed Raman gain to counterbalance intrinsic fiber
loss. The signal consisted of polarization multiplexing of the
three spatial modes LP01, LP11a and LP11b. The backward
pumped distributed Raman fiber amplifier provided around 10
dB of gain at 1550 nm, obtained by using 800 mW of pump
power coupled into the LP11 mode.

As already pointed out, one challenge in using optical FMF
amplifiers is the mode dependent gain. In discrete Erbium-
doped fiber amplifiers, Q. Kang et al. [7] have proposed a fiber
design that has enabled a 6 mode group amplifier providing
a gain around 25 dB for all 6 modes with a maximum gain
difference among the 6 modes of only 0.6 dB. R. Ryf et al.
analyzed mode dependent gain theoretically in a distributed
Raman fiber amplifier in [8]. Among four mode groups a mode
dependent gain of 0.13 dB, for a Raman gain of 10 dB on
each signal mode group, was predicted. To achieve this result,
the pump power was distributed among two different mode
groups.

The task of minimizing the difference in gain among
different signal modes at different signal wavelengths is a
challenging problem. The solution is either to optimize the
fiber design for minimum mode dependent gain or to adjust the
configuration of the pump at the amplifier input; for example
distributing the pump power among different wavelengths or
spatial modes. For the latter solution, a numerical approach
to optimizing the pump power distribution in different spatial
modes has been addressed by J. Zhou in [9].

In analogy to the mode dependent gain, the noise per-
formance of few-mode amplifiers is also mode dependent.
However, evaluating the gain and noise performance is further
complicated since the power distribution within individual
modes, be it signal or pump modes, may shift during propaga-
tion. This linear and distributed mode coupling is not caused
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by the amplifying mechanism but for example due to small
perturbations in the fiber, splices between fiber segments, or
due to the fact that scalar LP modes, as we consider in the
following, are composed of several spatial and polarization
degenerate modes that couple strongly to each other during
propagation. Thus, mode coupling exist in space division
multiplexed systems even without amplification. This type
of coupling is deterministic in nature and may be mitigated
by using MIMO techniques [10]. However, the complexity
of using MIMO scales quadratically with the number of
modes and even though the impact of mode coupling may be
mitigated, mode coupling still results in a transmission penalty
[11]. Consequently low linear mode coupling is desirable [11]–
[13].

Another class of mode coupling is random linear mode cou-
pling (RLMC) that happens because of stochastic perturbations
along the fiber, as for example stochastic mechanical pertur-
bations or temperature perturbations; the impact of RLMC in
a single amplifier is a new noise source introduced in multi-
mode systems. RLMC cannot be mitigated by MIMO and its
impact is enhanced in amplifiers as for example a Raman fiber
amplifier [14]. The reason for this is that in a system relying on
distributed Raman amplification, the random mode coupling
not only impacts the statistics of the output power of the signal
due to mode dependent loss but even more dramatically, the
signal is impacted by a random distributed mode coupling of
the pump power as it couples between different modes each
having a different Raman gain coefficient to individual modes.

As a means to minimize linear mode coupling, deterministic
as well as random mode coupling, a fiber may be designed
with a large separation between the effective refractive index
of each mode. This has been investigated by L. Grüner-Nielsen
et al. [11] and K. Jespersen et al. [15] and likewise its impact
on the Raman gain [16] by C. Antonelli et al.. It has been
demonstrated that the linear mode coupling decreases with
increasing mode index difference, and it has been demon-
strated that an index difference of ∆n = 1.3 · 10−3 result
in a linear mode coupling of −18.2 dB, measured in a 500 m
fiber, whereas an index difference of ∆n = 2.8 ·10−3 reduces
the linear mode coupling to −25 dB, measured in a 30 km
long fiber.

In this paper, we estimate the induced excess noise of dis-
tributed few-mode Raman fiber amplifiers due to linear mode
coupling in the pump. We present a scheme with parameters
that may be derived from experimental data, and we quantify
the results in terms of mode differential gain and an induced
noise figure (NF). Since deterministic mode coupling in the
signal can be well mitigated by MIMO processing [17], we
include only mode coupling among the pump modes; and
because little is usually known about where in the fiber mode
coupling takes place, we regard as a first approximation the
pump mode couplings to be of random nature. Amplified
spontaneous emission is omitted from the investigation for
simplicity and should thus be considered an additional source
of noise. The model of linear mode coupling is defined to
represent the weak coupling regime where only a small amount
of electromagnetic energy is expected to couple from one
pump mode to another while propagating through the fiber;

this is in contrast to earlier works that focus on the strong
coupling regime [18]–[20].

II. THEORY

In this section, basic propagation equations of stimulated
Raman scattering are derived in the same fashion as Ref.
[16] and equal modal gain conditions are derived; secondly, a
numerical model of random linear mode coupling is presented.

A. Deterministic Propagation Equations

A nonlinear propagation equation suitable for describing
multi-mode stimulated Raman scattering is derived and pre-
sented in Refs. [21], [22] and in the continuous wave regime
it reads

∂E
(µ)
n

∂z
=
iωne−iβ

(µ)
n z

4N
(µ)
n

∫
F(µ)
n

∗ ·P(3)
n dxdy, (1)

where ωn is the angular frequency at wave component n, β(µ)
n

is the propagation constant at frequency ωn in mode µ, z is the
longitudinal coordinate through the fiber, F(µ)

n (x, y) is a vector
containing the field distribution functions of each of the three
components of the electric field, and N (µ)

n is a normalization
term that ensure that the unit of the electric field amplitude,
E

(µ)
n , is the square root of watts, and it defined as [22]

1

4

∫∫ [
F(ν)
n

∗ ×H(µ)
n + F(µ)

n ×H(ν)
n

∗] · ẑ dxdy = δµ,νN
(µ)
n

2

(2)

where H
(µ)
n is the same for the magnetic field as F(µ)

n (x, y) is
for the electric field. In the derivation of Eq. (1), the electric
field was expanded in a set of continuous wave fields

E(r, t) =
1

2

∑

m

Am(r)e−iωmt + c.c. (3)

and the time independent coefficient Am is a sum over all
modes at frequency ωm,

Am =
∑

ν

F
(ν)
m (x, y)

N
(ν)
n

E(ν)
m eiβ

(ν)
m z. (4)

The third order nonlinear induced polarization in Eq. (1) is
the time independent coefficient of

P(3)(r, t) =
1

2

∑

n

P(3)
n (r)e−iωmt + c.c. (5)

To derive propagation equations for N continuous wave fields
each with an arbitrary number of modes, we evaluate the
nonlinear induced polarization as [22]

P(3)(r, t) = ε0χ
(3)E(r, t)

∫
R(t− τ)|E(r, t)|2dτ (6)

where only one component of the susceptibility tensor χ(3)
ijkl is

included, i.e. the χ(3)
iiii ≡ χ(3) where i = x or y and χ(3) is the

total susceptibility (sum of Kerr and Raman susceptibilities).
The response function is R(t) = 3

2fRhR(t) where fR = 0.18
is the Raman fraction of the total susceptibility and hR(t) is
the normalized time domain Raman response, which can be
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parameterized as shown in Ref. [23]. The analysis is simplified
if it assumed that all electric fields are linearly polarized
such that F

(µ)
n = F

(µ)
n x̂ where x̂ is a unit vector in the x

direction; this simplification is convenient for communication
fibers, which are often weakly guiding. Inserting Eq. (3) into
Eq. (6) and only collecting terms that oscillate at ωn; then
inserting Eq. (6) and (4) into Eq. (1) and using that terms that
require phase matching fall out, the final propagation equation
becomes (see Ref. [24] for a similar process)

∂E
(µ)
n

∂z
=
iωnn2fR

c
E(µ)
n

∑

m

∑

ν

f (µ,ν)|E(ν)
m |2h̃R(Ωmn) (7)

where n2 = 3χ(3)/(4ε0cn
2
eff) where neff is the effective index

of mode µ at frequency ωn, f (µ,nu) is the nonlinear mode
overlap integral defined as

f (µ,ν) =

∫
|F (µ)|2|F (ν)|2dxdy∫

|F (µ)|2dxdy
∫
|F (ν)|2dxdy , (8)

where the subscript on F(µ) was removed, thus assuming that
the field distribution functions are equal at all wavelengths;
since no wave components in this work (and for Raman
amplifiers in silica in general) are separated by more than
ca. 100 nm, this is a decent approximation. The function
h̃R(Ωmn) [23] is the frequency domain Raman response
function; Ωmn = ωm − ωn is the frequency shift from ωn to
ωm. The set of equations (7) are readily converted to power by
multiplying with the complex conjugate modal field amplitude
E

(µ)
n

∗
and adding the complex conjugate of the resulting

equation to itself, i.e.

∂P
(µ)
n

∂z
= −α(µ)

n P (µ)
n +

2iωnn2fR
c

P (µ)
n

×
∑

m

∑

ν

f (µ,ν)P (ν)
m Im{h̃R(Ωmn)},

(9)

where |E(µ)
n |2 = P

(µ)
n was used. The usual linear loss term

with attenuation coefficient α(µ)
n was added by hand to account

for distributed fiber losses. The two degenerate modes LP11a
and LP11b form a mode group, which makes them more
strongly coupled to each other than to modes outside the mode
group. To take this unavoidable mode coupling into account
one may average the Raman terms of the LP11a and LP11b
in Eq. (9) by assuming that through a small piece of fiber,
the propagating light has spent approximately equal time in
both modes [16]. Such an averaging is not necessary in our
modeling since an ensemble that approximately represents the
whole LP11 mode space (i.e. all combinations of LP11a and
LP11b) is propagated through the fiber; thus, the average of
the ensemble represents the same value that comes out of the
averaged Raman propagation equations of Ref. [16].

B. Two Mode-Group System

Several experiments of transmitting data through few-mode
fibers have been conducted [6], [17], [25] and distributed
Raman amplification has been used to mitigate fiber attenua-
tion [4]. Based on Eq. (9) we derive conditions for achieving
equal modal gain in a system of two mode groups, LP01 and

LP11; the latter mode group consists of two modes, LP11a
and LP11b. As stated above, only one state of polarization is
considered. If a signal s at a single wavelength is amplified
by a pump p at a single wavelength both occupying the three
spatial mode in a loss-less fiber, then in the undepleted pump
regime, the solutions for the signal modes are all on the form

P (µ)
s (z) = P (µ)

s (0)eG
(µ)z, (10)

where

G(µ) =
2ωsn2fR

c
Im{h̃R(Ωps}

∑

ν

f (µ,ν)P (ν)
p (11)

and P
(µ)
p is the constant power of pump mode µ. Equating

the gain of the LP11a and LP11b modes and using that
f (11a,11a) = f (11b,11b) ≡ f (11,11) one gets

(
f (11,11) − f (11a,11b)

)(
P (11a)

p − P (11a)
p

)
= 0, (12)

from which it is immediately concluded that P (11a)
p = P

(11b)
p

since f (11,11) and f (11a,11b) are rarely similar. Then equating
the gains of the LP01 and LP11a modes, the condition for
equal gain in all three modes becomes

P (11a)
p =

f (01,01) − f (01,11)

f (11,11) + f (11a,11b) − 2f (01,11)
P (01)

p (13)

where f (01,11a) = f (01,11b) ≡ f (01,11) was used. It follows
from this results that f (11,11) + f (11a,11b) > 2f (01,11) is a
requirement for equal gain to be possible, since f (01,01) >
f (01,11) always applies in circular symmetric fibers; if this
condition is not met in a given fiber, equal gain among LP11a
and LP11b is still achievable for P (11a)

p = P
(11a)
p .

In a situation where the equal gain condition is not met
by the fiber but equal gain among LP01 and LP11a(b) is
desired, the power of LP11b(a) must be zero, and the power
of LP11a(b) becomes

P (11a)
p =

f (01,01) − f (01,11)

f (11,11) − f (01,11)
P (01)

p . (14)

A transparent transmission line, i.e. each of the output signal
modal powers equal each of the input signal modal powers, is
achieved by using Eq. (13), equating the LP01 signal gain and
the total loss, and assuming that all pump and signal modes
have the same attenuation coefficient, αp and αs, respectively.
The LP01 pump input power is then found to be

P (01)
p =

αsL

γ̄Leff
, (15)

where L is the fiber length, Leff = [1 − exp(−αpL)]/αp is
the effective fiber length, and

γ̄ =
2n2ωs

c

[
f (01,01) +

2
(
f (01,01) − f (01,11)

)
f (01,11)

f (11,11) + f (11a,11b) + 2f (01,11)

]

× fRIm{h̃R(Ωps}.
(16)

The two mode-group system described here is investigated
numerically by solving the set of equations (9) using a 4th
order Runge-Kutta algorithm through an L = 100 km fiber
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Fig. 1. Power evolution through fiber operated in the linear gain regime (top)
and in the depleted pump regime (bottom); the curves for the LP11a and b
pumps, and the curves for the LP01, LP11a and b signals, repsectively, are
indistinguishable in the plot.

in 50 steps (including more steps only changed the outcome
by a negligible margin) with a nonlinear index n2 = 2.6 ×
10−20 m2/W, an LP01 effective area A

(01)
eff = 80 µm2,

realistic nonlinear mode overlaps f (01,11) = 0.5f (01,01),
f (11,11) = 0.76f (01,01), f (11a,11b) = 0.3f (01,01) [26], com-
mon attenuation coefficients αp = αp = 0.2 dB/km, pump
and signal wavelengths λp = 1450 nm and λs = 1550 nm,
and LP01 and LP11a and b pump powers from Eq. (15) and
(14), respectively.

The result is shown in Fig.1: the top plot shows the power
evolution of all six fields in the undepleted pump regime; all
the signal modes are indistinguishable in the plot as a conse-
quence of the equal gain condition calculated above, and the
LP11a and LP11b pumps are indistinguishable because they
follow identical equations when their attenuation coefficients
and all signal powers are equal. In the top plot, a signal input
power of P (01)

s = P
(11a)
s = P

(11b)
s = Ps,in = −10 dBm was

used and since the pumps remain essentially undepleted by
the signals, the transmission line is transparent as dictated by
Eq. (15). In the bottom plot, the signals were initiated with
a power of Ps,in = 10 dBm and the pumps are immediately
affected and start to deplete; consequently, not enough energy
remain in the pumps to compensate for the attenuation in the
rest of the fiber, and hence the signals arrive with almost 10
dB lower power than at input.

C. Random Linear Mode Coupling

Mode coupling has been modeled in different ways [19],
[27], [28] but the mechanisms behind mode coupling are
presently not well understood [29]. Therefore, it is difficult
to define meaningful properties of couplings taking place at
specific positions in the fiber. In practice one needs to measure
the output modal contents—e.g. by S2 measurements [30]—
with little knowledge about where in the fiber the coupling has

×

×Pin

1 2 . . . K − 1 K

w
(µν)
k w

(µν)
k w

(µν)
k w

(µν)
k

P

Mode µ

Mode ν

Fiber length

Fig. 2. Illustration of the random linear mode coupling model: the two
horizontal lines represent two fiber modes in which the fields couple with
mean rate w(µν)

k in each section. The plot is a sketch of the power probability
density in mode ν given the overall coupling degree w(µν) and standard
deviation σ(µν). The dashed arrows indicate possible backcoupling, which is
neglected in the model.

taken place. Hence, a numerical investigation of the statistical
properties of the mode coupling must treat the fiber as a series
of identical sections. Since the pump must be assumed to
take many different modal combinations through the fiber—
due to both deterministic and random mode coupling—and an
amplified signal experiences many of these, we assume that
all mode coupling in the pump can be viewed as random.
Thus, we model mode coupling in the pump as a transfer of a
random proportion of the total mode power to other modes; we
consider the weak coupling regime so it is implied that only
a fraction of the light in a given mode has changed to another
mode through the whole fiber. The fiber sections are assumed
uncorrelated, which implies that the correlation length of
the perturbations that are responsible for mode coupling is
much shorter than the length of one section. By choosing a
suitable coupling probability distribution, the parameters of
the individual, identical sections are calculated directly from
the measurable output power statistics of the modes that were
coupled to. Hence, the degree of mode coupling between two
modes is a stochastic variable but it is calculated through a
well-defined mean and variance. Fig.2

The model of RLMC is illustrated in Fig. 1: light is initiated
only in mode µ and in each step a random proportion with
mean value w(µν)

k of the power in mode µ couples to mode
ν. The random proportion of power that couples must be
chosen from a probability distribution that has support on the
continuous interval [0, 1]; the Beta distribution is often used
to model random proportions [31],

Beta(x|a, b) =
xa−1(1− x)b−1

B(a, b)
, (17)

where B(a, b) is a normalization constant. The stochastic
variable x is the random proportion of power that changes
mode, and it has the properties

〈x〉 =
a

a+ b
≡ w(µν)

k (18)

〈(x− 〈x〉)2〉 =
ab

(a+ b)2(a+ b+ 1)
≡ σ(µν)

k

2
, (19)

where w(µν)
k and σ

(µν)
k are the mean value and the standard

deviation of the random coupling in the identical sections, and
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a and b are positive shape parameters. At the output of the
fiber, the power mean value and standard variation in mode
ν can be measured, and relative to the mean input power
we call these the overall coupling degree w(µν) and overall
standard deviation σ(µν), where superscript (µν) denotes that
the parameter belongs to coupling between mode µ and ν.
This procedure may be repeated for any number of modes. The
connection between w(µν), σ(µν), w(µν)

k , and σ(µν)
k is simple

because the output in mode ν is a sum of a large number of
independent, identically distributed random numbers so due to
the Central Limit Theorem, the output is normally distributed
and the mean value and variance are the sums of the mean
values and variances of each section, so

w
(µν)
k =w(µν)/K (20)

σ
(µν)
k =σ(µν)/

√
K, (21)

where K is the number of sections, which is a numerical
parameter that must be assumed to be large, e.g equal to the
number of steps in the numerical algorithm for solving the
set of equations (9). In the connections (20) and (21), it was
assumed that no significant amount of light couples back to
the initial mode as shown by the dashed arrows in Fig. 1
that points from mode ν to mode ν. From simulations not
shown here, we find that this approximation is fair as long as
w(µν) < 0.1, which underlines that the simple interpretation
of w(µν) and σ(µν) is valid only in the weak coupling regime.
The linearity of the random mode couplings implies that the
model is valid in the depleted pump regime as well as in the
undepleted pump regime.

III. IMPACTS OF PUMP MODE COUPLING AND PUMP
DEPLETION

To quantify the amount of noise that mode coupling in
the pump adds during amplification, the input signal must be
initiated with a well defined signal-to-noise ratio. Lasers can
produce good approximations to coherent states so a straight-
forward approach to generating an input ensemble is defining
a mean input number of photons, n̄(µ)

n = P
(µ)
n /(h̄ωnB0), in

every mode where h̄ is Planck’s constant and B0 = 12 GHz
(0.1 nm) is the frequency bandwidth. The number of photons
in a coherent state follows a Poisson distribution [32], so an
input ensemble of fields in every mode of both pump and
signal is generated by calculating the mean number of photons,
pull out 20 × 103 numbers from a Poisson distribution with
n̄

(µ)
n as the mean number, and then convert every element back

to optical power units.
The signal-to-noise ratio, SNR, is defined at every point in

the fiber as

SNR(µ)
n =

〈P (µ)
n 〉2

Var
(
P

(µ)
n

) (22)

and the pump mode coupling-induced noise figure
(NF) is defined as the relative change in SNR,
NF = SNRinput/SNRoutput. In the two mode-group
case already considered about, six ensembles are propagated
in parallel through Eqs. (9) and mode coupling as of the
previous section is applied to every element in each ensemble.

Signal input power, Ps,in [dBm]
-20 -15 -10 -5 0 5 10 15 20

M
o
d
e-
d
ep

en
d
en
t
ga
in

[d
B
]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

LP11a/LP01
LP11b/LP01

Fig. 3. lP11a (blue solid) and LP11b (green dashed) relative to LP01 mode-
dependent signal gain vs. signal input power, Ps,in; the many curves in each
mode represents a range of different w(11a,11b) values from -40 dB to -10
dB.

A. Mode-Dependent Gain

Recent works have focused on the possibilities of achieving
mode equalized gain [4], [9], [33] using theory similar to what
we presented above. However, it remains unclear what the
impacts of pump depletion and pump mode couplings are on
the NF and the prospects of achieving mode-equalized gain
in Raman fiber amplifiers, which is what we investigate in
these two sections: we conduct simulations both with and
without inter-mode-group mode coupling such that firstly only
the LP11a and LP11b in the pump couples (intra-mode-group
mode coupling); secondly, also the LP01 mode couple to the
LP11 mode-group (inter-mode-group mode coupling).

In the model of weak random mode coupling, all modes
need not couple to the same overall degree, and indeed intra-
mode-group mode couplings in the LP11 mode-group are
expected to be stronger than inter-mode-group mode couplings
between LP01 and LP11 mode-groups. We start by assuming
that inter-mode-group mode coupling is negligible and do sim-
ulations in the same fashion as in Fig.1; both the signal input
power and the degree of intra-mode-group mode coupling,
w(11a,11b), are varied; the pump mode powers are again chosen
to satisfy equal modal gain in all signal modes and to make
the transmission line transparent.

Fig.3 shows the the mode-dependent gain (MDG), i.e. the
signal gain of LP11a (blue solid) and LP11b (green dashed)
relative to the gain of LP01, respectively. The many curves
of each mode represent a range of different w(11a,11b) values
from -40 dB to -10 dB; no significant difference can be
observed in this interval. In the undepleted gain regime, the
mode dependent gain is fluctuation around zero as expected
from the equal modal gain conditions; in the depleted pump
regime (Ps,in > 5 dBm), an increasing mode-dependent gain is
observed but it is still somewhat smaller than the lowest MDG
of few-mode Raman amplifiers measured in the undepleted
pump regime toady of 0.25 dB per 10 dB gain [34]. Our
analysis shows that intra-mode-group mode coupling in the
pump plays a minor role for mode dependent gain even in the
depleted pump regime.
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−40 dB.

Next, inter-mode-group mode coupling is included by set-
ting the degree of inter-mode-group mode coupling, w(01,11),
non-zero. The degree of intra-mode-group mode coupling
w(11a,11b) is kept at the maximum value of -10 dB since in all
cases the intra-mode-group couplings must be stronger than
the inter-mode-group couplings. Fig.4 shows the MDG of all
three signal modes at w(01,11) = −40 dB, w(01,11) = −25
dB, and w(01,11) = −10 dB relative to the LP01 signal gain
at w(01,11) = −40 dB, which is so low that all behavior is
expected to be the same as if it was not present.

Indeed, the MDG curves of LP11a and LP11b (middle and
bottom plots) at w(01,11) = −40 dB are very similar to those
in Fig.3; the same are those at w(01,11) = −25, which means
that an inter-mode-group mode coupling degree of −25 dB
in the pump is not detectable in the LP11 mode-group in
our analysis even in pump depletion. For the LP01 mode
(top plot), however, a slight increase in gain relative to the
w(01,11) = −40 case is observed; at w(01,11) = −10, the
increase in MDG is 0.3 dB, which cf. [34] might be detectable
experimentally. The reason for this increase in gain for larger
values of w(01,11) is that light is transferred between the to
mode groups; indeed, light couples between the LP01 mode
and the LP11 mode group to the same degree in our model
but the LP11 pumps are initiated much stronger than the LP01
pump, as is evident in Fig.1, to obey the equal modal gain
condition. Hence, effectively light is coupled from the LP11
mode group to the LP01 mode and that causes the gain in the
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Fig. 5. Signal LP01 NF vs. overall degree of inter-modal mode coupling w2

and input signal power Ps,in (undepleted pump regime top, and depleted pump
regime bottom). Three separate regions (A)–(C) with different characteristics
are identified; see the text.

LP01 signal to increase. That is also the reason that the LP11a
and LP11b MDG have decreased in Fig.4 for increased values
of w(01,11). As the pump depletes, however, these tendencies
disappear because the pumps are saturated before the mode
coupling effectively takes place.

The effects described in Figs. 3 and 4 are clearly visible
in the plots but are of very modest magnitude. Hence our
analysis has shown that weak linear mode coupling in the
pump (coupling degrees between modes up to -10 dB) has
only a minor impact on the conditions for equal modal gain
in distributed Raman amplifiers even in the depleted pump
regime.

B. Pump Mode Coupling Induced Noise Figure

The noise properties of few-mode Raman fiber amplifiers
(FM-RFA) are important for their potential in future op-
tical communication systems; one of the great advantages of
backward-pumped single-mode RFA is their superior noise
properties to EDFAs [35]. If FM-RFA are to be used in com-
munication systems, the presence of mode coupling should not
introduce too much excess noise. In this paper, we only model
forward pumped FM-RFA due to the difficulties of applying
statistical models in the backward pumped configuration.

The NFs of all three signal modes are evaluated using
Eq. (22); if inter-mode-group mode coupling is neglected, i.e.
w(01,11) = 0 as in Fig.3, no mode coupling induced NF for any
(w(11a,11b) values are found in the undepleted pump regime
(the depleted pump regime is discussed below). The reason
is that the LP11 pumps were initiated with the same power
according to the equal gain condition so therefore no light
is effectively transferred between the two modes; however
the randomness of the mode coupling induces an increased
power variance in the pumps which consequently increases
the variance in the signal and hence the NF but this effect is
not strong enough to matter in the weak coupling regime. If
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and input signal power Ps,in (undepleted pump regime top, and depleted pump
regime bottom). Three separate regions (A)–(C) with different characteristics
are identified; regions (A) and (C) are larger than those for LP01 in Fig.4.

the pumps are initiated with asymmetric power, a larger NF
is indeed induced as verified in simulations not shown here.

Including inter-mode-group mode coupling, the induced NF
of the LP01 and LP11a signals are shown in Figs. 5 and 6 as
functions of signal input power and the degree of inter-mode-
group mode coupling w(01,11); the data are extracted from the
same simulation that produced Fig.4; the color bar shows the
NF in dB. The NF for LP11b is indistinguishable from that
of LP11a so it is omitted here.

In both figures, the NF in (Ps,in), w(01,11)) space can be
divided in three regions with different characteristics, A, B,
and C. Region A is the regime that corresponds to usual single-
mode operation; the pump is undepleted and mode coupling is
so low that the modes approximate separate single mode chan-
nels (intra-mode-group mode coupling is still w11a,11b = −10
dB). In this regime, the mode coupling induced NF is predicted
to be zero; the mode coupling is simply too small to matter. In
region B, the NF increases to more than 10 dB due to higher
inter-mode-group mode coupling; the line between regions A
and B shows how much input power in the signals that can be
tolerated under a certain degree of mode coupling (given the
input powers used in our simulation). The line has a positive
slope in (Ps,in), w(01,11)) space because the NF becomes more
sensitive to mode coupling in the depleted pump regime.

Region C, in which inter-mode-group mode coupling is
very small and the amplifier is depleted, contains negative NF
values. We already established above that intra-mode-group
mode couplings did not induce any NF in the undepleted pump
regime but as the pump depletes the NF becomes negative
due to a decrease in the signal power variance. This decrease
is a simple consequence of the nature of Raman scattering;
when the pump is being depleted, the variance of the signal
goes asymptotically towards the variance of the pump power
at input because energy only flows from one component to
the other. This effect is also predicted [36] and measured
[37]–[39] in fiber optical parametric amplifiers operated in

the depleted pump regime. The line between regions B and
C denote the point where inter-mode-group mode coupling
becomes so significant that the intensity regenerative property
of operating the pump in depletion is destroyed.

The importance of the existence of low the NF region A
described here should be seen in light of the fact that the
model of the pump fluctuations assumed that all pump mode
couplings were completely random. Thus, even the low NF
regions represent a worst case scenario of addition of excess
noise from pump fluctuations in the weak coupling regime.

It should be noted that we observe that regions A and C are
slightly larger in Fig.6 for the LP11 mode group than in Fig.5
for the LP01 mode, which indicates that signals transmitted in
LP11a and LP11b modes are more resistant to the effects of
pump mode coupling.

IV. CONCLUSION

In this paper, we analyzed the impacts of linear mode
coupling in the pump of few-moded distributed Raman fiber
amplifiers. After deriving basic propagation equations and
conditions for equal modal gain and equal input and output
signal power, a numerical model of weak random mode
coupling was presented. This model was used to analysis the
impacts of mode coupling in the pump of a two-mode-group
Raman fiber amplifier...
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persen, R. Lingle, and B. Pálsdóttir, “Few Mode Transmission Fiber
With Low DGD, Low Mode Coupling, and Low Loss,” J. Light.
Technol., vol. 30, no. 23, pp. 3693–3698, 2012.

[12] P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y.
Dupuy, “Penalties from in-band crosstalk for advanced optical modula-
tion formats,” in 37th European Conference and Exposition on Optical
Communications. Optical Society of America, 2011, p. Tu.5.B.7.

[13] B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. a. Rusch, and
S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index
profile for transmission of OAM-carrying modes,” Opt. Express, vol. 22,
no. 15, p. 18044, 2014.

[14] K.-P. Ho and J. M. Kahn, “Mode Coupling and its Impact on Spatially
Multiplexed Systems,” in Opt. Fiber Telecommun. Vol. VIB, Sixth Ed.
Syst. Networks, 6th ed. Academic, 2013, ch. 11.
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