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Abstract—The increasing penetration of wind power brings
significant challenges to power system operators due to the
wind’s inherent uncertainty and variability. Traditionally,
power plants and more recently demand response have been
used to balance the power system. However, the use of wind
power as a balancing-power source has also been investigated,
especially for wind power dominated power systems such as
Denmark. The main drawback is that wind power must be
curtailed by setting a lower operating point, in order to offer
upward regulation. We propose a statistical approach to reduce
wind power curtailment for aggregated wind power plants
providing secondary frequency control (SFC) to the power
system. By using historical SFC signals and wind speed data, we
calculate metrics for the reserve provision error as a function of
the scheduled wind power. We show that wind curtailment can
be significantly reduced compared to a robust and conservative
scheduling, by appropriately choosing a higher operating point
based on the error’s expected value and the service error
requirement.

I. INTRODUCTION

In power systems, renewable energy such as wind power
is widely adopted to reduce greenhouse gas emissions. How-
ever, the increasing development of wind power brings oper-
ational challenges into the power systems due to its intermit-
tent production. To cope with these challenges, power system
operators currently rely on conventional dispatchable power
plants, as well as demand response technologies, to ensure
the stable and reliable power system operation. As variable
generation resources displace conventional generation units,
there is a big concern about the sufficient frequency service
provision, i.e. active power balancing resources, in the near
future. Although demand response is highly promoted to
cope with this issue, many factors such as the controllability
to the demand side devices and the acceptance by the end-
users make their real application challenging. Thus, recently,
it is noticed that power system operators are starting to
consider wind energy as a frequency service provider, since
wind turbines have the capability to rapidly track power
commands [1]–[4].

However, there exist many technological and economic
challenges in terms of using wind power for frequency
regulation. For example, in order to offer frequency reserves
with WPPs, an economic trade-off design between spot
energy market participation and frequency reserve market
participation is required [5]. Furthermore, this means that
the control strategies of WPPs will change from maximizing
power output to power tracking [6]. In this study, we focus on
one of these key challenges by addressing the WPP’s power

setting near the real time operation. In general, two phases
are needed for frequency service provision in the deregulated
electricity market: reserve phase and control phase. There is
a variety of names used for frequency services, depending on
the individual power system. In this work, primary reserve,
secondary reserve, and manual reserve, corresponding to
primary frequency control , secondary frequency control
(SFC) and regulating power, respectively, are used to re-
flect the system needs for power balance at different time
scales [7]. Secondary reserve consists of upward reserve
and downward reserve, is symmetrical, and its regulation is
done automatically by the plant, which responds to signals
received from the power system operator, typically every
2− 4 seconds.

Recent work [8]–[10] has shown that wind turbines can
effectively provide SFC by tracking power signals sent
by the system operator. In [8], a wind turbine’s control
system is developed to provide SFC. By working in de-rating
mode, the control system aims at tracking an absolute power
command sent from the system operator. The control system
receives and tracks the automatic generation control (AGC)
signal, which is added to the power dispatch schedule. The
simulation results indicated that as long as significant wind
resource is available, a wind turbine can control its power
output to track the AGC signal very rapidly and accurately.
Furthermore, the work also evaluates the wind turbine’s
performance using the new CAISO1 and PJM 2 performance
metrics. In [9], a wind farm is investigated to provide SFC
where a model-based receding horizon approach is used. The
study considers wake effects within the wind farm and the
controller is implemented in a large eddy simulation model.
Furthermore, the controller of [10] is tested on two types of
regulation signals, ’RegA’ and ’RegD’, obtained from PJM.
The results showed that the controlled wind farm performs
well when responding to RegD signals, while surpassing the
control threshold in response to RegA signals.

While previous work [8]–[10] demonstrated that wind
power can be used to provide SFC, it is also observed that
the assumptions used in the literature can be improved. For
example, the regulation signal is normally assumed to be
constant in a relatively long time window, and the mean
wind speed is used in the simulations to illustrate the control

1The California independent system operator.
2PJM is a regional transmission organization that coordinates the whole-

sale electricity in all or parts of 13 US states and the District of Columbia.
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Fig. 1: Overview of actors in a schematic power system

performance, which cannot reflect the real dynamics. Most
importantly, the goal of these studies is not to minimize wind
power curtailment. The main contribution of this paper is to
present a statistical but generic method to minimize wind
power curtailment for aggregated WPPs providing SFC.
The statistic method uses the historical frequency regulation
signal to optimize the setting power of individual WPP
based on the very short-term predicted wind power and
the SFC performance requirements of the European network
of transmission system operators for electricity (ENTSOE).
The predicted wind power will consider the variation of
wind power inside the short term period and therefore the
dynamics of the WPPs can be studied when providing SFC.
In addition, as discussed in [11], the agregated power of
multiple wind farms would bring additional benefits such as
reducing the overall variability in terms of wind resources,
this feature would help their provision of SFC, which will
be initially explored in this study.

II. SYSTEM ARCHITECTURE AND ASSUMPTIONS

As shown in Fig. 1, an aggregator is proposed to co-
ordinate the WPPs power output in order to provide fre-
quency regulation services to the transmission system op-
erator (TSO). We assume that the reserve capacity Pres is
symmetrical and hourly constant throughout a period of 24
hours. The aggregator receives the normalized regulation
signal rt ∈ [−1, 1] from the TSO every tc seconds and
must respond to rt by changing the WPPs output. The power
setting refers to a constant aggregated power reference sent
to the TSO every tsch seconds, and corresponds to the target
WPPs power for rt = 0. We refer to each period of tsch as
the scheduling period and for this study tsch = 600 s. The
aggregated wind power output must be regulated as

Pwpp,t = Psch,t + rtPres (1)

A WPP can offer frequency regulation services by curtail-
ing its power output, so that it is able to provide both upward
and downward regulation. We assume that the reserve ca-
pacity bidding was done in a robust manner, i.e. the WPPs

Fig. 2: Short-term scheduling of a WPP for robust service
provision

are able to fully meet the reserve provision requirements
under any realized wind speed scenario, if enough wind
power is curtailed. However, setting Psch so that any rt can
be followed under any possible wind speed scenario is a
very conservative approach, which can lead to a significant
amount of wind power curtailment.

Fig. 2 shows how Psch would be chosen, so that any rt
would be followed at every time step. It is also reasonable
to assume that near-to-second prediction of the wind speed
for a period of 5−10 minutes is unrealistic, therefore wind-
speed uncertainty must also be considered. Under a robust
short-term scheduling, Psch would be chosen by considering
the combined worst-case realizations of the wind speed and
reserve request, leading to a very conservative scheduling;
as illustrated in the figure, the black line shows Psch, con-
sidering only one wind scenario.

We propose a statistically-based short-term online
scheduling approach for an aggregator, which utilizes the
statistical properties of the secondary frequency regulation
signal, the performance margin of the provided service and
wind speed historical data. Such a scheduling method can
be used by an aggregator in order to choose a Psch which
optimizes its profits, minimizes the imbalance cost due to the
difference between Psch and the day-ahead (DA) schedule
or to minimize wind-power curtailment. Without loss of
generality, we will use our approach to study the potential
reduction in wind-power curtailment, while meeting the
service provision requirements. Considering all these factors,
the assumptions and system setup can be summarized as
follows:

• At every scheduling period, the aggregator calculates
the maximum Psch for the following tsch seconds, while
considering the service requirements.

• Pres is known and has been set in a robust manner,
guaranteeing full service delivery at the worst case.

• The aggregator predicts multiple wind power scenarios
for the following tsch seconds. In this study, we assume
perfect forecast of the average wind speed and we
add noise terms sampled from historical wind data, to
generate the multiple wind power scenarios.

• The regulation signal is sent every tc seconds.



III. STATISTICAL CONTROLLER AT AGGREGATOR LEVEL

A. Control performance index

Achieving 100% performance accuracy when providing
frequency regulation services is almost practically impossi-
ble, due to various reasons such as communications delays,
measurement errors, control granularity, and units dynamics.
For this reason, system operators define performance indices
to assess SFC control performance. In general, service ver-
ification can be categorized in two main schemes. The first
one is pay as performance, as implemented by PJM, where
each service provider is remunerated based on a number
of performance criteria, one of which is tracking accuracy.
The second is to establish performance requirements and
maximum allowed errors, such as the performance index
on secondary control by the Swiss TSO, Swissgrid [12]. In
the case of Swissgrid, the pre-qualification process requires
a minimum accuracy of 1%, calculated by the following
formula ∑ttot

t=1 |Pdiff,t|tc

2Presttot
· 100% ≤ 1% (2)

Pdiff is the power value in excess of the tracking tolerance,
which is equal to ±5% Pres around the power reference, ttot
is the total provision time, and tc is the sampling time. This
formula is used by the online decision system to calculate
the error over the 10 minutes control interval.

B. Wind power uncertainty modelling

The following equation is used to calculate the aggregated
WPP’s power from the estimated equivalent wind speed

P =


0, if V ≤ Vin or V ≥ Vout

V − Vin

Vr − Vin
PN, if Vin ≤ V ≤ Vr

PN, if Vr ≤ V ≤ Vout,

(3)

where V , Vin, Vr and Vout are the wind speed, cut-in speed,
rated speed, and cut-out speed respectively. P represents the
available power and PN denotes the rated power.

As described in Section II, it is assumed that the average
10 minutes wind power over a period of tsch seconds can
be perfectly predicted. Based on available historical data,
we observed that the per-second variation of wind power
around the 10 minutes average value is normally distributed.
Moreover, we observed a strong auto-correlation of the
variation, as is evident in Fig. 3 for the wind scenario used
in the previous example. In this study, we randomly select
the wind power variation from historical samples and then
add them on the (known) 10 minutes wind power.

C. Statistical online scheduling method

With the predicted wind power for each plant, the aggrega-
tor will choose the power schedule Psch of each WPP for the
following control period, in order to provide the committed
reserve capacity Pres within the service performance margin.
In our example we consider a robust day-ahead commitment,
and the aggregator tries to minimize the wind curtailment,
i.e., the reserve made day-ahead can be guaranteed. As
shown in Fig. 4, the controller updates the base power setting
Psch every 10 minutes.

Fig. 3: Per second wind power and 10 min average power
of a WPP
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Fig. 4: The aggregator online scheduling system

To illustrate the proposed statistical scheduling method,
we consider the case where the aggregator controls only one
WPP. We calculate the control provision error for various
Psch values and a large number of scenarios; we consider
a number of N wind power scenarios and a number of M
historical regulation signal samples. A minimum value of
the base power Psch is chosen, such that it corresponds to a
robust scheduling which guarantees 100% reserve provision
under any wind and regulation signal realization. Then this
value is increased by small steps, whose total number is
equal to D. For each value of Psch, N ·M control errors
are calculated by using (2). We then calculate various
statistical metrics based on which the aggregator can select
the power schedule; the largest value of Psch which respects
the specified criteria is then selected.

In the case of more than one WPPs, the aggregator can
utilize the other WPPs when one or more WPPs are not able
to follow their set-points. Again, the Psch values for all WPPs
are increased in small steps, but the aggregated control error
is calculated by considering the capabilities of all WPPs. In
that case, different wind scenarios must be generated for each
WPP, whereas the regulation signal scenarios are common.
The desired statistical metrics are then calculated for each
combination of Psch,i values (i is the index of the WPPs),



and a set of Psch,i values is chosen, such that the criteria are
met.

IV. RESULTS

In this section we will use real wind speed measurement
data of two WPPs as well as historical regulation signals to
illustrate the proposed statistical scheduling method. For the
wind power calculation, the cut-in speed, rated speed and
cut-off speed are 3 m/s, 13 m/s, and 25 m/s, respectively.
The average pu and in MW power of WPP i is denoted by
P pu

av,i and Pav,i respectively. Two case studies are presented
in this section; in the first one WPP is used by the aggregator
and in the second the aggregator controls two WPPs. The
relevant parameters of the two WPPs are:

• PN,1 = 15 MW and PN,2 = 30 MW; note that the
available second-based wind speed at the WPP level
corresponds to real measurements, but the size of the
two WPP plants is assumed here.

• P pu
av,1 = 0.7298 pu and Pav,1 = 10.9465 MW. P pu

av,2 =
0.6796 pu and Pav,2 = 20.3889 MW.

• The reserve capacity is equal to 20% of the mean power.
Thus, Pres,1 = 2.1893 MW and Pres,2 = 4.0778 MW.

• The power increment of both WPPs is equal to 0.01 pu.

A. Case Study I: One WPP

In the first case study we consider the first WPP. As
discussed, in real time the control purpose is to increase
Psch, i.e., to increase the bulk power supply and meanwhile
ensure reserve provision.

Fig. 5: 20 wind power realizations. The black line represents
the robust scheduled power and the blue line shows the
(perfectly) predicted average wind power

Fig. 5 shows 20 possible wind power scenarios as well
as the minimum value of Psch to guarantee robust reserve
provision; in this case, the scheduled power value is equal
to 0.351 pu or 5.2705 MW. For the regulation signal, the
RegD signal of PJM3 is used [13]. In Fig. 6 an hourly
sample of the RegD signal is shown. Note that RegD is sent
every 2 seconds, but we evaluate the control performance
per second (tc = 1 s). We randomly selected 1000 historical
RegD signal samples for the simulation.

3We use this data as a SFC signal because SFC data from the ENTSOE
area was not publicly available; thus the RegD signal is used since the
regulation signals used in PJM and ENTSOE area share similarities.

Fig. 6: A 1 hour RegD regulation signal sample

We calculate the SFC control error for N ·M = 1000 ·
20 = 20000 scenarios for each value of Psch by setting Psch
equal to the minimum (robust) value and then increasing
the base power with a 0.01 pu step. Next, as shown in Fig.
7, we calculate 4 different statistical metrics for the error
distributions for each Psch value. Notice that the errors may
take very large values in some scenarios, as indicated by the
worst-case errors, but the expected values are considerably
smaller.

Fig. 7: 4 Different statistical metrics of the SFC error as a
function of Psch

From this graph, the aggregator is able to select the WPP’s
Psch according to its control objective. For instance, if the
objective is to achieve an expected SFC error of 1%, Psch
would be set equal to 9.62 MW. The aggregator could also
select Psch based on other error metrics such as the 95
percentile error. The simulation requires only a few seconds
to execute, performed in Matlab version 2016a with a central
processing unit of Intel Core i7, 2.60 GHz, which is fast
enough for the online decision requirements. Using the same
procedure, we found that Psch for the second WPP can be
increased from 12.574 MW (robust case) to 18.34 MW for
an expected error of 1%.

B. Case Study II: Two WPPs

In this subsection we consider the joint operation of the 2
WPPs, we calculate the total SFC errors and we derive a fit
for the expected values of the errors, as shown in Fig. 8; by



using this graph, the aggregator can use different combina-
tions of Psch,1 and Psch,2 to achieve an expected SFC error
equal to 1%. The maximum total scheduled power is equal
to 30 MW and is achieved by selecting Psch,1 = 8.4205 MW
and Psch,2 = 21.574 MW. It is interesting to note that the
total power achieved by controlling the 2 WPPs separately
is equal to 28 MW. Therefore, the joint control results in a
considerable reduction of the total wind power curtailment.
This performance improvement was expected, since in most
scenarios the worst cases of the wind speed of the 2 WPPs
do not coincide (assuming no correlation between the fast
wind variations of the WWPs added on top of the predicted
average wind speeds) and the total control errors can be
reduced.

However, the computational time increases a lot compared
to the one WPP case since the total number of the scenarios
increase considerably. Overall, the simulation takes 40 sec-
onds, but this time can be significantly reduced. For instance,
many power combinations (close to the robust values) result
in very low errors and the initial Psch values can be increased,
reducing the total number of the scenarios. Furthermore,
parallel computing can be utilized, which can substantially
decrease the computational times (our focus was not on the
computational aspects). Nevertheless, if a large number of
WPPs are controlled, scenario reduction methods will be
necessary.

Fig. 8: Fitting of the average SFC errors as a function Psch,1
and Psch,2. The red points show power setting combinations
resulting in expected errors equal to 1%

V. CONCLUSION AND DISCUSSION

In this paper we proposed a method to minimize the
wind power curtailment of an aggregator of WPPs offering
secondary frequency control. The method relies on using
historical frequency regulation signal data and wind speed
scenarios, in order to calculate the reserve provision er-
rors for different WPP power set-points. By using such a
statistical approach, we showed that the power set-points
can be significantly increased, compared to a fully robust
scheduling, which guarantees service delivery under any
realization of the wind speed and the regulation signal. As
a result, the economic performance of the WPPs offering
frequency control can be greatly improved, while respecting
the expectations of the service performance requirements.

Our results are promising but several simplifications were
made. For example, the aggregated WPP models result in

relatively small errors compared to the detailed models, but
as discussed in [14], the active power errors are close to 3%
for low wind speeds and smaller than 6% for speeds close
to the rated values. In our future work we will investigate
the effect of such errors, as well as the effect of imperfect
forecasts of the average wind speed. Furthermore, we plan
to validate the proposed method using a more detailed WPP
model which will include the wind turbine’s controllers and
we will also consider more factors, such as communication
delays. Finally, we will consider correlation of the wind
speed scenarios between different WPPs, which is likely
when they are closely located.
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