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Summary (English)

This thesis is concerned with computational and theoretical aspects of Rieman-
nian metrics on spaces of regular curves, and their applications. It was recently
proved that second order constant coefficient Sobolev metrics on curves are
geodesically complete. We extend this result to the case of Sobolev metrics
with coefficient functions depending on the length of the curve. We show how
to apply this result to analyse a wide range of metrics on the submanifold of
unit and constant speed curves.

We present a numerical discretization of second order Sobolev metrics on the
space of regular curves in Rd, and methods to solve the initial and boundary
value problem for geodesics allowing us to compute the Karcher mean and prin-
cipal components analysis of data of curves. We apply the methods to study
shape variation in synthetic data in the Kimia shape database, in HeLa cell
nuclei and cycles of cardiac deformations.

Finally we investigate a new application of Riemannian shape analysis in shape
optimization. We setup a simple elliptic model problem, and describe how to
apply shape calculus to obtain directional derivatives in the manifold of planar
curves. We present an implementation based on parametrization of immersions
by B-splines, which ties in naturally with Isogeometric Analysis to solve the
PDE. We give numerical examples of solutions, and compare the Riemannian
optimization algorithms with different choices of metrics to a naive unregularized
discretize-first approach.
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Summary (Danish)

Denne afhandling omhandler teoretiske og beregningsmæssige aspekter af Rie-
mannske metrikker på rum af regulære kurver og deres anvendelser. Det blev
for nyligt vist at anden ordens Sobolev metrikker med konstante koefficienter
er geodætisk fuldstændige. Vi udvider dette resultat til Sobolev metrikker med
koefficienter der kan afhænge af længden af kurven. Vi viser desuden hvordan
dette kan bruges til at analysere en række metrikker på delmangfoldigheden af
kurver med enheds- og konstant fart.

Vi præsenter en numerisk diskretisation af anden ordens Sobolev metrikker på
rummet af regulære kurver i Rd, og metoder til at løse de geodæsiske begyndelses-
og randværdi problemer. Dette giver mulighed for at beregne Karcher gennem-
snit og principal komponent analyse (PCA) af kurvedata. Vi anvender met-
hoderne til at studere formvariation i den syntetiske Kimia database, in Hela
cellekerner og cykluser af hjertedeformationer.

Til sidst udforsker vi en ny anvendelse af Riemannsk formanalyse i formoptime-
ring. Vi definerer et simpelt elliptisk model problem, og beskriver hvordan vi
kan bruge form kalkyle til at beregne retningsafledte i mangfoldigheden af plane
kurver. Vi giver en implementering baseret på Isogeometrisk Analyse til at løse
den underliggende partielle differentialligning. Vi viser numeriske eksempler på
løsninger, og sammenlinger de Riemannske optimeringsalgoritmer ved forskellige
valg af metrikker med en naiv ikke-regulariseret diskretiser-først strategi.
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Chapter 1

Introduction

A curve or surface is defined in classical differential geometry as a subset of Rn
which can locally be parametrized by Rm with m = 1 or m = 2. In this thesis
we restrict our selves to the case of closed curves, which can be represented by
a mapping c ∶ S1 → Rd, but all the questions are constructions can naturally be
done for surfaces and submanifolds of codimension greater than one. In many
situations one is only interested in the geometric object itself, and not the way
it is represented by a parametrization, as there are many parametrizations of
the same curve. Any two parametrizations c, d that are related by c = d ○ϕ of a
diffeomorphism ϕ of S1, parametrizes the same curve. This notion of equivalence
between parametrizations give rise to the notion of a shape space, where each
element represent an unparametrized curve.

From a mathematical point of view, we can view this space as a geometri-
cal object itself; the shape space and the closely related space of all regular
parametrizations carry the structure of an infinite dimensional manifold. These
spaces can also be equipped with Riemannian metrics, and is a great source
of examples for infinite dimensional Riemannian Geometry. This is the theme
of Chapter 2 of this dissertation, where we give an introduction to the infinite
dimensional geometry of spaces of curves and shape spaces. The central result
is an extension of the recently proved theorem, that constant coefficient Sobolev
metrics of order two and higher are geodesically complete, to the case where the
coefficients are allowed to depends on the length of the curve.



2 Introduction

The Riemannian metric allow us to define a distance between shapes by mea-
suring the length of deformations between them. This can be interpreted as a
measure of similarity between shapes. Moreover the exponential map locally
linearize the space, and in this way allow us to do statistics that respects the
non-linear structure of the space. For metrics on closed curves several applica-
tions have been considered in medical imaging [84, 86], object tracking [80, 81],
computer animation [13, 31], speech recognition [79], biology [45, 78], and many
other fields [11, 44]. To apply this method in practice to real data of shapes, it is
crucial to develop efficient numerical methods to compute geodesic deformations,
for both the initial and boundary value problem. So far numerical methods have
largely been restricted to a narrow class of metrics that allow transformations
that simplify problem. In Chapter 3 we present a general numerical method that
approximates geodesics for higher order metrics with any choice of constants in
metric, thereby giving more flexibility in the shape analysis. The contents of
Chapter 3 is a copy of soon to be published paper.

Shape optimization has many applications. It can roughly be defined as any
optimization problem where the feasible space is a set of shapes. As such it
is not defined in a linear vector space, and many different ad-hoc methods
have been used to overcome this problem. Typically the problems arise from
physical considerations, and the problem is constrained by the solution of a
Partial Differential Equation (PDE) which dictates the physics. A classical
example is the optimization of the profile of a wing which minimizes drag of
the air moving past it. Here the PDE in question is the Navier-Stokes equation
which describes the flow of air around the wing. There are many examples
coming from structural mechanics, electromagnetics, acoustics, etc. Usually
the feasible shapes are represented by parametrizations of the boundary of the
domain at hand, which are required to be regular, and the problem doesn’t
depend on the specific choice of parametrization of a shape. In this way, it is
natural to consider shape functionals defined on planar objects, as a function
on the manifold of regular curves or shape space. This point of view have
been considered very recently in a series of papers, starting with [69], but still
leaving many open questions. In this way the non-linear structure of the feasible
shapes are captured, and we can use the manifold structure to influence the
optimization procedure. The choice of a Riemannian metric on immersions allow
us to use generalized versions of classical optimization algorithms like steepest-
descent and BFGS, in a way that naturally turns the regularity constraint into
an unconstrained problem. Chapter 4 is devoted to a presentation of the tools
necessary to implement a version of Riemannian shape optimization, which is
then applied to a concrete example where the solution is known.



Chapter 2

Riemannian Geometry of
Spaces of Curves

This chapter is devoted to an introduction to infinite dimensional Riemannian
manifolds, and spaces of regular curves. The goal will be to define and analyse
so-called shape spaces of curves. In this context we will consider a planar shape
as the outline of a domain, represented by a curve. A shape space contains
a unique representative of the image of a curve, without considering specific
parametrisations. The presentation will be as follows, first we give a general
definition and comment on the differences to the finite dimensional case, and
then we will give an example in the setting of immersions. The topics are: the
definition of an infinite dimensional manifold, Riemannian metrics, length of
curves and Riemannian distances, the geodesic equation and finally metric and
geodesic completeness.

2.1 Space of immersions and shape space

First let us present the definition of a (possibly) infinite dimensional manifold,
it carries over almost verbatim from the finite dimensional case:

Definition 2.1 A smooth manifold modelled on the vector space E is a
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Hausdorff topological space M together with a family of charts (uα, Uα)α∈A
such that

1. (Uα)α∈A is a covering of M by open sets.

2. uα ∶ Uα ⊆M → E is a homeomorphism onto its image.

3. The transitions mappings uβ ○ u−1
α : uα(Uα ∩Uβ) → uβ(Uα ∩Uβ) are C∞-

smooth.

The only change is the specification of the modelling space E, which can now be
infinite dimensional. If E is finite dimensionsal there is only one choice: E = Rn,
for some n ∈ N. If dimE =∞ then we have a range of choices of different types
of vector spaces. The most familiar cases are Hilbert and Banach spaces. They
comes with an inner product or norm, respectively. More generally we can
choose E to be a Fréchet space, or a convenient vector space. The latter is a
very general type of vector space that we shall not need in this dissertation.
Frechét spaces might not be known to the reader, and we give a definition

Definition 2.2 A Fréchet space X is a Hausdorff topological vector space,
which satisfy

• The topology may be induced by a countable family of semi-norms ∥ ⋅ ∥k:
a set U is open iff forall u ∈ U there exists K ≥ 0 and ε > 0 such that
{v ∶ ∥v − u∥k < ε, k ≤K} ⊆ U .

• It is complete w.r.t the family of semi-norms: Every sequence (xn) which
is Cauchy w.r.t all ∥ ⋅ ∥k converges to a fixed element x in each seminorm.

Alternatively it is a vector space with a topology that can be induced by a
translation invariant metric d. Our most important example of a Frechet space is
the space C∞([a, b]) of smooth functions on a compact interval, with the family
of semi-norms given by ∥f∥n = supx{∣f

(k)(x)∣ ∶ x ∈ [a, b], k ≤ n}. In Hilbert or
Banach spaces we have many of the same technical tools as for analysis in finite
dimensions, and many results about finite dimensional manifolds can be carried
over, but not all. For Fréchet spaces we have less tools available and these
spaces become much more difficult to work with. We shall later exemplify these
problems, when we also equip our manifolds with Riemannian metrics. Here
the differences begin to appear immediately. For an introduction to Hilbert and
Banach manifolds, see [46, 41]. In [36] an introduction to Fréchet manifolds is
given, and the famous Nash-Moser theorem. For the general case of convenient
vector spaces see [50].
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The space of immersions

Now we will define the spaces that we shall be using throughout this dissertation,
and show how these are naturally smooth infinite dimensional manifolds. The
space of smooth, regular, closed curves with values in Rd is

Imm(S1,Rd) = {c ∈ C∞(S1,Rd)∶ ∀θ ∈ S1, c′(θ) ≠ 0} , (2.1)

where Imm stands for immersions. Throughout the text, differentiation is de-
noted using subscripts as in cθ = ∂θc = c

′. We call such curves parametrized
to distinguish them from unparametrized curves defined later in Sect. 3.2.3.
The space Imm(S1,Rd) is an open subset of the Fréchet space C∞(S1,Rd) and
therefore it can be considered as a Fréchet manifold. Here C∞(S1,Rd) has the
topology of uniform convergence, i.e. we have fn → f if

lim
n→∞

∥f (k)
n − f (k)∥∞ = 0, ∀k ∈ N,

where ∥f∥∞ = supθ∈S1 ∣f(θ)∣. Its tangent space Tc Imm(S1,Rd) at any curve c is
the vector space of all vector fields along c, i.e. C∞(S1,Rd) itself.

In many cases, one is not interested in the specific parametrization of an object,
but rather only its properties as a ’shape’. That is, two different parametriza-
tions, in our case curves, can represent the same object. This is visualized in
figure 2.1. The idea now is to construct a suitable quotient space of immersions,
where each equivalence class is exactly a unique shape. To this end we define
the space of smooth diffeomorphisms of S1,

Diff(S1) = {ϕ ∈ C∞(S1, S1) ∶ ϕ′ > 0}. (2.2)

This is an open set in C∞(S1, S1) so it is an infinite dimensional manifold, and
also a smooth Fréchet Lie group, with the group action given by composition,
see [50]. It acts smoothly on Imm(S1,Rd) by compositions on the right. We
shall say that two curves c1 and c0 represent the same shape if they differ by a
diffeomorphism of S1, i.e. there exists ϕ ∈ Diff(S1) such that c1 = c0 ○ ϕ, i.e. c1
is a reparametrization of c0. The quotient space

Bi(S
1,Rd) = Imm(S1,Rd)/Diff(S1) (2.3)

consists of the orbits of the action of the diffeomorhpism group, and will be de-
noted by the space of unparametrized curves, since we can think of the elements
as curves without a specific parametrization. The resulting quotient space is
not a manifold: the action of Diff(S1) is not free, and the resulting quotient
space is an orbifold with singularities, see [27]. However one can the bypass this
difficulty by considering the slightly smaller space of free immersions, those for
which Diff(S1) acts freely, i.e. the isotropy group is trivial. Let Immf(S

1,Rd)
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denote the set of free immersions, This is a dense subspace of Imm(S1,Rd). An
example of a non-free immersion is the circle traversed two times. The space

Bi,f(S
1,Rd) = Immf(S

1,Rd)/Diff(S1), (2.4)

is now the space we shall work with, we can summarize its structure as follows.

Theorem 2.3 The space Bi,f(S
1,Rd) is a Fréchet manifold, and the base

space of the principal fibre bundle

π ∶ Immf(S
1,Rd)→ Bi,f(S

1,Rd), c→ c ○Diff(S1).

with structure group Diff(S1).

This follows from a careful contruction of appropriate charts, for a complete
proof of the theorem, see [27, 51]. Now we will just describe the charts. Define
the map

ψc ∶ C
∞(S1, (−ε, ε))→ Immf(S

1,Rd), ψc(a) = c + anc,

With nc the normal vector of c. This is simply moving c(θ) point-wise a length
a(θ) in the direction along its unit normal tangent vector field. Then

π ○ ψc ∶ C
∞(S1, (−ε, ε))→ Bi,f ,

with ε sufficiently small, gives a chart for Bi,f around π(c). We can identify the
tangent space T[c]Bi,f with the set of all normal vector fields. Note that this
does not mean that the set of normal vector fields is the tangent space, only
that dπc(anc) is surjective.

In practice for our results in Chapter 2 and 3, distinguishing between Bi and
Bi,f will not be important, so we will for the remaining part assume that all
immersions are free. For more details on non-free immersions see [51, 27].

If we restrict to embeddings, the same manifolds charts works and we can make
the exact same construction and obtain a principal bundle.

π ∶ Emb(S1,Rd)→ Be(S
1,Rd),

where Emb(S1,Rd) is the space of embeddings, and Be is its quotient by
Diff(S1).

In the literature there is a bit of ambiguity when talking about a shape space.
In [53], the quotient of Bi,f by the euclidean group SE(d) = SO(d) ⋉ Rd, S =
Bi,f /SE(d) is called shape space, and Bi,f is called a pre-shape space.

Finally we mention that all these spaces can be generalized to immersions be-
tween general manifolds M and N , Imm(M,N), see the book [50].
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←Ð
c

Ð→
d

Figure 2.1: Two different parametrizations of the same shape: c = d ○ φ, φ ∈
Diff(S1)

2.1.1 Sobolev immersions

For technical reasons we will later want to consider curves of only Sobolev
regularity. We define the immersions of Sobolev order n ≥ 2,

Immn(S1,Rd) = {c ∈Hn(S1,Rd) ∶ ∣c′∣ > 0}.

This is well-defined by the Sobolev Embedding Thm., see Lemma A.1, which
gives the continuous inclusion Hn(S1) ↪ C1(S1, S1). Likewise we can define
Sobolev diffeomorphisms for n ≥ 1:

Diffn(S1) = {ϕ ∈ Id+Hn(S1, S1) ∶ ϕ bijective, ϕ−1 ∈ Id+Hn(S1, S1)}

Both of these spaces are smooth Hilbert manifolds. In the smooth category
we know that the group of diffeomorphisms acts smoothly on curves, this is no
longer the case for Sobolev curves:

Lemma 2.4 Let n ≥ 2 and k ≥ 1. Then the composition map

Hn+k(S1,Rd) ×Diffn(S1)→Hn(S1,Rd) ∶ (f,ϕ)↦ f ○ ϕ

is a Ck map.

A proof can be found in [39]. We emphasize that the action is strictly Ck and
not smoother. This also implies that Diffn(S1) is not a smooth Lie group, but
only a topological group: the group action is only continuous. For a Sobolev
curve, the normal vector field is in Hn−1(S1,Rd). This has the consequence
that construction of charts for the quotient space

Bn(S1) = Immn(S1,Rd)/Diffn(S1)
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breaks down, and we cannot prove that Bn(S1) is a manifold. One can show that
this is a Haussdorf shape, see [23]. One could speculate that instead of using the
normal vector field in the construction of a chart, a point-wise transversal Hn

vector field could be used instead. The quotient space might then be a Hilbert
manifold, but not a smooth principal bundle.

2.2 Riemannian metrics and distance

In the previous section we defined spaces of immersions and how to construct
shape spaces as a quotient by the diffeomorphism group. Now we want to equip
these with Riemannian metrics, and study the resulting geometry. As before,
the generalization of a Riemannian metric to infinite dimension can be stated
very simply, expect one has to take special care when specifying the topology.
Let us start with the definition

Definition 2.5 Let M be a manifold modelled on E. A weak Riemannian
metric G is a smooth map

G ∶ TM ×M TM → R,

satisfying

(1) Gx(⋅, ⋅) is bilinear.

(2) Gx(h,h) ≥ 0 for all h ∈ TxM , with equality only for h = 0.

A metric G is called a strong Riemannian metric, if it in addition satisfies

(3) The topology of the inner product space (TxM,Gx(⋅, ⋅)) coincides with the
inherited manifold topology on TxM .

If a manifold posses a strong Riemannian metric, it implies that TxM is a
Hilbert space and hence also the modelling space. Hence if the modelling space
is a Frechet space, but not a Banach space, we can only have weak metrics.
The two books [41, 46] show how much of the theory of finite dimensional mani-
folds carry over to strong Riemannian manifolds. For general weak Riemannian
manifolds, most is handled on a case by case scenario. There exist many patho-
logical examples that show that it is difficult to come up with a general theory
about them. We shall encounter some of these problems later. On the other
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hand, there are many more examples of weak Riemannian metrics, that have
applications in physics, image analysis and more.

A curve in the space of curves is a map c ∈ C∞(I,C∞(S1,Rd)) ≃ C∞(I×S1,Rd)
(the equivalence is the exponential for convenient vector spaces), we will refer
to this as a path in Imm(S1,Rd). Its velocity is denoted by ct = ∂tc = ċ. Using a
Riemannian metric we can define the length of a path connecting two points as

L(c) = ∫
1

0

√
Gc(ċ, ċ)dt,

where ⋅ = d/dt denotes the time derivative of the path c. The geodesic distance
between two points can then be defined as usual,

distG(c0, c1) = inf{L(c) ∣ c(0) = c0, c(1) = c1}.

Since L(c) ≥ 0, we see that it is well-defined and distG ≥ 0. It is also easy
to see that it satisfies the triangle inequality and is symmetric, so it defines a
pesudometric, as we shall see in a bit it does not always define a metric on
infinite dimensional manifolds. On the quotient space Bi,f we can also induce
a metric

dist
Bi,f
G (π(c0), π(c1)) = inf{L(c) ∶ c(0) ∈ [c0], c(1) ∈ [c1]}

In general we will be looking at metrics which makes the projection π into a
Riemannian submersion. A necessary condition is that the metric is invariant
under the diffeomorphism group, that is for all φ ∈ Diff(S1),

Gc○φ(h ○ φ, k ○ φ) = Gc(h, k).

If the tangent space at c splits into a vertical and horizontal part like

Tc Imm(S1,Rd) = Vert(c)⊕Hor(c),

where the vertical part is the kernel dπc consisting of tangential vector fields,

Vert(c) = kerdπc = {a ⋅ c′ ∶ a ∈ C∞(S1)},

and Hor is the orthogonal complement w.r.t the metric

Hor(c) = {h ∈ Tc Imm(S1,Rd) ∶ ∀a ∈ C∞(S1),Gc(h, ac
′) = 0}.

then a metric on Bi,f can be chosen such that the projection π is a Riemannian
submersions. This the tool that allows us to analyse the geometry of Bi,f in
terms of the geometry of the bigger space Immf(S

1,Rd).
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2.2.1 Sobolev metrics on curves

The simplest metric we can put on the space of immersions might be the flat
L2 metric:

Gc(h, k) = ∫
S1

⟨h, k⟩dθ,

where ⟨⋅, ⋅⟩ is the Euclidean inner product on Rd. This is not invariant under
Diff(S1), so it does not descent to a meaningful metric on the quotient space, in
fact the induced distance is identically zero [51]. Arguably the simplest change
we can do to make this invariant, is to change the integration to the arclength
measure ds = ∣c′∣dθ. That is, we consider the metric

Gc(h, k) = ∫
S1

⟨h, k⟩ds. (2.5)

This metric is invariant with respect to Diff(S1), as we can easily see from a
change of variables

Gc○φ(h ○ φ, k ○ φ) = ∫
2π

0
⟨h ○ φ, k ○ φ⟩∣(c ○ φ)′∣dθ

= ∫
2π

0
⟨h ○ φ, k ○ φ⟩∣(c′ ○ φ)∣φ′(θ)dθ

= ∫
φ(2π)

φ(0)
⟨h, k⟩∣c′∣dθ

= Gc(h, k).

Now this is no longer a flat metric, as we have a dependence on the footpoint
c. The horizontal bundle consists of all normal vectorfield. As noticed above, it
is only a weak metric on Imm(S1,Rd) as the topology induced on the tangent
space is not equivalent to the Fréchet topology on C∞(S1,Rd). This metric
was first studied in [51], where it was shown that it suffers from a major defect
which can only happen for weak metris on infinite dimensional manifolds:

Theorem 2.6 The geodesic distance induced by (2.5) on Bi,f vanishes every-
where, i.e. for any two shapes π(c0) and π(c1) we have distL2(π(c0), π(c1)) = 0.

The proof behind this is not that there exist a path between curves which has
length zero, but here exists paths of arbitrary small lengths, so when taking the
infimum of all paths connecting points in the equivalence classes [c0] and [c1].
The paths can be explicitly constructed by appropriately sig-sawing between
curves. One can extend this result hold for any c0 and c1 in Imm(S1,Rd), and
not just [c0] and [c1]. This means that this metric is not able to distinguish
between shapes, hence it is not useful if we want to use this in practice later,
as we shall explore in Chap. 3. That means we have to look at other, more



2.2 Riemannian metrics and distance 11

complicated, metrics on curves if we want to do any kind of shape analysis of
curves. Several different remedies have been proposed. An observation about
this behaviour is that large curvature, length or the local stretching of the curves
in the short paths is not being taken into account, so the general idea is if we
weight the metric by any of these, the length of the problematic paths should
increase and give a well-defined distance on the space. The following weighted
L2 type metric is also analyzed in [51]

Gc(h, k) = ∫
S1

(1 +Aκ2)⟨h, k⟩ds, (2.6)

where κ is the curvature of the curve and A > 0. Here it is shown that one can
bound the length of path from below by the area swept out by the path, hence it
has to separate points in the geodesic distance. This metric suffers from others
problems, as we will mention in the next section. A length-weighted L2 type
metric has also been studied in [85].

Gc(h, k) = `c ∫
S1

⟨h, k⟩ds,

Which has the point separating property. Another approach to solving the
distance problem is to take the derivatives of the vector field in the tangent
space into account. Since we want to have a metric which is invariant under the
diffeomorpishm group we need to use an invariant differential operator. One
choice is the arc-length derivate Ds =

1
∣c′∣∂θ as this satisfy

Dc○ϕ
s h =

1

∣(c ○ ϕ)′∣
(h ○ ϕ)′ =

1

∣(c′ ○ ϕ)ϕ′∣
(h′ ○ ϕ)ϕ′ =

1

∣c′ ○ ϕ∣
(h′ ○ ϕ) =Dc

sh ○ ϕ,

where we have used the upper script to emphasize at which curve the operator
is evaluated at. Now the invariant metric can written as

G1
c(h, k) = ∫

S1
⟨h, k⟩ + a1⟨Dsh,Dsk⟩ds.

Here a1 > 0 is a constant to weight the two different contributions. This metric is
also point separating. In fact any metric stronger that this H1-type metric has
this property. First we prove a Lemma, which also demonstrates a useful tech-
nique in obtaining control of geometrical quantities in the space of immersions.

Lemma 2.7 If for a weak Riemannian metric G on Imm(S1,Rd) there exists
a constant C such that

G1
c(h,h) ≤ CGc(h,h)

holds for all c ∈ Imm(S1,Rd), then the function
√
` is Lipschitz continuous.
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Proof. Let c ∶ [0,1] → Imm(S1,Rd) be a path in the space of immersions
connecting the curves c1 and c2, then we can estimate

∂t`(t) = ∫
S1

⟨Dsct, v⟩ds ≤ (∫
S1

∣Dsct∣
2 ds)

1/2
(∫

S1
ds)

1/2

≤
1

a1

√
`
√
G1
c(ct, ct) ≤

√
`
C

a1

√
Gc(ct, ct),

so
∂t

√
`(t)

∂t`

2
√
`
≤
C

2a1

√
Gc(ct, ct).

Integrating this inequality in t along c results in

∣
√
`c1 −

√
`c2 ∣ = ∫

1

0
∣∂t

√
`(t)∣dt

C

2a1
≤
C

2a1

√
Gc(ct, ct)dt =

C

2a1
Len(c).

Where `c1 and `c2 are the lengths of c1 and c2 respectively. Taking the infimum
of all paths c connecting the curves we get

∣
√
`c1 −

√
`c2 ∣ ≤

C

2a1
dist(c1, c2).

Which is exactly the Lipschitz inequality desired. This allows us to prove that
such metrics are distance seperating.

Proposition 2.8 If for a weak Riemannian metric G on Imm(S1,Rd) there
exists a constant C such that

G1
c(h,h) ≤ CGc(h,h)

holds for all c ∈ Imm(S1,Rd), then G satisfies dist
Bi,f
G (x, y) > 0 for x ≠ y.

Proof. Consider a path c connecting any two immersions c0 and c1, then we
can estimate

Len(c) = ∫
1

0

√
Gc(ct, ct)dt ≥ C ∫

1

0

√

∫
S1

⟨ct, ct⟩∣c′∣dθ dt

≥ C ∫
1

0

√

∫
S1

∣⟨ct, n⟩∣2∣c′∣dθ dt ≥ C ∫
1

0
(∫

S1
∣c′∣dθ)

−1/2

∫
S1

∣⟨ct, n⟩∣∣c
′∣dθ dt

≥ C inf
t∈[0,1]

`−1/2
∫

1

0
∫
S1

∣⟨ct, n⟩∣∣c
′∣dθ dt = C( sup

t∈[0,1]
`)−1/2 Area(c)

Where Area(c) is the area swept out by c. This is a lower bound on Len(c). If
[c0] and [c1] are different equivalence classes of shapes, the area swept out by
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any path connecting them is bounded from below by a positive number. Taking
the infimum over all paths connecting c0 and c1

dist(c0, c1) sup
t∈[0,1]

`1/2 ≥ C inf
c

Area(c) > 0

The Lipschitz continuity of
√
` implies that ` is bounded when taking infimum,

so we get a lower bound for the distance in Bi,f .

In the next section we will have more to say about this type of metric. This
proposition allows us to consider any number of arc-length derivatives

Gnc (h, k) = ∫
S1

n

∑
j=0

a0⟨D
j
sh,D

j
sk⟩ds. (2.7)

We will denote this the constant coefficient Sobolev metric of order n. An im-
portant observation is that these metrics are also invariant under the action of
the euclidean group SE(d) = SO(d) ⋉ Rd, of translations and rotations of Rd,
therefore they descend to metrics on the quotient space S = Bi,f /SE(d). If
there is no L2 term, a0 = 0, the metric will have a nullspace of translations,
and is only a metric on the quotient space of immersions modulo translations
Imm(S1,Rd)/Rd.

2.3 Geodesics and completeness

Geodesics can be defined as usual as critical points of the length functional L(c),
or equivalently of the energy functional

E(c) =
1

2
∫

1

0
Gc(ċ, ċ)dt.

In finite dimensions, one can derive the expression for Euler-Lagrange equations
for this equation in local coordinates to be

c̈k + Γkij ċ
iċj = 0,

where Γkij are the classical Christoffel symbols. This is a system of ODE’s, and if
we have a smooth metric we always have short-time solutions to the initial value
problem by the Picard-Lindelöf theorem. In the infinite dimensional case things
can be much more complicated. We might have the situation that no geodesic
equation can be derived - this is refered to as the geodesic equation does not
exist, [24]. In order to understand this, let us derive the geodesic equation for
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the L2 metric. Let Dc,h denote the derivative at c in the direction h, then at an
optimum we must have

Dc,hE(c) = ∫
1

0
∫
S1

⟨ct, ht⟩∣c
′∣ +

1

2
⟨ct, ct⟩⟨hθ, cθ⟩

1

∣cθ ∣
dθ dt = 0.

If we assume that our path of curves and variation is smooth, i.e c ∈ Imm(I ×
S1,Rd) and h ∈ C∞(I × S1,Rd), we can use partial integration in t and θ to
obtain

Dc,hE(c) = ∫
1

0
∫
S1
−⟨∂t(∣cθ ∣ct), h⟩ +

1

2
⟨ct, ct⟩⟨hθ, cθ⟩

1

∣cθ ∣
dθ dt

= ∫
1

0
∫
S1
−⟨∂t(∣cθ ∣ct) +

1

2
(
∣ct∣

2

∣cθ ∣
cθ)

θ

, h⟩dθ dt.

By a classical variational argument we get a necessary condition for optimality

∂t(∣cθ ∣ct) +
1

2
(
∣ct∣

2

∣cθ ∣
cθ)

θ

= 0.

Which is the final form of the geodesic equation for the L2 metric. However, the
metric is also a weak metric on the space of H1-type Sobolev curves, but here we
cannot do partial integration in θ as the curves are not smooth enough, hence
the variational principle does not work on this space: the geodesic equation
doesn’t exist. As we can see from the above expression, the geodesic equation
is usually a PDE or pseudo-differential equation. If a metric admits a geodesic
equation, it is also a non-trivial question if the equation has solutions, even for
short time. For higher order metrics we can derive the geodesic equation in the
same way by partial integration and eliminating h, the final result for the order
n metric is

∂t
⎛

⎝

n

∑
j=0

(−1)aj ∣c
′∣D2j

s ct
⎞

⎠
= (2.8)

−
a0

2
∣c′∣Ds(⟨ct, ct⟩v) +

n

∑
k=1

2k−1

∑
j=1

(−1)k+j
ak
2

∣c′∣Ds (⟨D
2k−j
s ct,D

j
sct⟩v)

For Hn-immersions some care has to be taken as the above is expression is not
well-defined. We will ignore the technicalities of this in this discussion, see [25]
for details. For Sobolev type metrics or order 1 and higher the geodesic exists
and is locally-well defined,

Theorem 2.9 Let n ≥ 1. For each k ≥ 2n+ 1 the geodesic equation of Gnc has
a unique local solution in the space of Sobolev Hk-immersions. The solution
depends smoothly on the initial conditions c(0) and ct(0), and the domain of
existence is uniform in k, and so the results also hold on Imm(S1,Rd).
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See [52]. For the curvature-weighted metric 2.6, it is unknown if the geodesic
equation is even locally well-posed. Long time existence of geodesic is related to
a classical question in Riemannian geometry. When is a manifold "complete"
in a certain sense? There are usually three types of completeness to consider:

a) Metric completeness: The space (M,distG) is metrically complete.

b) Geodesic completeness: Any geodesic can be continued for all time.

c) Geodesic convexity: Any two points in the same connected component can
be connected by a length minimizing geodesic.

In finite dimensions the famous Hopf-Rinow theorem asserts that a) and b)
are equivalent, and c) follows from either of them. Hence it makes sense to
talk about a complete finite dimensional Riemannian manifold, without risk of
confusion. In infinite dimensions this is no longer true, and all that can be
proven is

Theorem 2.10 On a strong Riemannian manifold, metric completeness im-
plies geodesic completeness.

See [46, VIII, Prop. 6.5]. Even for strong metrics, this cannot be refined, as
one can construct counterexamples to both implications. In [2] an example is
given of a metrically and geodesically complete space, but with two points which
cannot be connected by any geodesic, and in [3] an example of a geodesically
complete and geodesically convex manifold which is not metrically complete.

For metrics on curves some completeness properties are known. For the L2

metric, short time existence is an open problem. On the other hand it is easy
to see that the L2 metric is geodesically incomplete, the path

c(t, θ) =
3

2
t2/3(cos θ, sin θ,0, . . . ,0)

satisfies the geodesic equation, but its length to zero is finite:

L(c) = ∫
1

0

√

∫
S1

3

2
dθ =

√
3π.

Some results forH1 type metrics are easily obtained. To this end, let us consider
the map and its inverse

R ∶ Imm(S1,Rd)→ C∞(S1,Rd/{0}),

R(c) =
√

∣cθ ∣v

R−1(q) = ∫
θ

0
∣q(τ)∣q(τ)dτ.
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Where we denote the unit tangent of c by v = cθ
∣cθ ∣ and the unit normal by n.

This map is usually referred to as the Square Root Velocity Transform (SRVT),
and was introduced in [76]. It is easy to compute the differential of R

dRc(h) =
1

2
∣cθ ∣

1/2⟨Dsh, v⟩v + ∣cθ ∣
1/2⟨Dsh,n⟩n.

Where n is the unit normal vectorfield. If we consider the flat L2 metric, on the
image space of smooth curves (not necessarily regular)

GL
2,flat

c (h, k) = ∫
S1

⟨h, k⟩dθ,

we can compute the pullback metric on Imm(S1,Rd) as

G∗
c(h, k) = G

L2,flat
c (dRc(h), dRc(k))

= ∫
S1

⟨Dsh,n⟩⟨Dsk,n⟩ +
1

4
⟨Dsh, v⟩⟨Dsh, k⟩ds.

This is a member of the family of Ḣ1 metric (with no L2 term), sometimes
referred to as elastic metrics

∫
S1
a2⟨Dsh,n⟩⟨Dsk,n⟩ + b

2⟨Dsh, v⟩⟨Dsh, k⟩ds.

If we for the moment instead of closed immersions, consider the open immersions
Imm((0,1),Rd) it is easy to conclude that this space is geodesically incomplete
since (C∞(S1,Rd/{0},GL

2,flat
c ) is flat and incomplete. The condition that a

curve is closed is, using R−1,

∫
2π

0
∣q(τ)∣q(τ)dτ = 0.

This is a codimension 2 submanifold of C∞(S1,Rd/{0}. To see that this is also
a incomplete space, notice that circles centred at zero map to circles centred at
zero through R. Now the path

q(t, θ) = t(cos(θ), sin(θ),0 . . . ,0),

is a geodesic in the ambient flat space, and hence also in the submanifold of
closed curves, which reaches 0 in finite time, so the space is incomplete. This
can be generalized to any value of a, b in the elastic metric, see [10]. This also
gives a simple way of numerically computing geodesic for these metrics. For
open curves the geodesics are simply straight line in the image of R which can
then by pulled back. For closed curves one can use symplectic integrators to
follow the submanifold in the flat space.

However for second and higher order metrics on spaces of curves we do get
completeness, in [25, 24] the following two statements are proved. First for the
case of Sobolev regularity curves.
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Theorem 2.11 For n ≥ 2 and a0, an ≠ 0, the space (Immn(S1,Rd),distGc),
where Gc is a constant coefficient Sobolev metric of order n, is a complete metric
space, geodesically complete and any two curves c1, c2 in the same connected
component of Immn(S1,Rd) can be connected by a minimizing geodesic.

In the smooth category we have following result

Theorem 2.12 For n ≥ 2 and a0, an ≠ 0, the space (Imm(S1,Rd),Gc), where
Gc is a constant coefficient Sobolev metric of order n, is geodesically complete.

We will not give a proof of this statement here, since in Sec. 2.4 we shall give
a proof of a generalization of this to a family of length weighted metrics which
includes the constant coefficient metrics. We will just mention that a crucial
ingredient of the proof is the Sobolev embedding theorem, that says that the
weak regularity or order two or higher implies that the curves are also C1.

2.4 Completeness for length-weighted metrics

The contents of this section is joint work with Martins Bruveris.

In [25, 23] it was first proved that the geodesic equation for constant Sobolev
metrics on curves of order two and higher is globally well-posed: the solution
exists for all time. It was also shown that the space (Immn(S1,Rd),Gnc ) is met-
rically complete. In this case the metric is strong, and the former result follows
from the latter. As mentioned in Section 2.2, constant coefficient Sobolev met-
rics are not invariant under scalings of curves, so they do not descent to metrics
on the full shape space B. We can make metric scale-invariant by weighting it
by appropriate powers of the length `c of the curve c :

Gn,scalec (h, k) = ∫
S1
a0

1

`3c
⟨h, k⟩ + ⋅ ⋅ ⋅ + an`

2n−3
c ⟨Dn

s h,D
n
s k⟩ds. (2.9)

It is now our goal to extend the completeness results to a more general case of
length weighted metrics

Gn,`cc (h, k) =
n

∑
j=0
∫
S1
aj(`c)⟨D

j
sh,D

j
sk⟩ds. (2.10)

Where we make the following assumptions of the coefficients functions

aj ∈ C
∞(R>0,R≥0), a0, an > 0. (2.11)
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Note that a0, an > 0, but is allowed to go towards zero for `c → 0 or `c →∞. The
scale-invariant metric is choice aj(`c) = `2j−3

c . We will obtain a necessary and
sufficient condition for the coefficient functions aj(`c) to give a complete metric.
The proof will proceed as in [23]. For notation, define the Sobolev norms

∥f∥2
L2(dθ) ∫

S1
∣f(θ)∣2 dθ,

∥f∥2
Hn(dθ) = ∫

S1
∣f(θ)∣2 + ∣f (n)(θ)∣2 dθ,

the curve weighted L2 norm

∥f∥2
L2(ds) = ∥f

√
∣cθ ∣∥

2
L2(dθ) = ∫

S1
f2 ds,

and the curve weighted Hn norm

∥f∥2
Hn(ds) = ∫

S1
∣f(s)∣2 + ∣Dn

s f(s)∣
2 ds.

2.4.1 Necessary conditions

We are interested in conditions on the coefficient functions ak, such that the
metric is complete. A necessary condition for completeness is that it is neither
possible to shrink a curve to a point in finite time nor to blow it up toward
infinity.

Fix c0 ∈ Immn(S1,Rd) and consider the path c(t, θ) = r(t)c0(θ) with r(0) = 1,
r(1) = R and rt(t) > 0. The length of this path is

Len(c) = ∫
1

0

√
Grc0(rtc0, rtc0)dt = ∫

R

0

√
Grc0(c0, c0)dr .

Writing Dc for Ds to emphasize the dependence on the curve,

Grc0(c0, c0) = ∫
S1

n

∑
k=0

ak(r`(c0)) ∣D
k
rc0c0∣

2
∣rc′0∣dθ .

Assume w.l.o.g. `c0 = 1. Then, since Dk
rc0c0 = r

−kDk
c0c0,

Grc0(c0, c0) =
n

∑
k=0

ak(r)r
1−2k
∫
S1

∣Dk
c0c0∣

2
∣c′0∣dθ .
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Note that all integrals in the above sum are positive. It follows, that

lim
R→∞

Len(c) =∞⇔ ∫
∞

1
(
n

∑
k=0

ak(r)r
1−2k)

1/2

dr =∞

⇔
n

∑
k=0
∫

∞

1
r1/2−k

√
ak(r)dr =∞

⇔ ∫
∞

1
r1/2−k

√
ak(r)dr =∞ for some 0 ≤ k ≤ n .

Thus a necessary condition for completeness is that at least one of the integrals

Ik,∞ = ∫
∞

1
r1/2−k

√
ak(r)dr

diverges.

Similarly one can consider the shrinking of curves by setting r(0) = 1, r(1) =
R > 0 and rt(t) < 0. Then

lim
R→0

Len(c) =∞⇔ ∫
1

0
r1/2−k

√
ak(r)dr =∞ for some 0 ≤ k ≤ n .

Thus, the second necessary condition is the divergence of at least one of the
integrals

Ik,0 = ∫
1

0
r1/2−k

√
ak(r)dr .

The main result is that these two conditions are also sufficient for the metric to
be complete. We define for Sobolev metrics of order n of the form (2.10) the
two properties

max
1≤k≤n

Ik,0 =∞ (I0)

max
1≤k≤n

Ik,∞ =∞ . (I∞)

These are sufficient conditions to prevent finite time shrinkage and blow up of
curves along radial paths c(t, θ) = r(t)c0(θ). We will show that they also prevent
finite time shrinkage and blow up along arbitrary paths.

Remark 1 Note that 1 ≤ k ≤ n in (I0) and (I∞). The case when only I0,∞ =∞
or I0,0 = ∞ is be more subtle, and one can ask if this is also sufficient for
completeness. In Sec. 2.4.4 we shall give two families of metrics which satisfies
separately only I0,0 =∞ and I0,∞ =∞, and which are not metrically complete.
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2.4.2 Controlling length

In this section we prove that the length `c is bounded on geodesic balls. This
result constitute the main ingredient to generalize the completeness for constant
coefficient metrics. First we need a set of Poincare type inequalities in the curve
weighted norm

Lemma 2.13 For a curve c ∈ Imm2(S1,Rd) and h ∈H2(S1,Rd) the following
inequalities hold:

• ∥h∥2
∞ ≤

2

`c
∥h∥2

L2(ds) +
`c
2
∥Dsh∥

2
L2(ds)

• ∥Dsh∥
2
∞ ≤

`c
4
∥D2

sh∥
2
L2(ds)

• ∥Dsh∥
2
L2(ds) ≤

`2c
4
∥D2

sh∥
2
L2(ds)

If c ∈ Immn(S1,Rd) and h ∈ Immn(S1,Rd) then for 0 ≤ k ≤ n,

• ∥Dk
s ∥

2
L2(ds) ≤ ∥h∥2

L2(ds) + ∥Dn
s h∥

2
L2(ds)

A proof can be found in [25]. This allows us to prove that the length `c is locally
bounded on geodesic balls.

Lemma 2.14 Let G be a length-weighted Sobolev metric of order n ≥ 2 satis-
fying (I0) and (I∞). Then, given c0 ∈ Immn(S1,Rd) and R > 0, there exists
C = C(c0,R) > 0 such that

C−1 ≤ `c ≤ C ,

holds for all c ∈ Immn(S1,Rd) with dist(c0, c) < R.

Especially the last part shows that if we add derivatives of order between 0 and n
the norm doesn’t change. Proof. Let c1 ∈ Immn(S1,Rd) with dist(c0, c1) < R
and let c(t, θ) be a path connecting c0 to c1. Computing

∂t`c = ∫
S1

⟨Dsct, v⟩ds ,

and we can estimate using Cauchy–Schwartz and Lemma 2.13

∣∂t`c∣ ≤ ∫
S1

∣⟨Dsct, v⟩∣ ∣c
′∣dθ ≤

√

∫
S1

∣c′∣dθ

√

∫
S1

∣⟨Dsct, v⟩∣
2
∣c′∣dθ

≤ `1/2c ∥Dsct∥L2(ds) ≤ `
k−1/2
c ∥Dk

s ct∥L2(ds) .
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Now define the function

W (r) =
n

∑
k=1
∫

r

1
%1/2−k

√
ak(%)d%,

the assumption on G ensures that W ′(r) > 0, while (I0) and (I∞) implies that
limt→0W (t) = −∞ and limt→∞W (t) = ∞, respectively. Hence W ∶ (0,∞) → R
is a diffeomorphism. Taking the time derivative and combining with the above
inequality yields

∣∂tW (`c)∣ ≤
n

∑
k=1

`1/2−kc

√
ak(`c)∣∂t`c∣ ≤

n

∑
k=1

√
ak(`c)∥D

k
s ct∥L2(ds) ≤

√
Gc(ct, ct)

Integrating along c leads to

∣W (`c1) −W (`c0)∣ ≤ ∫
1

0
∣∂tW (`c)∣dt ≤ ∫

1

0

√
Gc(ct, ct)dt = Len(c) ,

By taking the infimum over all paths we arrive at

∣W (`c1) −W (`c0)∣ ≤ dist(c0, c1).

That is, W (`c) is Lipschitz continuous w.r.t dist, and so is bounded on any
metric ball B(c0,R). Since W is a diffeomorphism, also `c must be bounded
from above and away from 0. ◻

We will also need that log ∣c′∣ is locally Lipschitz continuous w.r.t to the geodesic
distance.

Lemma 2.15 Let n ≥ 2. The following function is locally Lipschitz continuous,

log ∣c′∣ ∶ (Immn(S1,R2),dist)→ L∞(S1,R)

Equivalently, there exists a constant D = D(c0,R) such that for all c with
dist(c0, c) < R we have the bound

D−1 ≤ ∣c′(θ)∣ ≤D

Proof. Let c1, c2 ∈ Immn(S1,R2) with dist(c0, c1) < R, and c(t, θ) be a path
connecting them. Then we have

∂t(log ∣c′(θ)∣) = ⟨Dsct, v⟩.

Lemma 2.14 implies that `c is bounded on the ball B(c0,R), and since an is
smooth, an(`c) is bounded as well. Using this we can find a constant A =
A(c0,R) such that by Lemma 2.13, we get

∥Dsct∥L∞ ≤
`
1/2
c

2
∥D2

sct∥L2(ds) ≤
`
n−3/2
c

2n−1
∥Dn

s ct∥L2(ds) ≤ A
√
Gc(ct, ct).
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Repeating the same type of argument as in Lemma 2.14 by integrating, using
the estimate and taking the infimum over paths c, we get

∥ log ∣c′1∣ − log ∣c′2∣∥L∞ ≤ Adist(c).

The local boundedness of ∣c′(θ)∣ is then immediate. ◻

In [25, 23] the following assumption on a metric is central to the remaining
results

Given a metric ball B(c0, r) in Imm(S1,Rd), there exists a constant C,
such that

∥h∥Hn(ds) = ∫
S1

∣h∣2 + ∣Dsh∣
2 ds ≤ CGc(h,h) (Hn)

holds for all c ∈ B(c0, r).

The constant coefficient metric with a0, an > 0 satisfies (Hn) by the last part of
Lemma (2.13). We now show that the length weighted-metric has this property.

Lemma 2.16 The length-weighted metric Gn,`c on Imm(S1,Rd) satisfying (I0)
and (I∞), satisfies (Hn).

Proof. Let B(c0, r) be a metric ball w.r.t. Gn,`cc . By Lemma 2.14 `c is bounded
on B(c0, r) by the constant C. aj(`c) is smooth so is also bounded, then we
have

∫
S1

n

∑
j=0

min
C−1≤`c≤C

aj(`)∣D
j
sh∣

2 ds ≤ Gn,`c (h,h)

As a0(`c), an(`c) > 0 the left side defines a constant coefficient metric which
satisfies (Hn), so

∥h∥Hn(ds) ≲ G
n,`c
c (h,h)

holds for all c ∈ B(c0, r). ◻

In [25] Lemma 2.14 was shown to hold for metrics satisfying (Hn), but here we
needed to show the reverse implication first.



2.4 Completeness for length-weighted metrics 23

2.4.3 The main result

Now we have all the tools to finish the completeness of the metric. The remaining
part proceeds as in [25, 23] with the Lemmas replaced by their length-weighted
counterparts. First we prove that the metric is uniformly equivalent to the
flat Sobolev metric on any metric balls. For the standard Hn(ds)-norm it was
proven that the Riemannian metric is uniformly equivalent to the flat Hn(dθ)-
norm. From this we can obtain the same result for the length-weighted metric

Proposition 2.17 Let n ≥ 2 and G a weak Riemannian metric on Imm(S1,Rd)
satisfying (Hn). Then, given a metric ball B(c0, r) in Imm(S1,Rd) there exists
a constant C such that

C−1∥h∥Hn(dθ) ≤ ∥h∥Hn(ds) ≤ C∥h∥Hn(dθ)

holds for all c ∈ B(c0, r) and all h ∈Hn(S1,Rd)

Corollary 2.18 Let n ≥ 2 and G be a length-weighted Sobolev metric of or-
der n, satisfying (I0) and (I∞). Then, given a metric ball B(c0, r) in Imm(S1,Rd)
there exists a constant C such that

C−1∥h∥Hn(dθ) ≤
√
Gc(h,h) ≤ C∥h∥Hn(dθ)

holds for all c ∈ B(c0, r) and all h ∈Hn(S1,Rd)

Proof. Proceeding as in the proof of Lemma 2.16, replacing min by max and
using the last part of Lemma 2.13 we get

√
Gc(h,h) ≤ C∥h∥Hn(ds).

Along with (Hn) we get the equivalence witht the Hn(ds) norm

C−1∥h∥Hn(ds) ≤
√
Gc(h,h) ≤ C∥h∥Hn(ds).

Combining with the result of the proposition gives the result ◻ .

Remark 1 Note that all the results so far can be extended to hold on Immn(S1,Rd)
by a limiting argument.

Lemma 2.19 Let n ≥ 2 and G be a length-weighted Sobolev metric of order n,
satisfying (I0) and (I∞). Then
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1. Given a metric ball B(c0, r) in Immn(S1,Rd) there exists C such that

∥c1 − c2∥Hn(dθ) ≤ C dist(c1, c2)

holds for all c1, c2 ∈ B(c0, r)

2. Given c0 ∈ Immn(S1,Rd), there exists r > 0 and C such that

dist(c1, c2) ≤ C∥c1 − c2∥Hn(dθ)

holds for all c1, c2 in B(c0, r).

Proof. Let c1, c2 ∈ B(c0, r) and c be a path of length L(c) < r connecting them
in B(c0, r), then by Cor. 2.18

∥c1 − c2∥Hn(dθ) ≤ ∫
1

0
∥ct(t)∥Hn(dθ) dt ≤ C ∫

1

0

√
Gc(ct, ct)dt ≤ CL(c),

and the constant depends only on c0 and r. Taking the infimum over all paths,
and note that all shortest paths have to be contained in B(c0, r) we get the first
part.
Let c0 ∈ Immn(S1,Rd), and U be an open convex neighbourhood in the flat
ambient space Immn(S1,Rd). The metric G is a smooth strong Riemannian
metric, so by [46, VII Prop. 6.1] the metric distance induces the manifold
topology, there exists a ball B(c0, r w.r.t to distG contained in U . For c1, c2 ∈
B(c0, r) let c(t) = c1 + t(c2 − c1) be the linear path connecting them. By Cor.
2.18 we get

distG(c1, c2) ≤ L(c) = ∫
1

0

√
Gc(c2 − c1, c2 − c1)dt ≤ C∥c2 − c1∥Hn(dθ).

This is the second part. ◻

Now we can prove the main result about the completeness of Gn,`c .

Theorem 2.20 Let n ≥ 2 and G be a length-weighted Sobolev metric of order
n, satisfying (I0) and (I∞). Then

1. (Immn(S1,Rd),dist) is a complete metric space.

2. (Immn(S1,Rd),G) is geodesically complete.

Proof. Let (cj)j∈N be a Cauchy sequence w.r.t the geodesic distance. The
sequence is contained in a ball B(c0, r), so by the first part of Lemma 2.19 it
is also a Cauchy sequence w.r.t. the Hn(dθ)-norm. Hence there exists a limit
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c∗ ∈ Hn(S1,Rd) such that ∥cj − c∗∥Hn(dθ) → 0. By Lemma 2.15 there exists
a constant C such that we have the point-wise lower bound ∥cjθ(θ)∥ ≥ C > 0.
This must also hold for the limit, so it is still an immersion: c∗ ∈ Immn(S1,Rd).
The second part of Lemma 2.19 implies that dist(cj , c∗) → 0, hence the first
part of the statement is shown. For a smooth strong Riemannian metric, a part
of the Hopf-Rinow theorem holds, that metric completeness implies geodesic
completeness, see [46, VIII Prop 6.5], this is the second part of the statement.

2.4.4 Counterexamples

The main completeness results was proven under the assumption that (I0) and
(I∞) holds, i.e. we can control the behaviour of the first or higher order coef-
ficients when the length `c of a curve goes to zero or infinity. When taking a
time derivative ∂t`c we can use the first order term in the metric, or a Poincare
inequality and the higher order terms, to estimate this quantity, and use this
control to obtain completeness. This technique and the L2 terms does not allow
us to control ∂t`c, so one may ask if completeness still holds when (I0) or (I∞)
only for k = 0, and where radial paths are still have infinite energy. We will now
present two families of metrics which satisfy exactly these conditions only for
k = 0, but are not metrically complete. Whether they are geodesically complete
is unknown.

We consider the metric

Gc(h, k) = ∫
S1
a0(`c)⟨h, k⟩ + a2(`c)⟨D

2
sh,D

2
sk⟩ds .

If we let a0(`c) = `
−3
c for `c →∞, then

I0,∞ = ∫
∞

1
r1/2.r−3/2 dr = log r∣

∞
r=1

=∞ .

Similarly, if a0(`c) = `
−3
c for `c → 0, then I0,0 =∞.

We shall consider the following two cases:

1. a0(`c) = `−3
c and a2(`c) = `pc , p < 1 for `c → ∞. Then I0,∞ = ∞ and

I2,∞ < ∞, but we can find a Cauchy sequence (cn)n∈N with `cn → ∞;
hence the Riemannian metric cannot be metrically complete.

2. a0(`c) = `−3
c and a2(`c) = `pc , p > 1 for `c → 0. Then I0,0 = ∞ and

I2,0 <∞, but we can find a Cauchy sequence (cn)n∈N with `cn → 0; hence
the Riemannian metric cannot be metrically complete.
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Observe that `−3
c is the only choice of polynomial which give I0,∞ = I0,0 = ∞

simultaneously. For the H2 condition p ≥ 1 ensures I2,∞ <∞ while I2,0 =∞, and
p ≤ 1 gives I2,0 <∞ and I2,∞ =∞. The borderline case p = 1 has I2,0 = I2,∞ =∞
so it is complete.

Consider two sequences (rn)n∈N, (λn)n∈N with rn+1 = arn, λn+1 = bλn where
0 < a < 1 < b and 0 < r0 < 1, 2 < λ0. Then rn ↘ 0, λn ↗ ∞ and the sequence
(rn)n∈N is decreasing while (λn)n∈N is increasing; furthermore λn ≥ 2. Define
the sequence of curves

cn(θ) = rn (1 + ε sin(λnθ)) n⃗ ,

with n⃗ = (cos θ, sin θ) and 0 < ε < 1
3
. Set v⃗ = (− sin θ, cos θ); then n⃗′ = v⃗ and

v⃗′ = −n⃗. This is a circle of radius rn with λn bumps of amplitude ε.

We want to estimate the geodesic distance dist(cn, cn+1). To do so, we define
the intermediate curve

c̃n(θ) = rn+1 (1 + ε sin(λnθ)) n⃗ .

We will estimate dist(cn, c̃n) and dist(c̃n, cn+1) separately using the linear path
between the curves. The derivatives of cn are

c′n(θ) = rn (1 + ε sin(λnθ)) v⃗ + εrnλn cos(λnθ)n⃗

c′′n(θ) = 2εrnλn cos(λnθ)v⃗ − rn (1 + ε (1 + rnλ
2
n) sin(λnθ)) n⃗ .

We have the following pointwise estimates,

∣cn(θ)∣ ≤ rn(1 + ε) ≲ rn

∣c′n(θ)∣ ≤ rn (1 + ε + ελn) ≤ rn (2 + λn) ≲ rnλn

∣c′′n(θ)∣ ≤ 2rn (1 + ε + 2ελn + ελ
2
n) ≤ 2rn(2 + 2λn + λ

2
n) ≲ rnλ

2
n .

For c̃n we have the same estimates

∣c̃n(θ)∣ ≲ rn ∣c̃′n(θ)∣ ≲ rnλn ∣c̃′′n(θ)∣ ≲ rnλ
2
n ,

because rn+1 ≲ rn.

To estimate dist(cn, c̃n) we define the path

c(t, θ) = (1 − t)cn(θ) + tc̃n(θ)

= (1 − t)rn (1 + ε sin(λnθ)) n⃗ + trn+1 (1 + ε sin(λnθ)) n⃗

= (rn + t(rn+1 − rn)) (1 + ε sin(λnθ)) n⃗

Then

c′(t, θ) = (rn + t(rn+1 − rn)) [ελn cos(λnθ)v⃗ + (1 + ε sin(λnθ))n⃗]
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and because ⟨n⃗, v⃗⟩ = 0, we have the lower bound

∣c′∣ ≥ (rn + t(rn+1 − rn)) (1 + ε sin(λnθ)) ≥ (1 − ε)rn+1 ≳ rn .

We will also need a slightly sharper lower bound for the length `c. Starting from

∣c′(t, θ)∣ ≥ (rn + t(rn+1 − rn))ελn ∣cos(λnθ)∣ ≳ rnλn ∣cos(λnθ)∣ ,

we obtain by integration, since ∫
2π

0 ∣ cosλnθ∣dθ = 4 for λn ∈ N, the estimate
`c ≳ rnλn. Thus we have

rnλn ≲ `c ≲ rnλn .

Next we need to estimate the velocity of the path

∂tc(t, θ) = c̃n(θ) − cn(θ) .

The simple estimate is
∣∂tc∣ ≲ rn ,

and therefore
∫
S1

∣∂tc∣
2
∣c′∣dθ ≲ r3

nλn .

We also need to estimate D2
s(∂tc). For this we use the formula

D2
sh =

1

∣c′∣
(

1

∣c′∣
h′)

′

=
1

∣c′∣2
h′′ −

1

∣c′∣4
⟨c′, c′′⟩h′ .

Up to constants we obtain

∣D2
s(∂tc)∣ ≲ r

−2
n ⋅ rnλ

2
n + r

−4
n ⋅ rnλn ⋅ rnλ

2
n ⋅ rnλn

≲ r−1
n λ

2
n + r

−1
n λ

4
n ≲ r

−1
n λ

4
n .

Thus
∫
S1

∣D2
s(∂tc)∣

2
∣c′∣dθ ≲ r−2

n λ
8
n ⋅ rnλn ≲ r

−1
n λ

9
n .

We will obtain similar estimates for dist(c̃n, cn+1). Define the path

c(t, θ) = (1 − t)c̃n(θ) + tcn+1(θ)

= [rn+1 + εrn+1 ((1 − t) sin(λnθ) + t sin(λn+1θ))]n⃗ .

Then

c′(t, θ) = [rn+1 + εrn+1 ((1 − t) sin(λnθ) + t sin(λn+1θ))]v⃗

+ εrn+1 ((1 − t)λn cos(λnθ) + tλn+1 cos(λn+1θ)) n⃗ ,
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and

∣c′∣ ≥ ∣rn+1 + εrn+1 ((1 − t) sin(λnθ) + t sin(λn+1θ))∣ ≥ (1 − 2ε)rn+1 ≳ rn .

We also have the estimate

∣c′(t, θ)∣ ≥ εrn+1 ∣(1 − t)λn cos(λnθ) + tλn+1 cos(λn+1θ)∣ ,

which allows us to find a lower bound for the length

`c ≳ rnλn ∫
2π

0
∣(1 − t) cos(λnθ) + tb cos(bλnθ)∣ dθ

= rnλn ∫
2π

0
∣(1 − t) cos(θ) + tb cos(bθ)∣ dθ

≳ rnλn .

The last inequality is independent of t, because the path t ↦ (1 − t) cos θ +
tb cos(bθ) into L1 is continuous and does not pass through the zero function.
Thus we have again the upper and lower bounds

rnλn ≲ `c ≲ rnλn ,

and we can derive the estimates

∫
S1

∣∂tc∣
2
∣c′∣dθ ≲ r3

nλn ∫
S1

∣D2
s∂tc∣

2
∣c′∣dθ ≲ r−1

n λ
9
n .

as before.

Case (1). Note that by the bounds on `c, we have

a0(`c) ≲ r
−3
n λ

−3
n , a2(`c) ≲ r

p
nλ

p
n .

With p < 1. Therefore

dist(cn, c̃n)
2 ≲ r−3

n λ
−3
n ⋅ r3

nλn + r
p
nλ

p
n ⋅ r

−1
n λ

9
n ≲ λ

−2
n + rp−1

n λp+9
n .

We choose rn = λqn, for some q. We get the estimate

dist(cn, c̃n)
2 ≲ λ−2

n + λq(p−1)+p+9
n ,

Choosing q to satisfy

q > −
p + 9

p − 1
> −1

where the last inequality holds for any p < 1, this gives the estimate

dist(cn, c̃n)
2 ≲ λrn
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with r = q(p − 1) + p + 9 < 0, and the same estimates hold for dist(c̃n, cn+1).
Therefore

dist(cn, cn+1) ≲ λ
r
n ,

and since ∑n λrn <∞, it follows that (cn)n∈N is a Cauchy sequence and

`cn ≳ rnλn = λ
1+q
n →∞ .

Case (2). Now using the same bounds on `c, we have the estimates

a0(`c) ≲ r
−3
n λ

−3
n , a2(`c) ≲ r

p
nλ

p
n .

With p > 1. We choose rn = λqn, and get the same estimate on the geodesic
distance as before

dist(cn, c̃n)
2 ≲ λ−2

n + λq(p−1)+p+9
n ,

Choosing q to now satisfy

q < −
p + 9

p − 1
< −1

with the last inequality holding for all p, gives

dist(cn, c̃n)
2 ≲ λrn

with r < 0, and the same estimate holds for dist(c̃n, cn+1). Therefore

dist(cn, cn+1) ≲ λ
r
n ,

and as before it follows that (cn)n∈N is a Cauchy sequence and

`cn ≲ λ
1+q
n → 0 .

2.5 Sobolev metrics on constant speed curves

A simple fact is that any C1 curve can be reparametrized to unit speed, or with-
out changing the domain of definition I = [0,2π], reparametrized to constant
speed such that ∣c′∣ = `/2π. Hence as an alternative to shape space of immer-
sions modulo reparametrizations, we can study the space of closed constant
speed curves of Sobolev regularity, as a submanifold of the space of immersions
presented earlier On this space we shall consider a class of Sobolev metrics of
order two and higher. We show that the space is a submanifold, derive an ex-
pression for the orthogonal projection on the tangent space and equivalently the
geodesic equation. Utilizing the result of the previous section we can establish
some easy results on existence of geodesics.



30 Riemannian Geometry of Spaces of Curves

Some words about earlier work: The L2 metric on unit-speed curves has been
studied by Preston in [63] and [62] for a whip-boundary condition: one end fixed
and one end free, and periodic curves. Here local existence of geodesics was
obtained through energy methods. Constant speed curves are mentioned, but
local existence is not established. In [64] the H1 metric on C1 unit-speed curves
was shown to have local existence of geodesics, for both whips and closed curves.
Global existence was also shown for whips, and its indicated that this fails for
closed curves. In [16] the general case of smooth volume preserving immersions
was shown to be a Frechet submanifold of all immersions, this generalizes unit-
speed curves.

2.5.1 Manifold structure

We will consider the space of unit- and constant-speed curves, which we define
for n ≥ 1

A1 = {c ∈Hn(S1,Rd) ∶ ∣c′∣ = 1},

A` = {c ∈Hn(S1,Rd) ∶ ∣c′∣ = `, ` ∈ R>0}.

For n ≥ 2, the Sobolev Embedding Lemma A.1 gives the continuous inclusion
of Hn(S1,Rd) ↪ C1(S1,Rd), so the condition on the tangent vector can be
made point wise. For n = 1 we have to interpret equality in the sense of L2

functions. Now let Hn(S1)/R denote the space of Sobolev functions modulo
constant functions, i.e. equivalent classes of [f(x)] = [f(x) + t]. It can be
represented as the space of all functions with mean zero ∫S1 f(x)dx = 0, which
is a closed subspace of Hn(S1). Recall that we denote the unit tangent by v
and unit normal by n. We show that the spaces are submanifolds,

Theorem 2.21 For n ≥ 2 the spaces A1 and A` are smooth Hilbert subman-
ifolds of Hn(S1,Rd), and the tangent spaces are given as

TcA1 = {h ∈Hn(S1,Rd) ∶ ⟨v, h′⟩ = 0}, (2.12)

TcA` = {h ∈Hn(S1,Rd) ∶ ⟨v, h′⟩ = t ∈ R} (2.13)

Proof. This is an application of the inverse function theorem in Banach spaces,
see [30, Thm. 10.2.1]. Since n ≥ 2, we know that Hn−1(S1) is an stable under
multiplication, so ∣c′∣2 ∈Hn−1. We define the map

L ∶Hn(S1,Rd)→Hn−1(S1),

L(c) = ∣c′∣2.
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Observe that A1 = L
−1(1) and A` = L−1([0]). The first and second derivatives

of L are
dLc(h) = 2⟨c′, h′⟩, d2Lc(h, k) = 2⟨h′, k′⟩.

All higher order derivatives are zero, so L is smooth. We need to construct closed
subspaces s.t. Hn(S1,Rd) = E × F and the partial derivative dFLc is bijective
bounded map. Let E = kerdLc and F = E⊥ its orthogonal complement. If dLc
is bounded and surjective then so is dFLc. A simple computation shows that
dLc is bounded

∥dLc(h)∥
2
Hn−1 = 4∫

S1
⟨c′, h′⟩2 + ∣∂n−1

θ (⟨c′, h′⟩)∣2 dθ

≤ C ∫
S1

∣h′∣2 +
n

∑
k=1

(
n

k
)∣⟨c(k), h(n−k+1)⟩∣2 dθ

≤ C ∫
S1

∣h∣2 + ∣h(n)∣2 dθ.

Where we have used the triangle inequality for the first inequality. For the
second inequality, we have estimated the terms from the Leibniz rule as follows.
All the terms with k ≤ n−1 we can bound c(k)(θ) point wise by ∥c(k)∥L∞ , which
leaves the ∥h(n−k)∥L2(θ)(θ) term. The highest order term ∣⟨c(n), h′⟩∣2 we can
bound using the continuous embedding into C1

∫
S1

∣⟨c(n), h′⟩∣2 dθ ≤ ∥h′∥2
L∞ ∫

S1
∣c(n)(θ)∣2 dθ ≤ C∥c(n)∥2

L2(dθ)∥h∥
2
H2(dθ),

and Lemma 2.13 allows us to estimate all the middle order terms by the highest
and lowest. Now for surjectivity it is easy to check that the element

Jc(f) = ∫
s

0

1

2
f(θ)v(θ) + gn(θ)dθ.

for some g ∈Hn−1(S1) is inHn(S1,Rd) if f ∈Hn−1(S1) and satisfies dLc(Jc(f)) =
f . We need to choose g such that Jc(f) is periodic, i.e. ∫S1 Jc(f)dθ = 0. If we
let g = ⟨(a, b), n⟩, then

∫
S1
nTndx(

a
b
) =

1

2
∫
S1
fv dθ

Let n = (− sin(α), cos(α)), then the determinant of the system is zero iff

∫
S1

sin(α)2 dθ∫
S1

cos(α)2 dθ = (∫
S1

sin(α) cos(α)dθ)
2

,

which is true iff α is constant, i.e. c has zero curvature κ. Since c ∈ C1(S1,Rd)
and is periodic we can never have κ ≡ 0 (c cannot be C1, a line and closed).
Hence we can solve for (a, b), so dLc is surjective. By the bounded inverse
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theorem dLc is a homeomorphism, and we get the existence of a smooth chart
gc ∶ U ⊂ E → F . Chart changes between two charts centered at c1 and c2 are
simply compositions of gc1 and g−1

c2 , so they are smooth. The tangent space is
given by kerdLc, which is equivalent to .

ForA` we consider the map L○π with the projcetion π ∶Hn−1(S1)→Hn−1(S1)/R.
Boundedness of d(L ○ π) is clear, and surjectivity is the same. Only the kernel
changes, as is reflected in the statement. ◻

2.5.2 Sobolev metrics

The metrics we will consider are again Sobolev type metrics. For constant speed
curves we will consider metrics of the form

Gc(h, k) = ∫
S1

2n

∑
j=0

aj(`c)⟨D
j
sh(s),D

j
sk(s)⟩ds (2.14)

= ⟨Λh, k⟩H−n,Hn .

Where aj ∈ C∞(R>0,R≥0) and a0, an > 0. Λ ∶ Hp(S1) → Hp−2n(S1) is an
self-adjoint elliptic operator or order 2n with coefficients depending on `c, and
⟨⋅, ⋅⟩H−n,Hn is the dual pairing. For constant speed curves Ds =

1
∣c′∣∂θ is just a

constant multiple of ∂θ. For each c this defines a metric, which by the conditions
of a0, an gives a norm equivalent to the Hn-norm. By Thm. A.4 surjectivity of
Λ is equivalent to injectivity, which is guaranteed by the positive definiteness of
the metric. Self-adjoint means there are no odd order terms in Λ, which is of
the form

Λ(h) =
n

∑
j=0

aj(`c)D
2j
s h

Note that these metrics are exactly the restriction of length-weighted Sobolev
metrics (2.10) on Immn(S1,Rd). On A1 it is simply the restriction of a constant
coefficient Sobolev metric. As the metrics on Sobolev immersions are strong,
and A1 and A` are smooth Hilbert submanifolds, the induced metrics are also
strong, see [46].

2.5.3 The normal space

To do any kind of analysis of the Riemannian submanifolds, we need to compute
the projection onto the tangent and normal spaces. We know what the tangent
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spaces are, so we start of by finding the normal space. Here we need to use
negative power Sobolev space, see Appendix A, to get a good characterization.

Proposition 2.22 Let A1 be equipped with the metric (2.14), the normal
space at c is given by

NcA1 = {Λ−1∂s(fc
′) ∶ f ∈H−n−1(S1)}.

For A` the normal space is given by

NcA` = {Λ−1∂s(fc
′) ∶ f ∈H−n+1(S1), ⟨f, t⟩H−n+1,Hn−1 = 0, t ∈ R}.

Remark 2 Notice that the elements of NcA` are indeed in Hn, since h ∈
H−n+1 and c′ ∈Hn−1 then hc′ ∈H−n+1 by Lemma A.2, we differentiate and lose
one order and Λ−1 raises the order by 2n to n. The property that f vanishes as
a distribution on constant functions, is in terms of the canonical embedding of
Hn−1 into H−n+1, that f has zero mean.

Proof. We start of by showing that elements of the given form are orthogonal
to tangent vectors. Now let u = Λ−1∂s(fc

′), and h ∈ TcA1

⟨Λu,h⟩H−n,Hn = ⟨∂s(fc
′), h⟩H−n,Hn

= −⟨fc′, h′⟩H−n+1,Hn−1

= −⟨f, ⟨c′, h′⟩⟩H−n+1,Hn−1

= 0.

For A` the last equality follows since ⟨c′, h′⟩ is constant. Now let

⟨Λu,h⟩H−n,Hn = 0, ∀h ∈ TcA1.

Since Λ is an isomorphism of Hn and H−n, we can put u = Λ−1w for some
w ∈H−n. Constant vector fields h0 are in the tangent space so ⟨w,h0⟩H−n,Hn = 0,
which implies that the zero order coefficient of the Fourier expansion of w is zero,
and hence there exists p ∈Hn−1 s.t. p′ = w. Any element of Hn−1 can be written
uniquely in terms of the unit tangent v and normal n, which induces the same
splitting in H−n+1, so p = fv + gn for some f, g ∈H−n+1.

⟨∂sp, h⟩H−n,Hn = −⟨fv + gn, h
′⟩H−n+1,Hn−1

= −⟨f, ⟨v, h′⟩⟩H−n+1,Hn−1 − ⟨g, ⟨n,h′⟩⟩H−n+1,Hn−1

= −⟨g, ⟨n,h′⟩⟩H−n+1,Hn−1

= 0

Which implies g = 0 since ⟨n,h′⟩ vary over all functions in Hn−1. Hence we have
shown that u = Λ−1∂s(fc

′). For A` we follow the same steps and instead end
up with

⟨f, t⟩H−n+1,Hn−1 + ⟨g, ⟨n, v′⟩⟩H−n+1,Hn−1 = 0.
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For all constants t. Picking t = 0 gives g = 0 again, and so we get the same
expression u = Λ−1∂s(fc

′) and h satisfies ⟨f, t⟩H−n+1,Hn−1 = 0. ◻

2.5.4 The geodesic equation

On our step to derive an expression for the geodesic equation, we compute
the projection onto the normal and tangent space. From normal Hilbert space
theory, the projection operators are well-defined since the metric at each curve c
gives a constant coefficient Sobolev inner product. Hence we have the splitting
of a fixed u according to

u = u⊥ + u⊺ = Λ−1∂s(fc
′) +w (2.15)

We need to show how to find f and w. We will need the following operators

M(h) = ⟨c′, ∂sΛ
−1∂s(hc

′)⟩

N(h) = ⟨n, ∂sΛ
−1∂s(hc

′)⟩

Where k and h are unknown. By the same argument as in Remark 2, the left
hand side is well defined operator from M ∶ Hn−1 → Hn. Note that M is not a
differential operator, and has Sobolev coefficients (from the presence of c′), so
standard elliptic theory is not directly applicable. The following Lemma shows
that K is invertible.

Lemma 2.23 For n ≥ 2 the operator M ∶H−n+1 →Hn−1 defined by

M(f) = ⟨c′, ∂sΛ
−1∂s(fc

′)⟩

is a bounded and invertible operator.

Proof. Boundedness is already established by using the estimates from Lemma
A.2. Define the L2 adjoint of dLc

⟨dLc(h), k⟩0 = ⟨⟨h′, c′⟩, k⟩0 = ⟨h, (kc′)′⟩0,d = ⟨h, dL∗c(k)⟩0,d.

Where ⟨⋅, ⋅⟩0,d is the L2 inner product for Rd valued functions. Then M =
dLc ○ Λ−1 ○ dL∗c , and TcA1 = kerdLc (by definition). From this it is clear that
M is L2-selfadjoint, but notice that this does not imply the closedness of M
immediately since we have a different domain. Proposition 2.22, implies that
we have the gc-orthogonal direct sum Hn = kerdLc ⊕ im(L−1 ○ dL∗c), especially
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kerdLc ∩ im(L−1 ○ dL∗c) = {0}. L−1 is an isomorphism, so kerM = kerdL∗c . C
∞

is dense in all Hn so let h ∈ kerdL∗c be smooth, then (hc′)′ = h′c′ + hc′′ = 0. If
the curvature κ is not identically zero then c′ and c′′ are linearly independent
so h = 0, by density and boundedness this extends to any h ∈ H−n+1. Since
c ∈ C1(S1,Rd) and is periodic we can never have κ ≡ 0 (c cannot be C1, a line
and closed). So kerM = kerdL∗c = 0. We have already showed in the proof of
Theorem 2.21 that dLc is surjective. Applying dLc to the direct sum shows that
imdLc = imM , so M is surjective. ◻

Proposition 2.24 Let π⊺1 ∶ Hn → TcA1 and π⊺` ∶ Hn → TcA` denote the
orthogonal projections onto the two tangent spaces respectively, then they are
determined by the follow relations,

(π⊺1(u))
′ = (NM−1(⟨u′, c′⟩) − ⟨u′, n⟩)n,

and

(π⊺` (u))
′ = (N(M−1(⟨u, c′⟩ − t)) − ⟨u′, n⟩)n + tv, t =

∫S1 K
−1(⟨u′, c′⟩)dθ

∫S1 K−1(1)dθ
.

Proof. We will consider A` first. Let u ∈ TcA`, which splits as in (2.15). Then
⟨w′, c′⟩ = t ∈ R, for some t. After differentiating (2.15) and dotting with c′,

⟨u′, c′⟩ =M(f) + t

By Lemma 2.23 we can invert K, and obtain

f =M−1(⟨u′, c′⟩ − t),

where t is unknown for know. To determine t, we use that f has to have zero
mean, ∫S1 f dx = 0.

t =
∫S1 M

−1(⟨u′, c′⟩)dθ

∫S1 M−1(1)dθ
.

From which the statement follows. For A1, t = 0. ◻ We know that both

A1 and A` are smooth strong Hilbert submanifolds of (Immn(S1,Rd),Gn,`c ), so
the geodesic equations exist and are locally well-posed. Writing up the geodesic
equation is another question. The Levi-Cevita connection is given by the usual
formula for submanifolds: ∇Ah k = (∇Imm

h k)⊺, where ∇Imm is the Levi-Cevita
connection on (Imm(S1,Rd) w.r.t the metric Gn,`c , and h and k are vectorfields
extended from the submanifold to the ambient space.

We start with the geodesic equation on A1. Since ` = 1, all coefficients in (2.14)
are constant, and covariant derivatives are standard derivates, so all metrics
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Gc are induced by a flat metric on the ambient space, hence ∇ctct = ctt. Let
c ∶ I ⊂ R → A1 ⊂ Immn(S1,Rd) be a unit-speed path. By differentiating the
defining equation, we get the following set of identities valid along the path,

∣c′∣2 = 1, ⟨c′t, c
′⟩ = 0, , ∣c′t∣

2 + ⟨c′tt, c
′⟩ = 0.

Using the last equality and Prop. 2.24 we can write the geodesic equation
∇Actct = 0 as

⟨c′tt, n⟩ = −NM
−1(∣c′t∣). (2.16)

For the geodesic equation on A`, one can follow the same procedure. However,
on A` the metric is no longer induced by a flat metric on the ambient space, so
we need to compute the Levi-Cevita connection of the length-weighted metric
on Imm(S1,Rd), which is quite involved. If we assume for simplicity that the
coefficients func aj(`) are constant, the Levi-Cevita connection on Imm(S1,Rd)
can be extracted from the geodesic equation (2.8), as this is ∇ctct = 0. Using
that ⟨Dsct, v⟩ is constant, one can simplify the equation a bit. We just state the
final expression

Λ(ctt) −
n

∑
k=0

ak(1 − 2k)∣c′∣ (Ds(⟨D
k
s ct,D

k
s ct⟩v) − ⟨Dsct, v⟩D

2k
s ct) = 0.

Now we would need to apply the orthogonal projection onto TcA` to the left
hand side. We wont show the final result. The case that aj(`) is not constant
is even less desirable to write out in detail.

On the other hand it is easy show by using the results of Section 2.4 that we
gain local and global well-posedness of the geodesic equations.

Proposition 2.25 The geodesic equation on A1 is locally and globally well-
posed. The geodesic equation on A` is locally well-posed and globally well-posed
if the coefficients satisfy I0 and I∞.

Proof. In both cases the induced metric is strong, so local well-posedness
follows from say [46, Prop. VII.5.1]. A1 is a closed subset of Sobolev space with
the induced metric, so is metrically complete, hence geodesically complete. A`
is not closed in Hn(S1,Rd) but it is closed in Immn(S1Rd). We have already
shown that the geodesic distance on Immn(S1,Rd induces the same topology as
the manifold topology, and is a complete metric space. Hence A` is metrically
complete and geodesically complete. ◻

The space of constant speed curves is an alternative shape space to quotient out
immersions by diffeomorphisms, and one could ask if this is better for application
purposes. In anticipation of the results of Chap. 3, we can say that this not the
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case. It is more cumbersome in practice to represent curves that are constant
speed. In Riemannian shape analysis we also want the geodesic deformations to
ideally model some "natural" small deformation between curves, but the rigidity
in using a fixed parametrization can make even similar curves have very large
minimal deformations between them.
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Chapter 3

Paper: A Numerical
Framework for Geodesics

In this chapter we present the contents of the papers [8], [6] and [7]. Sec. 3.1-
3.4 is a verbatim copy of [8]. Section 3.5 is an addendum which contain the
applications from the papers [6] and [7]. This is joint work with Martin Bauer,
Martins Bruveris and Philipp Harms.

3.1 Introduction

The comparison and analysis of geometric shapes plays a central role in many
applications. A particularly important class of shapes is the space of curves,
which is used to model applied problems in medical imaging [84, 86], object
tracking [80, 81], computer animation [13, 31], speech recognition [79], biology
[45, 78], and many other fields [11, 44].

In this article we consider the space Imm(S1,Rd) of closed, regular (or im-
mersed) curves in Rd as well as some quotients of this space by reparametriza-
tions and Euclidean motions. These spaces of shapes are inherently nonlinear.
To make standard methods of statistical analysis applicable, one can linearize
the space locally around each shape. This can be achieved by introducing a
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Riemannian structure, which describes both the global nonlinearity of the space
as well as its local linearity. Over the past decade Riemannian shape analysis
has become an active area of research in pure and applied mathematics. Driven
by applications, a variety of different Riemannian metrics has been used.

An important class of metrics are Sobolev metrics. These metrics can be de-
fined initially on the space Imm(S1,Rd) and then induced on quotients of this
space by requiring the projections to be Riemannian submersions (see Def. 3.1
and Thm. 3.6). Recently Sobolev metrics of order two were shown to possess
much nicer properties than metrics of lower order: the geodesic distance is non-
degenerate, the geodesic equation is globally well-posed, any two curves in the
same connected component can be connected by a minimizing geodesic, the
metric completion consists of all H2-immersions, and the metric extends to a
strong Riemannian metric on the metric completion [23, 26].

Numerical methods for the statistical analysis of shapes under second order
metrics are, however, still largely missing. This is in contrast to first order
metrics, where isometries to simpler spaces led to explicit formulas for geodesics
under many parameter configurations of the metric [9, 40, 77, 87]. For certain
H2-metrics an analogous approach was developed in [12]. Moreover, the geodesic
boundary value problem under second order Finsler metrics on the space ofBV 2-
curves was implemented numerically in [54]. For general second order Sobolev
metrics on spaces of unparametrized curves a numerical framework is, however,
still lacking. This is the topic of this paper.

We present a numerical implementation of the initial and boundary value prob-
lems for geodesics under second order Sobolev metrics.1 Our implementation is
based on a discretization of the Riemannian energy functional using B-splines.
The boundary value problem for geodesics is solved by a standard minimiza-
tion procedure on the set of discretized paths and the initial value problem by
discrete geodesic calculus [67]. Our approach is general in that it allows to
factor out reparametrizations and rigid transformations. Moreover, it involves
no restriction on the parameters of the metric and could be applied to other,
higher-order metrics, as well.

In future work our framework could be applied to other spaces of mappings like
manifold-valued curves, embedded surfaces, or more general spaces of immer-
sions (see [4, 15] for details and [11] for a general overview).

1Our code can be downloaded from https://github.com/h2metrics/h2metrics.git.

https://github.com/h2metrics/h2metrics.git
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3.2 Sobolev metrics on spaces of curves

3.2.1 Notation

The space of smooth, regular curves with values in Rd is

Imm(S1,Rd) = {c ∈ C∞(S1,Rd)∶ ∀θ ∈ S1, c′(θ) ≠ 0} , (3.1)

where Imm stands for immersions. We call such curves parametrized to dis-
tinguish them from unparametrized curves defined in Sect. 3.2.3. The space
Imm(S1,Rd) is an open subset of the Fréchet space C∞(S1,Rd) and therefore
can be considered as a Fréchet manifold. Its tangent space Tc Imm(S1,Rd) at
any curve c is the vector space C∞(S1,Rd) itself. We denote the Euclidean inner
product on Rd by ⟨⋅, ⋅⟩. Differentiation is sometimes denoted using subscripts
as in cθ = ∂θc = c

′. Moreover, for any fixed curve c, we denote differentiation
and integration with respect to arc length by Ds = ∂θ/∣cθ ∣ and ds = ∣cθ ∣dθ, re-
spectively. A path of curves is a mapping c∶[0,1]→ Imm(S1,Rd); its velocity is
denoted by ct = ∂tc = ċ.

3.2.2 Parametrized curves

In this article we study the following class of weak Riemannian metrics on
Imm(S1,Rd).

Definition 3.1 A second order Sobolev metric with constant coefficients on
Imm(S1,Rd) is a weak Riemannian metric of the form

Gc(h, k) = ∫
S1
a0⟨h, k⟩ + a1⟨Dsh,Dsk⟩ + a2⟨D

2
sh,D

2
sk⟩ds , (3.2)

where h, k ∈ Tc Imm(S1,Rd), and aj ∈ R are constants with a0, a2 > 0 and a1 ≥ 0.
If a2 = 0 and a1 > 0 it is a first order metric and if a1 = a2 = 0 it is a zero order
or L2-metric.

Note that the symbolsDs and ds hide the dependency of the Riemannian metric
on the base point c. Expressing derivatives in terms of θ instead of arc length,
one has

Gc(h, k) = ∫
2π

0
a0∣c

′∣⟨h, k⟩ +
a1

∣c′∣
⟨h′, k′⟩ +

a2

∣c′∣7
⟨c′, c′′⟩2⟨h′, k′⟩

−
a2

∣c′∣5
⟨c′, c′′⟩(⟨h′, k′′⟩ + ⟨h′′, k′⟩) +

a2

∣c′∣3
⟨h′′, k′′⟩dθ .

(3.3)
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In the Riemannian setting the length of a path c∶ [0,1]→ Imm(S1,Rd) is defined
as

L(c) = ∫
1

0

√
Gc(t)(ct(t), ct(t))dt , (3.4)

and the geodesic distance between two curves c0, c1 ∈ Imm(S1,Rd) is the infi-
mum of the lengths of all paths connecting these curves, i.e.,

dist(c0, c1) = inf
c

{L(c)∶ c(0) = c0, c(1) = c1} .

On finite-dimensional manifolds the topology induced by the geodesic distance
coincides with the manifold topology by the Hopf–Rinow theorem. On infinite-
dimensional manifolds with weak Riemannian metrics this is not true anymore.
For example, the geodesic distance induced by the L2-metric on curves vanishes
identically [5, 51]. On the other hand, first and second order metrics overcome
this degeneracy, as the following result of [51, 52] shows.

Theorem 3.2 The geodesic distance of first and second order metrics on
Imm(S1,Rd) separates points, i.e., dist(c0, c1) > 0 holds for all c0 ≠ c1.

Geodesics are locally distance-minimizing paths. They can be described by a
partial differential equation, called the geodesic equation. It is the first order
condition for minima of the energy functional

E(c) =
1

2
∫

1

0
Gc(t)(ct(t), ct(t))dt . (3.5)

Recently some local and global existence results for geodesics of Sobolev metrics
were shown in [26, 23, 52]. We summarize them here since they provide the
theoretical underpinnings for the numerical methods presented in this paper.

Theorem 3.3 The geodesic equation of second order metrics, written in terms
of the momentum p = ∣c′∣(a0ct − a1D

2
sct + a2D

4
sct), is given by

∂tp = −
a0

2
∣cθ ∣Ds(⟨ct, ct⟩Dsc) +

a1

2
∣cθ ∣Ds(⟨Dsct,Dsct⟩Dsc)

−
a2

2
∣cθ ∣Ds(⟨D

3
sct,Dsct⟩Dsc) +

a2

2
∣cθ ∣Ds(⟨D

2
sct,D

2
sct⟩Dsc) . (3.6)

For any initial condition (c0, u0) ∈ T Imm(S1,Rd) the geodesic equation has a
unique solution, which exists for all time. In contrast, the geodesic equation of
first order Sobolev metrics is locally, but not globally, well-posed.



3.2 Sobolev metrics on spaces of curves 43

Figure 3.1: Influence of the constants in the metric on geodesics between a
fish and a tool in the space of unparametrized curves. The metric
parameter a1 is set to zero, whereas the parameter a2 is increased
by a factor 10 in the second, a factor 100 in the third, and a factor
1000 in the fourth column. The corresponding geodesic distances
are 135.65, 162.35, 229.26 and 451.9. Note that since we also
optimize over translations and rotations of the target curve, the
position in space varies.

Remark 2 The choice of parameters a0, a1, and a2 of the Riemannian metric
can have a large influence on the resulting optimal deformations. We illustrate
this in Fig. 3.1, where we show the geodesic between a fish-like and a tool-like
curve for various choices of parameters.

For second order metrics it is possible to compute the metric completion of the
space of smooth immersions. We introduce the Banach manifold of Sobolev
immersions

I2(S1,Rd) = {c ∈H2(S1,Rd)∶ ∀θ ∈ S1, c′(θ) ≠ 0} . (3.7)

By the Sobolev embedding theorem this space is well-defined and an open subset
of the space of all C1-immersions. It has been shown in [14, 23] that I2(S1,Rd)
coincides with the metric completion of the space of smooth immersions:

Theorem 3.4 The metric completion of the space Imm(S1,Rd) endowed with
a second order Sobolev metric is I2(S1,Rd). Furthermore, any two two curves
c0 and c1 in the same connected component of I2(S1,Rd) can be joined by a
minimizing geodesic.

3.2.3 Unparametrized curves

In many applications curves are considered equal if they differ only by their
parametrization, i.e., we identify the curves c and c ○ϕ, where ϕ ∈ Diff(S1) is a
reparametrization. The reparametrization group Diff(S1) is the diffeomorphism



44 Paper: A Numerical Framework for Geodesics

group of the circle,

Diff(S1) = {ϕ ∈ C∞(S1, S1)∶ϕ′ > 0} ,

which is an infinite-dimensional regular Fréchet Lie group [43]. Reparametriza-
tions act on curves by composition from the right, i.e., c○ϕ is a reparametrization
of c. The space

Bi(S
1,Rd) = Imm(S1,Rd)/Diff(S1) ,

of unparametrized curves is the orbit space of this group action. This space is not
a manifold; it has singularities at any curve c with nontrivial isotropy subgroup
[27]. We therefore restrict ourselves to the dense open subset Immf(S

1,Rd) of
curves upon which Diff(S1) acts freely and define

Bi,f(S
1,Rd) = Immf(S

1,Rd)/Diff(S1) .

This restriction, albeit important for theoretical reasons, has no influence on the
practical applications of Sobolev metrics, since Bi,f(S1,Rd) is open and dense
in Bi(S1,Rd). We have the following result concerning the manifold structure
of the orbit space and the descending properties of Sobolev metrics [15, 27, 52].

Theorem 3.5 The space Bi,f(S
1,Rd) is a Fréchet manifold and the base

space of the principal fibre bundle

π ∶ Immf(S
1,Rd)→ Bi,f(S

1,Rd) , c↦ c ○Diff(S1) ,

with structure group Diff(S1). A Sobolev metric G on Immf(S
1,Rd) induces a

metric on Bi,f(S1,Rd) such that the projection π is a Riemannian submersion.

The induced Riemannian metric on Bi,f(S
1,Rd) defines a geodesic distance,

which can also be calculated using paths in Immf(S
1,Rd) connecting c0 to the

orbit c1 ○Diff(S1), i.e., for π(c0), π(c1) ∈ Bi,f(S1,Rd) we have,

dist (π(c0), π(c1)) = inf {L(c)∶ c(0) = c0, c(1) ∈ c1 ○Diff(S1)} .

To relate the geometries of Imm(S1,Rd) and Bi,f(S1,Rd), one defines the ver-
tical and horizontal subspaces of Tc Immf(S

1,Rd),

Verc = ker(Tcπ) , Horc = (Verc)
⊥,Gc .

As shown in [52] they form a decomposition of Tc Immf(S
1,Rd),

Tc Immf(S
1,Rd) = Verc⊕Horc ,

as a direct sum. More explicitly,

Verc = {g.vc ∈ Tc Immf(S
1,Rd)∶ g ∈ C∞(S1)}

Horc = {k ∈ Tc Immf(S
1,Rd)∶ ⟨a0k − a1D

2
sk + a2D

4
sk, vc⟩ = 0} ,
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with vc =Dsc the unit tangent vector to c.

A geodesic c on Immf(S
1,Rd) is called horizontal at t, if ∂tc(t) ∈ Horc(t). It

can be shown that if c is horizontal at t = 0, then it is horizontal at all t.
Furthermore, geodesics on Bi,f(S1,Rd) can be lifted to horizontal geodesics on
Immf(S

1,Rd) and the lift is unique if we specify the initial position of the lift;
conversely, horizontal geodesics on Imm(S1,Rd) project down to geodesics on
Bi,f(S

1,Rd).

What about long-time existence of geodesics on Bi,f(S
1,Rd)? Using the cor-

respondence between geodesics on Bi,f(S
1,Rd) and horizontal geodesics on

Immf(S
1,Rd) together with Thm. 3.3 we see that the horizontal lift of a geodesic

can be extended for all times. However, it can leave the subset of free immer-
sions and pass through curves with a non-trivial isotropy group. Thus the space
Bi,f(S

1,Rd) is not geodesically complete, but we can regain geodesic complete-
ness if we allow geodesics to pass through Bi(S1,Rd).

The spaceBi(S1,Rd) inherits some of the completeness properties of Imm(S1,Rd).
To formulate these properties we introduce the groupD2(S1) ofH2-diffeomorphisms
and the corresponding shape space of Sobolev immersions,

B2(S1,Rd) = I2(S1,Rd)/D2(S1) .

It is not known whether this space is a smooth Banach manifold, it is however a
metric length space. The structure of it is explained in more detail in the article
[23], where the following completeness result is proven.

Theorem 3.6 Let G be a second order Sobolev metric with constant coeffi-
cients.

1. The space (B2(S1,Rd),dist), where dist is the quotient distance induced
by (I2(S1,Rd),dist), is a complete metric space, and it is the metric com-
pletion of (Bi,f(S

1,Rd),dist).

2. Given two unparametrized curves C1,C2 ∈ B2(S1,Rd) in the same con-
nected component, there exist c1, c2 ∈ I2(S1,Rd) with c1 ∈ π−1(C1) and
c2 ∈ π

−1(C2), such that

dist(C1,C2) = dist(c1, c2) ;

equivalently the infimum in

dist(π(c1), π(c2)) = inf
ϕ∈D2(S1)

dist(c1, c2 ○ ϕ)

is attained.
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3. The metric space (B2(S1,Rd),dist) is a length space and any two shapes
in the same connected component can be joined by a minimizing geodesic.

In the last statement of the above theorem we have to understand a minimizing
geodesic in the sense of metric spaces.

3.2.4 Euclidean motions

Curves modulo Euclidean motions are a natural object of consideration in many
applications. The Euclidean motion group SE(d) = SO(d)⋉Rd is the semi-direct
product of the translation group Rd and the rotation group SO(d). These groups
act on Imm(S1,Rd) by composition from the left. The metric (3.3) is invariant
under these group actions,

GR.c+a(R.h,R.k) = Gc(h, k) ∀(R,a) ∈ SE(d) .

As in the previous section we obtain an induced Riemannian metric on the
quotient space

S(S1,Rd) = Immf(S
1,Rd)/Diff(S1) × SE(d) = Bi,f(S

1,Rd)/SE(d) ,

such that the projection π ∶ Immf(S
1,Rd) → S(S1,Rd) is a Riemannian sub-

mersion:

Theorem 3.7 The space S(S1,Rd) is a Fréchet manifold and the base space
of the principal fibre bundle

π ∶ Immf(S
1,Rd)→ S(S1,Rd) , c↦ SE(d).c ○Diff(S1) ,

with structure group Diff(S1) × SE(d). A Sobolev metric G on Immf(S
1,Rd)

induces a metric on S(S1,Rd) such that the projection π is a Riemannian sub-
mersion.

Note that the left action of SE(d) commutes with the right action of Diff(S1)
and hence the order of the quotient operations does not matter. The induced
geodesic distance on the quotient space is given by the infimum

dist (π(c0), π(c1)) = inf {L(c)∶ c(0) = c0, c(1) ∈ π(c1) = SE(d).c1 ○Diff(S1)} ,

with the infimum being taken over paths c ∶ [0,1]→ Imm(S1,Rd).

Similarily as in the previous section geodesics on S(S1,Rd) can be lifted to
horizontal geodesics on Immf(S

1,Rd) and, conversely, horizontal geodesics on
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Imm(S1,Rd) project down to geodesics on S(S1,Rd). Thus the space S(S1,Rd)
inherits again some of the completeness properties of Imm(S1,Rd) and we obtain
the equivalent of Thm. 3.6 also for the space B2(S1,Rd)/SE(d).

Remark 3 The Sobolev metric (3.3) is not invariant with respect to scal-
ings. However, this lack of invariance can be addressed by introducing weights
depending on the length `c of the curve c. The modified metric

G̃c(h, k) = ∫
S1

a0

`3c
⟨h, k⟩ +

a1

`c
⟨Dsh,Dsk⟩ + a2`c⟨D

2
sh,D

2
sk⟩ds

is invariant with respect to scalings. It induces a metric on the quotient space
S(S1,Rd)/R+, where R+ is the scaling group acting by multiplication (λ, c)↦ λ.c
on curves.

3.3 Discretization

In order to numerically compute geodesics, the infinite-dimensional space of
curves must be discretized. The method we choose is standard: we construct an
appropriate finite-dimensional function space and perform optimization therein.
We choose B-splines among the many possible options because B-splines and
their derivatives have piecewise polynomial representations and can be evalu-
ated efficiently. This permits fast and simple computation of the energy func-
tional and its derivatives. Furthermore, in contrast to standard finite-element
discretization, it is possible to control the global regularity of the functions. For
details regarding B-splines, their definition, efficient computations, etc., we refer
to [73] and the vast literature on the subject.

For simplicity, we shall work only with simple B-splines, i.e., splines where all
interior knots have multiplicity one. Hence the splines have maximal regularity
at the knots. We will define splines of degrees nt and nθ in the variables t ∈ [0,1]
and θ ∈ [0,2π], respectively. The corresponding numbers of control points are
denoted by Nt and Nθ. For t we use a uniform knot sequence on the interval
[0,1] with full multiplicity at the boundary knots:

∆t = {ti}
2nt+Nt
i=0 , ti =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ i < nt
i − nt
Nt

nt ≤ i < nt +Nt

1 nt +Nt ≤ i ≤ 2nt +Nt .
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For θ we want the splines to be periodic on the interval [0,2π]. Therefore we
choose knots

∆θ = {θj}
2nθ+Nθ
j=0 , θj =

j − nθ
2πNθ

, 0 ≤ j ≤ 2nθ +Nθ .

The corresponding normalized B-spline basis functions are denoted by Bi(t)
and Cj(θ). Note that all interior knots have multiplicity one, i.e., the splines
are simple. Therefore, they have maximal regularity at the knots,

Bi ∈ C
nt−1([0,1]) , Cj ∈ C

nθ−1(S1) , i = 1, . . . ,Nt , j = 1, . . . ,Nθ .

Let SntNt denote the orthogonal projection from Hnt([0,1]) onto the span of the
basis functions Bi. Similarly, let SnθNθ denote the orthogonal projection from
Hnθ(S1) onto the span of the basis functions Cj . Then

lim
Nt→∞

∥SntNtf − f∥Hnt([0,1]) = 0 , lim
Nθ→∞

∥SnθNθg − g∥Hnθ (S1) = 0 ,

holds for each f ∈ Hnt([0,1]) and each g ∈ Hnθ(S1). This is a well-known
result on the approximation power of one-dimensional splines (c.f. Lem. B.4); a
detailed analysis can be found in [73].

The generalization of this statement to multiple dimensions involves tensor prod-
uct splines and mixed-order Sobolev spaces. Tensor product splines are linear
combinations of Bi ⊗Cj , where the basis functions Bi are interpreted as func-
tions of t and Cj as functions of θ. To be explicit, a path of curves is represented
as a tensor product B-spline with control points ci,j ∈ Rd as follows:

c(t, θ) =
Nt

∑
i=1

Nθ

∑
j=1

ci,jBi(t)Cj(θ) . (3.8)

Sobolev spaces of mixed order are Hilbert spaces defined for each k, ` ∈ N as

Hk,`([0,1] × S1) = {f ∈ L2([0,1] × S1) ∶ ∃f (k,0), f (0,`), f (k,`) ∈ L2([0,1] × S1)} ,

⟨f, g⟩Hk,` = ⟨f, g⟩L2 + ⟨f (k,0), g(k,0)⟩L2 + ⟨f (0,`), g(0,`)⟩L2 + ⟨f (k,`), g(k,`)⟩L2 .
(3.9)

Function spaces of this type were first defined in [55, 56]. We refer to [83] and
[68] for detailed expositions and further references. As before we define for each
number of control points Nt,Nθ the spline approximation operator Snt,nθNt,Nθ

to be
the orthogonal projection from Hnt,nθ([0,1] × S1) onto the span of the tensor
product splines Bi ⊗Cj . It can be shown that Snt,nθNt,Nθ

= SntNt ⊗ S
nθ
Nθ

.

Lemma 3.8 For each nt ≥ k,nθ ≥ ` and each c ∈Hk,`([0,1] × S1),

lim
Nt,Nθ→∞

∥c − Snt,nθNt,Nθ
c∥Hk,`([0,1]×S1) = 0 .
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The lemma is proven in App. B by showing that Hnt,nθ([0,1] × S1) is iso-
metrically isomorphic to the Hilbert space tensor product of Hnt([0,1]) and
Hnθ(S1).

3.3.1 Discretization of the energy functional

The energy of a path of curves c ∶ [0,1] × S1 → Rd is given by

E(c) = ∫
1

0
Gc(ċ, ċ)dt = ∫

1

0
∫

2π

0
a0∣c

′∣⟨ċ, ċ⟩ +
a1

∣c′∣
⟨ċ′, ċ′⟩ +

a2

∣c′∣7
⟨c′, c′′⟩2⟨ċ′, ċ′⟩

−
2a2

∣c′∣5
⟨c′, c′′⟩⟨ċ′, ċ′′⟩ +

a2

∣c′∣3
⟨ċ′′, ċ′′⟩dθ dt ,

(3.10)
as can be seen by combining (3.3) and (3.5). In the following let U denote the set
of all paths c ∈ H1,2([0,1] × S1;Rd) with nowhere vanishing spatial derivative,
i.e., c′(t, θ) = ∂θc(t, θ) ≠ 0 holds for all (t, θ) ∈ [0,1] × S1. Then U is an open
subset of H1,2([0,1]×S1;Rd) because H1,2([0,1]×S1;Rd) embeds continuously
into C0,1([0,1] × S1;Rd) by Lem. B.3. The following lemma shows that the
energy of a spline tends to the energy of the approximated curve as the number
of control points tends to infinity.

Lemma 3.9 If nt ≥ 1 and nθ ≥ 2, then

lim
Nt,Nθ→∞

E(Snt,nθNt,Nθ
c) = E(c)

holds for each c ∈ U .

Proof. By Lem. 3.8 the spline approximations Snt,nθNt,Nθ
c converge to c inH1,2([0,1]×

S1). As U is open, E(Snt,nθNt,Nθ
c) is well-defined for Nt,Nθ sufficiently large. The

convergence E(Snt,nθNt,Nθ
c) → E(c) follows from the H1,2-continuity of the energy

functional.

To discretize the integrals in the definition of the energy functional we use
Gaussian quadrature with mt and mθ quadrature points on each interval be-
tween consecutive knots. The total number of quadrature points is therefore
Mt = mtNt in time and Mθ = mθNθ in space, and the discrete approximations
of the Lebesgue measures on [0,1] and S1 are

µmtNt =
Mt

∑
i=1

wiδt̄i , νmθNθ =
Mθ

∑
j=1

ωjδθ̄j ,
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where wi, ωj are the Gaussian quadrature weights and t̄i, θ̄j the Gaussian quadra-
ture points. We define the discretized energy Emt,mθNt,Nθ

(c) of a curve c ∈ C1,2([0,1]×

S1) ∩ U to be given by the right-hand side of (3.10) with dtdθ replaced by
µmtNt (dt)ν

mθ
Nθ

(dθ). The following theorem shows that the discretized energy of
a path tends to the energy of the approximated path as the number of control
points go to infinity, provided that the path is smooth enough.

Theorem 3.10 If nt ≥ 2, nθ ≥ 3, and mt,mθ ≥ 1, then

lim
Nt,Nθ→∞

Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c) = E(c)

holds for each c ∈ U ∩H2,3([0,1] × S1).

Proof. The total error can be decomposed into a spline approximation error
and a quadrature error:

∣Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c)−E(c)∣ ≤ ∣Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c)−Emt,mθNt,Nθ
(c)∣+ ∣Emt,mθNt,Nθ

(c)−E(c)∣ .

(3.11)
To show that the first summand on the right-hand side tends to zero, note
that the spline approximations Snt,nθNt,Nθ

c converge to c in H2,3([0,1] × S1) by
Lem. 3.8. They also converge in C1,2([0,1]×S1) by Lem. B.3. Let F (c) denote
the integrand in (3.10). Then F is locally Lipschitz continuous when seen as a
mapping from U ∩C1,2([0,1]×S1) to C([0,1]×S1). Let L denote the Lipschitz
constant of F near c. Then the first summand in (3.11) can be estimated for
sufficiently large Nt,Nθ via

∣Emt,mθNt,Nθ
(Snt,nθNt,Nθ

c) −Emt,mθNt,Nθ
(c)∣ ≤∬ ∣F (Snt,nθNt,Nθ

c) − F (c)∣µmtNt ν
mθ
Nθ

≤ L∥Snt,nθNt,Nθ
c − c∥C1,2([0,1]×S1) → 0 .

It remains to show that the second summand in (3.11) tends to zero. As the
Gaussian quadrature rules µmtNt and νmθNθ are of order mt,mθ ≥ 1, there is K > 0

such that the following estimates hold for all f ∈ C1([0,1]) and g ∈ C1(S1):

∫
[0,1]

f(t)(µmtNt (dt)−dt) ≤KN−1
t ∥f ′∥C([0,1]) , ∫

S1
g(θ)(νmθNθ (dθ)−dθ) ≤KN−1

θ ∥g′∥C(S1) .

See e.g. [22, Thm. 4.3.1] for this well-known result. Therefore, the second
summand in (3.11) satisfies

∣Emt,mθNt,Nθ
(c) −E(c)∣ = ∣∬ F (c)(t, θ)(µmtNt (dt)ν

mθ
Nθ

(dθ) − dtdθ)∣

≤ ∣∬ F (c)(t, θ)(µmtNt (dt) − dt)νmθNθ (dθ)∣ + ∣∬ F (c)(t, θ)dt(νmθNθ (dθ) − dθ)∣

≤KN−1
t ∥∂tF (c)∥C([0,1]×S1) +KN

−1
θ ∥∂θF (c)∥C([0,1]×S1) → 0 .

(3.12)
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Figure 3.2: Curves that are used in the remainder of the section to test
convergence of the proposed algorithms: circle, wrap, 3- and 4-
bladed propellers without and with noise, and two corpus callosum
shapes.2
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Figure 3.3: Convergence of the discrete energy: relative energy differences for
increasing number of control points of the non-linear path c(t, θ) =
c0(θ) sin(1−tπ/2))+c1(θ) sin(tπ/2) connecting the circle c0 to the
wrap c1. Left: varying Nt with fixed nθ = 4, Nθ = 60. Right:
varying Nθ and fixed nt = 3, Nt = 20.

This shows that the total error (3.11) tends to zero as Nt,Nθ tend to infinity.

To confirm this theoretical result, we run a series of numerical experiments
to test the convergence of the discrete energy, whose results are displayed in
Fig. 3.3. The set of basic curves that we will use throughout the whole section
in all numerical experiments is displayed in Fig. 3.2.

2The acquisition of the corpus callosum shapes is described in [37].
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3.3.2 Boundary value problem for parameterized curves

Solving the geodesic boundary problem means, for given boundary curves c0 and
c1, to find a path c which is a (local) minimum of the energy functional (3.5)
among all paths with the given boundary curves. For existence of minimizers
see Theorem 3.4. We will assume that the curves c0, c1 are discretized, i.e., given
as linear combinations of the basis functions Cj . Should the curves be given in
some other form, one would first approximate them by splines using a suitable
approximation method.

The choice of full multiplicity for the boundary knots (in t) implies that the
identity (3.8) for t ∈ {0,1} and a spline path c becomes

c(0, θ) =
Nθ

∑
j=1

c1,jCj(θ) , c(1, θ) =
Nθ

∑
j=1

cNt,jCj(θ) .

If the controls c1,j and cNt,j are fixed, then (3.8) defines a family of paths be-
tween between the boundary curves c0(θ) = ∑Nθj=1 c1,jCj(θ) and c1(θ) = ∑

Nθ
j=1 cNt,jCj(θ).

The family is indexed by the remaining control points c2,j , . . . , cNt−1,j . Discretiz-
ing the energy functional as described in Sect. 3.3.1 transforms the geodesic
boundary value problem to the finite-dimensional optimization problem

argmin Ediscr(c2,1, . . . , cNt−1,Nθ) . (3.13)

where Ediscr denotes the discretized energy functional Emt,mθNt,Nθ
applied to the

spline defined by the control points ci,j . This finite-dimensional minimization
problem can be solved by conventional black-box methods, specifically we use
Matlab’s fminunc function. To speed up the optimization we analytically cal-
culated the gradient and Hessian of the energy functional E. We notice that

∂Ediscr

∂ci,j
= dEc(Bi(t)Cj(θ)) .

The formulas for the derivative and the Hessian are provided in App. C.

Remark 4 For gradient-based optimization methods to work one must pro-
vide an initial path. An obvious choice for a path between two curves c0, c1
is the linear path (1 − t)c0 + tc1. This path can always be constructed, but
it is not always a valid initial path for the optimization procedure. For plane
curves the space Imm(S1,R2) is disconnected with the winding number of a
curve determining the connected component [42]. The metric (3.2) is defined
only for immersions, and a path leaving the space of immersion – for example
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Figure 3.4: Left/Right: Relative energy difference ∣Ei−Ei−1∣
Ei−1

and L2-distance
∥ci−ci−1∥L2

∥ci−1∥L2
, for the propeller shapes, as a function of increas-

ing number of control points. The values of (Nt,Nθ) are
(10,10), (15,20), . . . , (60,110).

as it passes from one connected component to another – will lead to a blow up
of the energy (3.5). Hence an initial path connecting two curves must not leave
Imm(S1,Rd). For most examples considered in this paper the linear path is
a valid initial guess; for more complicated cases a different strategy might be
needed.

Remark 5 Note that the tensor product structure in (3.8) allows us to eval-
uate Logc0 c1 by taking a time derivative of the path c(t, θ) and evaluating it at
t = 0 to obtain Logc0 c1 = ∂tc(0, ⋅), where c is a solution of the geodesic boundary
value problem.

Now we prove a result about Γ-convergence of the discrete energy functional.
Before stating the theorem, we set up some notation. For brevity we denote
the spline approximation operators in Lemma 3.8 by SN , the space H1,2([0,1]×
S1;Rd) by H1,2, and the space H2(S1;Rd) by H2. Let Ωc0,c1H

1,2 denote the
closed subset of paths c ∈ H1,2 for which c(0, ⋅) = c0 and c(1, ⋅) = c1. We extend
the restriction E∣Ωc0,c1H1,2 by ∞ to all of H1,2, and denote this extension by
EΩ. We define the following discrete energy functionals on all of H1,2 as follows

EN,Ω(c) =

⎧⎪⎪
⎨
⎪⎪⎩

E(c), c ∈ SN(Ωc0,c1H
1,2) ∩U,

∞, otherwise.
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Figure 3.5: Continuity of the geodesic distance function. Left: c0, c1 are 3-
and 4-bladed propeller shapes, perturbed by a sinusoidal dis-
placement in the normal direction of the curve. Right: c0, c1
are corpus callosum shapes with the perturbation applied di-
rectly to the control points. The plots show the relative change
in distance against the amplitude of the sinusoidal noise ε, i.e.,
dist(c0, c1 + ε.n)/dist(c0, c1).

Here U is the domain of definition of E defined in section 3.3.1. That is, EN,Ω
is the restriction of E to the spline spaces which connects spline approximations
of c0 and c1, and extended by ∞ elsewhere. Our result is the following

Theorem 3.11 If nt ≥ 1 and nθ ≥ 2, then the discretized energy functionals
EN,Ω are equi-coercive with respect to the weak H1,2 topology and Γ-converge
with respect to the weak H1,2 topology to the energy functional EΩ as Nt,Nθ →
∞. It follows that the sequence of minimizers of the discretized energy function-
als EN,Ω has a subsequence that converges weakly to a minimizer of EΩ.

We refer to [28, Definitions 4.1 and 7.6] for the concepts of equi-coercivity and
Γ-convergence and to [28, Chapter 8] for Γ-convergence under weak topologies.

Proof. First we show that the functionals EN,Ω are equi-coercive with respect
to the weak topology on H1,2. This means that for each r > 0 there is a weakly
compact set Kr such that for each N , {c ∈ H1,2 ∶ EN,Ω(c) ≤ r2/2} ⊆ Kr. To
see this let r > 0 and c ∈ H1,2 with EN,Ω(c) ≤ r2/2. Then E(c) ≤ r2/2 and
consequently L(c) ≤ r. Therefore, dist(c(0), c(t)) ≤ r holds for all t ∈ [0,1].
By [23, Prop. 3.5 and Lem. 4.2] there exists constants C1,C2 > 0 such that
∥h∥2

H2 ≤ C1Gc̃(h,h) and ∥c(0)−c̃∥H2 ≤ C2 dist(c(0), c̃) holds for all c̃ ∈ I2(S1,Rd)
satisfying dist(c(0), c̃) ≤ r and all h ∈H2. Since we have full multiplicity at the
ends we have c(0) = SnθNθ(c0), by classical approximation results there exists a
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constant C3 such that ∥SnθNθ(c0)∥H2 ≤ C3∥c0∥H2 where C3 doesn’t depend on Nθ.
Then there is C4 > 0 such that

∥c∥2
H1,2 = ∫

1

0
∥c(t)∥2

H2 + ∥ċ(t)∥2
H2dt

≤ C2(∥c(0)∥H2 + r2) +C1E(c)

≤ C4(∥c0∥H2 + 3r2/2) =∶ R2
r .

This shows that {c ∈ H1,2 ∶ EN,Ω(c) ≤ r2/2} is contained in the set Kr, which
we define as the ball of radius Rr in H1,2. As this ball is weakly compact, the
functionals EN,Ω are equi-coercive.

The equi-coercivity, which we have just shown, and [28, Prop. 8.16] give the
following sequential characterization of Γ-convergence: the functionals EN,Ω Γ-
converge to EΩ if

∀c ∀cN ⇀ c ∶ EΩ(c) ≤ lim inf
N→∞

EN,Ω(cN), (3.14)

∀c ∃cN ⇀ c ∶ EΩ(c) = lim
N→∞

EN,Ω(cN). (3.15)

To prove (3.14) let cN ⇀ c in H1,2. First we consider the case c ∈ Ωc0,c1H
1,2.

Then E(c) = EΩ(c). Notice that E(c) ≤ EN,Ω(c) always. It was shown in the
proof of [23, Thm 5.2] that E is sequentially weakly lower semicontinuous, so
we obtain

EΩ(c) = E(c) ≤ lim inf
n→∞

E(cN) ≤ lim inf
n→∞

EN,Ω(cN).

Now if c ∉ Ωc0,c1H
1,2 then either c(0) ≠ c0 or c(1) ≠ c1, w.l.o.g we can assume

the former, and EΩ(c) = ∞. By Lem B.3 we have cN → c in C0,1, especially
cN(0) ↛ c0 in C0. For big enough N we must then have cN ∉ SN(Ωc0,c1H

1,2),
so EN,Ω(cN) = ∞ and (3.14) is satisfied. Equation (3.15) follows directly from
Lem. 3.9. Thus, we have shown that the functionals EN,Ω are equi-coercive
and Γ-converge to EΩ in the weak H1,2 topology. The statement about the
convergence of minimizers is well-known and can be found in [28, Thm. 7.23].

Note that the result concerns the energy functional restricted to spline spaces,
but evaluation of integrals is assumed to be exact. For the case where we ap-
proximate the integrals by gaussian quadrature, we were not able to prove a
Γ-convergence result. However, in numerical experiments we still observe con-
vergence for the solution of the boundary value problem, as can be seen in
Fig. 3.4 for varying numbers of control points. Convergence holds for both the
optimal energy and the L2-norm of the minimizing paths. In Fig. 3.5 we show
that the geodesic distance function is continuous: by adding a sinusoidal dis-
placement in the normal direction to the curves, the geodesic distance converges
to 0 as the noise becomes smaller.
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Figure 3.6: Symmetry of the geodesic distances for the 3- and 4-bladed pro-
peller shapes on the left and the corpus callosum shapes on the
right. The relative difference ∣dist(c0, c1)−dist(c1, c0)∣/dist(c0, c1)
is plotted against Nθ for different choices of Nϕ.

3.3.3 Boundary value problem for unparameterized curves

To numerically solve the boundary value problem on the space of unparametrized
curves, we first have to discretize the diffeomorphism group. By the identifi-
cation of S1 with R/[0,2π], diffeomorphisms ϕ∶S1 → S1 can be written as
ϕ = Id+f , where f is a periodic function. Periodic functions can be discretized
as before using simple knot sequences with periodic boundary conditions. This
leads to the spline representation

ϕ(θ) =
Nϕ

∑
i=1

ϕiDi(θ) =
Nϕ

∑
i=1

(ξi + fi)Di(θ) .

Here Di are B-splines of degree nϕ, defined on a uniform periodic knot sequence,
fi are the control points of f , i.e., f(θ) = ∑Nϕi=1 fiDi(θ), and ξi are the Greville
abscissas, i.e., control points of the identity represented in a B-spline basis,
Id = ∑

Nϕ
i=1 ξiDi.

The constraint that ϕ is a diffeomorphism is ϕ′ > 0. By the fact that the B-spline
basis functions are nonnegative and by the recursive formula for the derivatives
of B-splines, see [68, Chap. 4], a sufficient condition to ensure that ϕ′ > 0 is

fi−1 − fi < ξi − ξi−1 . (3.16)

This is a linear inequality constraint. To speed up convergence, we introduce an
additional variable α ∈ R representing constant shifts of the reparametrization.
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The resulting redundancy is eliminated by the constraint

Nϕ

∑
i=1

fi = 0 , (3.17)

which ensures that the average shift of ϕ is 0.

We have to minimize the energy functional (3.5) over all paths c∶ [0,1]×[0,2π]→
R2, and diffeomorphisms ϕ, subject to the constraints

c(0, ⋅) = c0 , c(1, ⋅) = c1 ○ ϕ .

It is important to note that the reparametrization (c,ϕ)↦ c○ϕ does not preserve
splines: if c1 and ϕ are represented by splines, then the function c1 ○ ϕ is in
general not. To overcome this difficulty we approximate the reparameterized
curve c1 ○ ϕ by a new spline in each optimization step. This then leads to a
finite-dimensional constrained minimization problem

argminEdiscr(c2,1, . . . , cNt−1,Nθ , f1, . . . , fNϕ , α) , (3.18)

where f1, . . . , fNϕ are the controls used to construct the diffeomorphism ϕ and
α is the constant shift in the parametrization. Similar to the unconstrained
problem (3.13), we can analytically compute the gradient and hessian and then
solve this by standard methods for constrained minimization problems, specif-
ically we use Matlab’s fmincon function. In order to use fmincon we replace
(3.16) by fi−1 − fi ≤ ξi − ξi−1 + ε with ε small.

From a mathematical point of view we would expect the geodesic distance be-
tween two shapes to be symmetric, i.e., interchanging the curves c0 and c1 should
have no effect on the resulting geodesic distance. This is, however, only approx-
imately true numerically: in our numerical examples the relative error is below
5% if sufficiently many grid points are chosen, see Fig. 3.6. Other articles on
numerical methods for computing geodesic distances between unparametrized
curves seem to sidestep this question, see e.g. [77, 54, 31]. An example of a
forward and backward geodesic is plotted in Fig. 3.7.

3.3.4 Boundary value problem on shape space

To numerically solve the boundary value problem on shape space, it remains to
discretize the finite-dimensional motion group. To simplify the presentation we
will assume in the following that d = 2, so that we can parametrize rotations by
the one-dimensional parameter β. We have to add translations and rotations
to the minimization problem, i.e., minimize the energy functional (3.5) over all
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Figure 3.7: Symmetry of the geodesic boundary value problem on the space of
unparametrized curves. For the circle and the wrap the geodesic
boundary value problem is solved forwards and backwards. To bet-
ter compare the results the second geodesic is plotted backwards
in time. The plot markers visualize the optimal parametrization
of the curves.

paths c∶ [0,1] × [0,2π] → R2, diffeomorphisms ϕ, rotations Rβ and translations
a, subject to the constraints

c(0, ⋅) = c0 , c(1, ⋅) = Rβ(c1 ○ ϕ + a) .

Note that rotations and translations preserve splines: if c1 is represented by a
spline then for any rotation Rβ and translations a the function Rβ(c1 + a) is
a spline of the same type. This then leads to a finite-dimensional constrained
minimization problem

argminEdiscr(c2,1, . . . , cNt−1,Nθ , f1, . . . , fNϕ , α, β, a) , (3.19)

where f1, . . . , fNϕ are the controls used to construct the diffeomorphism ϕ, α
is the constant shift in the parametrization, β the rotation angle and a the
translation vector.

3.3.5 Initial value problem

To solve the geodesic initial value problem we use the variational discrete geodesic
calculus developed in [67]. For a discrete path (c0, . . . , cK), K ∈ N, one defines
the discrete energy

EK(c0, . . . , cK) =K
K

∑
k=1

W (ck−1, ck) ,
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whereW (c, c̃) is an approximation of dist(c, c̃)2. Since our Riemannian metric G
is smooth, it approximates the squared distance sufficiently well in the sense that
Gc(c − c̃, c − c̃) − dist(c, c̃)2 = O(dist(c, c̃)3), and we can take the approximation
to be

W (c, c̃) =
1

2
Gc(c − c̃, c − c̃) .

We call (c0, . . . , cK) a discrete geodesic if it is a minimizer of the discrete energy
with fixed endpoints c0, cK . To define the discrete exponential map we consider
discrete paths (c0, c1, c2) consisting of three points. The discrete energy of such
a path is

E2(c0, c1, c2) = Gc0(c1 − c0, c1 − c0) +Gc1(c2 − c1, c2 − c1) .

Given c0, c1, we define c2 = Expc0 c1 if (c0, c1, c2) is a discrete geodesic, in other
words, if c1 = argminE2(c0, ⋅, c2). Given an initial curve c0, an initial velocity
v0, and a number K of time steps, our solution of the geodesic initial value
problem is cK = ExpcK−2

cK−1, where the intermediate points c1, . . . , cK−1 are
defined iteratively via

c1 = c0 +
1

K
v0 , c2 = Expc0 c1 , c3 = Expc1 c2 , . . . , cK−1 = ExpcK−3

cK−2 .

To compute a discrete geodesic we need to find minima of the function E2(c0, ⋅, c2).
Differentiating E2 with respect to c1 leads to the following system of nonlinear
equations

2Gc0(c1 − c0, ⋅) − 2Gc1(c2 − c1, ⋅) +Dc1G⋅(c2 − c1, c2 − c1) = 0 .

This system has to be solved for c1, with the argument replaced by all basis
functions Cj defining the spline space. We use the solver fsolve in Matlab
to solve this system of equations. Some examples of discrete geodesics are
depicted in Fig. 3.12. The discretizations of the geodesic initial and boundary
value problems are compatible as demonstrated in Fig. 3.8.

3.3.6 Karcher mean

The Karcher mean c of a set {c1, . . . , cn} of curves is the minimizer of

F (c) =
1

n

n

∑
j=1

dist(c, cj)
2 . (3.20)

It can be calculated by a gradient descent on (Imm(S1,Rd),G). Letting Logc cj
denote the Riemannian logarithm, the gradient of F with respect to G is [60]

gradG F (c) = −
2

n

n

∑
j=1

Logc cj . (3.21)
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Figure 3.8: Compatibility of the geodesic IVP and BVP with increasing Nt.
On the left one computes c1 = Expc0(v) for given c0, v and then
solves the BVP for ṽ = Logc0(c1). The plot shows the relative
distance ∥v − ṽ∥c0/∥v∥c0 agains Nt. On the right one computes
v = Logc0(c1) for given c0, c1 and plots the relative difference
∥v − ṽ∥c0/dist(c0, c1) between two consecutive (w.r.t. Nt) initial
velocities v, ṽ against Nt.

Fig. 3.9 illustrates the computation of the Karcher mean of 8 propeller shapes,
which have all been modified by adding a 10% uniform noise to their control
points.

Figure 3.9: Eight propellers with 10% uniform noise added to their control
points, along with their Karcher mean.
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Figure 3.10: Examples of HeLa cell nuclei and the spline representation of the
boundary.

3.4 Shape analysis of HeLa cells

We used second order metrics to characterize the nuclear shape variation in
HeLa cells. The data consists of fluorescence microscope images of HeLa cell
nuclei3 (87 images in total). The acquisition of the images is described in [20].

To extract the boundary of the nucleus we apply a thresholding method [58]
to obtain a binary image, and then we fit – using least squares – a spline with
Nθ = 12 and nθ = 4 to the longest 4-connected component of the thresholded
image. This provides a good balance between capturing shape details and not
overfitting the image noise; see Fig. 3.10. Then we rescale all curves by the
same factor to arrive at an average length ¯̀

c = 2π. The choice ¯̀
c = 2π has the

following nice property: if a curve c has `c = 2π and c has a constant speed
parametrization, then ∣c′∣ = 1, and the arc length derivative Dsh coincides with
the regular derivative h′. The scaling matters because the metric we work with
is not scale invariant. Had we decided to work with curves of a different average
length we would have to change the constants aj of the metric in order to arrive
at the same results.

For the subsequent analysis we use splines with Nθ = 40 and nθ = 3. The
increased number of control points compared to the data acquisition allows
us to preserve shape information even after reparametrizing the curves. To
parametrize the diffeomorphism group we use splines with Nϕ = 20 and nϕ = 3.
This leaves us with roughly 2 ⋅40−20−2−1 = 57 degrees of freedom to represent
the population of 87 given shapes of cell nuclei. The influence of the number
of control points on the geodesic BVP can be seen in Fig. 3.11. All analysis is
performed modulo translations, rotations, and reparametrizations.

The choice of constants a0, a1, and a2 of the Riemannian metric has a significant
impact on the results; see Fig 3.14. One constant may be chosen freely, so we
set a0 = 1. To simplify the interpretation of the results, we set a1 = 0; our

3The dataset was downloaded from http://murphylab.web.cmu.edu/data.

http://murphylab.web.cmu.edu/data
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Figure 3.11: Geodesic between two cells (solid lines); the dashed line shows
the exact endpoint before reparametrization. The geodesic is
computed between parametrized curves with Nθ = 12 (left), un-
parametrized curves with Nθ = 12 (middle) and Nθ = 40 (right).

metric shall have no H1-part. This leaves us with one more parameter, which
we choose by looking at the L2- and H2-contributions to the energy of geodesics
between shapes in the dataset. For a geodesic c between two curves c0 and c1
these contributions are

dist(c0, c1)
2 = EL2(c) +EH2(c) = ∫

1

0
∫
S1

∣ct∣
2 dsdt + a2 ∫

0
∫
S1

∣D2
sct∣

2
dsdt .

The relative contribution of theH2-term to the total energy is %H2 = EH2/(EL2+
EH2). We denote the population mean and standard deviation of the variable
%H2 by %̄H2 and σ, respectively. The following table shows that the choices a2 =
2−12 ≈ 0.00024 and a2 = 2−8 ≈ 0.0039 both lead to balanced energy contributions
of the zero and second order terms:

a2 = 2−12 , %̄H2 = 0.032 , σ = 0.027 ,

a2 = 2−8 , %̄H2 = 0.203 , σ = 0.119 .

We will use these parameter choices in our subsequent analysis. Note that from
a physical point of view the parameter a2 has units [m4], m being meters.

The average shape of the nucleus can be captured by the Karcher mean c̄. To
solve the minimization problem (3.20) for the Karcher mean of the 87 nuclei
we use a conjugate gradient method on the Riemannian manifold of curves as
implemented in the Manopt library [21]. For each choice of parameters the opti-
mization is performed until the gradient of the objective function F (c̄) satisfies
∥gradG F (c̄)∥c̄ < 10−3.

Having computed the mean c̄, we represent each nuclear shape cj by the initial
velocity vj = Logc̄(cj) of the minimal geodesic from c̄ to cj . We perform principal
component analysis with respect to the inner product Gc̄ on the set of initial
velocities {vj ∶ j = 1, . . . ,87}. Geodesics from the mean in the first five directions
can be seen in Fig. 3.12. A projection of the dataset onto the subspace spanned
by the first two principal components is depicted in Fig. 3.13.
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Figure 3.12: Geodesics from the mean in the first five principal directions.
The curves show geodesics at times −3,−2, . . . ,2,3; the mean
is shown in bold. One can see characteristic deformations of the
curve: expansion, stretching, compressing and bending. The first
row shows principal components calculated for curves modulo
reparametrizations; the second row for parametrized curves.
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Figure 3.13: Cell nuclei projected to the plane in the tangent plane, spanned
by the first two principal components. The mean (in blue) is
situated at the origin. The units on the coordinate axes are
standard deviations.
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Figure 3.14: Left: the mean shape of cell nuclei. Middle: for comparison, the
mean shape as computed in [66] via the Christensen–Rabbitt–
Miller method [32]. Right: the proportion of the total variance
explained by the first 10 eigenvectors.

For unparametrized curves and for the parameter choice a2 = 2−12 the first five
principal components explain 57.6%, 78.3%, 90.0%, 94.2% and 98.0% of the
total variance; see Fig. 3.14. Under the choice a2 = 2−8 the first five principal
components explain only 93.3% of the variance as compared to 98.0% in the
previous case. This demonstrates that approximation power of the principal
components depends on the choice of the metric. Fig. 3.14 also shows that
fewer principal components are needed to explain the same amount of variance
when the reparametrization group is factored out.

The results we obtain are comparable to those of [66], where diffeomorphic
matching was used to compare cells. It turns out that the mean shape with
respect to our metrics is symmetric, while the mean shape obtained in [66] is
bent towards one side; see Fig. 3.14.

3.5 Further applications

Now we provide some additional applications taken from the peer-reviewed con-
ferences papers [6] and [7]. The primary contributions of these papers was to
provide the first working implementations of the geodesic BVP on parametrized
and unparametrized curves respectively. The content of this section is a copy of
the appropriate sections in each paper respectively, adjusted to previous sections
of this chapter.
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Figure 3.15: Projections to a two-dimensional barycentric subspace of 30 im-
ages from the cardiac cycles of three patients. Cubic splines
interpolation of degree nθ = 3 with Nθ = 30 control points is
used.

3.5.1 Traces of cardiac images

In our second application we study curves that are obtained from images of
the cardiac cycle. More precisely, we consider a sequence of 30 cardiac images,
taken at equispaced time points along the cardiac cycle. Each image is pro-
jected to a barycentric subspace of dimension two, yielding a closed curve in the
two-dimensional space of barycentric coordinates. After normalizing the coor-
dinates [61, Sect. 3] we obtain a closed, plane curve – with the curve parameter
representing time – to which we can apply the methods presented in Sect. 3.3.
Details regarding the acquisition and projection of the images can be found in
[82, 49]; barycentric subspaces on manifolds are described in [61].

The data consists of 10 cardiac cycles of patients with Tetralogy of Fallot and
9 patients from a control group. Each cardiac cycle is originally represented
by three-dimensional homogeneous coordinates x1 ∶ x2 ∶ x3, sampled at 30 time
points. We project the homogeneous coordinates onto the plane x1 +x2 +x3 = 1
and choose a two-dimensional coordinate system for this plane. Then we use
spline interpolation with degree nθ = 3 and Nθ = 30 control points to reconstruct
the planar curves from the data points; see Fig. 3.15.

The parameters a0, a1, and a2 in the metric are chosen similarly to Sect. 3.4;
however, the scale of the curves is not changed and we use equal weighting
between the L2-, H1- and H2-parts of the average energy for linear paths. This
leads to parameters a0 = 1, a1 = 0.1, and a2 = 10−9. To see if the metric structure
derived from the Sobolev metric enables us to distinguish between diseased
patients and the control group, we compute all 171 pairwise distances between
the 19 curves; this takes about 15 minutes on a 2 GHz single core processor.
Multi-dimensional scaling of the distance matrix shows that the metric separates
healthy and diseased patients quite well (Fig. 3.16a). Indeed, a cluster analysis
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based on the distance matrix recovers exactly – with exception of one outlier
(patient 4) – the subgroups of healthy and diseased patients (Fig. 3.16b).
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Figure 3.16: (a) Two dimensional representation of the data using multi di-
mensional scaling of the pairwise distance matrix. (b) A den-
drogram of clusters computed from the pairwise distance matrix
using the single linkage criterion. Healthy patients are labelled
1–9 and diseased ones 10–19.

The Karcher means of the healthy and diseased subgroups as well as of the
entire population are depicted in Fig. 3.17. The mean was computed using a
gradient descent method as described in Sect. 3.3.6 with a threshold of 10−4 for
the norm of the gradient. The average distance from the mean for the diseased
group is 0.6853 with a variance of 0.0149, and for the control group the distance
is 0.7708 with a variance of 0.0083.

To investigate the variability of the observed data, we performe principal compo-
nent analysis on the initial velocities of the minimal geodesics connecting curves
to the respective means (c.f. Sect. 3.4). Fig. 3.18 shows the initial velocities
projected to the subspace spanned by the first two principal directions. Within
the healthy and sick subgroups, less then 30% of the principal components are
needed to explain 90% of the shape variation. If, in contrast, principal com-
ponents are analyzed for the entire dataset based on the global Karcher mean,
then 35% of the principal components are needed to explain 90% of the shape
variation.

3.5.2 The Kimia database

We also tested our implementation on a dataset of shapes collected by the
Computer Vision Group at Brown university [18]. The dataset consists of black
and white images of physical objects. It is natural to represent the objects
by their boundaries using unparametrized curves. In addition to factoring out
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Figure 3.17: First row: Karcher means of pathological cardiac cycles (left),
all cycles (middle), and healthy cycles (right). Second row:
geodesic connecting the Karcher mean of pathological cycles to
the Karcher mean of healthy cycles. The crosses denote the posi-
tion of images, with respect to whom the barycentric projection
was computed.
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Figure 3.18: (a) Initial velocities of minimizing geodesics projected to the sub-
space spanned by first two principal components for the diseased
group. (b) The same picture for the control group. (c) The same
picture for the whole population.

Figure 3.19: Selection of shapes from the dataset [18].
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reparametrizations, we also factor out translations and rotations because we are
not interested in the position of the curves in space. Some of the resulting curves
are depicted in Fig. 3.19. We used splines of degree nθ = nφ = 3 with Nθ = 60
and Nφ = 20 controls in space and of degree nt = 2 with Nt = 20 controls in time.

We used the following ad-hoc strategy for choosing the constants: we computed
the average L2-, H1- and H2-contributions E0, E1, E2 to the energy of linear
paths between each pair of curves in the dataset. Then we normalized a0 to 1
and chose a1 and a2 such that

a0E0 ∶ a1E1 ∶ a2E2 = 1 ∶ 1 ∶ 1 and E = a0E0 + a1E1 + a2E2 = 100 .

This resulted in the parameter values a1 = 250 and a2 = 0.004. It remains open
how to best choose the constants depending on the data under consideration.

Comparison to non-elastic metrics

Riemannian metrics on spaces of unparametrized curves are often called elastic
metrics, as they allow both for bending and stretching of the curve. In the elastic
case, solving the boundary value problem for geodesics involves optimizing over
the Diff(S1)-orbit of the initial or final shape. This is a computationally expen-
sive and difficult task since the diffeomorphism group is infinite-dimensional.

An alternative and simpler approach is to parametrize the curves by unit-speed
and to calculate geodesics in the space of parametrized curves. This could be
called a non-elastic approach. (Of course, one might wish to also factor out
rigid transformations and constant shifts of the parametrization, but this is
much simpler because these groups are finite dimensional.)

Our experiments suggest that using the more involved elastic approach pays off.
The two approaches yield different results, and in particular in cases involving
large amounts of stretching the geodesics found using the first approach appear
more natural. However, in cases involving mainly bending of the curves the
results are very similar (see Fig. 3.20).

Clustering and principal component analysis

We investigated if pairwise geodesic distances can be used to cluster shapes into
meaningful groups. To this aim, we calculated all pairwise distances between
the 33 shapes presented in Fig. 3.19. Solving the corresponding 528 boundary
value problems took about two hours on a 3GHz processor with four cores. The
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Figure 3.20: Geodesics in the space of unparametrized (1st, 3rd) versus
parametrized (2nd, 4th) curves modulo rotations and transla-
tions. Note that since we also optimize over translations and
rotations of the target curve, the curves in the first two panels
are aligned differently.
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Figure 3.21: The matrix of geodesic distances between the shapes in Fig. 3.19,
visualized using multi-dimensional scaling in two and three di-
mensions. The labels are: fish ◯, sting rays ☆, bunnies B, tools
+.

resulting distance matrix is visualized in Fig. 3.21 using multi-dimensional scal-
ing; the plot suggests that objects of the same group lie close together. Indeed,
agglomerative clustering with 4 clusters reproduces exactly the subgroups of the
database.

Finally, we studied within-group variations using non-linear principal component
analysis. To this aim, we first computed the Karcher mean of each group. The
corresponding optimization problem (3.20) was solved using a conjugate gradient
method, as implemented in the Manopt library [21], on the finite-dimensional
spline approximation of the Riemannian manifold of curves. The mean shapes
for the groups of fish and humans can be seen in Fig. 3.22. Next, we represented
each shape in the group by the initial velocity from the mean c using the inverse
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Figure 3.22: First column: Karcher means (bold) of the groups of fish and hu-
mans. Second and third column: geodesics from the mean in the
first and second principal direction at the times −3,−2, . . . ,2,3;
the bold curve is the mean.

of the Riemannian exponential map. We then performed a principal component
analysis with respect to the inner product Gc on the set of initial velocities. In
the group of human figures, the first three eigenvalues capture 67%, 22%, and
6% of within-group variation. In the group of fish, the first three eigenvalues
capture only 40%, 25%, and 16% of within-group variation. Geodesics from
the mean in the directions of the first two principal directions can be seen in
Fig. 3.22. In the group of humans the first principal direction encodes bending
of the arms and legs, whereas the second direction reflects stretching in the
extremities.



Chapter 4

Shape Optimization

Shape optimization is a broad topic covering many topics. In broad terms it is
the topic concerned with find shapes that optimizes a functional. The functional
in question can describe many things, and there are a wide range of applications
coming from physics, image analysis, computer graphics, etc. Our motivation
will come from functionals arising in physics. Here one wants to find physical
shapes that are optimal in some contexts. A classical problem comes from
aerodynamic shape optimization, where one tries to find the shape of an airplane
which minimizes drag, while maintaining a necessary lift. These problems are
usually constrained by some physics described by a Partial Differential Equation
(PDE), for aircraft the equations governing the dynamics are the Navier-Stokes
equations for the interaction of air and craft. When trying to solve problem in
practice, there are two paradigms, which can roughly be summarized as follows.

• Discretize-first : Discretize functional and state equation to obtain finite
dimensional system. Then use classical optimization algorithms.

• Optimize-first : Write up optimality conditions in an appropriate func-
tional space. Then discretize the resulting equations.

In concrete optimization problems one parametrizes the feasible shapes of the
problem by their boundary. A simple, but important observation is that any
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solution of such a problem is not dependent of the choice parametrization. This
invariance is exactly the equivalence of curves under reparametrization studied
in Chapter 2 for shape spaces. In this way, it is natural to consider shape
functionals defined on planar objects, as a function on the manifold of regular
curves or shape space. This point of view have only been considered very recently
in a series of papers, starting with [69]. In this way the non-linear structure
of the feasible shapes are captured, and we can hopefully use the structure
to gain more information about the optimization procedure. The choice of a
Riemannian metric on immersion allow us to use generalized versions of classical
optimization algorithms like steepest-descent and BFGS, on a way that naturally
turns the regularity constraint into an unconstrained problem. To make matters
concrete we focus our efforts on a simple model problem:

Example 4.1 (Model Problem) Let f, y0 ∈H
1(R2,R) be fixed.

min
Ω
J(u,Ω) = ∫

Ω

1

2
∣y(x) − y0(x)∣

2dx (4.1)

−∆y = f in Ω, (4.2)
y = 0 on Γ. (4.3)

Over all Ω, bounded by a simple curve.

We will derive procedures to solve this specific problem numerically, but this
methodology can in principle be extended to any type of shape optimization
problem which uses parametrized boundaries.

4.1 Shape calculus

Shape functionals are often not defined on linear vector spaces or manifolds,
and so there is an extensive theory devoted to giving meaning to and computing
directional derivatives of such shape functionals. In this section we will define
the shape derivative of a functional depending on a domain, and compute it for
our concrete problem in Example 4.1. Let Ω ⊂ R2 be a domain, and V (x, t) be
a sufficiently smooth vector field, with solution map Tt(x) = T (t, x),

dT (t, x)

dt
= V (T (t, x)), T (0, x) = x.

Define Ωt = T (t,Ω). The Eulerian derivative of J is defined as

dJ(Ω, V ) = lim
t→0

J(Ωt) − J(Ω)

t
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If the map V ↦ dJ(Ω, V ) is continuous we will say that dJ(Ω, V ) is the shape
derivative of the shape functional J in the direction of V .

For our example problem let y(Ω) denote the solution of the Poisson equation
with Dirichlet conditions

−∆y = f in Ω, (4.4)
y = 0 on Γ.

with f ∈H1(R2) fixed. We define the shape function

J(Ω) =
1

2
∫

Ω
∣y(Ω) − yd∣

2dx,

for a fixed yd ∈ H1(R2). The solution of (4.4) is also the solution of the weak
form, which is given by

E(Ω, y, ϕ) = ∫
Ω
(⟨∇y,∇ϕ⟩ − fϕ)dx = 0, ∀ϕ ∈H1

0(Ω). (4.5)

This is called the state equation of the problem. The objective function is defined
as

F (Ω, ϕ) =
1

2
∫

Ω
∣ϕ − yd∣

2dx,

so we may write
J(Ω) = F (Ω, y(Ω)).

Now we will compute an expression for the shape derivative of J(Ω). One
approach is to try and invoke an implicit function theorem. The problem is
that y(Ω) lives in different Sobolev spaces as we vary Ω, so first we would have
to give meaning to y′(Ω), the derivative of the state w.r.t to a deformation of Ω,
from which we could derive an expression like dJ(Ω, V ) = dFϕ(Ω, y(Ω))y′(Ω).
This is technique pursued in [75]. We will use an alternative method, that avoids
having to characterize a derivative y′(Ω), and which in general is more flexible
that the implicit approach as it requires less smoothness of the domain. The first
step is setting the problem up as an appropriate control theory type problem, by
defining a Lagrangian functional with the state equation added with a Lagrange
multiplier ψ

G(Ω, ϕ,ψ) = F (Ω, ϕ) +E(Ω, ϕ,ψ). (4.6)

Observing that

sup
ψ∈H1

0 (Ω)
G(Ω, ϕ,ψ) =

⎧⎪⎪
⎨
⎪⎪⎩

F (Ω, y(Ω)) ψ = y(Ω),

∞ ψ ≠ y(Ω),

we can express the objective function as a saddle point of the Lagrangian

J(Ω) = inf
ϕ∈H1

0 (Ω)
sup

ψ∈H1
0 (Ω)

G(Ω, ϕ,ψ).
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The Lagrangian is continuous w.r.t to both ϕ and ψ, and convex in ϕ, and
defined on H1

0(Ω) which is closed and convex. Under these conditions G has a
saddle point at (y, p) ∈H1

0(Ω)2 if and only if the saddle point equations have a
solution,

dG(Ω, y, p)(0, ψ) = dE(Ω, y, p)(0, ψ) = 0,∀ψ ∈H1
0(Ω),

dG(Ω, y, p)(ϕ,0) = dF (Ω, y)(ϕ) + dE(Ω, y, p)(ϕ,0) = 0,∀ϕ ∈H1
0(Ω).

In this case E is linear in both arguments. Writing these equations out we get

∫
Ω
(⟨∇y,∇ψ⟩ − fψ)dx = 0 ∀ψ ∈H1

0(Ω).

∫
Ω
((y − yd)ϕ + ⟨∇p,∇ϕ⟩)dx = 0 ∀ϕ ∈H1

0(Ω).

The first is the state equation, and the second is the adjoint equation, which in
strong form reads

−∆p = y − y0 in Ω, (4.7)
y = 0 on Γ.

These equations have a unique solution, so G has a saddle point. Now given
a vectorfield V ∈ D1(R2,R2) (compactly supported vector fields) we want to
calculate dJ(Ω, V ). For t small enough such that the flow of V is defined we
have the domains Ωt = Tt(Ω) on which we can evaluate J ,

J(Ωt) = inf
ϕ∈H1

0 (Ωt)
sup

ψ∈H1
0 (Ωt)

G(Ωt, ϕ,ψ).

Notice that we compute the saddle point of G in different spacesH1
0(Ωt) for each

t. We want to remove this time dependence. There are at least two methods
for computing the derivative ∂t∣t=0J(Ωt) as t→ 0.

• The function space parametrization

• The function space embedding.

In the first case we can bring all the analysis back to Ω by the mapping

φ↦ φ ○ T −1
t ∶H1

0(Ω)→H1
0(Ωt),

and defining a Lagrangian on Ω alone

G̃(t, ϕ,ψ) = G(Tt(Ω), ϕ ○ T −1
t , ψ ○ T −1

t ).
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Now one can find a expression for derivative of g(t) = J(Ωt)

dg(0) = lim
t→0

g(t) − g(0)

t
.

For this to work we need to know how to differentiate a saddle point w.r.t. to a
paramater t. In our case we know that for each t there is a unique saddle point,
but in a more general situation there could be several. Will need this freedom
in a little while. We state a theorem on the existence of the above limit under
some conditions. We need to define some notation. Consider the general type
of functional

G ∶ [0, τ] ×X × Y → R

For some τ > 0 and sets X,Y . Define

g(t) = inf
x∈X

sup
y∈Y

G(t, x, y),

h(t) = sup
y∈Y

inf
x∈X

G(t, x, y)

and the sets

X(t) = {x ∈X ∶ sup
y∈Y

G(t, x, y) = g(t), Y (t) = {y ∈ Y ∶ inf
x∈X

G(t, x, y) = h(t).

Then we have h(t) ≤ g(t), and the of saddle points is defined as

S(t) = {(x, y) ∈X × Y ∶ h(t) = G(t, x, y) = g(t)}.

The theorem gives a condition under which dg(0) exists and how to compute it.

Theorem 4.1 (Correa and Seeger) Let τ > 0 and set X,Y and a
functional

G ∶ [0, τ] ×X × Y

be given. Under the following assumptions

• For each t, there exists at least one saddle point: S(t) ≠ ∅.

• For all t, ∂tG exists for all elements in X(t) × Y (0) and X(0) × Y (t).

• For every sequence (tn) with tn ↘ 0, there exists a subsequence (tnk) and
an element x0 ∈X(0), xnk ∈X(tnk) such that for all y ∈ Y (0)

lim
k→∞
t↘0

∂tG(t, unk , p) = ∂tG(0, x0, y)
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• For every sequence (tn) with tn ↘ 0, there exists a subsequence (tnk) and
an element y0 ∈ Y (0), ynk ∈ Y (tnk) such that for all x ∈X(0)

lim
k→∞
t↘0

∂tG(t, x, ynk) = ∂tG(0, x, y0)

Then there exists a saddle point (x0, y0) such that

dg(0) = inf
x∈X(0)

sup
y∈Y (0)

∂tG(0, x, y)

= sup
y∈Y (0)

inf
x∈X(0)

∂tG(0, x, y)

= ∂tG(0, x0, y0) (4.8)

In this way we can compute ∂tG(0, x, y) and then look for elements in X(0) and
Y (0) which satisfy the saddle point condition. In our case this is very simple
since there is only one. In cite [88] it is proved that the assumptions are verified
for our model problem. We have g(t) = J(Ωt) and computing ∂tG(t, ϕ,ψ) can be
done explicitly by pulling all integrals back to Ω and differentiating the resulting
time dependent integrand. We will leave the details out, and just state the final
form of the shape derivative

dJ(Ω, V ) = dg(0)

= ∫
Ω

1

2
(y − yd)

2 divV − (y − yd)⟨∇yd, V ⟩

+ (divV I −DV T −DV )⟨∇y,∇p⟩

+ divV ⋅ (yp − fp) − ⟨∇f, V ⟩ ⋅ pdx (4.9)

Where DV is the Jacobian of V . We can derive a simpler expression, by simpler
calculations by using the function space embedding, which is similar in its use of
the same theorem, as we shall see. This comes at the cost of added smoothness
requirements of Ω, we will comment on this at the end. With this method, we
extend all functions to a larger domain D which contain all Ωt, for simplicity
we choose D = R2. This can be done, since there exists extension operators

EΩ ∶Hm(Ω)→Hm(R2),

Consider the functional defined on this larger function space

J(Ωt) = min
Φ∈H1(R2)

max
Ψ∈H1(R2)

G(Ωt,Φ,Ψ).

Now the set of saddle points S(t) is not empty since

X(t) = {Φ ∈H1(R2) ∶ Φ∣Ωt = y(Ωt)}

Y (t) = {Ψ ∈H1(R2) ∶ Ψ∣Ωt = p(Ωt)}
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are the sets of all extensions R2 of the solutions to the state and adjoint equations
on Ωt, which are clearly not empty. We can still apply the theorem of Correa
and Seeger: G is the same but extended,

G(t,Φ,Ψ) = ∫
Ωt

1

2
∣Φ − yd∣

2 + ⟨∇Φ,∇Ψ⟩ − fΨ dx,

and computing ∂tG is simple since Φ and Ψ are now fixed function on R2 so
have no dependence on t. Contrast this to G̃(t, ϕ, φ) where the dependence on
t is in all the variables. The only time dependence is on Ωt so the formula for
differentiating along the moving domains becomes very simple

∂tG(t,Φ,Ψ) = ∫
Γt

(
1

2
∣Φ − yd∣

2 + ⟨∇Φ,∇Ψ⟩ − fΨ) ⟨V,nt⟩dx.

This doesn’t depend on the values of Φ and Ψ outside of Ωt, so the derivative
(4.8) can be evaluated at any extension. Now Φ = 0 on Γ so ∇Φ = ∂p

∂n
n on Γ,

and likewise for Ψ, and we end up with

dJ(Ω, V ) = ∫
Γ
{

1

2
∣yd∣

2 +
∂y

∂n

∂p

∂n
} ⟨V,n⟩ds. (4.10)

where (y, p) satisfies the state and adjoint equations

−∆y = f in Ω, y = 0 on Γ.

−∆p = y − yd in Ω, p = 0 on Γ.

This confirms that the derivative only depends on the deformation of the bound-
ary of Ω. All of this is only the formal computations. We note that one can
make this formal. We sum up the result in

Lemma 4.2 If Ωt is a C1,1 for all t, then the assumptions of 4.1 holds, hence
the limit dg(0) exists.

Proof. In [88] it is proved that the assumptions of the Correa-Seeger theorem
holds if the solution y(Ωt) ∈ H2(Ωt) for each t and the limit dg(0) exists.
Classical regularity of elliptic equations imply that a C1,1 domain has a H2(Ω)
regular solution, see [35].

4.2 Riemannian optimization

Riemannian optimization is an area of optimization theory concerned with cre-
ating and analysing optimization algorithms on Riemannian manifolds. The
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motivation comes from the fact that some types of constrained minimization
problems can naturally be considered as problems on manifolds, e.g. submani-
folds on Rn like the sphere, or quotient manifolds. A great deal of the research
has gone into producing efficient algorithms on matrix groups. Using the gra-
dient grad f to obtain descent directions and the exponential map expx(ξ) to
move around the manifold, one can generalize steepest descent, conjugate gra-
dients, BFGS methods etc. from their counterpart in Rn. An introduction
can be found in [1], where the theory is presented exclusively on finite dimen-
sional manifolds, especially matrix groups. As we are concerned with infinite
dimensional manifolds, the results in this reference are not readily applicable.
In vectors spaces there are ways to generalize optimization methods to infinite
dimensional Hilbert spaces, see [48, 29]. In [65] Riemannian BFGS methods
and conjugate gradients on possibly infinite dimensional manifolds are treated.
As we have seen in Chap. 2 there are problems when generalizing geometry to
infinite dimensions, and it is assumed implicitly in this reference that the met-
ric is strong. In this section we shall give a brief introduction to Riemannian
optimization methods, to the extend that we can apply the techniques in for
shape optimization in Sec. 4.5. We will briefly mention convergence analysis of
the methods.

4.2.1 Line-search methods

In the following let (M,g) be a Riemannian manifold, and f ∶ M → R be a
sufficiently smooth function. Recall the definition of a gradient

gx(grad f, v) = dfx(v), ∀v ∈ TxM. (4.11)

Where dfx(v) = vx(f) is the differential of f . It follows that grad f is g-
orthogonal to the level sets of f , as in the euclidean case, but with the notion of
orthogonality depending on the choice of g. Now a line-search method on (M,g)
is the construction of a sequence {xk} ∈ M which converges to a critical point
x∗ of f , i.e. dfx∗ = 0. Notice that the notion of a critical point is independent
of the choice of metric. On Rn a line-search method is generated by the update

xk+1 = xk + αkpk,

where tk is the step size and ηk the search direction. We could possibly have
ηk as grad f . This is update not defined on a general manifold, when xk is a
point in M and ηk a direction in the tangent space TxkM . In order do define
this procedure on M we need to introduce a way to move in the direction of ηk
while staying in M , which we define as,

Definition 4.3 (Retraction) A retraction on a manifoldM is a smooth
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map R ∶ TM → M with the following properties. Let Rx ∶ TxM → M be the
restriction to TxM .

1. Rx(0x) = x.

2. DRx(0x) = idTxM .

Here we have used the identification T0xTxM ≃ TxM .

On any (M,g) the exponential map expx(v) defines a retraction. Notice that
condition 2 on a Hilbert manifold makes Rx a local diffeomorphism. The reason
for not restricting to geodesic retractions is that it can be computationally
expensive to compute the exponential map, and that it does not change the
qualitative convergence of the method. In this way, if a simple retraction is
available it can produce a great speed up of the method. Much of the research
on matrix groups is devoted to finding efficient retractions. Now the update
formula looks like

xk+1 = Rxk(αpk),

where ηk ∈ TxkM , and α > 0. In Alg. 1, the procedure is given as a general
procedure.

Algorithm 1 Riemannian Line-Search
Input: f ∶M → R, x0 ∈M , k = 0.
for k = 1,2, . . . do
Choose descent direction pk ∈ TxkM .
Choose a Retraction Rxk ∶ TxkM →M .
Choose a step length αk ∈ R.
Set xk+1 = Rxk(αkpk).
if f(xk+1) satisfies stop criteria. then

return xk+1

end if
end for

When choosing the step-length αk a simple backtracking line-search method
find the Armijo point:

Definition 4.4 (Armijo Point) Given a point x ∈ M , η ∈ TxM , γ > 0,
β,σ ∈ (0,1). The Armijo point is pA = αAp = βmγp, where m is the smallest
nonnegative integer such that

f(x) − f(Rx(β
mγp)) ≥ −σ⟨grad f(x), βmγp⟩



80 Shape Optimization

The acceptance condition correspond to the first part of the classical Wolfe
conditions in Rn and is used to show that such a line-search methods produces
a convergent algorithm.

4.2.2 The Quasi-Newton BFGS method

The usual way to improve the convergence rate, is to take higher order deriva-
tives into account. The classical Newton method does this by picking the step
pk as the solution of

Hess f(pk, v) = −⟨grad f(xk), v⟩, ∀v ∈ TxkM,

which under certain assumptions on f gives a quadratic convergence to a critical
point. On a Riemannian manifold the definition of Hess f given by

Hess f(X,Y ) =X(Y f) − (∇XY )f,

In practice for many problems, it is unreasonable to calculate second order
derivatives, especially the Riemannian Hessian which also needs the covariant
derivative to be computed. Instead in Quasi-Newton method one solves a mod-
ified equation

Bk(pk, v) = −⟨grad f(xk), v⟩, (4.12)
which gives a descent direction as long as Bk is a positive definite bilinear form.
The idea is now to generate a sequence of operators Bk that should approximate
the Hessian of f . Since the Hessian can be interpreted as a rate of change of the
gradient, if we can compare gradients along of sequence of iterates, we can use
this information to generate Bk as an approximation of Hess f . To formalize this,
we need a way to compare gradients from different tangent spaces on M . On
a Riemannian manifold, the parallel transport can be used to transport vectors
between tangent spaces. We want to be a bit more flexible, and a general notion
of vector transport can be defined as follows

Definition 4.5 (Vector Transport) A vector transport on a mani-
fold M is smooth mapping

TM ⊗ TM → TM ∶ (ηx, ξx)→ Tηx(ξx),

satisfying the following properties

1. (Associated Retraction) There exists a retraction R such that the following
diagram commutes

(ηx, ξx) Tηx(ξx)

ηx R(ηx)

π

T

π

R
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2. (Consistency) T0xξx = ξx

3. (Linearity) TηX (aξx + bζx) = aTηz(ξx) + bTηx(ζx)

On any Riemannian manifold, the choice of parallel transport along geodesics is
a vector transport. Since parallel transport can be a computationally expensive
task, the above definition allows us to choose more efficient ways to compare
tangent spaces. If we impose a generalized secant condition on Bk

Bk+1(Tk grad f(xk), v) = gxk+1(grad f(xk+1) − Tηk(grad f(xk)), v)

with Tk ∶ TxkM → Txk+1M being the vector transport, one can derive a general-
ization of the classical BFGS methods, where Bk+1 is updated according to the
formula

sk = αkpk = R
−1
xk

(xk+1) ∈ TxkM,

yk = grad f(xk+1) − Tηk(grad f(xk)) ∈ Txk+1M.,

Bk+1(Tkv, Tkw) = Bk(v,w) −
Bk(sk, v)Bk(sk,w)

Bk(sk, sk)
(4.13)

+
gxk+1(yk, Tkv)gxk+1(yk, Tkw)

gxk+1(yk, Tksk)
, ∀v,w ∈ TxkM.

In [65] the BFGS method, along with a Fletcher-Reeves Nonlinear Conjugate
Gradient method, is analyzed on strong Riemannian manifolds and superlinear
convergence is proved under a set of conditions. The pullback function f ○R is
required to be locally convex, and the initial guess B0 is symmetric, bounded
and coercive. The most important condition is the vector transport need to be
an isometry of tangent spaces, and satisfy a rather restrictive bound on a nuclear
norm which severely restricts the geometry of the underlying manifold. Under
these conditions the BFGS method converges super-linearly to an optimum x∗,
i.e.

lim
k→∞

dist(xk+1, x
∗)

dist(xk, x∗)
= 0.

In practice, one wants to avoid solving (4.12) at every iteration. In finite di-
mensions Bk can be represented by a matrix, and there is an update formula
for the inverse Hk = B

−1
k , and the system can be solved by a matrix multiplica-

tion. On a strong infinite dimensional Riemannian manifold, consider the Riesz
representative of the operator B̂k ∶ TxM → TxM

Bk(u, v) = gxk(u, B̂kv)
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Then one can similarly define an update for the inverse Hk = B̃−1
k using the

Sherman-Morrison formula

Hk+1 = Tk ○ (J
∗HkJ +

gxk(sk, ⋅)sk
gxk+1(yk, Tksk)

) ○ T ∗k , (4.14)

J = (Id−
gxk(sk, ⋅)

gxk+1(yk, Tksk)
yk)

Inserting the expression for Hk−1 etc., gives a recursive formula for Hk+1. This
is utilized in the Limited-Memory BFGS method, to represent Hk+1 by a limited
number of vector pairs, which is very efficient for large scale problems. In the
end the number of variables in our problem wont be too big, so for simplicity
we will use the update (4.14).

4.3 Isogeometric analysis

To evaluate the functional and shape derivative in our model problem we need
to compute the solution of PDE: the state and adjoint equations, both are
simple Poisson equations with Dirichlet conditions. A standard way to solve
this is to use a Finite Element Method (FEM). Looking ahead to section 4.5, we
want to combine the numerics for Sobolev metrics on curves with Riemannian
optimization methods, hence parametrize the boundary of our domains by B-
splines. If using FEM, we would have to triangulate our curves and domain every
time we need to solve the state and adjoints equations. This is time-consuming
and we lose some control over the error in the FEM method, since we wont have
a conforming FEM (the boundary of the domain is not a polygon). Instead we
opt to use Isogeometric Analysis (IGA), which was recently proposed in [38],
which has the advantage that the geometry of the physical domain can be given
by exactly the same B-splines that we use for numerics for Sobolev metrics. In
this section we will give a brief introduction to the essentials of IGA, see [17]
for an overview papers.

Like FEM, IGA formulate a Galerkin projection which can be used to solve
any type of PDE in a weak formulation. For our needs a Poisson equation with
Dirichlet conditions is enough, so we will restrict our focus to that. The classical
FEM method is summed up in figure 4.1: A physical domain Ω is triangulated,
and basis for a finite dimensional subspace Vh of H1

0(Ω) is constructed as piece-
wise linear functions, or higher order polynomials in the hp-FEM method, with
support on each triangle. The solution uh of the weak equation restricted to
Vh is an approximation of the true solution u. For elliptic problems this can
be shown to provide a projection of the true solution to Vh, and the error of
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the method can be related to the approximation power of Vh. We thank Jens
Gravesen for providing all figures in this section.

Figure 4.1: Trianglulation of domain Ω, and 3 basis functions for the FE space.

In IGA the starting point is not a triangulation of the domain Ω, but a parametriza-
tion from a simple fixed domain x ∶ [0,1]2 → Ω. We use B-splines to define a
parametrisation,i.e.

x(ξ, η) =
mξ

∑
i=1

mη

∑
j=1

xi,j B
nξ
ξ;i(ξ)B

nη
η;j(η) ∶=∑

i,j

xi,jBi,j(ξ, η).

such that x−1 exists everywhere and is differentiable. Here xi,j ∈ R2 are vectors
defining a tensor product spline in each coordinate. The functions Bnξξ,i and B

nη
η,j

are B-splines of degree nξ and nη defined on knots vectors ξ = (ξ1, . . . , ξmξ) ,
η = (η1, . . . , ηmη). For simplicity we will assume full multiplicity at the bound-
ary. This allows us to specify the boundary of the domain only by the outer
most control points: x1,j ,xmξ,j ,xi,1,xi,mη . They define 4 univariate splines
that make up the boundary. Also we will assume simple interior knots, so the
parametrization is Cnξ−1,nη−1([0,1]2) regular. An example of a parametrization
is given in Fig. 4.2. When solving a PDE, we consider the weak form of the
equation. For simplicity we assume Dirichlet boundary conditions,

a(u,ϕ) = b(ϕ), ∀ϕ ∈H1
0(Ω).

Ð→
x

←Ð
x−1

[0,1]2 ΩFigure 4.2: Parametrization of Ω
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For the Poisson equation

−∆u = f, in Ω,

u = 0, on Γ,

we have the weak form

a(u,ϕ) = ∫
Ω
⟨∇u,∇ϕ⟩dx, b(ϕ) = ∫

Ω
fϕdx.

Classical regularity theory tells us that the problem on Ω is regular if the interior
angles of the corners of the domain is less that π, otherwise the solution might
have singularities of a certain type, for more information see [35]. The problem
has a solution if the angles between The idea is now to pull the solution back
to I2 using the parametrization x and construct a finite dimensional subspace
Vh ⊆H

1
0(I

2) to approximate the solution of the weak equation in, as in standard
Galerkin methods. To this end we consider the set B-splines on the parameter
domain [0,1]2

Nk,` ∶ (ξ, η)↦ Np
ξ;k(ξ)N

q
η;`(η),

Where the right hand side are B-splines of degree p and q defined on the same
knot vectors ξ and η as x. It is also possible to use refined knot vectors to
improve the numerical stability. Using the parametrization we can construct a
set of basis function in Ω

Mk,` ∶ (x, y)↦ Nk,` (x
−1(x, y)) .

And we will look for a solution uh in

Vh = span{Mi,j}, i = 1 . . .mξ, j = 1 . . .mη.

Which satisfy
a(uh, vh) = b(vh), ∀vh ∈ Vh.

Here is h is a parameter specifying the mesh size of the B-splines solution space
Vh. To be explicit, our solution uh is of the form

uh(x, y) =
mξ

∑
i=1

mη

∑
j=1

ui,jMi,j(x, y) =
mξmη

∑
k=1

ukMk(x, y)

Where we have made a reordering of coefficients, k = i +m(j + 1). We assumed
full multiplicity for the boundary knots in ξ,η, ensuring that we can enforce the
Diriclet condition by setting the boundary control points of ui,j to zero, thus
ignoring the boundary B-splines. Mi,j is of the same smoothness as Ni,j .

See Fig. 4.3 for a visualization of the basis functions Mk,`. Using the chain rule
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Ð→x

←Ðx
−1

Figure 4.3: Left: Ni,j basis. Right: Mi,j basis
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That is
∇M = J−T∇N,

where J is the Jacobian of x, and J−T is the inverse transposed. For the Poisson
equation, this gives is the weak pulled back equation with u = û○x and ϕ = ϕ̂○x,

∫
1

0
∫

1

0
⟨J−T∇u, J−T∇ϕ⟩detJ dξ dη = ∫

1

0
∫

1

0
fϕdetJ dξ dη

For uh ∈ Vh and letting vh vary of all Mk, we get the linear system

A[u] = b

with [u] being the vector of control points of u and

Aij = ∫
1

0
∫

1

0
⟨J−T∇Ni(ξ, η), J

−T∇Nj(ξ, η)⟩detJ dξ dη,

bi = ∫
1

0
∫

1

0
f(x(ξ, η))Ni(ξ, η)detJ dξ dη

In practice we will evaluate the integrals using a Gaussian quadrature scheme.
One can obtain a similar error analysis as for standard Galerkin methods, we
just mention the results

Theorem 4.6 There exists a unique solution solution uh, and the approxi-
mation power to the unique solution u of (4.3) satisfy the classical Cea type
lemma,

∥u − uh∥H1(Ω) ≤
M

α
inf
vh∈Vh

∥u − vh∥H1(Ω) (4.15)

Where M and α are the continuity and coercivity constants of a, i.e.

∣a(u, v)∣ ≤M∥u∥∥v∥

a(v, v) ≥ α∥v∥
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The right hand side is the approximation error of the subspace Vh. If we define
the mesh of the parametrization as

Qi,j = (ξi, ξi+1) × (ηj , ηj+1)

and h = maxi,j diamx(Qi,j). Then the approximation power of Vh is given by

Theorem 4.7 Assuming the degree p = q, There exists an interpolation op-
erator ih ∶ Hs(Ω) → Vh, and a constant such that for all u ∈ Hs(Ω) it holds
that

∥u − ih(u)∥Hs(Ω) ≤ Ch
p−s∥u∥Hs(Ω)

See [17].

4.3.1 The Parametrization problem

For a general domain it is quite difficult to determine coefficients xi,j such that
the map x defines a valid parametrization. In general we only have the boundary
curve given, and then we want to extend this to a parametrization of the whole
domain. See Fig. 4.4. The problem is, given y ∶ ∂I2 → ∂Ω find a map x such

Ð→
y

Figure 4.4: How to extend y to all of Ω?

that
x ∶ I2 → Ω, such that x∣∂I2 = y, detJ > 0.

In terms of our B-splines basis, we have assumed that the geometry knot se-
quences have full multiplicity at the boundary, so the boundary control points

x1,j ,xN,j ,xi,1,xi,M
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Figure 4.5: An extension of y

Ð→

completely determine the four boundary curves. Now we need determine the
inner control points

xi,j , i = 2, . . . ,m − 1, j = 2, . . . , n − 1.

See Fig. 4.5, for an illustration. This is equivalent to the meshing problem for
FEM. Several methods have been proposed to solve this problem. The arguably
simplest method, and the one we will use is the spring model. We will think
of all the control points as connected by springs, fixing the boundary, and then
letting the system go and settle in an equilibrium. In this way, each control
points will be the average of its connected neighbours,

xi,j =
1

4
(xi−1,j + xi+1,j + xi,j−1 + xi,j+1).

This is a linear problem, and straight forward to solve. On the other hand, it
does not guarantee that the obtained parametrization is valid, and it will fail
for a lot of domains. For simple domains, it does work reasonably well and
gives valid parametrizations. We refer to Section 4.6 for examples of solutions
to this system. Other more advanced methods have been proposed, to find
parametrizations that are guaranteed to be valid and give a good numerical
analysis. These can be quite difficult to solve, and usually involves a non-linear
optimization problem to be solved, see [34].

Figure 4.6: Two different parametrizations of Ω. Color is visualizing ∣detJ ∣
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4.4 Discretize-first

Recall that an alternative to Optimize-first is the Discretize-first paradigm. In
this approach we discretize our shape functional first, to obtain a problem on
finite dimensional subspace. Using the IGA method of Section 4.3, we get the
functional

min
xij

J(x) =
1

2
∫
I2

∣y(x(ξ, η)) − yd(x(ξ, η))∣
2 detJ dξ dη,

s.t. A(x)[y] = b(x).

Where y = ∑k ykMk, so y ○ x = ∑k ykNk, and [y] denotes the vector of control
points. It is not a problem to define the derivative of the solution u to the state
equation w.r.t the control points, so we can apply the implicit differentiation.
Let ′ = ∂xki,j denote differentiation w.r.t the k coordinate of the control point
xi,j , then

J(x)′ = ∫
I2

∣y − y0∣(y
′ −∇yd ⋅ x

′) +
1

2
∣y − y0∣

2 tr(J−1J ′)detJ dξ dη (4.16)

where y′ solves

A(x)y′ = b′(x) −A′(x)y. (4.17)

With the derivatives of the components of the weak equation given by

A′
ij = ∫

1

0
∫

1

0
(⟨J−TJ ′TJ−T∇Ni(ξ, η), J

−T∇Nj(ξ, η)⟩

+ ⟨J−T∇Ni(ξ, η), J
−TJ ′TJ−T∇Nj(ξ, η)⟩

+ ⟨J−T∇Ni(ξ, η), J
−T∇Nj(ξ, η)⟩ tr(J−1J ′)detJ dξ dη,

b′i = ∫
1

0
∫

1

0
(⟨∇f(x(ξ, η)),x′(ξ, η)⟩

+f(x(ξ, η)) tr(J−1J ′)Ni(ξ, η)detJ dξ dη

and the derivatives of the parametrization are

x′ = δijekBlk(ξ, η)

J ′ = ek(∇Ni,j)
T

Where e1 = (1,0),e2 = (0,1) is the standard basis of R2. This is a finite
dimensional optimization problem, which can be solved by standard methods.
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4.5 Riemannian shape optimization

In this section we collect results from previous sections, in an effort to solve
the model shape optimization problem. Our problem functional only depends
on the boundary of Ω, so for regular enough boundaries J(Ω) can be identified
with a function J ∶ Immn(S1,R2) → R, which we denote by the same sym-
bol. The shape derivative can be interpreted as the differential dJ(c), and the
metric Gc opens up the use of Riemannian optimization methods to solve the
problem. Using a Riemannian metric to turn a shape derivative into a gradient
was first proposed in [69], on shape functionals not constrained by a PDE. This
was extended to PDE constrained problems in subsequent papers, [71, 70, 72].
However there are still many unanswered questions, we mention a few:

• Error in definition of Horizontal bundles. This influences the computation
of gradients.

• The influence of choice of metric is not investigated.

• All derivation and analysis is done formally on smooth curves. No discus-
sion of the applicability of convergence results.

• No comparison to non-Riemannian methods.

The implementation in these papers is based on FEM, which is not good if we
want to study the effect of higher order terms in the metric. Any simple closed
continuous curve bounds an interior domain Ω, which we can identify with its
boundary Γ, which can be parametrized by an embedding c ∶ S1 → Γ. In this
way we obtain a map

J ∶ Embn(S1,R2)→ R
J(c) = J(int(Γ))

Where J is the function defined in (4.1). Classical existence results for el-
liptic PDE’s state that the state equation has a weak solution in H1

0(Ω) as
long as the boundary is Lipschitz. Hence J(c) is well-defined for n ≥ 2 by the
Sobolev Embedding Theorem. J is a function on the Riemannian manifold
(Embn(S1,R2),Gc) where Gc is chosen as a strong Riemannian metric. If J is
smooth enough, we can apply algorithms from Sec. 4.2 to minimize it. We can
prove that for smooth enough boundaries J is at least continuously directionally
differentiable,

Lemma 4.8 The functional J ∶ Embn(S1,Rd) is Gateux-differentiable for n ≥
3.



90 Shape Optimization

Proof. To show differentiability we will use the results from shape calculus in
Sec. 4.1. The condition n ≥ 3 ensures that the boundary of Ω is C2, hence the
solution y of the Poisson equation (4.4) is in H2(Ω). Now take a differentiable
path c ∶ (−ε, ε)→ Embn(S1,R2) with c(0) = c0 and ct(0) = h. Let Ωt denote the
interior of c(t), by Lemma 4.2, the derivative of J along c exists and is given by
the boundary formula, (4.10) with V (0) = h,

dJ(h) = ∫
S1

{
1

2
∣yd∣

2 +
∂y

∂n

∂p

∂n
} ⟨h,n⟩ds. (4.18)

where (y, p) satisfies the state and adjoint equations

−∆y = f in Ω, y = 0 on Γ.

−∆p = y − yd in Ω, p = 0 on Γ.

This is linear and continuous in h, which is the statement. ◻ .

Remark 6 We conjecture that the result also holds for n = 2, but at the
time of writing we have no complete proof. The reason to believe this is
that the domain formula (4.9) is well-defined for any c ∈ H2(S1,R2) and V ∈
C0((−ε, ε),C1

c (R2,R2)), and is continuously linear in V . If we can show how to
extend a tangent vector h ∈ H2(S1,R2) linearly and continuously to a field V ,
such that the flow of c along V is in H2(S1,R2), then J is Gateux-differentiable
on Imm2(S1,R2). For the boundary formula (4.10) to be valid, the solution y
needs to be in H3/2(Ω) to have a normal derivative on the boundary. This is
satisfied for a C1,1 domain, so there are H2-immersions for which (4.18) cannot
be valid.

Remark 7 To show that J is twice-differentiable we would have to compute
the shape derivative of (4.18), w.r.t a new vectorfield W . This can be done, but
requires more smoothness assumptions on the solution y, hence smoothness of
c. The BFGS method requires J to be twice continuously Frechét differentiable,
but we have no proof of this. The second derivative is also not needed for the
implementation of the optimization procedure. Showing first and second order
Frechet differentiability is left for future work.

To compute the gradJ ∈ Tc Immn(M,R2), we need to solve the equation

Gc(gradJ,h) = dJc(h).

Note that by definition J is invariant under the action of the diffeomorphism
group, so gradJ is orthoginol to the action of reparametrizations of curve: it
is a horizontal vector. If c is smooth, dJc(h) defines a distribution on S1 so
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we cannot immediately construct a smooth gradient vectorfield gradJ which is
dual to dJc(h) through Gc. This is the reason we need a strong Riemannian
metric to guarantee that the gradient will be in the right tangent space, for the
case of regular curves this restricts us to consider Sobolev curves. Note that
if c is Sobolev regularity n ≥ 3 then by Lemma 2.4 the action of Diff(S1) is
differentiable, and ∇JGJ will be Gc-orthogonal to the orbits of Diff(S1). For
the simplest L2 metric, this is equivalent to being point-wise normal to c, for
higher order metrics the condition is more complicated.

As explained in Section 4.2, we want to avoid computing geodesics, so we choose
a retraction Immn(S1,R2). The arguably simplest retraction we can pick is

Rc(th) = c + th, c ∈ Immn(S1,R2), h ∈ Tc Immn(S1,R2)

For t small enough this is still a regular curve. Associated to this retraction is
the vector transport

Tc,h(v) = v ∈ TR(c+h) Immn(S1,R2).

This is isomorphism of vector spaces, but not an isometry, which is assumed
in the convergence analysis of the BFGS method in [65]. In the same paper
the numerical examples also used this relaxed condition, where convergence was
still seen in practice, but no convergence was proven. An important property
of the manifold is completeness. By the results of Chapter 1, we know that we
have completeness for metrics of order n ≥ 2. The final algorithm for solving
the optimization problem is given in Alg. 1. Note that from the Riemannian

Algorithm 2 Riemannian BFGS Shape Optimization

Input: f, yd ∈H1(R2), c0 ∈ Embn(S1,R2), k = 0,B0 = Id.
for k = 1,2, . . . do
Update Hk according to (4.14).
Descent direction: pk =Hk gradJ .
Do line-search:
while ck + tpk ∉ Embn(S1,Rd) or satisfies Def 4.4(Armijo Point) do
t← βt

end while
ck+1 ← ck + tpk
if J(ck+1) satisfies stop criteria. then

return ck+1

end if
end for

perspective, the problem is not constrained. The embedding condition is built
in naturally in the retraction. The openness of embeddings in all Hn-curves
guarantees that backtracking will find a valid curve. Contrast the setting to a
classical BFGS method where the problem must be unconstrained.



92 Shape Optimization

4.5.1 Discretization

We need to compute dJc(h), Gc, gradJ and Hk. Again we will use a discretiza-
tion by B-splines. To use IGA (in a single patch formulation), our geometry
parametrization is defined on the unit square x ∶ I2 → R2, and the boundary
is defined by four splines. Such a parametrization can have singularities at
the corner points, which contradicts our assumption that the boundary can be
parametrized by a regular curve. We remedy this by assuming that only one
boundary is free, which is what will use in the examples in Section 4.6. So we
consider the space

Embn0 ([0,1],R
d) = {c ∈Hn(S1,Rd) ∶ ∣c′∣ > 0, c(0) = p0, c(1) = p1},

with p0, p1 ∈ Rd. The manifold structure of this space is constructed the is the
same as for periodic curves, expect some care has to taken on the boundary,
we leave out the details here. Sobolev metrics can be defined on this space by
altering the boundary condition for the defining differential operator. Metric
completeness for higher order metrics on this space is not proven, but we con-
jecture that the result still holds for fixed end points. For notation, we us define
the function

Bp(ξ) = p0B
nξ
ξ,1(ξ) + p1B

nξ(ξ)
ξ,mξ

S = {c(ξ) = Bp(ξ) +
mξ−1

∑
i=2

ciB
nξ
ξ,i(ξ) ∶ ci ∈ R

2,c1 = p0,cmξ = p1}

the space of all spline curves connecting p0 and p1, which is an affine space.
Then we can parametrize a finite dimensional submanifold of Immn

0 by

Se = S ∩Embn0 ([0,1],R
d).

The tangent space is given by

TcSe =

⎧⎪⎪
⎨
⎪⎪⎩

h =
mξ−2

∑
i=1

hiB
nξ
ξ,i+1(ξ) ∶ hi ∈ R

2
⎫⎪⎪
⎬
⎪⎪⎭

Note that since Se is locally linear, the tangent space description doesn’t depend
on the footpoint c. We use the induced metric on Se, so at c the metric can be
represented by the matrix

Gij = Gc(B
nξ
ξ,i+1,B

nξ
ξ,j+1)

At the level of controlpoints, computing the retraction and vector transport is
trivial

Rc(th) = Bp(ξ) +
mξ−2

∑
i=1

(ci + thi)B
nξ
ξ,i(ξ)

Tc,h1(h2) = h1 + h2, h1, h2 ∈ TcSe
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When computing the retraction Rc(th) we need to check if c+th is an embedding:
no self-intersections and no singular points. For spline curves there are advanced
algorithms available to find self-intersections and zeros, see XX. [59]. In practice
we will use two simple heuristics. For a spline curve c, ∣c′∣2 is also a spline of
higher degree, and we can compute min ∣c′∣2 exactly. To locate self-intersections
we compute the turning angle of curve from p0 to p1,

α = ∫
1

0
κ(s)ds,

using Gaussian quadrature. As mentioned in Sect. 4.3 the elliptic equation only
has a solution if the angles of the corners are less than π, so if ∣α∣ > π the curve
must have turned more than once, and thus contain a self-intersection. In Alg.
3 this checking procedure is described with a tolerance level τ for how point-wise
singular we want to accept spline curves.

Algorithm 3 Check c is an immersion
Input: c0 ∈ Se, τ > 0.
Compute α = ∫

1
0 κ(s)ds,

Evaluate min ∣c′∣2 at
if ∣α∣ < π and min ∣c′∣2 > τ2 then

return true
else

return false
end if

4.6 Numerical example

We will consider the following example, where the solution is known. Choose
yd, f as

yd = e
1−(x2+y2) − 1

f = −4(x2 + y2 − 1)e1−(x2+y2)

Then the solution is unit disc, and the optimal value of the functional is zero.
The initial guess of the free boundary is a straight line connecting (1,0) and
(0,1). The fixed part of boundary is chosen as the L2 minimizer to the stan-
dard unit-speed parametrization of the circle. The initial mesh obtained by the
spring method is vizualized in Fig. 4.7: Red nodes are fixed, green nodes are the
free parameters and yellow nodes are computed from the spring model. Note
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that according with the central theme of this thesis, there are many different
parametrizations of the optimal solution, so we cannot directly measure the
distance to the circle. We could use the numerical methods in Chapter 2, but
we would get different values for different choices of metrics. Instead we will
compare the optimization history, computation time and resulting parametriza-
tion between Discretize-first and Riemannian Shape optimization. We use 10
control points in our test.
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Figure 4.7: Initial mesh

We use Alg. 3 as a non-linear constraint on the space of control points, and
implement the functional and gradient given by the Discretize-first method from
Sect. 4.4, together in Matlab’s fmincon, using a BFGS interior-point method.
The resulting optimization history is depicted in Fig. 4.8 for two different values
of the tolerance τ in the embedding constraint. We use the termination criteria
∣∇J ∣ < 10−6. For τ = 0.1 the optimization stops at the gradient criteria, the
computation time on a 2.4Ghz laptop running Matlab v2015b is 210 sec. For
τ = 0.01 the optimization does not terminate by the gradient condtition, but
after taking a step smaller than 10−12.

Now we show results using Riemannian optimization, all optimization methods
are terminated when ∣gradJ ∣ < 10−6. In Fig 4.10 the optimization history of a
Riemmanian steepest descent, which correspond to the choice of Hk = Id for all
k. The history of Riemannian BFGS shape optimization as implemented in Alg.
2, is shown in in Fig. 4.11 and 4.12. Here the influence of different choices of the
constants a0, a1, a2 is investigated. The value of functional is show on the left,
and the value of the norm of the gradient on the right. The computational time
In Fig 4.9 we compare the final optimized meshes from fmincon and Riemannian
BFGS with a0 = 1, a1 = 0.1, a2 = 0. The computational times of the problem is
summed up in table 4.1.
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Figure 4.8: fmincon optijmization history. Black: τ = 0.1, blue τ = 0.01.
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Figure 4.9: Zoom in on solution mesh. Left: Riemannian Optimization.a0 =
1, a1 = 0.1 Right: fmincon, τ = 0.1

4.7 Discussion

In the case of our numerical example, the Riemannian shape optimization
seems to be a good alternative to an to a simple discretize-first approach. The
parametrization of the solution mesh produced by fmincon, see Fig. 4.9 is very
close to being singular: two control points have switched places along the circle,
here the parametrization is still regular but very close to being singular. This
is a typical problem for the solutions produced by fmincon when trying other
initial guesses and number of control points. The optimization has a tendency
to develop singular points on the boundary and so it fails to evaluate the func-
tional. This is typical of shape optimization problems in general, where one
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Figure 4.10: Steepest Descent history
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Figure 4.11: Riemannian BFGS optimization history. a0 = 1, a2 = 0

often has to overcome problems with degenerate meshes. In [57] clustering of
control points is also observed in a fluid dynamics problem, and overcome by
adding a term to J which penalizes non constant-speed parametrizations.

The mesh shown in Fig. 4.9 for the Riemannian shape optimization is charac-
teristic for any choice of parameters ai: we see a uniform distribution of control
points along the solution circle, and this is without adding a regularization term
to J . We could interpret this as the Riemannian metric acting as a regulariza-
tion. As mentioned before, from the Riemannian perspective, the problem is not
constrained by the regularity of the boundary, this is build into the definition
of the underlying manifold of immersions.

An interesting observation was that computing the gradient using discretize-first
(4.16) along with (4.17), and the shape derivative (4.18), gave numerically very
similar results. We mean this in the sense that using (4.18) for the gradient in
fmincon provided the exact same optimization history. The difference in com-
putational time is somewhat significant, around a factor of 3 faster to compute
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Figure 4.12: Riemmanuan BFGS optimization history, a0 = 1, a1 = 0

0 0.01 0.1 1 5 10
a1 19.3 21.2 122 24.0 73 83.0
a2 19.2 20.8 14.5 MAX MAX MAX

Table 4.1: Computational time in sec. of Riemannian BFGS method on
2.4Ghz laptop. MAX means that the methods stopped after re-
acting the maximum iteration of 100.

the shape derivative reducing the optimization time from 210 to 70 sec. The
difference is due to the fact that computing A′(x) is somewhat slow. This could
of course be due to differences in implementation, so we will be reluctant in
making any conclusions.

The computational time of one Steepest Descent iteration is roughly the same as
a BFGS step, so comparing Fig. 4.10 with Fig. 4.11 and 4.12, we see that BFGS
provides a significant speed up compared to a simple first order method. It is
difficult to compare computational time across different methods, but taking
the above comment into consideration we see that Riemannian BFGS provides
a small speed up in computation over fmincon. This is only case that the
constants in the metric is chosen small. Computing gradJ involves inverting the
metric G, and as G contains a differential operator, this gives a smoothing effect
on the resulting gradient. For large values of a1 and a2, inverting G becomes
very sensible, so the directions obtained may be quite poor for performing line-
search. This is reflected in the tableaus of the history, where the line-search can
only find a very small decrease in the objective function, until a good direction
is found and the decrease is bigger. For large a2 the method doesn’t converge
within the maximum number of allowed iterations. For the choice a1 = 0.1 we see
a spike in computational time, where much time is spend in the line-search part,
but we have no explanation for this behaviour. It seems best to use a1 = a2 = 0,
or small values of a1. This is in contrast to the theory which tells us the metric
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is strong and the manifold complete only for a2 > 0. A L2 or H1 type metric is
only weak, so obtaining theoretical results for this case would be very difficult.



Appendix A

Sobolev theory on the circle

Here we will present a quick overview of square integrable Sobolev spaces on the
circle, and some results about elliptic operators between them. Integer order
Sobolev spaces are standard material in any course on PDE’s, but real valued,
espcially negative power Sobolev space might not be, so we will present them in
a way which includes these. For the circle everything can be done very neatly in
terms of Fourier series. For general non-compact manifolds the theory becomes
much more complicated and we will not mention this here. The results will
follow Chap. 4 in [19], and we refer here for proofs. Another more thorough
presentation without elliptic operators can be found in [33].

For any finite sums of exponentials u = ∑n αneinx and v = ∑n βneinx define the
inner product

⟨u, v⟩s = ∑
n∈Z

(1 + n2)sαnβ−n (A.1)

The spaceHs(S1) is defined as the completion of this space. In this way, Hs(S1)
is simply a space of Fourier series, which converges in a weighted `2 norm. For
positive s the weights grow with n, so the series has to go to zero. For negative
s the weights go towards zero with n, so series can be allowed to grow with n.

We have the following classical embedding result.
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Lemma A.1 (Sobolev Embedding) For s < 1
2
+k, the space Hs(S1) em-

beds continuously into Ck(S1).

We will also need that for regular enough functions, Sobolev spaces define an
algebra under multiplication

Lemma A.2 (Sobolev Algebra) For s > 1
2
, and f, g ∈ Hs(S1) we have

a well-defined product which satisfies

∥f ⋅ g∥Hs ≤ C∥f∥Hs∥g∥Hs

The spaces embed continuously into each other.

Lemma A.3 For s < t the embedding Ht ↪Hs is continuous.

An operator of order m L ∶Hn →Hn−m of the form

L(f) =
n

∑
k=0

ak(x)
dkf

dxk

is said to be elliptic if there exists a constant C such that

(−1)m/2am(x)ξm ≥ C ∣ξ∣m

We can characterize invertability of such an operator.

Theorem A.4 Let L be an elliptic operator of order m, the equation

Lu = f

has a solution for any f ∈H−∞, if and only if

Lu = 0

has only the trivial solution u = 0.



Appendix B

Convergence of spline
approximations

The Hilbert space tensor product Hk([0,1])⊗̂H`(S1) is the completion of the
algebraic tensor product Hk([0,1])⊗H`(S1) with respect to the uniform cross
norm

β(∑
i

fi ⊗ gi)

2

=∑
i,j

⟨fi, fj⟩Hk([0,1])⟨gi, gj⟩H`(S1) . (B.1)

The following result connects the mixed order Sobolev space (3.9) to a Hilbert
space tensor product.

Lemma B.1 Hk,`([0,1]×S1) is isometrically isomorphic to Hk([0,1])⊗̂H`(S1).

A similar result for Hk,`(R ×R) is shown in [74, Thm. 2.1]. Our proof follows
the lines of [47, Thm. 1.39], where the result is shown for the case k = ` = 0.

Proof. Each tensor c = ∑i fi ⊗ gi ∈ H
k([0,1]) ⊗ H`(S1) defines a function

Jc ∈ Hk,`([0,1] × S1), via Jc(t1, t2) = ∑i fi(t1)gi(t2). It is not hard to verify
that J is an isometric embedding of Hk([0,1]) ⊗H`(S1) in Hk,`([0,1] × S1),
i.e., β(c) = ∥c∥Hk,`([0,1]×S1). To complete the proof, we show that J is onto.
Being an isometry, the range of J is closed and so it suffices to show that its
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orthogonal complement is trivial inHk,`([0,1]×S1). Let c ∈Hk,`([0,1]×S1) and
suppose that ⟨c, f⊗g⟩Hk,`([0,1]×S1) = 0 for all f ∈Hk([0,1]) and g ∈H`(S1). Let
⟨c, g⟩H`(S1) denote the function t1 ↦ ∫S1 c(t1, t2)g(t2)dt2. Then ⟨c, g⟩H`(S1) ∈

Hk(S1) with ∂kt1⟨c, g⟩H`(S1) = ⟨∂kt1c, g⟩H`(S1). It follows that

⟨c, f ⊗ g⟩Hk,`([0,1]×S1) = ⟨f, ⟨c, g⟩H`(S1)⟩Hk([0,1]) = 0 .

As f is arbitrary, it follows that ⟨c, g⟩H`(S1) vanishes at almost every t1. Sim-
ilarly, since g is arbitrary, c vanishes at almost every t1, t2. Therefore, c = 0 in
Hk,`([0,1] × S1).

Corollary B.2 The multiplicatively decomposable functions (t, θ)↦ f(t)g(θ) =
(f⊗g)(t, θ) with f ∈Hk([0,1]), g ∈H`(S1), span a dense subspace of Hk,`([0,1]×
S1).

Proof. This follows from the denseness ofHk([0,1])⊗H`(S1) inHk([0,1])⊗H`(S1)
and Lem. B.1.

The following lemma shows that the Sobolev embedding theorem in one dimen-
sion extends to higher dimensions via tensor products.

Lemma B.3 For each k, ` ≥ 0, the space Hk+1,`+1([0,1] × S1) is continuously
embedded in the space Ck,`([0,1] × S1).

Proof. Let {fi} be an orthonormal basis of Hk+1([0,1]) and {gj} an orthonor-
mal basis ofH`+1(S1). Then {fi⊗gj} is an orthonormal basis ofHk+1([0,1])⊗̂H`+1(S1).
By Lem. B.1 this space is equal to Hk+1,`+1([0,1]×S1). Therefore, any element
in this space can be expressed as c = ∑i,j ci,jfi ⊗ gj for some ci,j ∈ R. By the
Sobolev embedding theorem in one dimension there exists C > 0 such that

∥∂kt ∂
l
θc∥

2
∞ =

XXXXXXXXXXX
∑
ij

cij(∂
k
t fi)⊗ (∂lθgj)

XXXXXXXXXXX

2

∞

≤∑
ij

c2ij∥∂
k
θ fi∥

2
∞∥∂ltgj∥

2
∞

≤ C∑
ij

c2ij∥fi∥
2
Hk+1([0,1])∥gj∥

2
H`+1(S1) = C∥c∥2

Hk+1,`+1([0,1]×S1) .

Similar estimates hold for lower derivatives of c. This shows that the Ck,`-norm
is bounded by the Hk+1,`+1-norm.

To prove Lem. 3.8 we need a result on the approximation power of one-dimensional
splines.

Lemma B.4 Let I = [0,1] or I = S1, n, k ∈ N with n ≥ k, and f ∈Hk(I). Then

lim
N→∞

∥f − SnNf∥Hk(I) = 0 .
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Proof. The set of smooth functions in dense in Hk(I). Therefore, there is for
each ε > 0 a function g ∈ C∞(I) such that ∥f − g∥Hk(I) < ε/2. If N is sufficiently
large, there is a spline h of order n defined on the uniform grid with N points
such that ∥g − h∥Hk(I) < ε/2. This follows from [73, Cor. 6.26]. By the best
approximation property of the orthogonal projection SnN ,

∥f − SnNf∥Hk(I) ≤ ∥f − h∥Hk(I) ≤ ∥f − g∥Hk(I) + ∥g − h∥Hk(I) < ε .

Since ε was arbitrary, this shows that SnNf → f in Hn(I) as N →∞.

Collecting these results we are able to prove Lem. 3.8.

Proof of Lem. 3.8. Let c ∈ Hk,`([0,1] × S1) and ε > 0. By Cor. B.2 there exist
functions fi ∈Hk([0,1]) and gi ∈H`(S1), i = 1, . . . , n, such that

∥c −
n

∑
i=1

fi ⊗ gi∥
Hk,`([0,1]×S1)

< ε/2 .

By Lem. B.4 and by the fact that the tensor norm is a reasonable cross norm
(i.e., ∥fi ⊗ gi∥Hk,`([0,1]×S1) ≤ ∥fi∥Hk([0,1])∥gi∥H`(S1)) it is possible to choose Nt
and Nθ large enough such that

∥
n

∑
i=1

fi ⊗ gi −
n

∑
i=1

SntNtfi ⊗ S
nθ
Nθ
gi∥

Hk,`([0,1]×S1)
< ε/2 .

These two estimates and the best approximation property of the orthogonal
projection Snt,nθNt,Nθ

yield

∥c − Snt,nθNt,Nθ
c∥
Hk,`([0,1]×S1)

≤ ∥c −
n

∑
i=1

SntNtfi ⊗ S
nθ
Nθ
gi∥

Hk,`([0,1]×S1)
< ε .
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Appendix C

Derivatives of the energy
functional

In this appendix we list the derivatives of the energy functional (3.5). The first
derivative is

dEc(k) = ∫
1

0
∫

2π

0
t1⟨c

′, k′⟩ + t2 (⟨c′′, k′⟩ + ⟨c′, k′′⟩) + t3⟨ċ, k̇⟩ + t4⟨ċ
′, k̇′⟩

+ t5(⟨ċ
′′, k̇′⟩ + ⟨ċ′, k̇′′⟩) + t6⟨ċ

′′, k̇′′⟩dθ dt ,

with

t1 =
a0

∣c′∣
⟨ċ, ċ⟩ −

a1

∣c′∣3
⟨ċ′, ċ′⟩ − 7

a2

∣c′∣9
⟨c′, c′′⟩2⟨ċ′, ċ′⟩ + 10

a2

∣c′∣7
⟨c′, c′′⟩⟨ċ′, ċ′′⟩ − 3

a2

∣c′∣5
⟨ċ′′, ċ′′⟩ ,

t2 = 2
a2

∣c′∣7
⟨c′, c′′⟩⟨ċ′, ċ′⟩ − 2

a2

∣c′∣5
⟨ċ′, ċ′′⟩ , t3 = 2a0∣c

′∣ , t4 = 2
a1

∣c′∣
+ 2

a2

∣c′∣7
⟨c′, c′′⟩ ,

t5 = −2
a2

∣c′∣5
⟨c′, c′′⟩ , t6 = 2

a2

∣c′∣3
.
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The Hessian is

d2Ec(h, k) = ∫
1

0
∫

2π

0
w1⟨c

′, h′⟩⟨c′, k′⟩

+w2 (⟨c′′, h′⟩⟨c′, k′⟩ + ⟨c′, h′⟩⟨c′′, k′⟩ + ⟨c′, h′′⟩⟨c′, k′⟩ + ⟨c′, k′′⟩⟨c′, h′⟩)

+w3(⟨c
′′, h′⟩⟨c′′, k′⟩ + ⟨c′, h′′⟩⟨c′, k′′⟩ + ⟨c′, h′′⟩⟨c′′, k′⟩ + ⟨c′, k′′⟩⟨c′′, h′⟩)

+w4(⟨ċ, ḣ⟩⟨c
′, k′⟩ + ⟨ċ, k̇⟩⟨c′, h′⟩) +w5(⟨ċ

′, ḣ′⟩⟨c′, k′⟩ + ⟨ċ′, k̇′⟩⟨c′, h′⟩)

+w6(⟨ċ
′′, ḣ′⟩⟨c′, k′⟩ + ⟨ċ′′, k̇′⟩⟨c′, h′⟩ + ⟨ċ′, ḣ′′⟩⟨c′, k′⟩ + ⟨ċ′, k̇′′⟩⟨c′, h′⟩)

+w7(⟨ċ
′, ḣ′⟩⟨c′′, k′⟩ + ⟨ċ′, k̇′⟩⟨c′′, h′⟩ + ⟨ċ′, ḣ′⟩⟨c′, k′′⟩ + ⟨ċ′, k̇′⟩⟨c′, h′′⟩)

+w8 (⟨ċ′′, ḣ′⟩⟨c′′, k′⟩ + ⟨ċ′′, k̇′⟩⟨c′′, h′⟩ + ⟨ċ′, ḣ′′⟩⟨c′′, k′⟩ + ⟨ċ′, k̇′′⟩⟨c′′, h′⟩

+ ⟨ċ′′, ḣ′⟩⟨c′, k′′⟩ + ⟨ċ′′, k̇′⟩⟨c′, h′′⟩ + ⟨ċ′, ḣ′′⟩⟨c′, k′′⟩ + ⟨ċ′, k̇′′⟩⟨c′, h′′⟩)

+w9(⟨ċ
′′, ḣ′′⟩⟨c′, k′⟩ + ⟨ċ′′, k̇′′⟩⟨c′, h′⟩)

+ t1⟨h
′, k′⟩ + t2 (⟨h′′, k′⟩ + ⟨h′, k′′⟩) + t3⟨ḣ, k̇⟩ + t4⟨ḣ

′, k̇′⟩

+ t5 (⟨ḣ′′, k̇′⟩ + ⟨ḣ′, k̇′′⟩) + t6⟨ḣ
′′, k̇′′⟩dθ dt ,

with

w1 = −a0
1

∣c′∣
⟨ċ, ċ⟩ + a1

3

∣c′∣5
⟨ċ′, ċ′⟩ + a2

63

∣c′∣11
⟨c′, c′′⟩2⟨ċ′, ċ′⟩

− a2
70

∣c′∣9
⟨c′, c′′⟩⟨ċ′, ċ′′⟩ + a2

15

∣c′∣7
⟨ċ′′, ċ′′⟩ ,

w2 = −a2
14

∣c′∣9
⟨c′, c′′⟩⟨ċ′, ċ′⟩ + a2

10

∣c′∣7
⟨ċ′, ċ′′⟩ , w3 = a2

2

∣c′∣7
⟨ċ′, ċ′⟩ , w4 = a0

2

∣c′∣
,

w5 = −a1
2

∣c′∣3
− a2

14

∣c′∣9
⟨c′, c′′⟩2 , w6 = a2

10

∣c′∣7
⟨c′, c′′⟩ , w7 = a2

4

∣c′∣7
⟨c′, c′′⟩ ,

w8 = −a2
2

∣c′∣5
, w9 = −a2

6

∣c′∣5
.
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