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Abstract
Background: Although experiments on water quality are time consuming and expensive, models are 
often employed as supplement to simulate water quality. Artificial neural network (ANN) is an efficient 
tool in hydrologic studies, yet it cannot predetermine its results in the forms of maps and geo-referenced 
data. 
Methods: In this study, ANN was applied to simulate groundwater quality and geographic information 
system (GIS) was used as pre-processing and post-processing tool in simulating water quality in the 
Mazandaran Plain (Caspian southern coasts, Iran). Groundwater quality was simulated using multi-
layer perceptron (MLP) network. The determination of groundwater quality index (GWQI) and the 
estimation of effective factors in groundwater quality were also undertaken. After modeling in ANN, the 
model validation was carried out. Also, the study area was divided with the pixels 1×1 km (raster format) 
in GIS medium. Then, the model input layers were combined and a raster layer which comprised the 
model inputs values and geographic coordinate was generated. Using geographic coordinate, the values 
of pixels (model inputs) were inputted into ANN (Neuro Solutions software). Groundwater quality was 
simulated using the validated optimum network in the sites without water quality experiments. In the 
next step, the results of ANN simulation were entered into GIS medium and groundwater quality map 
was generated based on the simulated results of ANN. 
Results: The results revealed that the integration of capabilities of ANN and GIS have high accuracy and 
efficiency in the simulation of groundwater quality. 
Conclusion: This method can be employed in an extensive area to simulate hydrologic parameters. 
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Introduction
Groundwater is one of the most important water resources 
on earth, and its water quality studies are very vital for the 
protection and planning of water resources particularly 
in arid and semi-arid regions such as Iran. Groundwater 
presently accounts for more than 90% of Iran’s total drink-
ing water consumption. This water resource is less vulner-
able to bacterial pollution and evaporation than surface 
water and therefore, groundwater is more important than 
surface water. One of the major limiting factors in water 
exploitation is unsuitable water quality. Human activities 
such as agricultures, manufacturing and urban develop-
ment affect the quality of groundwater. Unfortunately, the 
groundwater quality is now being endangered due to in-
appropriate exploitation and increased human activity in 
recent decades. Thus, it is necessary to study water quality 
in order to manage water resources properly. Since experi-

ments on water quality are time consuming and expen-
sive, models are often employed as supplement to simulate 
water quality. Artificial neural network (ANN) was ap-
plied for simulation in the field of water resources model-
ing in the early 1990s. Its usage has increased significantly 
over the last decade, resulting in a number of studies on 
its applications (1-12). ANNs had provided an appeal-
ing solution to simulate water resources system (13,14). 
The multi-layer perceptron (MLP) feed-forward network 
types have been widely applied to simulate hydrological 
parameters (15). Numerous studies have been conducted 
on the application of neural networks for groundwater 
forecasting (16-29). 
It is necessary to introduce an index in water quality stud-
ies in order to evaluate the quality of water. In the past 
decades, various water quality indices have been used 
in previous studies for special purposes (30). Since the 
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needed water quality parameters are available, we applied 
the ground water quality index (GWQI) which was first 
introduced by Ribeiro et al (31), to evaluate the ground 
water quality. So far, many studies have been conducted 
to measure surface and GWQI. The general water qual-
ity index (WQI) was developed by Brown et al (32), and 
later improved by the Scottish Development Department 
(33), following the suggestion in Horton (34), that various 
water quality data could be aggregated into a single over-
all index (35-41). Gholami et al (42), presented a model 
for estimating groundwater salinity on the Caspian Sea 
southern coasts employing the statistical and geographic 
information system (GIS) techniques. They estimated wa-
ter salinity (electrical conductivity or EC) local changes 
with an acceptable accuracy. Lateef (43) investigated the 
groundwater quality of Tikrit and Samarra in Iraq using 
the WQI. They categorized the groundwater quality for 10 
wells in some cities using WQI and discovered that the 
groundwater quality was unsatisfactory in the south of Sa-
marra city. He attributed this water quality deterioration 
to the region’s from north to south groundwater drainage 
system. Singh et al (44) applied a GIS based multi-criteria 
analysis by assigning weights to different water quality pa-
rameters. They grouped the water quality into six classes 
ranging from very good to unfit for drinking. They dis-
covered that the water quality varied from moderate to 
good in most part of the study area except in some areas 
where the groundwater quality was classified as ‘poor to 
unfit.’ An evaluation of change in land usage and land cov-
er from year 1989 to 2006 using Landsat and LISS III satel-
lite data, indicated that the groundwater quality was ‘poor 
to unfit’ as a result of rapid urbanization and industrial-
ization (44). Krishna et al (45) applied GIS-ANN hybrid 
system in predicting arsenic concentration in groundwa-
ter. Their results revealed that GIS-ANN integration has 
a high capability in water quality modeling. This study 
has been conducted to simulate groundwater quality and 
also, to provide a methodology for combining ANN and 
GIS capabilities in hydrologic parameters modeling on the 
Caspian southern coasts.

Methods
Study area
The study area is located at 50º 30′ to 53º 50′ E longitude 
and 35º 55′ to 36º 45′ N latitude in Mazandaran province 
(Figure 1) which is located in the southern Caspian coast 
in northern Iran. Area of study plain is approximately 
10 000 km2. The southern coasts of the Caspian Sea main-
ly include plains made of quaternary sediments. However, 
there are diverse geologic formations and elevation and 
slope changes in central regions of Alborz mountains.

Determination of groundwater quality index
In this study, eight water quality parameters such as: cation 
and anion (K+, Na+, Ca2+, Cl-, Mg2+, SO4

2- ), pH and total 
dissolved salt (TDS) were selected. These parameters were 
used for estimating the WQI. We were faced with a limita-
tion in defining the type of WQI because of lack of mea-

surements of microbial pollution in the region. At first, 
out of about 200 drinking water wells in the study area, 85 
wells were selected based on their available water quality 
secondary data. In general, these 85 wells had adequate 
sampled data with water quality secondary data from 2008 
to 2013 (46). As earlier stated, estimating GWQI for 85 
wells were made using water quality secondary data (i.e. 
6-year data with 4 samples per year). The location of these 
drinking water wells in the study area is presented in Fig-
ure 1. Prior to studying the GWQI, it is essential to choose 
a standard criterion in order to determine maximum val-
ues of the parameters. Iranian national standards of these 
eight water quality parameters for potable water are pre-
sented in Table 1.
Eq. (1) was applied to estimate the GWQI based on the 
standard values given in Table 1:

8

1
. i

i
i i

CGWQI w
Cs=

=∑                                                             (1)

where GWQI denotes the groundwater quality index; wi is 
the relative weight of the parameter; Ci is the concentration 
of the parameter and Csi is the national standard concen-
tration of the parameter for potable water. Each parameter 
has a different weight in terms of its contribution to water 
quality. The corresponding weight values of the parame-
ters are then aggregated using some types of sum or mean 
(e.g., arithmetic, harmonic, geometric), frequently includ-
ing individual weighing factors (34,41,47,48). The relative 
importance/contribution or the weights of parameters in 

Figure 1. Study area (a) and location of drinking water wells (b) 
in the Mazandaran plain.

Table 1.  Potable water quality standards of Iran (mgl-1) 
K+ Na+ Ca2+ Mg2+ SO4

2- Cl- pH TDS
12 200 200 150 400 600 6.5-8.5 2000

Source: Saeedi et al (49).
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the final GWQI are defined on the basis of the extent of 
their participation in the water quality determination in 
order to estimate the final index by aggregating all the 
normalized parameters. The weight of the participation of 
each parameter in the final GWQI is given in Table 2.
GWQI values are categorized into three classes; high 
(GWQI > 0.15), low (GWQI < 0.04), and suitable (0.04 
< GWQI < 0.15) (49). For data collection and processing, 
we applied GIS. Different digital/base maps were provid-
ed in GIS environment including digital elevation model 
(DEM), transmissivity of aquifer formations, water table 
depth (50), residential and industrial areas using topo-
graphic maps of the region and GWQI values using the 
water quality secondary data (46). 

Groundwater quality simulation using ANN
An ANN includes three layers, i.e., input layer, hidden 
layer and output layer. A network can have more than one 
hidden layer. In this study, MLP was applied to simulate 
groundwater quality. A typical MLP structure is illustrated 
in Figure 2. MLP is generated by adding one or more hid-
den layers to one-layer perceptron and this topology can 
solve complex problems (51).
Determination of the network optimum structure and 
number of neurons are important in network planning. 
MLP is the most extensively applied neural network ar-
chitecture in literature for classification or regression 
problems (52-55). Three-layer (input, hidden and output) 
feed-forward neural network with LM back-propagation 
learning were employed for simulating groundwater qual-
ity or GWQI. The first and simplest type of ANN devised 
was the feed-forward neural network. In the feed-forward 
network, the information moves in only one direction, 
forward, from the input nodes, through the hidden nodes 

and to the output nodes. In the first stage of simulation, 
all data were normalized and divided into three classes: 
training data (65% of all data), test data (23% of all data) 
and cross validation data (12% of all data).The hyperbolic 
tangent and sigmoid transfer functions were used. Based 
on the study results (through trial-and-error method), the 
best transfer function was the hyperbolic tangent transfer 
function. The objective of network training is to find the 
network that can simulate the relationship between inputs 
and outputs model. Since there were no definite rules in 
planning neural network structure, we evaluated different 
structures of the network. In the study area, 85 drinking 
water wells were selected based on their available water 
quality secondary data. In general, these 85 wells had ad-
equate sampled data with water quality secondary data. 
The GWQI parameter was used as an output variable and 
groundwater quality factors were used as inputs variables. 
The input factors are depth of the water table, distance 
from contaminant centers, site elevation or site location, 
population, households and aquifer formations (trans-
missivity). The inputs values were estimated using DEM, 
transmissivity of aquifer formations and water table depth 
maps (50) then residential and industrial areas were done 
using topographic maps and satellite images of the region. 
Also, GWQI values were estimated using the water quality 
secondary data (46). The estimated input and output data 
were imported to ANN (Neuro Solutions software) me-
dium. The most commonly applied method use in deter-
mining the optimum structure, learning rate and momen-
tum parameter is the trial-and-error approach (15). We 
changed the numbers of hidden neurons from 1 to 10. We 
found that using trial-and-error method in a MLP net-
work with tangent hyperbolic transfer function, LM train-
ing technique was the best network structure in ground-
water quality simulation. Network training is one of the 
main stages in modeling using ANN. Weight coefficients 
in intermediate and output layers will be determined in 
the training stage (51,56,57). For the development of ANN 
model, we should determine both the significant and in-
dependent inputs (58,59). Determination of ANN model 
structure generally involves defining the number of layers, 
the number of nodes in each layer and how they are con-
nected (10). 
Here, an index known as the GWQI was used to evaluate 
the water quality. In the study area, 85 drinking water wells 
were selected and for each drinking water well, the GWQI 
value was then estimated. Appropriate input parameters 
were selected by trial-and-error method and sensitivity 
analysis. Eight input patterns were investigated and their 
efficiencies were evaluated and compared (Eq. 2-9):
GWQI = ƒ(T, GwTable) (2)
GWQI = ƒ(T, GwTable, Lc) (3)
GWQI = ƒ(T, GwTable, Lc, E) (4)
GWQI = ƒ(T, GwTable, Lc, E, P) (5)
GWQI = ƒ(T, GwTable, Lc, E, P, H) (6)
GWQI = ƒ(GwTable, Lc, E, P, H) (7)
GWQI = ƒ(T, Lc, E, P, H) (8)
GWQI = ƒ(T, GwTable, E, P, H) (9)

Table 2. Weight of participation of each parameter in the final 
GWQI

Parameter Parameter’s weight
K+ 0.04
Na+ 0.06
Mg2+ 0.15
Ca2+ 0.2
SO4

2- 0.1
Cl- 0.1
pH 0.2
TDS 0.15

Source: Saeedi et al (49).

Figure 2. A typical multi-layer feed forward neural network archi-
tecture.
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where GWQI is the groundwater quality index, T is the 
transmissivity of aquifer formations (m2/day), GwTable is the 
groundwater table depth (m) and Lc is the distance of a 
well from contaminant and residential centers (m). P and 
H are the population and the number of household within 
the area of 1 km2 and E is the site elevation.
A sensitivity analysis of model inputs was done in order 
to determine key parameters to groundwater quality. Sen-
sitivity analysis is usually performed to study the effect of 
inputs on the outputs and to determine if any insignificant 
inputs can be ignored. Results revealed that the significant 
factors on groundwater quality and the best inputs in the 
simulation of groundwater quality were transmissivity of 
aquifer formations, groundwater depth, and distance from 
residential and industrial areas. An optimum network can 
be defined by three main components: transfer function, 
network architecture and learning rule (60). The determi-
nation of the network size is usually carried out by trial 
and error experimentation. The procedure begins with 
one neuron in one hidden layer and progressing (with in-
creasing size) until the performance of the test is found 
suitable (61). The ANN efficiency was evaluated using the 
mean squared error (MSE) and the   coefficient of deter-
mination (R2). The MSE and R2 are defined as (Eq. 10 & 
11): 

( )Qi QiMSE
n

∧

∑ −
=

 
                                                                                            (10)

~
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∧

=

 
− − 

=  
 − − 

∑
∑

                                                                                             (11)

where Qi is the observed value, Qi
∧

 is the simulated value 
and Qi  is the mean of the observed data and 

~

iQ is the 
mean of the simulated data and n is the number of data.
The ANN efficiency (network validation) is evaluated 
using the MSE and the coefficient of determination (R2). 
Then, the optimized network was validated throughout 
the comparison between the actual values and the esti-
mated values (test stage).

Integration of ANN and GIS in simulating groundwater 
quality
ANN is an efficient tool in hydrologic studies. In this 
study, an integration of ANN and GIS has been employed 
to simulate groundwater quality. ANN and GIS have been 
used for simulation and as a pre-processing and post-
processing system of the applied data respectively. Thus, 
GIS was applied as an efficient tool to provide base maps 
and to estimate model quantitative parameters. Different 
digital/base maps were provided in GIS environment in-
cluding DEM, transmissivity of aquifer formations, water 
table depth (50), the number of household and popula-
tions, residential and industrial areas using topographic 
maps of the region and GWQI values using water qual-
ity secondary data (46). Eighty-five drinking water wells 

were selected to simulate GWQI. Then, the estimated 
data of these parameters were inputted into the ANN me-
dium (Neuro Solutions software) for modeling. Initially, 
the data was separated into three parts, namely, training 
data, cross validation data and testing data. The model 
was optimized on network structure (transfer function, 
inputs and the number of neuron) by using trial-and-er-
ror method. Then, optimized model was evaluated using 
testing data. After validation model, we applied the vali-
dated optimum model for simulating the GWQI in sites 
without water quality experiments. In this step, GIS had a 
pre-processing role in modeling process. The objective of 
the present study was using ANN to simulate groundwa-
ter quality in a manner of geo-referenced graphic for sites 
without water quality data. The results revealed that the 
optimized network structure needs to have three inputs 
such as: transmissivity of aquifer formation, water table 
depth and the distance from contaminant centers. Ras-
ter layers of the three input factors were provided in GIS 
pre-processing stage and were combined using overlay 
analysis with a pixel size 1×1 km. So, the surface of study 
plain was separated to more than 10 000 geo-referenced 
pixels (1×1 km). These pixels had values of model inputs 
or groundwater quality factors (transmissivity of aquifer 
formation, water table depth and the distance from con-
taminant centers). 
We automatically inserted the site coordinate for every 
pixel in the GIS medium. Pixels data (networks inputs 
and coordinate) were exported from GIS and then im-
ported to Neuro Solutions software. In ANN medium, 
GWQI was simulated using the validated optimum net-
work for all of the 10 000 pixels (all of the study plain). In 
the next step, simulated GWQI were imported from ANN 
to GIS medium with geographic location data (X, Y). 
GIS had a post-processing role in this phase of study. We 
generated groundwater quality map using GWQI values 
(throughout geographic coordinate as an assisting agent 
for distinguishing geographic coordinate) and GIS capa-
bilities study plain. Actual GWQI values of 85 drinking 
water wells were overlain on the generated raster layer of 
GWQI in GIS and result accuracy was evaluated via the 
comparison between the simulated GWQI and the actual 
GWQI in GIS. Evaluation results showed that the results 
were accurate and acceptable. Finally, groundwater raster 
layer was presented after been classified as groundwater 
quality map. Study stages are shown in Figure 3. In this 
study, groundwater quality simulation was performed us-
ing ANN and GIS capabilities in an extensive area with 
high accuracy and the results were presented in a manner 
of geo-referenced graphic (map).

Results
GWQI indices were estimated for the studied drinking 
water wells based on the 6-year sampling data with four 
samples per year. We estimated significant factors on wa-
ter quality including aquifer formations transmissivity, 
water table depth, site elevation, distance from contami-
nant centers and populations. A number of the estimated 
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 As can be seen in Figures 4, 5 and 6, digital maps of these 
three factors were generated in GIS. Figure 7 shows the 
results of ANN simulation in the training stage for ground 
water quality simulation and, as can be seen, R2 = 0.95. 
The results of network evaluation were presented in 
Tables 4 and 5. Tables 4 and 5 show error values in the 
training stage. Based on these results we found acceptable 
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Figure 3. The flow chart showing the methodology stages used 
in this study.

Figure 4. The map of average transmissivity of aquifer formation 
in the study area (m2/day).

Figure 5. The map of average water table depth in the study area 
(m).

Table 3. Factors affecting groundwater quality and GWQI in  some drinking water wells

No GWQI Transmissivity
(m2/day)

Water table
Depth (m)

Elevation
(m)

Distance from contaminant
centers (m)

No. of
household Population

1 0.2715 1500 12.90 50 6.4 52 460
2 0.2401 750 3.00 -11 153.8 239 1077
3 0.2267 175 5.00 -13 99.4 32 144
4 0.2165 750 4.00 -10 1121.2 21 98
5 0.2125 1500 5.00 11 0 22 93
6 0.2070 500 4.17 6 20 246 1105
7 0.1971 1000 5.00 11 0 22 93
8 0.1969 750 6.50 20 20 161 666
9 0.1553 500 31.00 1062 830 30 95

10 0.1483 300 23.00 453 1100 13 62
11 0.1252 300 25.00 69 709 53 287
12 0.0568 100 38.00 1670 1023 53 342
13 0.2578 500 4.70 6 44 109 495
14 0.2042 750 3.50 -8 451 92 434
15 0.3413 3000 5.00 20 15.42 574 2770
16 0.3252 2000 3.00 2 66.37 118 820
17 0.3243 1000 1.00 3 28.07 239 1187
18 0.3146 1000 1.00 1 21.27 136 800
19 0.2597 750 5.00 12 9.21 607 2931
20 0.2571 1500 8.00 33 194.20 144 693

significant factors on water quality and GWQI were pre-
sented in Table 3. These data were imported in ANN me-
dium for simulating groundwater quality. In the training 
stage, three factors are indicated as the best inputs for sim-
ulating groundwater quality due to the changes in input 
data pattern and sensitivity analysis. These three factors 
include transmissivity of aquifer formation, groundwater 
depth and distance from contaminant centers (42). 
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results in the training stage. Optimum network structure 
in groundwater quality simulation included a MLP with 
three inputs, tangent hyperbolic transfer function, LM 
(Levenberg-Marquart) training technique and one neu-
ron. One of the best selections in modeling of hydrologic 
parameters are tangent hyperbolic transfer function and 
LM training technique and were employed in several 
studies as a prior selection in the world (62). After opti-
mizing network, testing stage or efficiency evaluation is 
performed. Evaluation of ANN efficiency in groundwa-
ter quality simulation, via comparison between estimated 
and actual GWQI values, in the validation (testing) stage 
is shown in Figure 8 (R2=0.73). According to the results, 
ANN can simulate GWQI with an acceptable accuracy. 
ANN capability in similar modelling is validated by previ-
ous studies (63). The objective of this study is to estimate 
groundwater quality in sites without water quality data 
and also to preset the result in a manner that can be usable 
for all users.
In GIS, raster layers of the three input factors were com-
bined using overlay analysis with a pixel size 1×1 km. Pix-
els data (network inputs and coordinate) were exported 
from GIS and then imported into Neuro Solutions soft-
ware. In ANN medium, GWQI was simulated using the 
validated optimum network for all of the study plain. In 
the next step, simulated GWQI were imported from ANN 
to GIS medium with geographic location data (X, Y). 
GWQI values throughout the geographic coordinate and 

Figure 6. The map of distance from contaminant centers in the 
study area (m).

Figure 8. Evaluation of ANN efficiency in groundwater quality 
simulation. Comparison between the estimated and actual GWQI 
values in the validation (testing) stage (R2 = 0.73).

Figure 7. Evaluation of ANN efficiency in groundwater quality 
simulation in the training stage throughout the comparison 
between the estimated and actual GWQI values (R2 = 0.95).

Table 4. The results of network training for simulating GWQI

All runs Training  
minimum

Training  
SD

Cross validation  
minimum

Cross validation  
SD

Average of minimum MSEs 0.006 0.001 0.008 0.001
Average of final MSEs 0.006 0.001 0.024 0.014

Table 5. The results of network training and optimum network 
selection

Best networks Training Cross validation
Epoch # 1000 11
Minimum MSE 0.005 0.006
Final MSE 0.005 0.016

GIS capabilities were generated on groundwater quality 
map for study plain. Groundwater quality maps are shown 
in Figures 9 and 10. As can be seen, GWQI actual values 
were overlain on the generated GWQI map in GIS. We can 
evaluate result accuracy by overlaying actual values on the 
generated map. Results revealed that the estimated GWQI 
has a suitable accuracy and the results can be particularly 
employed in classifying ground water quality. Compari-
son between water quality zones and estimated GWQI 
values showed the efficiency and accuracy of the integra-
tion of ANN and GIS in modeling (45,64). GWQI values 
are classified into three categories; high (GWQI>0.15), 
low (GWQI<0.04), and suitable (0.04<GWQI <0.15) (49). 
As can be seen in Figures 9 and 10, the presented meth-
odology can accurately simulate groundwater quality for 
ground water classification and existing error values does 
not flaw in the accuracy of water quality classification in 
the surface of a plain or a watershed. The actual GWQI 
values of 85 drinking water wells were overlain on the gen-
erated raster layer of GWQI in GIS and the result accu-
racy was evaluated via comparison between the simulated 
GWQI and the actual GWQI in GIS. Evaluation results 
showed that the results were accurate and acceptable. Fi-
nally, the GWQI raster layer was presented after the clas-
sification of the groundwater quality map. 

Discussion
Eight model structures were developed to evaluate the 
probability impacts of enabling/disabling transmissivity 
of aquifer formation, water table depth, the distance from 
contaminant centers, elevation, number of household 
and population as inputs. Results showed that three fac-
tors, viz; transmissivity of aquifer formation, water table 
depth, and the distance from contaminant centers, are the 
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most important factors and the best inputs for ground-
water quality modeling (42). ANN is an efficient tool in 
modeling but, its results cannot be preset in the forms of 
maps and geo-referenced data. We applied ANN in simu-
lating groundwater quality and GIS as a pre-processing 
and post-processing tool in the result monitoring and 
mapping. Also, GIS resulted in an increasing modeling 
accuracy and modeling velocity. The best network struc-
ture in groundwater quality simulation was a MLP net-
work with tangent hyperbolic transfer function and LM 
training technique. Previous studies proved that an ANN 
with LM technique is an efficient structure in hydrological 
parameters simulation (65,66). Based on the results of the 
training stage, mean square error (MSE) and coefficient of 
determination (R2) measures were 0.01 and 0.9 respective-
ly. In the cross validation stage, mean MSE was 0.016. Fur-
thermore, the results revealed that the best performance 
for LM algorithm was produced by the network. Using 
ANN for hydrologic parameters simulation followed good 
results in the past and, in most cases, there have been high 
correlation between simulated and observed hydrographs 
(67-69). Litta et al (70) developed ANN model with LM 
algorithm to derive thunderstorm forecasts from 1 to 
24 ahead at Kolkata. In the testing stage, MSE and coeffi-
cient of determination (R2) measures were 0.0005 and 0.73 
respectively. The basis of the present study is automatic 
relation between ANN and GIS in modeling and mapping 
of results. Also, the results should have capability of over-
lay analysis with other digital data. GIS can provide a high 
volume of input data within a short time and ANN can 
simulate hydrologic parameters for the sites without water 
quality data within a short time. Finally, the integration of 
ANN and GIS can present results in a manner of digital 
maps. The groundwater quality maps indicated that the 
quality of groundwater is improper in terms of potable 
water quality standards of Iran in most of the study plain. 
It is necessary to plan to conserve and optimize usage of 
water resources. Unfortunately, the quantitative data of 
network inputs (transmissivity, groundwater table depth 
and distance from contaminant centers of settlements 
and manufacture) are available in the Mazandaran plain. 
Therefore, we can apply the current methodology or simi-

lar methods in the surface of Mazandaran plain. 

Conclusion
Results evidently revealed that the ANNs are capable of 
modeling the groundwater quality. This, therefore, sub-
stantiate the general enhancement achieved by using neu-
ral networks in several other hydrological fields (12). Re-
sults of the sensitivity analysis (input factors in network) 
showed that the most important factors for consideration 
in water quality are the water table depth, kind of aquifer 
formation and distance from contaminant centers. Pollu-
tion is higher in coastal areas than in other areas as a result 
of high water table, alluvial sediment existence, popula-
tion density and upstream watershed flow (71). Therefore, 
we should focus to plan water quality management in the 
coastal area. However, this methodology (ANN and GIS 
integration) can be applied for modeling in other qualita-
tive indices. It is clear that we could select a smaller pixel 
size that produces a more accurate input about distance 
from contaminant centers however, a great number of in-
put pixels accompany a limitation for simulation in ANN 
medium (ANN software). Also, we have not accessed the 
precise data in two main inputs, namely, groundwater ta-
ble depth and transmissivity of aquifer formation. ANN 
can be an efficient tool in hydrologic parameters simula-
tion using suitable inputs and optimum network struc-
ture. Also, GIS is an efficient system in data processing 
and mapping. Coupling ANN with GIS capabilities could 
provide practitioners with easily interpretable water qual-
ity maps in the management of these resources. Therefore, 
the presented methodology and other groundwater mod-
els can be used for prospective planning of sustainable 
groundwater development and management of ground-
water resources.
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Figure 9. The map of groundwater quality (GWQI)  obtained from 
ANN and GIS capabilities (the west of study plain). In this map, an 
evaluation of the results accuracy was done using a comparison 
between the simulated GWQI values with the actual GWQI values. 

Figure 10. The map of groundwater quality (GWQI) resulted by 
ANN and GIS capabilities (the east of study plain). In this map, an 
evaluation of the results accuracy was done using a comparison 
between the simulated GWQI values with the actual GWQI values. 
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