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Summary
To develop a successful an oral formulation of insulin for treatment of type-2 diabetes
patients would be a great mile stone in terms of convenience. Besides protecting
insulin from enzymatic cleavage in the small intestine, the formulation must overcome
the intestinal epithelia barrier. Absorption enhancers are needed to ensure even a
few percent of insulin are taken up. In thesis article 1, various methods to measure
the effect of absorption enhancement and enzyme stability of insulin were applied.
The major class of absorption enhancers is surfactant-like enhancers and is thought
to promote absorption by mildly perturbing the epithelial membranes of the small
intestine. The Caco-2 (Carcinoma Colon) cells can grow an artificial epithelial layer,
and are used to test the potency of new absorption enhancers. This project was aimed
to identify new absorption enhancers, that are both potent and sufficiently soluble.
Quantitative structural activity relationship (QSAR) modeling is an empiric approach
to learn relationships between molecular formulas and the biochemical properties
using statistical models. A public data set testing the potency of absorption enhancers
in Caco-2 was used to build a QSAR model to screen for new potent permeation
enhancers. Thesis article 2 contains likely the first QSAR model to predict absorption
enhancement. The model was verified by predicting molecules not tested before in
Caco-2. The Caco-2 model overestimates the clinical effect of lipophilic permeation
enhancers. In the Caco-2 model all reagents are pre-dissolved, and therefore the assay
cannot predict critical solubility issues and bile salt interactions in the final tablet
formulation. A QSAR solubility model was built to foresee and avoid slow tablet
dissolution. Due to enzyme kinetics, slow tablet dissolution will allow most insulin
to be deactivated by intestinal enzymes. The combined predictions of potency and
solubility, will likely provide a more useful in-silico screening of potential permeation
enhancers.

Random forest was used to learn relationships between molecular descriptors and
potency or solubility. However, unlike multiple linear regression, the explicitly stated
random forest model is complex, and therefore difficult to interpret and communicate.
Any supervised regression model can be understood as a high dimensional surface
connecting any possible combination of molecular properties with a given prediction.
This high dimensional surface is also difficult to comprehend, but for random forests,
it was discovered that a method, feature contributions, was especially useful to decom-
pose and visualize model structures. The visualization technique was named forest
floor and could replace the otherwise widely use technique partial dependence plots,
especially in terms of discovering interactions in the model structure. Thesis article
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3 describes the forest floor method. An R package forestFloor was developed to com-
pute feature contributions and visualize these according to the ideas of thesis article 3.
Better interpretation of random forest models is an exciting interdisciplinary field, as
it allows investigators of many backgrounds to find fairly complicated relationships in
data sets without in advance specifying what parameters to estimate. Forest floor was
used to explain how potency and solubility were predicted by random forest models.
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CHAPTER 1
Diabetes Type-2 and Oral

Insulin
”Diabetes is one of the first diseases described in an Egyptian manuscript from c.
1500 BCE mentioning ”too great emptying of the urine.” The first described cases
are believed to be type 1 diabetes. Indian physicians around the same time identified
the disease and classified it as madhumeha or honey urine, noting that the urine
would attract ants. The term ”diabetes” or ”to pass through” was first used in 230
BCE by the Greek Apollonius Of Memphis. The disease was rare during the time of
the Roman empire with Galen commenting that he had only seen two cases during
his career. Type 1 and type 2 diabetes were identified as separate conditions for the
first time by the Indian physicians Sushruta and Charaka in 400–500 AD with type
1 associated with youth and type 2 with being overweight. The term ”mellitus” or
”from honey” was added by the Briton John Rolle in the late 1700s to separate the
condition from diabetes insipidus which is also associated with frequent urination.
Effective treatment was not developed until the early part of the 20th century when the
Canadians Frederick Banting and Charles Best discovered insulin in 1921 and 1922.
This was followed by the development of the long acting NPH insulin in the 1940s.”

-https://en.wikipedia.org/wiki/History_of_diabetes 1

1I dedicate this first quotation to Wikipedia a community curated encyclopedia. Open and free
communities such as stackexchange.com (cross validated, stack-overflow, Tex, ...), R mailing list,
youtube.com have taught me the most in the last three years. I hope scientific literature, soon also
will become open source. That means open access to content and also a transparent community
driven editing and reviewing process.

https://en.wikipedia.org/wiki/History_of_diabetes
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1.1 Diabetes
Diabetes is a major challenge to general health and quality of life in almost every
country world wide. Type-2 accounts for the most incidents of diabetes and is strongly
associated with lack of physical exercise, an unfavorable diet and obesity. Other risk
factors are age and genetic predispositions. Type-2 diabetes is not only a problem in
industrialized countries. World-wide 380 million people are estimated to be affected
and 15% of deaths are attributable to diabetes. [Agu+13].

1.1.1 Blood sugar regulation in diabetic and healthy patients
Type-1 diabetes is defined as the inability to produce insulin due to the not fully
understood auto-immune rejection of the insulin producing beta-cells. The typical
onset of Type-1 diabetes is at child age or youth. Insulin is an important hormone
for regulation of the human metabolism, as it promotes uptake of glucose in the liver,
muscles and fat tissue. An oscillating level of insulin is required to regulate the energy
metabolism during the day. Shortly after a meal, insulin is released to signal the start
of glucose take up. In fasting state, insulin levels in healthy persons are low, as no
new glucose is obtained from digestion. Insulin has an oppositely acting counterpart,
glucagone, that promotes release of glucose primarily from the liver. Type-2 diabetes
is defined by insulin resistance, where the peripheral tissues and the liver do not
respond sufficiently to the endogenously produced insulin. When blood glucose levels
exceeds 10 mmol/L (180 mg/dL), the kidney can no longer re-uptake all glucose from
the excreted urine. The glucose in urine will sequentially increase osmolality and
prevent the kidney from also reabsorbing water and hence the higher rate of sweet
urine and the name diabetes mellitus. A healthy human can regulate the blood sugar
within 3.9 mmol/L and 7.8 mmol/L throughout a normal day cycle. After the meals
of the day, the food is metabolized and free glucose comes into blood circulation.
Without regulation, a single meal would make the blood sugar far exceed normal
levels[Sil10; Cow90].

To put these numbers in to perspective, ideally elevating the blood glucose from
3.9 to 7.8 mmol/L for adult of 80 kg and 8 liters of blood would only require
(7.8−3.9)mmol/L 180mg/dL

10mmol/L = 5.3g of glucose.
The pancreas, located adjacent to the first part of the intestine after the stomach,

senses systemic blood sugar levels. The pancreas can also receive hormone signaling
from the adjacent small intestines (e.g. GLP-1), indicating that food currently is
being metabolised and systemic blood sugar soon will rise. Thus, whenever needed
under and after a meal, the pancreas will release insulin. Insulin triggers a number
of blood glucose lowering responses, rendering cellular uptake and storage of glucose.
Glucose is stored short-term in the liver and muscles and in part converted to fat and
stored long-term in fatty tissues. The liver is the major short term energy storage,
taking up glucose and converting it to polymeric glucogen, that when needed can be
reconverted into glucose and released to systemic circulation again. For type-2 pa-
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tients, insulin secretion is constantly elevated to compensate for the insulin resistance,
and therefore the pancreas cannot further regulate the glucose load from a meal, as
it is already producing insulin almost as fast as possible [Sil10]. With a long-acting
insulin analogue for a type-2 diabetic, the insulin requirement from the pancreas is
no longer maxed out, such that the pancreas again can up and down regulate the
insulin level during the day.
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Figure 1.1: Glucose tolerance test: A typical healthy patient has a very low fasting
insulin level (dashed green line) and a high transient response to regulate
a glucose intake at 0 hours. A healthy patient is able to lower glucose
level within 2 hours after glucose intake (green line). The insulin level
of an untreated Type-2 patient (red dashed line) is already elevated and
no further compensation is possible. The glucose level (red line) will not
stabilize within 2 hours. Yellow dashed line represents a Type-1 patient
with almost no endogenous insulin production. If untreated, glucose
levels would exceed the ranges of this axis. Figure is reproduced by
redrawing and combining illustrations from [Sil10; CL04].

A glucose tolerance test is used to diagnose diabetes. Figure 1.1 outlines a glucose
tolerance test and the response from a healthy subject as well as for a type-1 and
type-2 diabetic patient. A type-1 diabetic patient will have no endogenous regulation
of blood sugar and both long acting and well timed short acting insulin therapy is
needed. However, due to uncertainties of timing and variance of bio-availability, oral
insulin therapy may at first only substitute long-acting insulin. As type-1 diabetics are
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already treating themselves with injectable short-acting insulin in conjunction with
meals, there is little rationale in replacing their long-acting basal insulin injectable
formulation with an oral tablet formulation. In contrary for type-2 diabetics that
only need a basal long acting insulin therapy to assist their pancreas in regulating
the blood glucose, an oral insulin therapy would be a convenient option to have.

1.1.2 Treatment and compliance
Intensive anti-diabetic therapy is important to avoid or delay myocardial infarct, mi-
cro vascular diseases and kidney related complications [Hol+08; Bou+11; Gæd+08].
Having a chronic elevated high blood glucose level is simply very unhealthy long-term
and will reduce the quality of life. As the type-2 diabetes progresses, glyceamic con-
trol is no longer achievable with a single oral agent such as Metformin or Sulfonylurea,
which receptively lowers insulin resistance and increases endogenous insulin produc-
tion. Injectable peptide based formulations of insulin-analogues or GLP-1-analogues
will inevitably be considered at some point in the disease stage progression. Incon-
venience and patient compliance are the main factors for not achieving the clinical
recommendations for blood glucose control in insulin treatment of type II diabetes
patients. To initiate injectable insulin therapy is a psychological barrier for Type-2
patients and a cause of worrying [Kor02]. Nevertheless insulin therapy will eventually
become the outcome for most Type-2 patients. From early onset type-2 patients still
have the ability to regulate blood sugar to some level and strict hourly control is not
needed. In two groups of 24,000 and 10,000 patients of seniors aged 60-69, the former
group was diagnosed with type-2 diabetes within last 9 years and the latter group
has been diagnosed more than 9 years ago. When recently diagnosed, patients are
prescribed oral hypoglycaemic agents (OHA). Therefore 50% of early diagnosed pa-
tients received metformin and/or sulfonylurea. Only 7.5% received insulin treatment.
In contrast, in patients diagnosed more than 9 years ago, fully 65% are ordinated
treatments based on injectable insulin [Hua+14]. Thus a typical type-2 diabetes dis-
ease progression will start with fairly convenient once a day tablets, mildly lowering
glucose. Hereby the constant insulin production of the pancreas is lowered, giving
the pancreas a insulin buffer capacity to regulate blood glucose throughout the day.
With time, more insulin is needed to obtain sufficient blood glucose control. The dis-
ease will progress from a treatment only complimenting the anatomical blood sugar
regulating mechanisms, to the insulin therapy becoming the main regulation of blood
glucose.

Compliance is the extent of which the patient uses the medicine as prescribed
by the physician. Especially for short acting injectable insulins, daily awareness
and monitoring of blood glucose and storing injectable insulin refrigerated may be a
large requirement for the patient. Type-1 patients who came to master these skills
early in life, are likely to have a much higher compliance. Simply, the patient must
learn to live by a fairly complex treatment regimen late in life. Compliance for only
oral agents can already be as low is 50% after six months [Gar+13]. In a study
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50% of insulin-naive patients perceived injectable insulin initiation as a failure. In a
study of those patients who did not comply to an treatment regime with injectable
insulin, the most common reasons given were planing to improve healthy behavior
instead (25%), fear of injection (13%), negative impact on work (9%), concerns on long
term medication (9%), inconvenience (6%), and not believing insulin was necessary
(6%). Despite the various available anti diabetic agents for various stages of type-2
diabetes, it is indicated that less than 50% of patients achieve the aimed glucose
control recommended and around two-thirds will die prematurely of cardiovascular
disease [Gar+13]. In contrary it is argued that current injection pens actually have
improved comfort for insulin injection so much, that needle phobia alone is not at
strong argument for developing oral insulin formulations [Mah+14].

The possible introduction of oral insulin may provide a mid-way solution, espe-
cially for type-2 patients where other oral agents no longer are potent enough, yet
with the same ease of administration as oral agents. Thus oral insulin may prolong
the time the patient can regulate blood sugar without injectable insulin and perhaps
improve compliance.

1.2 Drug Development Challenges of Oral Insulin
Oral formulations of insulin is not an obviously great idea. One broad intuitive expla-
nation is: From natures side, an organism tend not take up any foreign substances,
and certainly not foreign proteins or peptides. External proteins and peptides are
likely produced by foreign species, and therefore have been created to serve inde-
pendent purposes, that not necessarily are in alignment with the survival of this
organism.

Likewise, the human body has a series of barriers in the gastrointestinal tract
before proteins such as insulin, reach systemic circulation. Figure 1.2 illustrates the
upper gastrointestinal tract and the barriers for insulin.

1.2.1 Acid resistant coating
Normal protein digestion starts in the stomach with the enzyme pepsin cleaving pro-
tein amide-bonds next to lipophilic/aromatic amino acids. Insulin formulations are
simply protected towards pepsin and acidic hydrolysis with an acid insoluble tablet
coating. The coating is made of polymers with pH-dependent solubility. Acidic side
groups will only deprotonate under neutral pH. Deprotonation, and hence ioniza-
tion, increases the solubility of the otherwise non-ionic lipophilic polymers [CM99;
Gab+10]. Most coatings are designed to dissolve at pH > 5.5 [Mah+14].

The sphincther, the opening muscle of the stomach, forwards some of the acidic
stomach content to the upper duodenum and eventually the coated tablet or capsule.
The insulin producing gland, the pancreas, is central to the gastro intestinal digestion.
The pancreas will secrete to the pancreatic duct alkaline carbonate to neutralize the
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Absorbed insulin first
to liver then systemic
circulation

Gallbladder

Cystic duct

Common bile duct

Duodenum:
Tablet dissolves, insulin
degradation, epithelial insulin
absorption

Pancreatic duct:
trypsin, chymotrypsin,
& carbonate.

Stomach:
Acid, pepsin 

Pancreas senses
   incomming meal

Common hepatic duct

Tablet with
enteric coating

Tablet releases insulin and 
excipients. Absorbed insulin ends in
portal vein and travels to liver.

Figure 1.2: (1) Tablet coating protects against acidic hydrolysis and pepsin. (2)
Release of basic carbonate, bile, trypsin and chymotrypsin. Pepsin is
inactivated at neutral pH. Bile interferes with surfactant like absorp-
tion enhancers. (3) Tablet dissolves. Lipophilic absorption enhancers
will slow down insulin release and allow trypsin and chymotrypsin to
inactivate all insulin before absorption. (4) Insulin permeates duode-
nal and jenunal epithelia facilitated by absorption enhancers. Illustra-
tion kindly provided for public use by NIH: National Institute of Di-
abetes and Digestive and Kidney Diseases. https://catalog.niddk.
nih.gov/imagelibrary/detail.cfm?id=148 Original captions modi-
fied..

https://catalog.niddk.nih.gov/imagelibrary/detail.cfm?id=148
https://catalog.niddk.nih.gov/imagelibrary/detail.cfm?id=148
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hydrochloric stomach acid. The stomach enzyme pepsin is deactivated by neutral
pH, while neutral acting trypsin and chymotrypsin are released from the pancreas as
well. Depending on the thickness and the acid groups of the coating polymer, the
tablet/capsule will start dissolving immediately in the duodenum and jejunum or as
late as in the colon.

The stomach empties approximately only every 50-120 minutes during fasting and
even rarer for diabetic patients [Sil10; Cor+95; Gab+10], thus the accuracy of timing
of the dose is not likely to match injectable insulin. Therefore, oral insulin is not
likely to replace fast acting well timed doses of injectables used by type-1 diabetics
in connection with meals. Oral insulin is most likely to replace longer acting insulin
analogues, where the exact onset of action is of less concern.

1.2.2 The peptide itself: Size does matter, so does lasting long and
stability

Presently several oral insulin formulations are in clinical phase two and three. These
formulations can rely on a protein backbone modification to make insulin intrinsically
more stable to enzymatic degradation. The formulations’ approaches to increase the
bio-availability are: absorption enhancers, enzyme inhibitors (soybean, citric acid)
and micro/nano-encapsulated carriers [Agu+16]. Oral delivery of other peptides
such as glukagon-like peptide-1 (GLP-1) analogues, octreotide (somatostain agonist),
parathyroid hormone are also in clinical development in 2016 [Agu+16].

Peptide APIs in oral formulations targeting systemic circulation, that have been
approved by FDA or EMA are Cyclosporin (MW 1200) Desmopressin (MW 1100),
Taltirelin (MW 500) and glutathione (MW 300) [Agu+16]. The reason these four
APIs have been successfully introduced to market before insulin is likely in part their
significantly smaller size than monomeric insulin (MW 6000) and these peptides can
therefore permeate the epithelial barrier more easily. With the current formulation
technology it is only barely possible to administer insulin.

”The selection of a suitable peptide for oral formulation is, therefore, a
key commercial decision. For example, selecting a complex, high molec-
ular weight (MW), narrow therapeutic index peptide, manufactured by
a costly recombinant approach, requiring multiple daily oral administra-
tions would be problematic.” [Mah+14]

In this quote, Maher et al point out that oral peptide delivery for decades has been
in its infancy and that we cannot suddenly deliver any type of peptide. In fact the
current achievements are more attributable to the biotechnological advances allowing
modification of the peptide and cheap production. If less than 5% insulin is absorbed,
20 times as much insulin must be produced.

Treatment with injectable peptides such as insulin, GLP-1 and growth hormone
have become more convenient with fewer injections in the last decades, as extensive re-
search has aimed to modify the intrinsic endogenous hormone to increase the apparent
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and actual half-life. The apparent half-life is extended by formulation approaches only
gradually releasing the insulin from the injection site, but also the systemic half-life
can be extended [Arn+10]. Hereby, patients treated with a constant level of hor-
mone, only have to inject themselves daily or even weekly. Oral peptide formulations
at first will likely be attempted switches from their prenatally-marketed counterparts
[Mah+14]. As only a couple of percentages of the peptides are likely absorbed, the
relative variation of absorption is potentially very high [Gab+10]. A dosing interval
significantly shorter than the half-life of the drug is a classic method for maintaining
a relatively constant drug concentration within the therapeutic window [TR06].

Analogues with enzymatic stability are also required. The luminal enzyme activ-
ity by trypsin and chymotrypsin will likely inactivate released insulin in less than
5-15 minutes [Wel+14]. Co-formulation of soy-bean enzyme inhibitors [FUJ+85], co-
valent peptide protecters (SNAC) [BML13] and pH lowering [Wel+14] can only lower
degradation 2 to 5-fold. Designing stable analogues is also needed to obtain sufficient
stability. PEGylation, cyclization and modification of back-bone structure are known
approaches to increase intrinsic peptide analogue stability [BML13].

1.2.3 Permeation enhancers to open the epithelial barrier
Thirdly peptides or proteins have to pass the epithelial barrier. Insulin (MW 6000
D) is likely near the upper limit for how big the proteins currently can be successful
delivered. For Octertide, it was possible to select a small part of the peptide while
still retaining activity [Agu+13].

Fatty acids with C8 to C16 chains have been used to open tight junction between
epithelial cells and mildly perturb the phospholipid membrane of the epithelials cells.
There has been an extensive research [BML13; Mah+09; AM90] uncovering how
caprate (aka. C10) regulate calcium levels, and phosphyrolation cascades of the ep-
ithelial cells leading to opening of tight junctions. Nonetheless, in order to obtain a
sufficient response caprate has to be released in intestinal lumen in concentrations
close to the critical micelle contration which is where the perturbing effect on the
phospholipid membrane sets in [BML13]. No specific technology increasing protein
absorption significantly has emerged from the caprate-calcium-tight junction-theory.
In practice fatty acids are surfactants, and most surfactants will destabilize the ep-
ithelial membrane and promote peptide absorption. The important part is how wide
is the therapeutic window, potency versus toxicity and if these surfactant ate suffi-
ciently soluble. I do not dismiss that, biological effects such as the C10-Calcium-tight
junctions in theory may render one surfactant slightly more or less potent. However,
such effects would be difficult to predict, see Section ??. The working hypothesis
of this thesis is that central properties of surfactants are fairly possible to predict
as they arise from non-complex physical phenomena, and new absorption enhancers
could be discovered simply from the expected structure. In contrary it is not possi-
ble to learn the mechanism of receptor mediated permeation enhancers, as even the
smallest change in the molecule could change the receptor-agonist affinity.
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Where fatty acids have one deprotonated carboxylic acid as hydrophile head group,
there several other possible head groups. Most enhancers have a mono acyl chain
typically from 8 to 16 carbon atoms and some hydrophilic domaine. Other sur-
factant enhancer classes are e.g. the acyl-carnitines, acyl-cholates[LS00], phospho-
cholines[LLT99], acyl-maltosides [Pet+13] and acyl sulphates [AA93].
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CHAPTER 2
Measure permeation

enhancement
2.1 Studies to test peptide absorption
The goal for an oral formulation is to achieve a high bio-availability with low a dosage
variance. That is to maximize the percentage of dose absorbed, and to minimize the
day-to-day variance. However in order to learn how a formulation attempt may be
failing, it is needed to break down the process into individual steps. The typical three
steps to consider are dissolution of the tablet, enzymatic stability and permeation
enhancement. The first article included in this thesis Section 2.3, ”The role of citric
acid in oral peptide and protein formulations: Relationship between calcium and
proteolysis inhibition.” [Wel+14], is a good example of the in vitro methods used to
evaluate permeation enhancement and enzymatic stability. These three steps can be
understood as a chain. If just one link fails, the overall result will be poor.

Studies to test permeation enhancement ranging from early proof-of-concept de-
velopment to clinical trials are listed in Figure 2.1. Beyond this list focusing on
permeation studies, also dedicated studies of dissolution, peptide stability and toxi-
cology would e.g. be required.

In preclinical development, studies are formally categorized in latin. Ex vivo is
outside the living and in vivo; isinside the living organism. Often in vivo refers to
animal studies only and not human studies. Studies in human are termed clinical
trials. It is obviously sensible to test many new insulin analogues and formulations
in fairly inexpensive and fast studies. The term in vitro, in glass [vial], is used for lab
bench studies. Lastly in silico, in silicium, is used for computer models.

Medical research progress by observing relationships and propose general causal
mechanisms, that are later verified and utilized. Whereas clinical trials are the most
representative for the intended population of patients. One may ask why to use in
vitro studies at all, when these only are crude simulations of the clinical therapy.
However, it is difficult to deduct why a clinical therapy gave no positive result, as
the multiple potential steps of failure cannot be observed. Often only the final of the
clinical trial can be observed. Moreover, negative confirmation is important to narrow
in what part of a therapy was essential for a positive outcome. Ethical considerations
limit designing clinical trials, that conflict with the best interest of patients. With in
vivo studies it is possible to test such therapies, as long as the animal suffering is kept
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In vitro

In vivo

Clinical

Caco-2

PerfusionEx vitro
Ussing

Gavage

Tablet

Clinical trials

Unrealistic buffer solution do not represent the mixture
of gastric , pancreatic and billary juice. No motility 

Only predissolved,no functional villi 

Different type of tissue

No dissolution test

Humans and animal parameters differ.

Only the overall bioavailability.
Serious finiancial and ethical constrains, 
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E
xperim

ent com
plexity

Figure 2.1: Schematic overview of types of experiments ranging from Caco-2 to clin-
ical. Simple experiments to not accurately simulate the actual process,
and there will be a number of biases which must not be over interpreted..

minimal. Still, the gastro-intestinal tract is a complicated piece of machinery and it is
not possible to control or measure every aspect the peptide absorption process. Both
in clinical studies and in vivo studies there can be a high subject-to-subject variance
due to the variation physiology and genetic disposition. Therefore these studies may
have a high unexplainable variance component. This variance component makes a
step-wise incremental optimization of formulation challenging, as it becomes hard to
evaluate what works, due to no significant change of bioavailability. In contrary, the
lab bench in vitro experiments offer close control of the experiment conditions. These
experiments are often fast and of relatively low cost, while the reproducibility and
statistical power are high. Also the in vitro experiments can be split into individual
steps as discussed in this chapter, such that every aspect increasing the bio-availability
insulin can tested.

From a modeling perspective, a larger observation number is needed, especially
for non-linear machine learning. Data from in vitro is less expensive to acquire in
larger numbers. The in vitro experiments can often be crude and it is accepted as
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a necessary evil, that the conditions do not exactly represent completely a clinical
situation. Figure 2.1 lists the range of permeation experiments, and is intended to
reflect this conflict between representative studies and elucidating studies.

When training machine learning models on data from in vitro experiments, we only
expect the model to reflect the experiment. The prediction of such model will only be
useful to that extend the experiment is a fair generalization of the insulin absorption.
With a sufficient theoretical understanding of the overall insulin absorption process
and the experiment biases, we can hopefully use the model appropriately and identify
the causal relationships between formulation and outcome.

2.1.1 Caco-2 monolayers
Caco-2 monolayers have been a standard screening method for intestinal drug per-
meability. The Caco-2 permeation model, as other permeation models, consist of a
donor chamber, an epithelial barrier and a receiver chamber. Caco-2 monolayers are
colonic human cancer cells, which are much more prolific and easy to handle, than
primary (human non-cancer) epithelial cells. When seeded on micro porous filter (Ø
2cm) on a 12-well plate, the Caco-2 cell line will grow and form epithelial monolayers
in two weeks. A typical test will use 4 mono layers per tested treatment and the
study is to be repeated on a different day. A concentration of the permeation drug
is applied to the donor side, and the receiver side is sampled at 4 time points to mea-
sure the diffusion rate. During the test, the nutrient rich growth media is replaced
with a minimal buffer solution. The buffer solution only contain a physiological level
of electrolytes such as calcium, potassium, sodium, chloride and phosphate plus an
acid/base buffer. These ions maintain isotonicity and a normal electrical membrane
potential. Active membrane transporter receptors in the epithelial membrane rely on
a given correct membrane potential.

Within standard drug development of small molecules, a low permeability result
would likely lead to discarding the given analogue, as it is easier to find a new analogue
with a favorable permeability. In insulin therapy, there are few alternatives to insulin-
like analogues and therefore the low permeability must be alleviated by e.g. co-
formulation of permeation enhancers. To use Caco-2 monolayers to test absorption
enhancers likely account for a smaller part of the use of Caco-2 monolayers. Here the
permeability of insulin is already low, and may be increased by a given absorption
enhancer. For surfactant enhancers at high concentration, the monolayer can be
completely disrupted, while at low concentration no useful effect is observed.

2.1.2 Measuring permeability
To estimate how potent a permeation enhancer is, permeation markers have been
used. An obvious marker is human insulin itself, but insulin is difficult to handle and
quantification by immunobinding-assay can be expensive. A number of of alternative
permeation markers are typically used to compliment insulin. One of these are 14C
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or 3H isotope labeled mannitol. Mannitol, is approximately as hydrophilic as glucose,
and is thought to only diffuse passively via the paracellular pathway through the
tight-junctions [ANA92; Art+94]. Unlike glucose, mannitol is not taken up by active
transport, and is therefore a suitable passive transport marker. As mannitol is hy-
drophillic, it cannot permeate the lipophilic plasma membrane and can only permeate
between the cells by the tight junctions. Mannitol is therefore a para-celullular pas-
sive permeation marker. Besides permeation of mannitol through the tight junctions,
also permeation of electrolytes can be used as a marker of how open the junctions
currently are.

Trans epithelial electrical resistance (TEER) can measure how open the para-
cellular tight junctions are, as the junction cross sectional area is proportional to the
conductivity, and conductivity is inverse resistance. TEER is an non-invasive mea-
surement easy to apply. A certain TEER response can be translated to change of
insulin permeability. E.g. lowering the epithelial resistance 50% by the lauroyl car-
nitine chloride surfactant enhancer translated to a (40-fold increase) of permeability
of insulin in Caco-2 model [Wel+14].

FITC-dextran 4000 dalton (FD4) is a florescent labeled sugar polymer of similar
hydrophilicity and size as insulin. FD4 can mimic insulin as transport marker as it
has similar molecular weight and hydrophobicity [VKB99]. FD4 on the other hand
has no enzymatic instability and can be used to estimate what would have been the
permeation of unchanged insulin, disregarding the enzymatic cleavage in the luminal
space. FD4 can be specifically and accurately quantified, as it is a strong fluorophore.

2.1.3 Calculating permeability
Gradient driven diffusion of mannitol, FD-4 and insulin across the epithelial barrier
are first order processes, where the transport per time (aka. flux) is proportional to
the concentration gradient Ci (mol/L). Only a few percent of the total amount of
transport marker will permeate the barrier and therefore will Ci be approximately
unchanged throughout the experiment. Hereby becomes the apparent permeability
Papp proportional to the transport rate or flux J (mol/s), which is usually estimated
by sampling the receiver basolateral side 4 times. When plotting receiver concen-
tration versus time, a fitted ordinary least squares slope is used as the overall flux
through out the experiment. Permeability is the flux, per concentration gradient
and corrected for the cross sectional area of the chamber, A (cm2). Therefore the
apparent permeability is calculated as

Papp = J/A/Ci = dCr

dt /A/Ci ,

where dCr

dt is the slope of ordinary least squares regression of receiver chamber con-
centration versus time. The intercept with x-axis (time) is interpreted as the lag time,
which is the time it takes to saturate the mucus layer, the thin unstirred water layer
and the epithelial junctions. The lag time is typically a couple of minutes depending
whether using Caco-2 or Ussing chamber. To observe an apparent constant flux e.g.
throughout a one hour experiment is normal. The small decrease in concentration
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gradient of some few percent throughout the study may ideally have caused decelera-
tion of the flux. However, it is possible that the actual permeability of the epithelial
barrier is increasing through the one hour flux study due to slow deterioration by the
absorption enhancer, and therefore a constant flux is observed. In control epithelial
barriers without absorption enhancer treatment, the barrier integrity is not expected
to decline, but at the same time the flux is very low, so the concentration gradient
do not change.

15 30 45 60

dC

dt

deceleration if
Ci  is reduced

t, time

C, marker concentration U, voltage

lag time

dI

dU

slope is total
resistance

current
clamping
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Papp = (dC / dT) / A / Ci TEER  = (dU / dI)    A

clamping oscillates
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sampling receiver
chamber

I, current

PD0

slope is �ux

acceleration as barier
deteriorates further

Figure 2.2: Illustration of how (left) Papp and (right) TEER is calculated..

The tight junctions are ideally water filled channels between the cells of the barrier.
The water in the channels can be thought to have specific conductance depending on
the concentration and diffusability of ions. When tight junction are widened, the
cross-sectional area of tight-junction is changed. Similarly as marker flux is driven
by a concentration difference, the electrical current I (Ampere µA) is driven by an
electrical potential difference U (Voltage V ). The electrical current I is analogue to
the flux J and potential difference U to Ci. Therefore the membrane conductivity
corrected for membrane area GA area can be expressed in parallel to Papp, such that

GA = I/A/U .

The inverse of GA is named TEER (trans epithelial electrical resistance)(Ohm
cm2) in drug transport studies. To summarize both Papp and inverse TEER describe
how readily a flux of either molecules or ions are driven through the epithelial barrier
by respectively a concentration gradient or a electrical potential gradient.

Figure 2.2 describes how to calculate the slopes for Papp and TEER. For Papp the
receiver concentration Cr is plotted as a function of time, the slope represents flux
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J . TEER is either measured with voltage or current clamping. To measure TEER
with voltage clamping is to control the electrical gradient (potential difference) with
electrodes and measure the actual current. Whereas, current clamping is to drive a
specified flux of ions (current) through the epithelial barrier and record the electrical
gradient. In either case is the membrane potential difference U plotted as a function
of current. The slope represents TEER not corrected for area. At zero applied
current, the potential difference is not neccesarily zero, as the epithelia has an active
energy dependent ion transport. The slopes obtained by current clamping and voltage
clamping are exactly the same.

For direct measurement of the intrinsic permeability of a given drug molecule
without permeation enhancers, TEER is mainly used to check barrier integrity. For
measuring the potency of permeation enhancers to increase permeability, TEER can
be used as indicator hereof. To directly measure the permeation of insulin would be
preferable, but this is more slow, expensive and unlikely to in already published results.
As the current and potential difference can be manipulated with electrodes, the time
resolution for TEER measurements is ideally in seconds. The time resolution for
permeation markers is limited by the sampling rate and accuracy of the concentration
determination. However, in Caco-2 studies the sampling rate for both TEER and
Papp, the sampling rate of Caco-2 studies are typically once per 15 minutes.

As the potency of permeation enhancers can vary greatly, it is not meaningful
to test all enhancers by the same concentration. Like a under- and over-exposure in
photography, a too low concentration will have no measurable effect and a too high
concentration will kill the epithelial cells. The %TEER-decrease describes how much
resistance the epithelium looses by a given permeation enhancer at one specific con-
centration. The measured %TEER decrease is likely a sigmoidal curve as a function
of the logarithmic enhancer concentration. Whitehead et al produced the data set,
that the permeation model of this thesis has been based on. Every enhancer was
tested at 1%, 0.1% and 0.01% (w/w) and the resulting %TEER decrease was mea-
sured [WKM08]. If a given enhancer had no effect the total TEER would not change.
In opposite, if the enhancer was overdosed, the epithelium would practically be dis-
solved and TEER would plummet to zero. In order to summarize how a permeation
enhancer performed across the three concentrations, I decided to simply compute the
average %TEER decrease for the three concentration levels. This potency average
was named Tpot. If Tpot=0.5, the enhancer likely elicited ratio-TEER decreases
(0.90, 0.50, 0.10) at the respective concentrations. Likewise for Tpot=.9 the ratio-
TEER decreases may have been (1.00,0.95,0.75). To predict the %TEER-decrease at
one specific concentration is both not that useful and may be difficult. To predict
the potency of a permeation enhancer as defined by Tpot is more useful and realistic.
If the potency of one enhancer is mediocre, it may be acceptable if the predicted
solubility is outstanding. Then a high concentration of the permeation enhancer can
be released at once.
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2.2 Mechanisms of absorption enhancement in oral
formulations

The formulation part of oral peptide therapy is mainly to ferry the highest possible
total and relatively amounts of insulin unchanged through the upper gastro-intestinal
tract. The two major barriers are enzymatic degradation and poor epithelial perme-
ability. Other barriers are the mucus and thin unstirred water layer on top of the
epithelia. These barriers are not regarded as prominently rate limiting bottle necks
and are not given as much attention.(cite)

2.2.1 Preventing and measuring enzymatic degradation
Enzymatic stability of peptides vary greatly in the intestinal tract. The time span
insulin can remain unchanged after tablet dissolution in the small intestinal lumen
is considered to be from a single minutes up to 15 minutes [Wel+14]. Enzymatic
degradation rate (Vi) is assumed to follow Michalis-Menten kinetics, which describes
the degradation rate per enzyme as a function of substrate/peptide concentration [S],
enzyme-substrate binding constant (Km), and max enzyme degradation speed Vmax.
The kinetics is described in by this equation

Vi = Vmax[S]
KM +[S] .

The Michales-Menten kinetics describe, that at very low concentrations of sub-
strate (peptide), the degradation rate will be proportional to the concentration of
insulin in the luminal space, thus a first order decay process. The Michaelis-Menten
kinetics opens for three ways to limit relative peptide degradation. First the apparent
Km binding constant can be increased by adding a competitive substrate. The en-
zyme will then bind to another substrate such as soy bean peptides or Bowman-Birk
compounds. A very potent non competitive inhibitor would bind strongly to the en-
zyme, such that only a small amount of inhibitor would be needed. Such non-peptide
inhibitors are in practice toxic and not suited for chronic treatment [Ber98; MKD80].

A second option, which is used in the article [Wel+14] of this thesis, is to lower
the apparent Vmax. Citric acid itself is not a substrate of trypsin or chymotrypsin.
As citric acid is dissolved, it will partly release protons into the luminal space and
thereby lower pH. The enzymes trypsin and chymotrypsin have a 10-fold lower Vmax

at pH=4. The last way to inhibit the relative degradation is to release as much
substrate as fast as possible into the luminal space. As the substrate concentration
increase [S] >> Km and Vi ≈ Vmax there will be a theoretical upper limit for how
much insulin can be degraded per time. Driving up the concentration of insulin, will
surpass the linear range of degradation and approach the Vmax. This approach could
fairly be called hit and run, as enough insulin is released in such a short time and
location, that the enzyme cannot degrade all at once. The latter approach is highly
dependent on the dissolution time of the tablet. If the tablet dissolves over an hour,
the insulin would be released very slowly in small concentrations, and the enzymes
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would have plenty of opportunity to degrade all insulin. To simply drive up the insulin
content of the tablet is not a likely successful strategy, as the insulin is very costly
to produce. Also, there can be an upper boundary of how much insulin, that can
be included in one tablet due to drug safety. Otherwise a case of unexpected high
bioavailability could lead to a hazardous overdose and acute hypoglychemia.

2.3 Article 1: The role of citric acid in oral peptide and
protein formulations: Relationship between
calcium chelation and proteolysis inhibition
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a b s t r a c t

The excipient citric acid (CA) has been reported to improve oral absorption of peptides by different
mechanisms. The balance between its related properties of calcium chelation and permeation enhance-
ment compared to a proteolysis inhibition was examined. A predictive model of CA’s calcium chelation
activity was developed and verified experimentally using an ion-selective electrode. The effects of CA,
its salt (citrate, Cit) and the established permeation enhancer, lauroyl carnitine chloride (LCC) were com-
pared by measuring transepithelial electrical resistance (TEER) and permeability of insulin and FD4
across Caco-2 monolayers and rat small intestinal mucosae mounted in Ussing chambers. Proteolytic
degradation of insulin was determined in rat luminal extracts across a range of pH values in the presence
of CA. CA’s capacity to chelate calcium decreased �10-fold for each pH unit moving from pH 6 to pH 3. CA
was an inferior weak permeation enhancer compared to LCC in both in vitro models using physiological
buffers. At pH 4.5 however, degradation of insulin in rat luminal extracts was significantly inhibited in
the presence of 10 mM CA. The capacity of CA to chelate luminal calcium does not occur significantly
at the acidic pH values where it effectively inhibits proteolysis, which is its dominant action in oral pep-
tide formulations. On account of insulin’s low basal permeability, inclusion of alternative permeation
enhancers is likely to be necessary to achieve sufficient oral bioavailability since this is a weak property
of CA.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Development of oral delivery systems for proteins and peptides
offers the promise of improved patient compliance compared to
conventional parenteral administration. Moreover, in the case of
certain protein therapeutics (e.g., insulin), the physiological
response elicited may exhibit a pharmacodynamic profile which
more closely resembles the natural physiological response.
However, delivery of protein therapeutics is severely hindered by
poor absorption across the intestinal barrier and extensive degra-
dation by proteolytic enzymes. Thus, to effectively overcome these
impediments, a formulation strategy which can modulate both of

these processes is necessary to achieve acceptable oral bioavail-
ability with low intra-subject variation.

Although degradation of proteins by gastric enzymes and low
pH may be overcome via inclusion of an enteric coating, the ap-
proach to minimise proteolytic activity in the small intestine, while
simultaneously ensuring efficient release and permeation repre-
sents a more significant challenge. In this regard, one such concept
extensively explored is that of acidic inhibition of proteolysis.
Luminal proteases, such as trypsin and chymotrypsin, exhibit max-
imum activity at pH P 6.5 [1,2] i.e., that typically observed in the
pH microenvironment of the jejunum and ileum. Via adjustment
of the local pH to values corresponding to pH < 6.5, proteolytic
activity of enzymes such as chymotrypsin [1], the primary luminal
degrading enzyme for insulin [2], can be significantly diminished.

Indeed, acidic inhibition of proteolysis as a strategy for the oral
delivery of therapeutic peptides recently gained attention follow-
ing Tarsa Therapeutics (Philadelphia, PA) successful completion
of a phase III trial (‘ORACAL’) for orally delivered salmon calcitonin
(sCT) [3]. Such technology typically comprises of an enteric coated
capsule or tablet, which bypasses the stomach unchanged, along
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with a pH-lowering excipient contained in vesicles (e.g., an organic
acid such as citric acid). Upon entry into the duodenum with its
luminal pH range of between 5 and 6, pH-dependent disintegration
of the polymer coating of the dosage form commences, followed by
release from the vesicle of both co-localised API and citric acid
(CA). Concomitant association of CA maintains a decrease in local
pH, thus stabilising the co-released peptide. In this way, it facili-
tates a reduction in the luminal enzymatic activity, providing a
higher concentration gradient of the API over time, which in turn
promotes improved absorption and bioavailability [4,5].

Alongside pH-lowering agents, co-administration of an absorp-
tion enhancer(s) has generally been regarded as indispensable due
to the inherently poor epithelial permeability properties of
proteins and peptides [5,6]. Indeed, previous publications explor-
ing this technology have employed LCC, an amphiphilic surfactant
[5–7]. However, based upon the recent ORACAL sCT study, where
an absorption enhancer was omitted, one may speculate that
either the need for co-administration is diminished on account of
the proposed permeation enhancing properties of citric acid or cit-
rate (Cit) [3], or that enhancers might not be required for oral sCT
where bioavailability of 1–3% is typical for marketed nasal versions
of this particular potent molecule [8]. CA and Cit are GRAS excipi-
ents and have been widely employed in oral formulations of small
molecules. Thus, despite this formulation strategy being compara-
tively new, a body of literature exists examining the multiple
mechanisms by which CA, in its salt form (i.e., tri-sodium citrate)
may promote oral absorption. Cit exhibits calcium chelating
properties and evidence exists to suggest that it may increase
paracellular absorption, by triggering disruption of tight junction
complexes via depletion of intracellular calcium [9–11].

In this report, the potential mechanism of action of CA as both
an acidic proteolysis inhibitor and calcium chelator/permeation
enhancer was addressed and conclusions made as to which might
be its dominant action at relevant pH values in the upper small
intestine. In silico and in vitro determination of CA’s calcium chela-
tion activity and its capacity to prevent insulin degradation by pep-
tidases across a broad range of pH values were obtained. From this
data we assessed whether or not a common pH range existed over
which both proteolysis inhibition and calcium chelation occurred.
Finally, the capacity of CA/Cit to enhance permeability was inves-
tigated in Caco-2 monolayers and rat intestinal tissue and com-
pared to that of lauroyl carnitine chloride (LCC), an established
amphiphilic permeation enhancer [5–7] previously employed as
an additional agent in pH-lowering oral peptide formulations.

2. Materials and methods

2.1. Materials

Caco-2 cells (ATCC-HTB-37) were obtained from American Type
Culture Collection (ManassasVA). Cell culture media (Dulbecco’s
modified essential media (DMEM)) and penicillin/streptomycin
were purchased from Lonza (Verviers, Belgium). All other supple-
ments i.e., foetal bovine serum (FBS), HEPES buffer and non-essen-
tial amino acids (NEAA) as well as Hanks’ balanced salt solution
(HBSS) and trypsin were purchased from Gibco (Naerum, Den-
mark). Corning Transwell� filter inserts (1.12 cm2 surface area,
0.4 lm pore diameter) were purchased from Fisher Scientific
(Slangerup, Denmark). FITC-dextran 4 kDa (FD4) and D-glucose
were purchased from Sigma Aldrich (Dublin, Ireland). Bovine ser-
um albumin (BSA) was purchased from Sigma Aldrich (Copenha-
gen, Denmark). All other reagents were of the highest analytical
grade.

The Iso-Insulin ELISA assay kit was purchased from Mercodia
(Uppsala, Sweden). Lauroyl-DL-carnitine (LCC) was purchased from

Chemos (Regenstauf, Germany). [3H]-mannitol, [14C]-mannitol and
Ultima Gold� scintillation fluid were purchased from Perkin Elmer
(Waltham, MA). Liquid scintillation counting was carried out using
a TopCount C990201 or a TriCarb 2900TR liquid scintillation
counter (both Perkin Elmer). Luminescent measurements were
performed using a Spectramax� 250 or Gemini� microplate reader
(both Molecular Devices, Sunnyvale, CA). Fluorescent measure-
ments were performed on a Tecan� GENios fluorescent microplate
reader (Tecan, Durham, NC).

2.2. Cell culture

Caco-2 cells (passage numbers 40–60) were seeded at a density
of 2.5 � 105 cells/flask and grown to 70–90% confluence in DMEM
(supplemented with 10% FBS, 100 U/ml penicillin and 100 lg/ml
streptomycin and 1% (v/v) NEAA). For transport studies, Caco-2
monolayers were cultured on permeable Transwell� 12 mm diam-
eter inserts with pore sizes of 0.4 lm at a density of 105 cells/cm2

and used after 14–17 days in culture. Cells were cultured at 37 �C
and 5% CO2 atmosphere and the medium was changed every other
day.

2.3. Modelling chelation activity of citric acid (CA)

A model to predict free calcium fraction was constructed as
described in Supplementary materials. The conditional pKa and
citrate (Cit) calcium chelation constant, K, corresponded to previ-
ously published values in which similar ionic strengths were ap-
plied [12–14]. The model was not corrected retrospectively to
take account of the experimentally determined calcium electrode
measurements.

2.4. Calcium electrode measurements

A pH-meter (744; Metrohm, Herisau, Switzerland) was fitted
with a micro pH-electrode (6.0224.100; Metrohm), a calcium
selective electrode (6.0508.110; Metrohm) and an AgCl reference
electrode (Dri-Ref-L; World Precision Instruments, Sarasota, FL).
All titrations were performed in calcium-free transport media at
room temperature (RT). To 20 ml of calcium-free HBSS 300–500
ll CA or Cit (1.5–2 M) was added to yield a final solution of CA/
Cit (30 mM) and pH values of 4, 5, 6, and 7.4. The solution was ti-
trated with 40 mM CaCl2 from 0.5 ll to 1310 ll [5 � 10�3–2.5
� 100] mM CaCl2. Electrical motive force (EMF, mV) and pH were
concomitantly monitored during titration. Double standard curves
of calcium added to transport media (without CA/Cit), assuming
that free calcium concentration was equivalent to total calcium.
Titrations were performed at room temperature to improve repro-
ducibility. All solutions were maintained at room temperature for
4 h prior to titration, as the ISE was sensitive to temperature
changes. Activity of the ISE was assessed within the pH range of
3–7.4.

2.5. In vitro inhibition of proteolysis

Cit and CA were added to zinc-free transport medium (see
‘‘Transepithelial transport studies in Caco-200; zinc-free) to give
Ca/Cit stock solutions a total concentration of 12.5 mM of CA spe-
cies and a range of pH values (3.5–7.4). Subsequently, enzyme-rich
washes were extracted from fasted rat duodenal lumens by rinsing
10 cm fresh duodenum with 10 ml water and instantly freezing the
eluate at �80 �C until use. At time point zero, 100 mM recombinant
human insulin (Novo Nordisk A/S, Copenhagen, Denmark) was
mixed with duodenal extracts and CA stock solutions in a ratio of
1:1:8 respectively, yielding 10 mM insulin and 10 mM CA species.
The kinetic study was performed using an autosampler robot
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(Gilson 215 liquid handler; Middleton, WI) running 16 separate
samples simultaneously. The reaction was sampled at six time
points over a period of 120 min. Upon collection of each 20 ll sam-
ple, 50 ll trifluoroacetic acid (5% v/v) was immediately added and
the samples refrigerated (4 �C) in order to stop the proteolytic deg-
radation. Insulin content was quantified by Acquity UPLC consist-
ing of an autosampler (Model Acq-SM), pump (Model Acq-BSM),
column oven (Model Acq-SM) and detector (Model Acq-TUV;
Waters, Milford, MA). RP-UPLC separation was achieved by Acquity
BEH 1.7 lM C18 1 � 50 mm column (Waters), using a linear gradi-
ent of acetonitrile in 0.2 M sodium sulfate, 0.04 M sodium phos-
phate, pH = 7.2. Peaks were detected by UV absorption at 220 nm
and quantified using a human insulin standard. Reaction rates
were calculated as the slope of the linear least squares fit to the
semi log-plot of concentration versus time, see Eq. (1). All reactions
rates were derived by the natural logarithm, e.

Ct ¼ C0 � e�kt ) lnðCtÞ ¼ �k � tþ lnðC0Þ ð1Þ

where t (s) is a given time point, Ct (lM) the remaining concentra-
tion of insulin at time point, t; k (min�1) is the reaction constant and
C0 (lM) is the initial concentration of insulin.

2.6. Transepithelial transport studies across Caco-2 monolayers

Filter-grown monolayers were washed with warm HBSS buffer
(138 mM NaCl, 5.3 mM KCl, 1.3 mM CaCl2, 0.40 mM MgSO4,
0.44 mM KH2PO4, 4.2 mM NaHCO3 and 5.6 mM glucose; pH 7.4)
supplemented with 0.1% BSA and 10 mM HEPES and allowed to
equilibrate. Transepithelial electrical resistance (TEER) was mea-
sured with a chop-stick electrode (Millicell-ERS�, Millipore, Bille-
rica, MA) prior to testing and monolayers with TEER values
<600 X cm2 were discarded. The buffer in the respective apical side
was then replaced with a solution containing insulin (10 lM) and
[3H]-mannitol (0.8 lCi/ml) alone or in combination with CA
(5 mM; pH 4.5) or LCC (1 mM), and the monolayers were incubated
at 37 �C for 60 min. In some studies, Cit (20 mM; pH 7.4) was added
to the basolateral side. Samples containing fluxed insulin from the
donor apical side were collected from the basolateral compart-
ments every 15 min for 1 h and human insulin content, was diluted
to 100–10,000 ppm (�14–1400 mU/l), and was assayed using ELI-
SA. Flux (J [mol/s]) was determined from steady-state appearance
rates of insulin in the receiver fluid. The apparent permeability
coefficient, Papp [cm/s], was calculated according to Eq. (2)

Papp ¼ J=ðA � CiÞ ð2Þ

where Ci (mol/cm3) is the initial concentration of insulin in the do-
nor fluid and A is the nominal surface area:1.12 cm2 for Caco-2
monolayers and 0.63 cm2 for intestinal mucosae.

2.7. Preparation of rat intestinal tissue for Ussing chamber studies

Studies were carried out in accordance with the UCD Animal
Research Ethics Committee policy, on the use of post mortem ani-
mal tissue in research, as well as in adherence to the ‘‘Guide for the
care and use of laboratory animals’’, (8th Edition, National Acad-
emy of Sciences, 2011. http://www.aaalac.org/resources/the-
guide.cfm). Male Wistar rats (250–300 g) (Charles River, Margate,
UK) were euthanised by stunning and cervical dislocation. The
lower jejunum and ileum (lower small intestine) was removed,
opened along the mesenteric border and rinsed in warm oxygen-
ated Krebs–Henseleit solution (KH; 118 mM NaCl, 4.7 mM KCl,
2.5 mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM NaHCO3

and 10 mM glucose) according to previous methods [15]. Tissue
was pinned with the mucosal side down on a dissection board to
expose the external muscularis, which was carefully removed with

a size 5 fine forceps. The tissue was then mounted in Ussing cham-
bers with a circular window area of 0.63 cm2, bathed bilaterally
with 5 ml KH and continuously gassed with 95% CO2/5% O2 at pH
7.4 and maintained at 37 �C. The transepithelial potential differ-
ence (PD, mV) and short circuit current (Isc, lA) were measured
across the lower small intestine. The tissue was voltage clamped
to zero for 30 s and switched to open circuit configuration for 3 s
by an automatic voltage clamp (EVC-4000 amplifier) and Pro-4
timer (both WPI, Hertfordshire, UK). Analogue data were digitised
with a Mac Powerlab� data acquisition unit and analysed with
Chart� software (AD Instruments, Oxford, UK). Following an equil-
ibration period of 15 min, PD and Isc were measured and TEER was
calculated at regular time points from 0 to 120 min using Ohm’s
law.

2.8. Transepithelial transport studies in rat lower small intestinal
tissue

Transport of [14C]-mannitol and FITC-Dextran 4000 (FD4), non-
degradable hydrophilic flux marker, was examined across lower
small intestinal mucosae mounted in Ussing chambers. Briefly,
[14C]-mannitol (0.2 lCi/ml) and FD4 (1 mg/ml) were added to the
apical chamber and flux was monitored periodically over 2 h by
sampling the serosal chamber (200 ll) every 20 min for 2 h, and
apically (200 ll) at time zero, while replenishing with fresh KH
buffer at each sampling point. In some studies, CA (30 mM), Cit
(30 mM) or LCC (3 mM) were simultaneously added to the apical
chamber. Samples containing [14C]-mannitol were mixed with
scintillation fluid and read in a scintillation counter (TriCarb
2900TR, Perkin Elmer). Where samples contained FD4, fluores-
cence was measured in a fluorescence microplate reader (Spectra-
max Gemini, Molecular Devices) with kex/kem of 480/520 nm. The
Papp was calculated according to Eq. (2).

2.9. Statistical data analysis

Statistical analysis was carried out using Prism-6� software
(GraphPad, San Diego, USA) using two-tailed unpaired Student’s
t-tests unless otherwise stated. Results are presented as the
mean ± standard deviation (SD, unbiased). The level of significance
set was P > 0.05. Normal distribution of data was in general as-
sumed except for apparent permeability data which elicited a rel-
atively consistent standard deviation (%RSD) and was therefore log
transformed prior to statistical analysis.

3. Results

3.1. Prediction of the chelation activity of citric acid (CA)

To estimate the chelation activity of CA, a mathematical model
was employed (see Supplementary material). Chelation activity
was defined as the average of the apparent formation constants
of the individual species of CA, weighted according to their pres-
ence and expressed relative to the formation constant of Cit3�, in
theory the strongest chelator. The predicted relationship between
each form of CA (H2Cit�, HCit2�, Cit3�) and their calcium chelation
activity is depicted in Fig. 1. As illustrated, CA chelation capacity is
especially high in the presence of high levels of Cit3� and that is
pH-dependent. Above pH 5, total chelation activity corresponds di-
rectly to the proportion of the Cit3� species present. At values be-
low pH 5 the fraction of Cit3� is less than 0.1. In this range (i.e.,
pH < 5), HCit2+ becomes relatively more dominant compared to
Cit3�. At pH > 5, while HCit2+ exhibits some degree of chelation
capacity, it is thought to be significantly less than that of Cit3� at
the higher pH values. Importantly, calcium chelation activity was
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reduced �10-fold for each unit of pH within the pH range of 3–6.
As shown in Fig. 2, in order to chelate 99% of the total calcium in
KH buffer at a pH of 7.4, very high concentrations of 120 mM CA
(pH 5.5) or 60 mM CA (pH 7) would be required. For 90% chelation,
120 mM CA (pH 4.2) or 10 mM CA (pH 5.8) would be necessary.
The prediction therefore is that at highly acidic local pH values,
non-physiological concentrations of CA would be required to sub-
stantially chelate calcium, the most likely mechanism to open epi-
thelial tight junctions for permeation enhancement.

3.2. Correlation of ‘predicted’ versus ‘measured’ free calcium (Ca2+)

CA, H2Cit�, HCit2� and Cit3� form a buffer system in which the
distribution of the species is a function of pH. Herein, all men-
tioned concentrations of CA or Cit are absolute and accompanied
by a pH value from which the actual distribution of CA-species
can be found (Fig. 1).

In order to validate the predictive model, total and free calcium
were determined with a calcium-selective electrode following titra-
tion of 30 mM CA (at pH values of 4, 5, 6, and 7.4) with 10 lM–3 mM
Ca2+. Fig. 3 shows predicted free Ca2+ levels versus corresponding
experimentally determined free Ca2+ levels. Within the range of
0.01–2 mM total Ca2+, very accurate correlations were achieved
(R2 > 0.98). According to the conditions observed in Fig. 3, CA/Cit
is at least 25-fold in excess compared to calcium. Consequently,

the titration slopes of free calcium versus total calcium achieved
are highly linear and when plotted on a double-log scale display
slopes close to 1. A minor departure from linearity was observed
in the lower part of the standard slope (free calcium/mV) which fit-
ted well with 2nd or 3rd order polynomial and was attributed to be a
loss of sensitivity of the electrode in its lower detection range.

3.3. pH-dependent degradation of insulin

In the absence of proteolysis inhibition, insulin is readily de-
graded in the small intestine. However, the activity of most key
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proteolytic enzymes including trypsin, chymotrypsin and elastase
is strongly influenced by pH. To investigate the precise relationship
between pH and proteolysis rate, an in vitro proteolysis assay using
native extracts of rat duodenum was performed in the presence of
CA/Cit (10 mM). Throughout, the degradation of insulin was
characterised by first order kinetics. A plot of insulin degradation
versus time is provided in the Supplementary material. At pH
6.5–7.4, the native pH of the small intestine, the reaction rate pro-
ceeded much faster than at acidic pH values (Fig. 4). By decreasing
the pH from 7 to 4.5 however, the reaction rate was reduced mark-
edly (10-fold) (p < 0.0001). Hereafter from pH 4.5 to 4 the reaction
rate remained unchanged. At a pH of 3.5, the reaction rate was an
order of magnitude lower than that seen at pH 7.4. In order to ex-
clude other potential confounding factors, the influence of both to-
tal Cit concentration and the quantity of NaCl added was evaluated.
Although Cit (120 mM, pH 7.4) lowered the reaction rate, kobs, two-
fold (p < 0.001), NaCl (75–250 mM) elicited no significant effect
and both the independent factor of NaCl and Cit appeared to have
no physiological significance. These data emphasise the dramatic
protection against pancreatic peptidases afforded by simply main-
taining the pH at 3–4 with a 10 fold lower concentration of CA than
that required to chelate calcium.

3.4. Effects of CA, Cit and LCC on Caco-2 monolayers: TEER and Papp

values of [3H]-mannitol and insulin

Treating Caco-2 monolayers with apical addition of LCC (1 mM)
elicited a decrease in TEER of 50% in 60 min compared to that of

untreated monolayers (Fig. 5A) (p < 0.001). Exposure to various
concentrations of Cit (5–20 mM pH 7.4) apically or basolaterally
however, resulted in smaller albeit concentration-dependent
reductions in TEER and Cit was less potent and efficacious than
the well-known chelator and permeation enhancer, EDTA and
LCC (Fig. 5A). Surprisingly, CA (5 mM) at pH 4.5 elicited a signifi-
cant increase in TEER of 50% relative to untreated monolayers
(p < 0.001). Comparable responses were observed with 5 mM CA
in combination with 5 mM and 10 mM Cit (Fig. 5A). Following
incubations, transport medium was removed and fresh DMEM
introduced; monolayers were then incubated for 24 h to assess
TEER recovery. All treated cultures showed a full recovery in TEER,
exhibiting comparable values to that of control monolayers after
24 h. Of note, addition of excessive amounts of CA, resulted in a
lowering of pH < 4 where TEER recovery was not observed due to
irreversible deterioration of the monolayer barrier, as earlier re-
ported [16]. In summary, the data reveal that CA and/or Cit only
have marginal effects on TEER, but nothing like the level of de-
crease which would be expected from an effective permeation en-
hancer (i.e., >50% TEER decrease).

The Papp values of insulin across Caco-2 monolayers showed a
significant increase in the presence of LCC (1 mM), generating a
40-fold increase in transport (8 � 10�7 cm/s) compared to basal
insulin Papp across untreated monolayers (p < 0.01) while the Papp

of [3H]-mannitol was 50% greater than in untreated monolayers
(1 � 10�6 cm/s) (p < 0.05) (Fig. 5B). In contrast, CA (5 mM) had no
effect on the Papp of either insulin or [3H]-mannitol. While high
concentrations of Cit (20 mM) produced a 2-fold increase of insulin
permeability (p < 0.001), this was still significantly less than that of
LCC and observed only when applied basolaterally. The effect api-
cally was even smaller. Overall, the data confirm that, compared to
the dramatic permeation enhancement induced by LCC, CA/Cit are
not effective enhancers in Caco-2 monolayers and this is consistent
with their nominal effect on TEER compared to positive controls.

3.5. Effect of CA, Cit and LCC on rat lower small intestinal mucosae:
TEER and Papp of [14C]-mannitol and FD4

The effects of CA, Cit and LCC on the electrophysiological
responses of rat lower small intestinal tissue were examined in Us-
sing chambers. Addition of very high concentrations of Cit (30 mM,
pH 7.4) elicited a sustained decrease in TEER over 120 min, which
was significantly lower (�20%) than that observed in control tissue
(Fig. 6A). In contrast, incubation with CA (30 mM, pH 3) gave rise to
a significant, albeit transient increase in TEER (�20%) relative to
control during the initial 20 min exposure. Thereafter, TEER values
aligned with those of untreated controls. Although LCC did not pro-
voke any significant decrease in TEER, a 2-fold increase in the per-
meability of FD4 was observed (Fig. 6B). In contrast, neither the
TEER reduction elicited by Cit nor the TEER increase observed with
CA was associated with changes in mannitol permeability. Perme-
ability of [14C]-mannitol remained statistically unaffected by the
various treatments. Overall, these data do not indicate that CA/
Cit is an effective permeation enhancer in rat lower small intestinal
mucosae, whereas LCC was effective, at least for FD4.

4. Discussion

This work addressed the functional role of CA in formulation-
based approaches for the delivery of peptides and proteins via
the oral route. Specifically, we examined the interplay between
its primary use as a pH-lowering agent and its additional function
as a calcium chelator that might cause both tight junction openings
and contribute to further inhibition of serine proteases. Modula-
tion of intestinal pH via formulation is an attractive means to
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stabilise the protein against enzymatic degradation. Indeed, it has
previously been used as a strategy for small intestinal delivery of
sCT. Using CA (a prototype organic acid) and LCC (an amphiphilic
surfactant), there was significant enhancement in oral bioavailabil-
ity of sCT in dogs [4,5,17]. However, precise elucidation of the com-
bined effects of CA on protein stability and permeability remains
undetermined.

Chelation of calcium is an efficient means by which to modulate
tight junction structures. Participation of Ca2+ in the establishment
of epithelial cell junction networks has been widely demonstrated
[18,19]. CA, a hydroxy tricarboxylic acid, is an efficient chelator in
its salt form (i.e., citrate), capable of sequestering multivalent
cations. Conditional chelation constants for Ca2+–Cit3� and Ca2+–
HCit2� are 1880 M�1 and 67 M�1, respectively [14,12], while condi-
tional CA pKa1,2,3 values applied were [2.80; 4.08; 5.33] [13,14].
Such values are dependent on ionic strength and temperature.
Thus, use of the applied model to predict chelation capacity poten-
tial is suggested to be restricted to conditions whereby I ranges
from 0.1 M to 0.6 M and temperature ranges from 18 �C to 45 �C.
KH and HBSS have ionic strengths of I � 0.16 M. In this context,
our proposed model predicts that at pH values of 6–7, and above,
optimal chelation activity is observed. Importantly, below pH 6
the apparent chelation constant is reduced �10-fold for each pH
unit. Therefore, at highly acidic pH values the concentration of
CA/Cit necessary to chelate vast quantities of calcium dramatically
increases. The pH microenvironment generated via release of CA
from a pH-lowering formulation likely corresponds to a value of
4.5 or lower [17]. Under these circumstances, CA will primarily dis-
sociate into HCit2+ and not Cit3� the predominant chelating spe-
cies. In this chemical arrangement, its potency as a chelator of
calcium ions is considerably reduced. Accordingly, this formulation

approach is unlikely to engender significant chelation activity, but
will be dominated by a capacity for pH-mediated peptidase
inhibition.

Enzymatic degradation of proteins by luminal proteases repre-
sents a significant barrier to achieving a therapeutically relevant
bioavailability. The ability of pH-lowering formulations to curtail
this undesirable aspect of intestinal physiology is its primary
attraction for oral peptide and protein delivery. Our in vitro inves-
tigations revealed that an EC50 of proteolysis is achieved at pH 6.
However, given that extensive proteolytic degradation arises
in vivo, in order to effectively protect sufficient quantities of intact
protein, substantial serine protease inhibition is necessary. The
kinetics studies pertaining to insulin degradation indicate that pro-
teolysis activity exhibits an apparent linear (log scale) decrease
down to a value of pH 4.5 where >90% inhibition was achieved. Gi-
ven that proteins are extensively and rapidly degraded especially
in the duodenal and jejunal regions of the GIT, formulations
employing acidic inhibition of proteolysis should therefore aim
to achieve a local pH of at least 4.5. In this regard, an in vivo study
in dog found that capsules loaded with the maximal practicable
quantity of CA, corresponding to 570 mg in a 680 mg tablet,
yielded the highest bioavailability, by reducing the pH to as low
as 3 [18]. It should be noted that degradation studies performed
in vitro represent a system of optimal mixing conditions, which
may not be present in vivo. Under such circumstances, lowering
the pH beyond 4.5 likely ensures a greater acidic expanse within
the small intestine, thus representing a local region in which pro-
tein degradation is limited for a period of time.

Chymotrypsin is the primary enzyme responsible for the degra-
dation of insulin [2]. Corresponding studies examining chymotryp-
sin-mediated degradation of casein or denatured lysozyme exhibit
a slope (kobs versus pH) which closely resembles that generated in
our investigations examining the degradation of insulin in rat duo-
denal enzyme extracts [1]. Studies suggest that the activity of chy-
motrypsin can be lowered 2-fold when free calcium is less than
0.05 mM [20]. Similarly, the activity of chymotrypsin has been
shown to be lowered when Ca2+ is omitted [20] or when available
Ca2+ is chelated by EDTA [21]. Our investigations however, indicate
that the function of CA/Cit as a chelator is most pronounced at high
pH values (i.e., >7). Indeed, we have observed that Cit 120 mM low-
ers the rate constant of chymotrypsin-mediated degradation of
insulin by up to 35% at pH 7.4 due to its prevalent chelating action
at that pH value (see Supplementary material). However, for pH-
lowering formulations, where the local pH at the site of release is
<5, its function as a chelator does not contribute to its peptidase
inhibitory capacity, which is simply due to moving the pH opti-
mum for serine proteases away from pH 7.4. Therefore, in practice
the impact of CA/Cit on reduction of enzyme activity via calcium
chelation is significantly less than that due to acidity per se. Triso-
dium citrate (120 mM) will provide a considerable increase to ionic
strength possibly further reducing the activity of luminal proteol-
ysis. However, on the contrary, addition of NaCl (75, 120 and
250 mM) did not significantly reduce the degradation rate of insu-
lin by chymotrypsin (unpublished data).

On account of its large molecular weight size, transport of insu-
lin (5800 MW, 8 Å) across the small intestinal epithelium is se-
verely restricted. Indeed, basal permeability results in absorption
of doses far below that required to achieve a therapeutic effect
[22]. Amphiphilic permeability enhancers, a class of absorption
enhancers including LCC and sodium taurodeoxycholate (TDC) pro-
mote trans- and paracellular absorption via mild recoverable
membrane perturbation and disruption of tight junction com-
plexes [23–25]. For example, permeation of sCT across rat ileal tis-
sue in Ussing chambers can be increased 5-fold and 14-fold for LCC
and TDC, respectively [6]. However, their successful incorporation
in a pH-lowering formulation requires that they exhibit sufficient
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solubility at low pH values. In this regard, LCC satisfies this require-
ment. As a consequence, it has been widely co-entrapped in formu-
lations designed for acidic inhibition of proteolysis [5,7].

Nevertheless, in the ORACAL study for orally delivered sCT, no
amphiphilic enhancer was required. One interpretation was that
CA/Cit might be enhancing paracellular transport presumably via
modulation of tight junctions [3], in addition to their effect on
inhibiting peptidases by acidifying the pH. Supporting this, work
by Okada and colleagues [26] revealed that addition of organic
acids facilitated vaginal absorption enhancement of the luteinising
hormone releasing hormone (LH–RH)-analogue, leuprolide. Fur-
thermore, they observed a weak correlation between this effect
and the chelating properties of the acids. However, the influence
of pH on such effects was not addressed in this study. Collectively,
our investigations indicate that even if intestinal luminal calcium
chelation is associated with permeability enhancement, the pH
conditions of acidic inhibition of proteolysis (i.e., pH 6 4.5) will
extensively reduce chelation activity. Conceivably, the positive re-
sults yielded in the Phase III trial with sCT in the absence of a
recognised permeability enhancer could be ascribed to the fact that
sCT is half the molecular weight of insulin and exhibits a higher
baseline permeability [27–31]. Moreover, since sCT is highly po-
tent and marketed nasal versions are associated with no more than
1–3% bioavailability for required efficacy, the hurdles for an oral
sCT are therefore much lower and would not require a recognised
permeation enhancer once the excipient organic acid performs the
pH-lowering role. This would not be the case for insulin where a
much higher oral bioavailability would be required for a commer-
cially-viable oral formulation. Consistent with this theory, ileal
instillation of insulin with soy-bean proteolysis inhibitor alone
did not lower blood glucose in rats, whereas glucose levels were
significantly reduced when insulin was co-administered with the
bile salt, sodium deoxycholate (DOC) [32], an efficient permeation
enhancing agent.

There are numerous reports which demonstrate the effect of CA
as a permeability enhancer. CA (1%, pH 7) enhanced nasal absorp-
tion of oil/water (O/W) emulsions containing indomethacin by 6.5-
fold [33]. However, it should be noted that the nasal clearance/
dilution is smaller than that observed in the GIT [34]. Moreover,
the CA partitions in water yielding a concentration of 100 mM;
thus, the concentration of CA reaching the nasal mucosa is likely
much higher than in the intestine.

Insulin formulated with CA (10%, pH 1.72) for vaginal adminis-
tration effectively lowered blood glucose to the same level as a 10
times lower intramuscularly injection. However, although such
high concentrations of CA and low pH can increase permeability,
they have also been shown to lead to extensive damage of mucosal
tissue [26]. In the context of chronic administration, such adverse
effects are undesirable.

Our in vitro (Caco-2 monolayers) and ex vivo (rat small intesti-
nal tissue) transport studies indicate that the ability of CA/Cit
(5–30 mM) to increase permeability of insulin or FD4 is negligible,
exhibiting effects which are lower than that of LCC (1 or 3 mM),
regardless of pH. Examination of absorption processes ex vivo can
be confounded by enzymatic degradation. Thus, FD4 being a non-
degradable hydrophilic macromolecule-sized compound repre-
sents a useful surrogate marker compound for insulin in Ussing
chamber-based transport studies, facilitating exclusive examina-
tion of the absorptive process alone. The concentrations of LCC em-
ployed correspond to those which lie below that which can
adversely impact tissue viability over the course of permeation
study [25]. In the case of CA, the concentrations used represent
those which are anticipated to be found locally in the lumen at
the site of release of such oral formulation(s). Compared to excised
intestinal tissue, Caco-2 monolayers represent a more fragile mod-
el system. Thus, pH should not be reduced beyond 4 [16] and LCC

and CA concentrations can likewise be reduced to appropriate
functional concentrations which ensure the cell monolayers re-
cover following treatment.

In line with earlier findings for EDTA [19], basolateral applica-
tion of Cit elicited a more marked decrease in TEER. This differen-
tial susceptibility could be attributed to compositional differences
in tight junction structures at the apical and basolateral interfaces
as previously shown for EDTA [18]. Application to the basolateral
side ensures direct exposure of the highly calcium-dependent
zonula adherens proteins – structures which are implicated in
preservation of monolayer integrity. In this regard, apical addition
of Cit will have little impact. However, translation of these basolat-
eral specific effects in vivo is not particularly relevant; given the
fact that exposure is restricted to the apical membrane of the intes-
tinal epithelia upon release from the dosage form. Collectively,
these results strongly suggest that apically applied CA, by means
of significant calcium chelation at pH 7.4, is not sufficient to elicit
significant augmentation of insulin permeability, notwithstanding
its ability to trigger acidic inhibition of proteolysis. Nevertheless,
this observation does not preclude the possibility that CA/Cit could
potentially chelate calcium in a pH neutral micro-environment be-
low the mucus layer covering the intestinal epithelium.

5. Conclusions

It is evident that the pH range over which CA effectively inhibits
proteolysis and that whereby Cit exerts calcium chelating proper-
ties does not coincide. At pH 3–4, the capacity of CA to inhibit small
intestinal serine proteases is high, and this is due to sub-optimal
pH values for those enzymes rather than to calcium chelation.
Moreover, in vitro and ex vivo investigations indicate that the
capacity of Cit/CA to exert significant permeation enhancement
on human intestinal monolayers and isolated rat small intestinal
mucosae is extremely low. While oral delivery of a few potent
small peptides including sCT may be successfully achieved in the
presence of formulated peptidase inhibitors (e.g., CA) in the ab-
sence of permeation enhancers, larger and more impermeable pep-
tides and proteins will require an absorption enhancing agent in
the formulation.
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CHAPTER 3
Introduction to tools of

supervised machine learning
3.1 Supervised machine learning to predict and to

learn
Supervised machine learning covers regression, classification and probability estima-
tion models built on labeled data. Regression is to predict scalars (numbers), classifi-
cation to predict class membership or lastly to rather predict a probability distribution
across classes.

The direct motive of supervised modeling is to predict a certain target information,
that is otherwise expensive/tedious to measure, or only reveal it self in the future, or
the measuring is invasive and will destroy the object of interest. The target is pre-
dicted by learning a simple or perhaps complex relationship between easy accessible
features and the target from a labeled training data set. When a useful relationship
has been established with a model, target predictions can be made for a unlabeled
data set without the target.

An indirect motive of supervised machine learning is to elucidate a general rela-
tionship between features and targets. One example of an indirect motive is when
modeling the contraceptive method choice reference data set [Lic13], see also results
part of forest floor article in Section 5.3. Here, +1000 Indonesian married women
had answered a questioner on contraception and socio-economic status. To build a
model to accurately predict contraception method choice based on 10 questions on
socio-economic status was never the actual motive. It has little practical use to ask 10
questions to only estimate one answer. Why not just ask the right question at first?
However, the structure of an accurately predicting model can be an useful empiric
proposal for a general relationship. Scientifically, the next step is to form testable
causal link theories inspired by the captured empiric relationships.

A typical labeled data set, is organized as a data table with one column with
desirable target information and a series of columns with feature information. Every
row is an independent observation of one target and some features. A practical
example is the public abalone data set. Here, a marine biologist may be interested in
estimating the age of abalones (shellfish). However, determining age is tedious and
requires to sacrifice each specimen to study the broken shell under a microscope after
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Figure 3.1: We can imagine an unknown target function f in nature, that gener-
ates the N observed training examples Xi yi for i ∈ 1, 2, ..., N . With a
hypothesis set H, that is the set of hyper parameters we will try for A.
Each hypothesis will yield a model. With model selection one final hy-
pothesis and the resulting model g is chosen. The model g is a function
that mimics f . With g we can start to predict how f behaves (direct
motive), or secondary evaluate the structure of g to both challenge the
validity of g and our current beliefs of f . The figure is copied from a
set of Caltech lecture slides [Abu12]. .
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chemical staining. To measure the size and weight and to observe the gender is in
contrary easy [Lic13]. Therefore the marine biologist can use a supervised regression
model to learn a relationship between morphology and age, and use this relationship
to predict effortless the age of new specimens. Each row of the data set will be one
abalone randomly sampled from the ocean, a target column (y) will describe the age
of each abalonem, and feature columns will describe other features measured.

3.1.1 Univariate regression
Perhaps a single feature such as weight (x.1) would be almost perfectly linear related
to age (y.). In such case uni-variate linear regression (ordinary least squares) would
be a sufficient model. Where ŷ = b1x.1 + b0, and where b1 and b0 are chosen to
minimize a loss function evaluating the training error. Let x.1 be a vector of weight
measurements and let y. be a vector age. Both x.1 and y. are of length N , the sample
size of the training set, and the elements are enumerated from 1 to N th observation
by i, such that yi is the age of the ith abalone, and xi1 is the weight.

Perhaps the absolute abalone growth rate increases with age, and therefore the
age of larger abalones are in general overestimated. By plotting the relationship
and inspecting the residuals it may be evident, that linear fit is not optimal. To
overcome this, the model may manually be expanded with a quadratic term such
that ŷ = b2x2

.1 + b1x.1 + b0. Thus in this manual approach, first a linear fit was
made, and by inspecting the residuals it was obvious that transforming the weight
measurements by non-linear quadratic transfer function would improve the linear
relationship.

3.1.2 Multiple linear regression and interaction terms
The user may now start to include several transposed features and interaction terms.
There is no direct limitation in linear regression to not model non-linear relationships
and interactions terms. All these terms just have to be stated manually. For a small
set of features, and where the goodness-of-fit of a linear model is already fair, it is
easy to inspect the residuals to observe, how a linear fit may be inadequate. Hereafter
one can specify some useful transfer functions and interactions terms to obtain an
even better model. When the number of features become large, it will become tedious
to manually state terms in the model. If the feature relationship is fairly complex,
many interaction terms and non-linearity no 2 dimensional residual can reveal what
transfer functions to use. A fast fix is to state a model with several transfer functions
for each feature and interactions for each pair of features.

One limitation is the degrees of freedom. In a linear ordinary least squares model,
if the number of parameters to fit in the model outnumbers the number of observa-
tions, there is no longer one unique fit with a minimal loss function score, but rather
a subset of solutions all with a constant error. It takes only an offset and a slope
to connect two points with a line, or an offset and two slope coefficients to describe
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a plane connecting three points. Likewise, 18 points can always be connected by an
17-dimensional hyper plane plus an offset. The accuracy of a model should not be
evalauted by training error, especially when then number of parameters are close to
as many observations and/or if the observations are noisy.

”With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk” - J Neumann [Wik16c]

Psychologist and economist Daniel Kahneman noted when working with notori-
ously noisy data from psychology tests, that multiple linear regression models ex-
plained the training data well, however the established model predicted poorly future
results and could not be reproduced. Each subject (person) would be exposed to a
number of sub tests outputting score values. Each sub test was designed to be related
to e.g. leadership performance by some measurable definition. The test scores could
be combined to predict future leadership for interviewed candidates with a multiple
linear regression model, however Kahneman preferred to simply use the summed to-
tal score as a !predictor, thus giving each sub test the same weight. He found this
approach more accurate and reproducible than multiple linear regression [Kah11].

The individual psychological tests aimed to reflect the same target and these
were likely linearly related (collinearity). Moreover, the psychological observations
were inherently noisy and the training set size modest. This was a recipe for a poor
overfitted multiple linear regression model. The best ordinary least sqaures fit may
be a spurious ratio between the sub tests, where some tests even are accredited by a
negative coefficient, although having a positive linear relationship to the target.

Kahnemans practice of forcing all tests to have the same coefficient size is in
practice the same as regularization, although a fairly crude version. A more elegant
regularization method is the elastic net (EN). EN regression allow to do anything be-
tween classic multiple regression and a very strong regularization where all coefficient
tend to have low values of equal size. Regularization tend to even the dependency on
all features, unlike using only one feature greedily. Intuitively, to rely more evenly on
different information sources under noisy conditions will lead to more robust models.
Secondly increased regularization tend to prevent finding some very specific ratio be-
tween correlated features to explain the target, but rather use the weighted average
of correlated features to predict.

The elastic net coefficient estimation Elastic-net do not only minimize squared
target residuals but also the squared coefficents (L2/lambda penalization) and abso-
lute coeeficients (L1/alpha penalization). An elastic net algorithm will likely use a
convex optimization search to find the coefficients that minimizes this loss function,

β̂Ridge = argmin
β

N∑
i=1

(yi − ŷ)2 +
p∑

j=1
λ(αβ2

j + (α − 1)|βj |) , (3.1)

where N is the number of observations/rows, and ŷi is the ith prediction ŷi =
β0 + β1:pxi. and p is the number of features/columns [FHT01]. The λ and α param-
eter are specified before the convex optimization search. lambda controls the overall
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penalization of coefficient sizes. alpha is a value between 0 and 1. When 1, only the
sum squared coefficents is penalized (L2), whereas for alpha = 0 only the sum of
absolute coefficients is penalized (L1). Any value in between is a linear combination.
Strict L2 penalization can never drive a coefficient entirely down to zero, as squaring
a small number below 1 makes it even smaller. With the L1 penalization it is possible
to drive coefficients down to zero, thus effectively omitting them from the model. L1
penalization can be used for feature selection [FHT01].

The elestic net estimator allow to introduce two types of gradual regularization
driving down the effective number of parameters in the model. Elastic net can be
seen as a learning algorithm A that takes a training set T ((x1, y1), ..., (xN , yN )) and
a set of hyper parameters h (α and λ) as input. The leaning algorithm will then
output a model function g = A(T, w). The model function can make predictions
g(xi) = ŷi. The hyper parameters α and λ should be chosen to obtain the lowest
future prediction error and not necessarily to obtain the lowest training error, as the
ordinary least squares fit do. To estimate what model will work best with future
predictions cross-validation is used.

3.2 Cross-validation
There are infinite models that can explain a given training set perfectly. Especially
a sufficient complex model, can always connect the dots in some way. In hind sight
virtually anything can be explained. Cross-validation is a simulation of how well a
given model will predict unseen data.

There are alternatives to cross-validation such as the ’Akaike information criterion’
which will weight training set prediction accuracy against a penalty for model com-
plexity. However the Akaike information criterion do not translate well to non-linear
algorithmic models where the effective degrees of freedom is difficult to estimate.

Cross-validation is performed for two purposes. First, model selection, that is to
compare our set of hypotheses to choose the most promising approach. In practice
that is to select the most useful learning algorithm and optimize the hyper parameters
and perhaps perform some feature selection. Secondly, to estimate the prediction error
for future data generated by the same underlying function f for a given built model
g [FHT01].

3.2.1 Segregation
The simplest cross-validation scheme is segregation. The data set of data examples
is randomly divided into e.g. 50% training observations, 25% validation (aka. cali-
bration) and 25% test observations. The learning algorithm uses the training set to
estimate model parameters, the validation set is used to choose the hyper parameters
of learning algorithm and the test set is used to estimate the future prediction error
[FHT01].
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3.2.2 Unbiased estimation of prediction error
To perform model selection and to estimate prediction error is often the same pro-
cedure. However, especially if the set of model hypotheses is large, there may be
some hypotheses, that only by chance produced a good model fit of the validation
set. Selecting the hypothesis with lowest validation error may be the best strategy,
however the low validation error of this hypothesis is an inseparable combination of
skill plus luck. Where the skill component remains, the luck component is inherently
non reproducible and will regress towards the mean [Kah11]. Thus, we don’t know
exactly why a given hypothesis turned out to be the best to fit the validation set. The
best hypothesis will subsequently perform worse on the test set than on the validation
set, as luck is difficult to reproduce. For a large hypothesis set, where all model has a
low explained variance, we should expect the luck component to be substantial. The
Gamblers fallacy and the Infinite monkeys theorem would be the extreme cases, where
there is no skill and only luck. In a room sit infinite monkeys and type randomly on
type writers, one monkey will eventually write the complete works of Shakespeare.
Would you hire this monkey expecting it to write more brilliant works in the future?
[monkeys; Wik16a]

This problem is very related to family-wise error of multiple hypotheses testing
in classical statistics and e.g. the Tukey and Bonferoni corrections. However no such
corrections exists for general machine learning.

In conclusion when ever making a model selection or a parameter estimation based
on a set of data, the same data set cannot provide an unbiased estimation of the model
performance. A new cross-validation must be wrapped around the current procedure.
Lastly also within machine learning literature, publication bias inevitably exists. An
article including a model procedure with a good final test score, is more likely to be
submitted and accepted. But as a component of luck may have had an influence, the
published test set performances, will in average regress towards the mean, if the study
were to be reproduced. Thus paradoxically, the test score is valuable as an unbiased
estimation of the future model prediction error. However if we act on this test score,
it is no longer unbiased. How can a test score be valuable, if we cannot use the
information? There is an obvious conflict of interest. Should a researcher publish the
model with the better test score, or ideally with the model with the most unbiased
test score. Machine laerning competions offers a good solution to resolve the conflict
of interest. Here an extra ans final test set will only be revealed after the competition
is over. Then each competitor can only focus on building the best model to predict
future data. Cross-validation will be used, but only to guide the competitor to make
optimal choices. If the competitor produces over optimistic internal cross-validation,
then she is only cheating her self [Ser15].

3.2.3 Independent and identical sampling
Any prediction error estimation from a cross-validation is based on the assumption
of independent and identical sampling. Returning to Figure 3.1, it is assumed that
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that the distribution of training examples, test examples and future examples to
predict are identical distributed. That is that Xtest and Xfuture are drawn from the
same larger Xall distribution. Also, the sampling procedure recording a sequence of
observations must be independent [Le 10]. E.g. if there is a strong auto-correlation
with an oscillation interval larger than the sample size, a sample average may not be
very close to the population average, as all observations happen to be recorded in e.g.
a sampling period with only observations above average. Furthermore the low sample
variance will lead to an over confident estimation of model accuracy.

3.2.4 Transient or constant underlying systems
Typically, cross-validation assumes that the underlying true function f , see Figure 3.1
remains unchanged. When the underlying true function is a physical rule of nature,
no drift of f is expected. However if the underlying function is drifting, the expected
prediction error are probably over optimistic. Within economics, this problem is
known as the Lucas Critique [Wik16b]. It is naive to believe economical models
successful can predict future events from historical data. In a developing society,
events will be unprecedented due to new technology and transient social constructs.
The rules of the game may simply be changing too fast. To some extend modeling
strategies in transient systems, can be validated with ’back-testing’, that is a cross-
validation over time testing an online learning system.

It can be difficult to decide if new observation diverge from the predicted, due to
noise or a drift in the underlying system f . If one expects the underlying system to
both be drifting and to be noisy, it is a tough situation. Any small training sample
will have a substantial sampling error, and any large sample will be sampled across a
period where the underlying function f already have drifted.

3.2.5 Defining training and prediction error
The estimated training or prediction error is based on a loss function to score how
much different a prediction is to the true target. Also when all predictions have been
scored, an aggregation method is needed to summarize the expected performance.
Typically the average is used as aggregation method, and for regression, squared
residuals is used as the loss function. Therefore, the training and prediction error is

err = 1
N

N∑
i=1

L(yi, f̂(xi)) , (3.2)

where i iterates a set of 1 to N test or training observations and where the squared dif-
ference L(a, b) = (a−b)2 is the loss function, L. Both for regression and classification
it is worth to consider what aggregation rule and loss function to use, such that the
trained model is the most useful. E.g. if a forecaster is financially penalized propor-
tionally to the forecast error, then the loss function should certainly also be absolute
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error L(a, b) = |a − b|. If the forecaster will be fired if any prediction is worse than
a certain margin, one may choose only to summarize the top or bottom outliers to
focus on reducing these. Also the prediction error may be far from constant across the
feature space X, and therefore would an unconditional aggregate, such as averaging
be a crude estimate. Instead the prediction error for each prediction of Xi should be
estimated by a error function fe, such that Xi errXi

= E[L(yi, ŷi)|Xi] = fe(Xi). For
classification the loss function should reflect the actual cost of false positives / false
negatives or the loss function should maximize a reward. Classification problems can
be redefined as probability estimation problems, applying a proper score rule as loss
function. Probability estimation is a more elegant way to maximize a defined reward,
than classification. Classification can only apply one fixed threshold of certainty,
when assigning predicted classes to test observations [Har+84]. At best the model
selection and test could be based on a simulation reflecting, what would happen if the
predictions were utilized. This is known from back-testing e.g. stock trading robots.
The robot will e.g. provide predictions of the coming days price fluctuations over a
year, and a trading simulation will measure well a given strategy can utilize these
predictions to increase portfolio net worth and to minimize the risk (variance). Then
the loss function and aggregation method is coupled to exactly, what the user intend
to achieve. However, it may be difficult to estimate the outcome of good and poor
predictions, when in opposite to stock trading the rules of the game is unknown. How
the accuracy of the predictions of permeation enhancers provided in this thesis will
affect the company Novo Nordisk is really hard to say, and therefore it is difficult
to devise a test metric that optimizes wealth or happiness. A good guess would be,
that most often the permeation enhancer predictions will mean nothing at all and
for rare wild cards, a whole lot. This is based on the notion that most candidates in
drug development will fail, and only few candidates will drive the revenue. It is also
possible to scale the target information in a way such that a standard loss function
would useful. In Section 2.1.3 the target Tpot could have been transformed before
passing it to a machine learning algorithm.

3.2.6 Other cross-validation regimes
Cross-validation by segregating the data set into one training, one validation and one
test set is easy to implement. However, the random segregation itself contributes to
the uncertainty of the estimated prediction error. This can be avoided by 10 times
segregating the data set, building the model and estimating the prediction error. The
average of the repeated estimated prediction errors will have a lower variability. n-fold
cross-validation is a stratified version, where each observation is selected once for the
test set and n − 1 times for the training set. n-fold cross-validation is more efficient
than random segregation to lower the variance of segregation. When the user both
need to perform a grid search in the hypothesis space, select the best model based on
prediction of the validation set and compute an unbiased prediction error the cross-
validation regime may become complicated. Krstajic et al provide a useful review
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for various cross-validation regimes [Krs+14]. After model selection and prediction
error estimation, the learning algorithm is executed a last time with the favored hyper
parameters and the full data set as training set. The resulting model will be used in
practice. To include all observations will increase the model performance.

3.3 Algorithmic models
So far in this introduction multiple linear regression have worked well even for non-
linear problems, if the user can come up with transfer functions that make the feature
relate linearly to the target. However, for multivariate data set, where an initial mul-
tiple linear regression model has a low goodness-of-fit, it can be difficult to decide
from residual plots by each feature, what series of transfer function and interaction
terms would improve the model fit. Algorithmic models are loosly termed as defined
as model structures rather defined by the algorithm, than the output mathematical
expressions. However, models can ultimately be expressed in a mathematical expres-
sion, it may just be a very long and incomprehensible one. Popular algorithm models
presently are radial basis support vector machine (RB-SVM), random forest (RF),
gradient boosting trees (GBT) and neural nets (NN). An introduction to each type of
model is beyond the scope of this thesis and especially neural nets has today a large
field special tailored for the purpose sub-models, such as convolutional nets, recurrent
nets, deep layered nets or any combination of these.

From a users view point, all these algorithmic learners have in common, that fea-
tures can be inputted without specifying transfer functions, and the resulting model
will to some extend automatically: Fit non-linear relationships, fit interactions and
provide regularization plus robustness to outliers. A given algorithmic models should
be considered instead, whenever this seem to out perform linear regression in cross-
validated prediction error.

In ordinary least squares regression, there are no hyper parameters, only one fit
with the lowest training error. In the elastic net fit, λ and α could be adjusted
and for each set of these hyper parameters named w, there would be a solution of
parameters / coefficients. In contrary to linaer regression, the model parameters to
fit are not necessarily stated in advance. New ones can be created in the fitting
process. Each algorithmic learner will have a set hyper parameters, and if these are
calibrated poorly, the resulting model fit will be inferior. Unlike manually stated
linear regression models, the parameters of algorithmic tend not only to additively
influence the prediction. The parameters also influence each other such that the
overall learning algorithm is very flexible. The downside is it much harder to interpret
one parameter, when it must be understood in the context of a perhaps complicated
network of parameters.

The random forest algorithm was extensively used throughout this thesis. Prob-
ably either of above mentioned methods RBF-SVM, GBT and some versions of NN,
could have replaced the use of random forest in this thesis. The prediction error dif-
ference, may even have been so small, that it is only in competitions, it would matter
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which learner to pick. In a competition situation, one may also choose to use all the
learners and combine several trained models in a joint ensemble.

The random forest algorithm often perform quite well with the one default set of
hyper parameters, whereas GBT have no recommended default set of hyper parame-
ters, but likely there is a smaller subset of hyper parameters that do perform better
than random forest. From a user perspective, GBT can provide a slightly improved
performance on the expense of application time and run time. In order to calibrate
the GBT learner well, for a given data set, it is likely necessary to perform a sub-
stantial grid search and thus in fact run the learner algorithm several times. With
formalized grid search and cross-validation tools such as caret package, few extra lines
of code are required [Kuh15].

Although the trained models are stated differently, a good rule of thumb is, that
when the various models achieve very comparable cross-validation results their ef-
fective model structures must match. In appendix Section A.2.5 there is included
a simulation to illustrate how similar a RF and RBF-SVM fit are for interpolation.
However, when then RF and RBF-SVM model is used for extrapolation outside the
proximity of training observations, the model structures heavily disagree. Figure 3.2
depicts how similar the effective model structures are in proximity to data points,
and how different extrapolated predictions are.

X2
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y

X2

X1

y^
y^

X2
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random forest model RBF-SVM modeltraining set

Figure 3.2: Left plot, a training set has been simulated from y = sin(x1π) 1
2 x2

2 where
x1 and x2 are drawn from an uniform distribution within [−3; 3]. Middle
and left plot, RF and RBF-SVM have respectively been trained on the
data set, providing two completely similar model structures within the
proximity of training data. The the shape of the RF and RBF-SVM
model structures heavily disagree outside training set area. See the
simulation code in A.2.5..
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3.4 Random Forest

3.4.1 bagging
Random forest is a bootstrap aggregated ensemble model meaning it is a collection
of independently trained sub models, where each model is trained on a bootstrapped
sample of the training set. The prediction error of bagged ensemble models can be
lower than the average prediction error of the individual models.

Bootstrapping the training set means to sample a random set of observations. This
bootstrap set has the same size as training set and could include every observation
of the training set. This would be very unlikely. By default (uniform distribution,
sampling with replacement) the chance, that an observation is not included, is ap-
proximately 37%. The chance an observation is sampled at least once is %63, see
Appendix A.2.9 for an exact sampling description.

For random forest the same learner, decision tree, is bagged perhaps 500 times.
The ensemble prediction is typically the average vote of the ensemble. Besides random
forest, bagging is an easy way to combine different model approaches to achieve a
perhaps lower prediction than any model approach alone. As bagging independently
train each model, the computation can easily be distributed across multiple CPUs or
nodes in a server cluster. Appendix A.2.8 provides an elaborate parallel implemented
example, where logistic regression is combined with random forest to form a new and
more accurate ensemble.

When only bagging multiple linear regression models, the acquired ensemble can
actually be reduced to one linear regression model where each coefficient is the av-
erage of the corresponding coefficients in each sub model. Hereby bagging provides
a regularized model similar to increasing the lambda-parameter of elastic net and
where alpha = 1. For ensembles of non-linear models, there are no obvious average
model. However the bagging still provide regularization, offering a more robust model
estimation, than a single learner model alone.

3.4.2 Introduction to decision trees
The random forest algorithm is an improvement of the classification and regression
tree algorithm (CART) [Bre+84; Bre01]. The individual decision trees of random
forest are built by applying a collection of steps recursively.

1. A collection of observations is called a node and a node has a prediction, that is
the average target. A node is terminal, either as there are no valid features left
to split by or if a stop criterion has been triggered. Stop criteria are: Exceeding
max allowed nodes in tree (infinite by default), reaching minimal allowed node
size (5 for regression, 1 for classification), or if all targets are the same.

2. For any intermediary node, a split rule is defined by a break point. For a break
point for a given numeric feature, any observation having a feature value below
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or equal is forwarded to a left daughter node and otherwise to a right daughter
node. Every possible split will be tried. For categorical features, any unique
separation of categories into two daughter nodes will be tried.
A loss function evaluates and select the best split. By default the loss func-
tion is the sum of squared residuals for regression and a variation of gini-index
for classification. The regression loss function choose the split, that maximizes
the variance across daughter nodes and minimizes intra-daughter node vari-
ance. The classification loss function choose the split that produces two nodes
most unlike a uniform class distribution. The loss function implementation is
discussed in detail in Appendix A.2.11.

3. For each daughter node restart the procedure from step 1.

In Figure 3.3 a simple regression tree is built. Left side shows a geometrical
representation of the model structure. Right side shows a graph representation of the
same model. The nodes are enumerated as these are created. For a CART tree, the
training set and root node is not the same, as all observations is used to build the
tree. In a random forest ensemble, all trees share the same training set. The training
observations passed to each root node of each tree is a bootstrap of the training set.
The root node is split into node 2 and node 3. The recursive algorithm proceed with
daughter node 2 first (left). If left node is terminal, the algorithm will return to
parent node and proceed to right daughter node. If right daughter node is terminal,
the algorithm will return to parent-parent node. Therefore the algorithm will visit
the nodes in this sequence: root - 2 - 4 - 2 - 5 - 2 - root - 3 - 6 - 3 - 7 - 3 - root.

Although decision trees are a collection simple univariate binary step functions,
the stacked trees can ideally estimate almost any structure including interactions.
The tree example of Figure 3.3, do in fact contain an interaction where high X1 give
a higher terminal prediction, when X2 is also high, and the opposite if X2 is low.
In appendixA.2.4 there is a simple simulation verifying that random forest can fit
interactions.

Whereas a two-way interaction term in a multiple linear regression is simply de-
fined as ŷ = β0 + β12x1x2 + ..., the interactions of decision trees are not easy to
comprehend when represented as an equation of stacked step functions. It is neither
easy to comprehend the interactions by a graph representation, especially when the
trees have more than 50 nodes. This has led to that interactions are only vaguely
defined and discussed for random forests [Bou+14]. In Section 5.2, I argue prod-
uct interaction terms as known from linear regression, cannot represent any type of
interactions in random forest models. Also, I provide my geometrical definition of
interactions in random forest models.

Although random forest is a powerful learning algorithm to estimate interactions
for a series of data problems, there is a limit for how complex an interaction the
random forest learning algorithm can fit. Although a given tree with a very high
number of nodes could potentially approximate any model structure, the random
forest algorithm cannot necessarily grow that tree, because the loss function consider
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Figure 3.3: Two representations of the same model tree. Left, a geometrical rep-
resentation of the model surface. Right, a graph representation of the
same tree model. Nodes are enumerated as created by the learning al-
gorithm. ŷ

′′

j are the node predictions. n is the node size. X1 and X2
axes are two numerical variables and y axis the prediction axis. This
figure is copied and modified from [Wel+16]..

only the immediate best univariate split. In Section 5.3.1, Supplementary materials
for ”Forest Floor Visualizations of Random Forest - 1.3 Shallowness of Random forest”
there are provided examples of high-order interactions, that random forest cannot fit.
This is the reason why neural networks will supersede random forest when a very
complex model structure is needed.

3.4.3 Regularization in random forest
Single fully grown decision trees have a low bias, meaning the learning algorithm is
flexible enough to build a model to approximate almost function, if there is enough
training observations and the noise level is low. However as mentioned, decision trees
cannot fit high-order interactions, 5.3.1. If the function to approximate is not a step
function itself, but some rounded structure, it will take high number terminal nodes
to approximate. Similarly it takes a high number of square pixels to draw a seemingly
round circle on a screen. To obtain the lowest bias, the decision tree must be fully
grown. Unfortunately, when every terminal node prediction is made up by only one
observation, the model will be noise labile. For the rare occasion of noise free data



40 3 Introduction to tools of supervised machine learning

sets, a single fully grown decision tree can work well. In Figure 3.4, to the left a
noise free data set simulated by the function y = (X2

1 + X3
2 )2 − (X2

1 + X3
2 ), where X1

and X2 are drawn from uniform distributions. To the right, a decision tree with one
observation per terminal node. Overall the decision tree approximate the underlying
function well, the cross-validated explained variance is 96%.

y
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x1
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Data

single deep tree

Figure 3.4: Single regression tree fit to 2500 data points without noise. y =
(X2

1 + X3
2 )2 − (X2

1 + X3
2 ), where X1 and X2 are drawn from uniform

distributions..

If the same data set is added a normal distributed noise on the target values, the
model variance in its predictions will rise up. In Figure 3.5, the same simulated data
set has been added noise to the target, such that 33% of the variance is non explain-
able noise. An optimal model would therefore be able to explain approximately 67%.
Model (a) is a single fully grown decision tree. The cross-validated explained variance
is however only 30%. In model (b), the decision tree is regularized by limiting the
depth of the decision tree, such that no node will be split if having less than 150
observations. The cross-validated explained variance is 50%. The model is no longer
unstable, however as seen in the Figure 3.5, the model is now very crude and square.
Thus by a bias-variance trade-off, the model have become stable by constraining the
model surface complexity. Ensemble regularization with bagging can lower the deci-
sion tree variance without increasing the bias as much. Model (c) is a default random
forest model, minimal nodesize = 5, number of trees is 500. The cross-validated ex-
plained variance of the model is 60%. The default RF model structure surface still
contain some random ripples that attributes to the model variance. To regularize the
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model beyond a default random forest model, there are three approaches: random
variable sub space(see next section), terminal node size and bootstrap size. As with
model (b) the tree depth can be limited by restricting minimal node size. In model
(d) a trees of the random forest are limited to a minimal nodes size of 50. No node
with less than 50 observations will be split. To increase the robustness of RF mod-
els directly by limiting the depth of each tree is recommended e.g. in Elements of
Statistical Learning [FHT01] and in this simulation yields a cross-validated explained
variance of 63.5%. However I find, when limiting tree depth directly, the tree correla-
tion increases. Visually model (d) seems smoothed compared to (c). However model
(d) also seems to retain some bias similar to the structure of model (b). Limiting
bootstrap sample size to e.g. 10% of N training observations instead will also lower
the tree depth as fewer splits can be made before each tree is fully grown. The tree
correlation will be very low, as each bootstrap are much more different. Model (e) is
a random forest where bootstrap sample size has been lowered to 250 instead of 2500,
the model structure appear even more rounded and the cross-validation explained
variance is 64.5%, slightly better than standard way to regularize RF. The slightly
lower prediction error of model (e) over model (d) comes with a price. In Appendix
A.2.12 a simulation show sample size regularization requires more trees to converge
to a minimal prediction error, than with node size regularization as recommended
by Friedman et al. In terms of training speed, fewer observations per tree approx-
imately cancels the more trees required. This finding is interesting as sample size
regularization, seem not to be mentioned much in random forest literature.

3.4.4 Random subspace regularization

Node size and sample size regularization as seen in Figure 3.5 tend to smooth the
model structure. A third type of regularization is central for the random forest
algorithm, called random variable subspace regularization. At any split only a random
sample of features (aka. variables) are available to split by. This hyper parameter
is called mtry, relating to the feature training matrix of n rows and m columns. If
mtry is 3, only three random columns can be accessed by the algorithm for any split.
Setting mtry = 1, will force the algorithm to use all features evenly. Setting mtry
equal to the total number of features will allow the algorithm to greedily split by
one dominant feature first and then only deeper down the tree make small correction
by other features. Therefore random variable subspace regularization have a similar
effect as L2-regularization of elastic net. A low mtry tend to distribute the dependence
on features. Moreover, a low mtry decrease the tree correlation as different features
will be used to make the first split. However low mtry tend to increase bias, especially
interactions are fitted less well. In Appendix A.1 model structures are visualized for
different values of mtry.
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X2 are drawn from uniform distributions. (a) single tree, min node size
is 5 , (b) single tree, min node size is 150, (c) ensemble of 500 trees, min
node size is 5, (d) ensemble 1500 trees, min node size is 50, (e) ensemble
of 1500 trees, min node size is 5, bootstrap sample size is 250.
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3.4.5 Final choice of regularization
The standard approach is to find the set of hyper parameters that give the lowest
cross-validated prediction error. However, already by visually inspecting the model
surface, the user should consider if the model surface is plausible. Would it be realistic
to reproduce e.g. the complex surface of model (a) and (c), if a new data set was
sampled. If the user in fact expect the underlying function to be complex and the
unexplainable noise component to be low, then the user should lean towards a model
with less regularization and accept model (c). If the user expect the noise component
to be substantial, then the user should lean towards more regularization, as a complex
model structure would be unrealistic to estimate. Also as discussed in Section 3.2.2,
model selection may be misleading. The model selected by the validation set, could
be mostly selected due to luck and not skill. Luck happens to regress towards the
average, it cannot be reproduced [Kah11]. Therefore, there is no standard cross-
validation procedure that can calibrate any model. The user must inevitably include
her own expectation to the underlying function that generates the data.

Moreover in terms of communication, the user can regularize the model beyond
what seems optimal to lower the prediction error, as the model structure especially
when high-dimensional may be easier to explore and communicate. An over regu-
larized random forest model structure may be easier to visualize and yet far more
accurate, than a linear regression model.
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CHAPTER 4
Predict permeation

enhancement
A main goal of this thesis has been to use the preclinical data more efficiently. Instead
of testing randomly new absorption enhancers or what intuitively seems promising, a
model built on previous experiences, can swiftly evaluate larger libraries of molecules.

4.0.1 Work flow and early challenges
Very early in the project three areas to predicts were identified. These were solubility,
critical micelle concentration (CMC) and permeation enhancement. In Novo Nordisk
for purposes securing intellectual properties, the default rule is that no in-house data
generated by the drug development projects can be published. Therefore all data
used in this PhD thesis were already public available from third-party sources or
conducted in experiments for this thesis only.

Figure 4.1 outlines the work flow of establishing a model to predict permeation
enhancement.

The work flow outlines a bottom up approach, where very simple in-vitro experi-
ments are conducted for series of candidate molecules. Each molecular formula is first
characterized by external models simulating the molecule and calculating molecular
descriptors, see Section ?? and the methods part 3.2 of article in Section 4.1. A re-
lationship is established with the learning algorithm between the molecular formula
and the in-vitro response.

Data on in-vitro Caco-2 permeation enhancement or similar preclinical studies
were not expected alone to be useful to select new enhancers. In-vitro studies tend
to overestimate the importance and impact of lipophilicity and the overall effect of
absorption enhancer. Enhancers with C16 carbon chains are found 10-50 fold more
potent than their C10 counter parts. [Mah+09; TT08]. Nevertheless C16 carbon
chain based permeation enhancesrs, have quite disappointing not delivered the same
potency in in-vivo studies. An obvious testimony is that there is no public announced
clincal trials using C16 surfactant peptide absorption enhancers [Agu+16].

A starting project hypothesis was, that critical micelle concentration (CMC) was
correlated with high absorption potency. Therefore initially, to collect data sets on
CMC values was a central goal. Being able to predict CMC could assist the selection
of permeation enhancer candidates. However, I found no literature that in fact shows,
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#Molecule/effect 
 #1/57% 
#2/22% 
#3/81% 

… 

Forecast 
machine 

#541 -> 57% 
#342 -> 22% 
#343 -> 81% 

Figure 4.1: Public information are tables of measured activity (target) linked to
unique molecule formulas. Formulas of molecules can be simulated with
e.g. force field models to extract calculated properties (features / de-
scriptors). A machine learning algorithm uses target and features to
output a model. The model is used as a forecasting machine, and the
model can be inspected to learn from the machine..

that low CMC values directly should cause permeation enhancement. Rather CMC
is simply being one of more collective attributes associated with lipophilicity [RK12].
Surfactants can be effective below their CMC [XO00]. Therefore, it would make
more sense to build predictive model using a target that resembled the permeation
enhancement the most. Therefore Caco-2 measurements was finally favored over
CMC measurements as model target.

Molecular solubility in watery buffers is not surprisingly negatively associated
with lipophilicity / hydrophibicity. In a worst case scenario potency predictions and
solubility predictions would be highly negatively correlated. Then to the models, per-
meation potency and in-solubility would be two indistinguishable phenomena. Such a
failure of the model destinguish insolubility with permeation enhancement would con-
tract the observed population of permeation enhancers in litterature, as elongating
the carbon chain of any molecule making it more lipophile, does not necessarily make
a potent permeation enhancer. In the article of Section 4.1, I used an early version
of the developed random forest diagnostic package forestFloor [Wel+16], to discover
that the trained permeation enhancement model in fact had captured this distinction
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in an interaction term. See Section 5.2 of how I define and classify interactions for
non-linear models such as random forest.

4.0.2 Challenges of a top down modeling of permeation
enhancement

In opposite to the bottom up approac of modeling simplified in-vitro experiments, a
top down approach was also being followed early in the project. Hypothesis associated
with top down approach was, that molecules claimed in literature such as articles and
patent applications to be permeation enhancers could be used as training examples.

One data set was obtained in an effort to use text mining to collect examples
of compounds being mentioned for being permeation enhancers and/or absorption
enhancers. The data set was acquired as a part of Sarah Brebbia Dirksen (Øster)
master thesis project in 2012. A list of 167 compounds originating from patent
applications and research articles was compiled [Bre12].

Such a set of examples would not only reflect in-vitro studies, but also a series of
unknown limitations such as toxicology, formulation in-capabilities etc. Thus a model
build on target data in the end stage of process, may contain a number of favorable
biases, such that the model e.g. tend not to suggest toxic molecules as permeation
enhancers.

It was assumed that permeation enhancement is a rare property of molecules, such
that any random molecule would likely not be an enhancer. Random molecules of sim-
ilar weight was acquired with the software ACDlab. Hereafter 49 chemical descriptors
were computed for both sets of molecules using the software packages ACDlabs and
Molecular operating environment (MOE). Linear discriminant analysis has been used
to learn a class separation rule to identify typical enhancer like molecules [Bre12].

Although a valid cross-validation of the classification model predicted a nearly
perfect classification accuracy, the model failed in a proof of concept to test pre-
dicted molecules in-house in the Caco-2 model. There are a number reasons why this
approach can have failed in spite of a promising cross-validation. To be fair some of
these reasons were discussed in the fine master thesis of [Bre12]. However, in the clear
light of hind sight, let us in the following section evaluate the implicit assumptions
of this top-down approach.

4.0.3 Assumptions of the top-down model
A requirement was that training and future test observations had to be drawn from
same distributions, see Section 3.2.3. The training set originated with positive exam-
ples from the pharmaceutical literature and with negative examples from what ap-
peared to be a random synthesis chemical library. It was assumed that all molecules
from random synthesis library were not effective as enhancers, and I agree on this
as a fair assumption. However visually inspecting the random synthesis molecules,
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revealed these molecules were far from typical excipients of pharmaceutical formu-
lations. Exotic heavy atoms as uranium! or what appear to be a truly random
patterns of side group substitutions was observed. If this library in fact was gener-
ated as an random or an exhaustive search of possible molecule graphs below a given
molar weight, then the average molecules will look far from the typical excipients as
these are certainly not random molecules for a number of reasons. The typical ex-
cipient, especially surfactant enhancers, are not very substituted, not very branched.
If generating a molecule starting from one carbon atom, and any choice have equal
probability, should this carbon chain branch out here or not? Should there be sub-
stituted something here or not? The average molecule will be very branched and
highly substituted, simply because there the combinatorial space is bigger, than for
non-branched non-substituted carbon chains. Thus the classification model has been
trained to recognize the difference between two groups of molecule that are obviously
different. A part of the reason the two classes of molecules are different may well prop-
erties related to being permeation enhancers or not. However any other differences
between the groups will be confounded permeation enhancement.

Most likely such classification model would be used to scan through a library of
approved pharmaceutical excipients, thus only drawing observations to predict from
the pharmaceutical molecule distribution. Suddenly the model may recognize many of
the molecules as permeation enhancers, simply because these are not branched enough
or highly substituted. The model will suggest too many molecules as permeation
enhancers and not all can be tested. One could use the linear discriminant score
to rank the predicted molecules to select those, who where most likely permeation
enhancers. However classic linear discriminant analysis, do not employ a proper score
function such as the Breier score and is not calibrated to rank how likely predicted
molecules are permeation enhancers.

Supervised machine learning is based rely on, that proximate observations have
similar targets on the smallest scale in the feature space, such that some interpola-
tion is a meaningful prediction. However, if including receptor mediated permeation
enhancers or calcium chelators. Receptor-agonist interactions are very delicate pro-
cesses that in two ways are analogous to a lock and key. First a permeation enhancer
agonist will like a key fit in a membrane receptor lock and trigger a response. Sec-
ondly, just the slightest change of the key or lock could disable the activation. To
map any possible key combination would take a very high number of training ex-
amples. Likewise for receptor mediated permeation enhancers or calcium chelators,
just a single reconfiguration of an atom, could completely change the biological re-
sponse. A few hundred molecules mentioned in litterature is likely very far from
mapping the entire complex mechanism of a living cell. In contrary surfactant-like
permeation enhancers will likely to some extend elicit their effect through surface ten-
sion depression. A single atom reconfiguration will likely not completely revert the
physiochemical properties and an interpolation on the small scale will be meaning
full.
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a b s t r a c t

Structural traits of permeation enhancers are important determinants of their capacity to promote
enhanced drug absorption. Therefore, in order to obtain a better understanding of structure–activity
relationships for permeation enhancers, a Quantitative Structural Activity Relationship (QSAR) model
has been developed.

The random forest-QSAR model was based upon Caco-2 data for 41 surfactant-like permeation
enhancers from Whitehead et al. (2008) and molecular descriptors calculated from their structure.

The QSAR model was validated by two test-sets: (i) an eleven compound experimental set with Caco-2
data and (ii) nine compounds with Caco-2 data from literature. Feature contributions, a recent developed
diagnostic tool, was applied to elucidate the contribution of individual molecular descriptors to the pre-
dicted potency. Feature contributions provided easy interpretable suggestions of important structural
properties for potent permeation enhancers such as segregation of hydrophilic and lipophilic domains.
Focusing on surfactant-like properties, it is possible to model the potency of the complex pharmaceutical
excipients, permeation enhancers. For the first time, a QSAR model has been developed for permeation
enhancement. The model is a valuable in silico approach for both screening of new permeation enhancers
and physicochemical optimisation of surfactant enhancer systems.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Development of oral delivery systems for proteins and peptides
offers the promise of improved patient compliance compared to
conventional parenteral administration. However, bioavailability
is, in part, limited due to poor absorption of proteins across the

intestinal epithelial barrier. To effectively deliver a protein
systemically this barrier can be modulated by the presence of
permeation enhancers [1].

Quantitative Structural Activity Relationship, QSAR methods
have been applied extensively for exploration of structural
properties of importance for oral absorption of new chemical
entities, e.g., QSAR models have been developed for permeability
[2] and solubility [3–5]. To our knowledge, no QSAR model for
permeation enhancement has previously been published.

Some permeation enhancers have specific mechanisms of
action, e.g., modulating the function of tight junctions in the
plasma membrane such as zona-occludens-toxin [6], EDTA [7] or
melittin [8]. However, the majority of permeation enhancers are
primarily surfactants and will non-specifically disrupt the lipid
bilayer packing of phospholipids in the epithelial membrane [1].
Surfactants are molecules having segregated lipophilic and
hydrophilic domains. Water soluble surfactants tend to pool in
the surfaces of water/air and water/lipid, lowering the surface ten-
sion. Lowering of surface tensions of water/air surfaces and the
ability to enhance the permeability across lipid bilayers correlated

http://dx.doi.org/10.1016/j.ejpb.2015.05.012
0939-6411/� 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: C6, sodium hexanoate; C8, sodium octanoate; c8G, octylglu-
coside; C10, sodium decanoate/caprate; c12PC, dodecylphosphocholine; c12GPC,
dodecanoylglycerophosphocholine; c14GP, myristoylglycerophosphate; CART, clas-
sification and regression tree; CDC, chenodeoxycholate; DDM, dodecylmaltoside;
EDTA, ethylenediaminetetraacetic acid; GCC, glycochenocholate; GH, glycyrrhiz-
inate; LCC, lauroylcarnitinechloride; LOO-CV, leave-one-out cross validation; MOE,
molecular operating environment; PCC, palmitoyl carnitine chloride; QSAR, quan-
titative structural activity relationship; SM, simomenine; RMSE, root mean square
error; rp, Pearsons correlation coefficient; rs, Spearman rank correlation coefficient;
SD, standard deviation; TEER, transepithelial electrical resistance; TDM, tetrade-
cylmaltoside; TDS, sodium tetradecyl sulphate; TDM, tetradodecyl maltoside; TC,
taurocholate; Tpot, TEER potency; UC, Ursocholate.
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well for a selection of surfactant-like permeation enhancers [9].
General relations between molecular structures and physicochem-
ical properties of surfactants are thoroughly described by Rosen
[10]. Several properties of surfactants, including surface pressure,
have previously been modelled with a QSAR approach applying
both linear regression and non-linear machine learning models
as artificial neural networks, support vector machine or random
forest [5,11,12]. Combining the above mentioned concepts, it
seems plausible that a QSAR-model of surfactant-like permeation
enhancement could be constructed.

Our modelling is based on a Caco-2 data set for 41 surfactant
permeation enhancers from Whitehead [13,14] tested in cell
monolayers across three concentrations. Hereby, trade-offs
between potency, pathway and safety amongst a selection of
mainly surfactant-like permeation enhancers were investigated.
For this article only the potency data was used. In vitro Caco-2
monolayers are cultures of functional, differentiated enterocytes
and are widely employed to evaluate permeability rates of drug
candidates or pre-formulations [15]. The Caco-2 data for perme-
ation enhancers from Whitehead [13,14] together with molecular
descriptors calculated from structure of these surfactants were
the basis for the QSAR model.

Non-linear machine learning models can have superior predic-
tive capabilities compared to classical statistical explanatory mod-
elling. However, such machine learning models are often complex
‘‘black boxes’’ – difficult to interpret and discuss [16]. This article
presents a promising method to elucidate the interplay of features
comprising good permeation enhancers within the complex
non-linear model of random forest. Therefore, based on the devel-
oped model, we here can recommend ranges of the selected molec-
ular descriptors to obtain high permeation enhancement potency.

2. Materials and methods

2.1. Materials

Caco-2 cells (ATTC-HTB-37) were obtained from American Type
Culture Collection (Manassas, VA). Cell culture media (Dulbecco’s
modified essential media (DMEM)) and penicillin/streptomycin
were purchased from Lonza (Verviers, Belgium). All other supple-
ments (i.e., foetal bovine serum, HEPES buffer and non-essential
amino acids (NEAA)) as well as Hanks’ balanced salt solution
(HBSS) and trypsin were purchased from Gibco, Life Technologies
(Carlsbad, CA). Corning Transwell� filter inserts (1.12 cm2 surface
area, 0.4 lm pore diameter) were purchased from Fisher
Scientific (Waltham, MA). Bovine serum albumin (BSA) was pur-
chased from Sigma Aldrich (St. Louis, MO). All other reagents were
of the highest analytical grade.

2.2. Cell culture and TEER measurements

Caco-2 cells (passage numbers 41–49) were seeded at a density
of 2.5 � 105 cells/flask and grown to 70–90% confluence in DMEM
(supplemented with 10% FBS, 100 U/ml penicillin and 100 lg/ml
streptomycin and 1% (v/v) NEAA). For transport studies, Caco-2
monolayers were cultured on permeable Transwell� 12 mm diam-
eter inserts at a density of 105 cells/cm2 and used after 14–17 days
in culture. Cells were cultured at 37 �C and 5% CO2 atmosphere and
the medium was changed every other day. Monolayers were equi-
librated in HBSS-based transport buffer 1 h prior to testing.
Transepithelial electrical resistance (TEER) was measured with a
chop-stick electrode (Millicell-ERS�, Millipore, Billerica, MA) prior
to testing, and monolayers with TEER values <600 X cm2 were dis-
carded. TEER was measured after 1 h exposure to permeation
enhancers.

3. Data processing

3.1. Training set

Whitehead et al., tested the ability of 51 permeation enhancers
to lower the barrier integrity marker %TEER in Caco-2 cells at 1%,
0.1% and 0.01% (w/v) and published the data set as supplementary
materials in two papers [13,14]. Of the 51 permeation enhancers
reported, forty-two had computable molecular structures
(non-mixtures) and were a wide selection of enhancers which
were ascribed to 10 different categories of surfactants: Anionic sur-
factants, cationic surfactants, zwitterionic surfactants, non-ionic
surfactants, bile salts, fatty acids, fatty esters, fatty amines, sodium
salts of fatty acids, nitrogen-containing rings and others [13]. EDTA
(a calcium chelator) was excluded from the training set because of
a non-surfactant-like mechanism together with high potency. The
remaining 41 permeation enhancers had surfactant-like structures
or low potency e.g., urea could be described as an ineffective
surfactant without permeation enhancement effect.

TEER-potency (Tpot) was defined to concatenate measurements
of TEER%-decrease (EP) at the three different concentrations
(0.01%, 0.1% and 1% w/v) into one target variable. Tpot was simply
defined as the mean TEER%-decrease across the three concentra-
tions as given in Eq. (1). Tpot = 1 corresponds to a permeation
enhancer lowering TEER% completely at 0.01% (w/v) and Tpot = 0
translates to no effect of a permeation enhancer on TEER% even
at 1% (w/v). The TEER%-decrease EP is defined as in Eq. (2) and
depends of the TEER% before and after treatment with enhancer
plus TEER%+ the background filter resistance.

Tpot ¼
EP½0:01%� þ EP½0:1%� þ EP½1%�

3
ð1Þ

EP ¼ 1� TEER%AE � TEER%þ
TEER%noAE � TEER%þ

ð2Þ

From a statistical point of view the loss of information is mini-
mal, as the TEER%-values of the three concentrations were highly
correlated. The loadings of the first principal component of a prin-
cipal component analysis resembled the definition of Tpot and this
principal component explained 71% of the variance. From a practi-
cal viewpoint Tpot could be seen as a linear approximation of pEC50
(�log effective concentration (w/v) of where 50% TEER-decrease is
observed), see Eq. (3). pEC50 itself is dimensionless.

Thus, for a given permeation enhancer having a potency of
pEC50 = 1 the corresponding value of Tpot = 0.5.

Tpot ¼
pEC50þ 0:5

3
; for pEC50 2 ½�0:5; 2:5� ð3Þ

3.2. Software packages, descriptors and model design

The open source R statistical software (v 3.02) was acquired
freely from http://www.r-project.org and Rstudio integrated devel-
opment environment (v 0.98.501) also acquired freely from http://
www.rstudio.com. The R-package ‘randomForest’ (v.4.6) [17,18]
was used in the random forest-QSAR model. CAS identification
numbers of compounds in the training set were converted to
mol-files through SciFinder [19]. Mol-files bundled in sdf-files
were imported to the software application MOE [20] and sequen-
tially pre-processed with the following functions: ‘wash’ (simulat-
ing an ideal solubilised molecular form), ‘partial charges MMFFA96x’
calculating the electron densities necessary for a number of
descriptor algorithms, and finally ‘energy minimize’ relaxing the
molecule in the minimum state. All 2D molecular descriptors pro-
vided by MOE were computed. The subgroup of 3D descriptors
‘vsurf’ [21] plus the single 3D descriptor ‘dipole’ were calculated
as they were relatively fast to compute and therefore suitable for
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screening purposes. One new descriptor carbon chain length (CCL)
was implemented through R. CCL is the length of the longest satu-
rated non-substituted aliphatic carbon chain of a given permeation
enhancer. Table 1 explains the simple implementation of CCL. After
266 molecular descriptors were acquired, a variable filtering was
performed to increase prediction performance. First, fifteen
descriptors were excluded for having the same value for more than
95% of the actual training-set. A descriptor having the same value
for all permeation enhancers does not provide any information and
is problematic for some algorithms which e.g., divide by the vari-
ance, which will be zero. Subsequently, 143 redundant descriptors
were filtered off, one at a time, until no remaining descriptor
pair-wise correlations exceeded rp = 0.9 (Pearson correlation).
This correlation-filtering was a simplified implementation of the
CORCHOP routine [22]. Lastly, the remaining descriptors were fil-
tered by their Spearman rank correlation coefficient (rs) to the tar-
get variable, Tpot. As Spearman rank correlation utilises the target
parameter (Tpot), it was computed separately on training data for
each fold of the cross-validations, so as to avoid latently overfitting.
Nevertheless, the random forest algorithm was a robust model and
the root mean square error estimated by leave one out
cross-validation (RMSELOO-CV) exhibited a variation of less than
20% for any reasonable subsets of pruning parameters. The 30 best
rs-correlating (or inverse-correlating) descriptors were included in
the model. See Table 2 gives an overview of the descriptors
selected for the model. Fig. 1 depicts the data flow from molecular
formulas, computation of molecular descriptors, variable filtering,
model training and cross-validation.

The default parameters of the random forest model were used
as provided in the R-CRAN package ‘randomForest’, though the
number of decision trees grown was set to 10,000 or 50,000 to
ensure a conveniently high reproducibility between model-runs.
Variable importance was computed for any descriptor and
described the deterioration in prediction accuracy of the model,
when permuting the particular descriptor. Variable importance
was used to rank the importance of the descriptors and did not
influence the model predictions. However, variable importance
was a valuable tool to identify the molecular descriptors/features
most important for predicting surfactant-like permeation
enhancement.

To assess the mechanics of the random forest-QSAR, the pack-
age rfFC [23,24], which is a diagnostic extension for random forest,
was acquired from https://r-forge.r-project.org/projects/rffc/. rfFC
provides forest contributions which is the mean contribution of a
given variable to the Tpot prediction of a given permeation
enhancer.

3.3. Experimental test set

A set of 11 compounds and an additional 3 compounds from the
training set were tested in Caco-2 monolayers to generate an
experimental test set for validation of the developed random
forest-QSAR model. Contrary to the experimental setup of the
training data, the experimental test conducted for this paper differs

in terms of media (HBSS versus DMEM, respectively) and incuba-
tion times (60 min versus 15 min, respectively). Likewise, mor-
phology of Caco-2 monolayers is expected to have some inter-lab
variation [25]. The most lipophilic permeation enhancers were
barely soluble at 1% (w/v) at 37 �C and needed to be maintained
at this temperature during the experiment at all times to avoid
precipitation. Model predictions were compared to experimentally
measured values of Tpot. The Squared Pearson correlation coeffi-
cient (rp

2) and the root mean square error of ordinary least square
fit (RMSEOLS) were used as the validation criteria for the linear rela-
tionship between model predictions and experimental values. It is
acceptable that the slope and offset deviates from 1 and 0
respectively as the absolute measured Tpot is method specific.

3.4. Literature test set

Based on a literature search, nine permeation enhancers were
included as a literature test set (Table 3). For all included

Table 1
Examples of the new descriptor carbon chain length (CCL). CCL estimates the longest sequence of saturated carbon atoms by counting the longest sequence of capital C’s in a
corresponding SMILES representation of the structure.

Name Structure Smiles underscoring CCL count

Decanoate O@C(O)CCCCCCCCC 9

3-Hydroxydecanoic acid CCCCCCCC(CC(@O)O)O 8

Benzoic acid O@C(O)c1ccccc1 1

Table 2
Overview of the 30 descriptors applied in the random forest-QSAR model predicting
the potency of surfactant-like permeation enhancers in Caco-2 monolayers.
Descriptors were computed through MOE (18) except CCL ‘‘carbon chain length’’
implemented for this article.

Group of descriptors: Amount used Names of descriptors
as available in MOE

Atom counts and bond counts 3 a_nN
a_nS
b_double

Kier–Hall & Kappa shape: 1 chi1_C

Adjacency and distance matrix: 8 BCUT_SLOGP_0,
BCUT_SLOGP_3
BCUT_SMR_3
GCUT_PEOE_0
GCUT_PEOE_3
GCUT_SMR_0
wienerPath

Pharmacophore feature: 1 a_base

Partial charge: 10 Q_PC+
PEOE_RPC+
PEOE_PC+
Q_VSA_PPOS
Q_VSA_POL
Q_VSA_FPNEG
PEOE_VSA_POL
PEOE_VSA_FPPOS
PEOE_VSA+5
PEOE_VSA+1
PEOE_VSA-1

Surface area, volume and shape: 4 vsurf_IW3
vsurf_ID8
vsurf_CP
vsurf_Wp 2

Conformation dependent charge: 1 dipole

Physical properties: 1 logP(o/w)

New descriptor in this article: 1 CCL ‘‘carbon chain length’’
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permeation enhancers from the literature, pEC50 was estimated by
interpolation to compare across various experimentally applied
concentrations. pEC50 is the negative logarithm of EC50 and has
an approximate linear relation to Tpot, as described in (Eq. (3)).
The model performance was validated by the accuracy of the
pEC50 prediction for the permeation enhancer in the literature test
set. Again the main criteria for comparison were rp

2 and RMSEOLS

between interpolated pEC50 values and predicted Tpot values.

4. Results

A random forest-QSAR model was developed based on a 41
compound training set from literature [13,14] and permeation
enhancement potency (TEER% Caco-2) values were matched with
molecular descriptors. The predictability of the model was tested
through validation. Three types of validation were applied:
Internal leave-one-out cross validation, (LOO-CV), experimental
validation and literature validation. Lastly, the mechanics from
the autonomous random forest-QSAR model was extracted to pro-
vide a complimentary insight into which molecular properties
there are important for permeation enhancement potency.

4.1. Model validation

Internal cross-validation was used throughout the process of
designing a predictive generalisable model of permeation enhance-
ment. Table 4 summarises the validation outcome. Both the inter-
nal and experimental validation showed RMSEOLS = 0.16–0.17. This
error was a sixth of the entire 0–1 range of the Tpot scale. As Tpot

summarises three concentration levels 1% to 0.1% to 0.01% (w/v)
with a 10-fold span between each step, the accuracy was inter-
preted as to confirm that the model could predict within which
10-fold concentration a given permeation enhancer was effective.
Likewise, for the literature validation the RMSE was 0.39, which
corresponds to less than half of one unit on the pEC50 scale. One
unit of pEC50 is equal to a 10-fold change in 50% effective
concentration.

Fig. 2 shows plots of the three types of validations. In part A and
B the predicted Tpot values are plotted against the measured values
for the training set data from Whitehead et al. [13,14] and for the
experimental data set. Fig. 2C depict the correlation between pre-
dicted Tpot potencies and the actual pEC50 values for the literature
test set. The internal LOO validation correlation coefficient
was lower, rp

2 = 0.57 (Fig. 2A), than for the external test-sets,
rp

2 = 0.65–0.66 (Figs. 2B and 1C).
Eleven permeation enhancers were evaluated in Caco-2 mono-

layers as an experimental test set (Fig. 2B). Biotin and benzoate
are widely used food additives and were intended as negative
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Fig. 1. Scheme of the modelling process. From top, TEER-data and provided
chemical identification (CAS) were processed into TEER potency (Tpot) and
molecular descriptors. Descriptor filtering is embedded in the leave-on-out cross-
validation (LOO-CV). The final random forest model was both used for prediction of
external test sets and for diagnostic interpretation through the rfFC-package. R (R)
and molecular operating environment (MOE) are software applications. CCL, carbon
chain length, molecular descriptor, see Table 1.

Table 3
Permeation enhancers from literature tested in Caco-2 monolayers. EC50% is the
estimated concentration (w/V)% where the permeation enhancer will lower TEER 50%.
pEC50 is the negative logarithm to EC50%. RF predicted potency (w/V)% is the average
ability of the permeation enhancer to lower TEER at 1%. 0.1% and 0.01% (w/V)%.

CAS Compound name EC50,
(w/V)%

pEC50 Refs.

6080-33-7 Simomenine (SM) 2.0 �.30 [26]
81-24-3 Tauro cholate (TC) .80 �.096 [27,28]
474-25-9 Cheno deoxy cholate (CDC) .50 .30 [28]
128-13-2 Ursocholate (UC) .50 .30 [28]
29836-26-8 Glyco octyl (c8G) .40 .40 [29]
68797-35-3 Glycyrrhizinate (GC) 50 .70 [30]
325465-45-0 Myristoyl glycerol

phosphate (c14GP)
.10 1.0 [31]

20559-18-6 Lauryl glycerol phospho
choline (c12GPC)

.025 1.6 [31]

29557-51-5 Dodecyl phosphate choline
(c12PC)

.021 1.7 [31]

Table 4
Summary of the validation of the random forest QSAR model predicting potency
(%TEER) of permeation enhancers in Caco-2 monolayer. Tpot, a measure of enhancer
potency defined as mean decrease of %TEER when applying 1%, 0.1% and 0.01%(w/v) in
Caco-2 monolayers. pEC50 is the estimated concentration of which %TEER is
decreased 50%. CV-LOO, internal cross validation – LOO. RMSEols, root mean square
error of ordinary least square prediction fit. (a) RMSE, root-mean-square-error
adjusted to compare across Tpot and pEC50 (Eq. (3) in Section 2).

Training-set Test-set,
experimental

Test-set,
literature

Number of enhancers 41 11 9
Data origin 1 article Experimental 7 articles
Target value Tpot Tpot pEC50%(Tpot

a )
Model correlation, rp

2 57% (LOO-CV) 66% 65%
Model error, RMSEOLS 0.17 0.16 0.39(0.16a)
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controls. None of these compounds were measured to be potent
permeation enhancers. All permeation enhancers in the experi-
mental test set, with the exception of biotin, were well predicted.
Biotin was predicted to elicit a moderate potency, but was devoid
of any significant effects when tested in Caco-2 cells. Three
compounds SDS, C6 and PCC from the training set were retested
to verify, that the experimental setup applied here could reproduce
findings from Whitehead et al. (data not shown).

Fig. 2C show the predicted Tpot potencies and the actual pEC50
values for the literature test set. The nine enhancers were surfac-
tants with a single well defined molecular structure and sufficient
data points published to estimate a pEC50 value. The range of
interpolated pEC50 values from the literature data ranged from
�0.3 to 1.7 corresponding to that the most potent permeation
enhancer had �100 times higher potency than the weakest.
Three of the nine compounds Myristoyl glycerol phosphate
(c14GP), Lauryl glycerol phospho choline (c12PC) and Dodecyl
phosphate choline (c12GPC) were markedly more potent than pre-
dicted by the model. The exact predicted rankings of the second
most and third most potent compounds of the experimental

test-set were not correct, but within the expected uncertainty of
the model. The same was seen for the group of low potent perme-
ation enhancers.

4.2. Reviewing descriptors useful for prediction of permeation
enhancement

Of the 266 descriptors assessed, 30 descriptors were applied
after filtering in the model. Names and grouping of the used
descriptors can be seen in Table 2 in the method section. The 16
most important descriptors were included in a Spearman rank cor-
relation matrix depicting their internal rank correlation within the
training set (Fig. 3) and their rank correlation with the target
parameter Tpot. The strongest absolute correlation coefficient,
0.89, was between variables PEOE_VSA-1 and logP.oW. No correla-
tion could exceed the correlation filter limit of 0.9, as described in
Section 2. All 16 descriptors were found to be rank correlated with
the target value Tpot. The descriptors absolute rank correlations to
Tpot ranged from rs = 0.34 to rs = 0.63.

To interpret the precise contribution of each descriptor within
the model, a diagnostic method termed ‘Feature Contributions’
[23,24] was used. A novel diagnostic plot of the feature contribu-
tions is presented in Fig. 4 The feature contributions of the 16 most
important descriptors describing permeation enhancer-potency
(Tpot) in the training-set were plotted against their respective
descriptor values. This provided an intuitively graphical interpreta-
tion of how features within the random forest-QSAR model context
affected the Tpot prediction. It represents an innovative way to
graphically present the computed feature contributions. This
expansion of a regular random forest model summarises the total
partial descriptor contribution for any permeation enhancer in
the training set. The predicted Tpot values for a given enhancer
are equal to the sum of all partial descriptor contributions, which
again is dependent of the actual feature values, as outlined in Fig. 4.

Fig. 4 shows that descriptor [2, BCUT_SLOGP_0], and [3,
vsurf_ID8] had sharp thresholds separating the positive (i.e., bene-
ficial) and negative contributions to the Tpot value of each perme-
ation enhancer. For [1, dipole] there was also a separation
between positive and negative contribution to the Tpot value.
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Fig. 3. Spearman-correlation matrix of the 16 most important molecular descrip-
tors listed by decreasing variable importance (most important first) within the
random forest-model. The target variable Tpot, the ability of permeation enhancers
to lower electrical resistance in Caco-2 monolayers across concentrations 0.1–
1%(w/v), has also been included.
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Good permeation enhancers, compounds with high Tpot values, had
high dipole > 3, [2, BCUT_SLOGP_0] below �2.7 and [3,
vsurf_ID8] > 1.

[1, dipole] reflected the overall dipole moment calculated from
the partial charges of the molecule. The descriptor contribution of
[1, dipole] within the random forest model was well described as a
function of the descriptor value itself. Thus, there was no interac-
tion with other descriptors. On the contrary, the descriptor contri-
butions of descriptor [4, CCL], the maximum aliphatic carbon chain
length, varied for many permeation enhancers having the exact
same chain length. This pointed to an interaction phenomenon
between descriptors. When only emphasising permeation enhan-
cer above the threshold value for dipole > 3, these permeation
enhancers were all accredited positively for having a high CCL
value. Oppositely, enhancers with dipole < 3 were accredited
neutral for any CCL value. The interpretation drawn was that mole-
cules with a high dipole moment are likely to have a hydrophilic
domain and if combined with an aliphatic carbon chain of
length > 10, the molecules are likely to have surfactant properties.
Conversely, compounds with no significant hydrophilic groups
such as oils, would not function as enhancers alone despite long
carbon chains.

Descriptor [3, vsurf_ID8] reflected the hydrophilic domains sep-
aration from the lipophilic domains which was expected to be a

central surfactant-like property. More precisely, the [3,
vsurf_ID8] reflected the distribution of hydrophobic or hydrated
domains and their distance from the mass centre. It was observed
that the model evaluated low [14, Vsurf_CP] values as being bene-
ficial. [14, Vsurf_CP] is a micelle critical packing parameter. Cone
shaped surfactants would in generally have a low [14, Vsurf_CP]
value and thereby a low critical packing number. A low critical
packing number favours micellar aggregation, not liposomal.
Throughout Fig. 4, the descriptors were generally declining in
magnitude of feature contributions, and thus less influential.

5. Discussion

The random forest-QSAR model of permeation enhancement in
Caco-2 cells was shown to provide reasonable estimates of perme-
ation enhancer potency. Such a model has to the knowledge of the
authors not been developed previously. Within the paradigm, that
surfactant-like properties are key features of most enhancers, it
was confirmed that a model could be constructed inspired by the
in silico, in vitro and in vivo models of surfactant surface tension
depression [9,11,12].

In the case of a new modelling area, a large amount of descrip-
tors could possibly become useful. However, the relatively small
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Fig. 4. Random forest feature contributions diagnostics. Scatter plots of partial descriptor contributions versus the individual descriptor values for each observation of the
training set for the 16 descriptors with highest ‘importance’ within the random forest model. Scatter plots enumerated in descending order of ‘importance’. Dashed trend lines
were added to the plots. Each plot outlines a partial function of a variable as its role in the model.
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size of training examples makes such a selection process challeng-
ing. The training set of 41 permeation enhancers and 266 descrip-
tors is an example of sparse (small n – large p) modelling which
can lead to overfitted non-generalisable models. Filtering/pruning
constants, redundant and non-correlated descriptors improve
model performance.

The ensemble method, random forest, is an extension of the
classification and regression tree, CART. Decision tree models
branch out/split data into increasingly smaller sub groups of sam-
ples having the most similar target response. Such CART decision
trees are highly adaptable of many types of data, but also easily
overfitted to the training data. Thus, the model becomes adaptable
but highly noise sensitive. The random forest model is an extra
layer to the CART, reducing noise without losing its adeptness. In
short, random forest is an ensemble of many of such uncorrelated
decision trees (e.g., 500). Though each tree is susceptible to ran-
dom inference, the average prediction of many decision trees have
been shown to be much less prone to overfit thus its conclu-
sions/predictions are more generalisable across data sets [17].
That said, the conclusions from any model approach will always
be limited by the diversity of the training set. In this example, sci-
entific literature, the basis of this model training, tend to have a
bias towards not reporting any compounds which lack an enhanc-
ing effect. In the case of this training set, all compounds elicited at
least a low enhancement effect. A feature of decision tree-based
models is that, they cannot extrapolate beyond the target range
(Tpot) of the training set. Likewise, caffeine and benzoate were pre-
dicted in absolute terms to be more potent than experimentally
measured, as no learning examples could suggest such a weak
potency. Nonetheless, this is not of much practical concern in
terms of predicting new permeation enhancer candidates. A useful
model does not have to distinguish very weak enhancers from
non-enhancers.

C10, sodium decanoate, is one of the most described enhancers
in literature [7,9,32,33]. Amongst the reported mechanisms of C10
are phosphorylation cascades and intracellular calcium signalling
leading to tight junction opening [9,33]. Such mechanisms are far
too complex to be captured from a training sample of this size.
Conceivably, this may be why C10 was predicted to be a mediocre
permeation enhancer, yet elicited a relatively stronger potency
(Fig. 2B), caused by components not captured by the model. It is
expected that doubling or tripling the size of the training set would
improve prediction accuracy significantly. This would require test-
ing another 40–80 permeation enhancers in three concentrations
in Caco-2 monolayer.

Fig. 4, the feature contributions versus descriptor values of each
training permeation enhancer, provides a novel and very useful
way to learn from the random forest-model. For example, a mole-
cule having a dipole > 3, a Vsurf_ID8 > 1 and a BCUT_SLOGP_
0 < �2.7 and CCL > 10 would appear to bear promising starting
point. Furthermore, the data in Fig. 4 suggested interaction for
e.g. CCL > 10, only contributing positively conditioned when
dipole > 3. That carbon chain length is only conditionally advanta-
geous matches the general understanding of surfactant-like prop-
erties. Such simple rules can help to understand what
modifications of an enhancer can be made without incurring a loss
of potency. The abundance of partial charge related descriptors
(see Table 2) was interpreted as a consequence of, that most sur-
factants have one or more polar domains neighbouring carbon
hydride domains and an induced dipole moment across the border
[12].

The feature contributions technique represents a novel
approach to data analysis and has the potential to be employed
as a powerful explorative tool within many scientific areas. QSAR

models based on algorithm models such as random forest are
designed to map associations (not necessarily causal) between fea-
tures and the target parameters to optimise predictions. It should
be noted that this is also the case for classical statistical approaches
[16]. Nevertheless, as discussed above, the suggestions from the
feature contributions are plausible causal from a physicochemical
point of view.

Other core aspects relating to oral protein formulation such as
solubility, stability and metabolism are not encompassed in the
existing approach. Thus, their inclusion is necessary in order to
yield a fully predictive model of protein permeation. When design-
ing/screening for new enhancers as excipients in protein-based
drug formulations, various other requirements, such as solubility,
should be considered.

Thus, by applying the described in silico model an a priori pre-
diction of the permeation enhancer potency of a surfactant can
be determined based upon its structure and hence obviate the need
for extensive permeability screening of novel compounds.

6. Conclusions

Random forest-QSAR modelling utilising molecular descriptors
calculated from the molecular structure was shown useful for pre-
dicting permeation enhancer potency. Although absorption of pro-
teins is a complex biologic phenomena, the surfactant-like
properties of permeation enhancers comprise a relatively manage-
able component.

Sparse data combined with the biological noise (unexplained)
component is a challenge to build a robust predictive model. To
reduce the estimation error, the prediction challenge was allevi-
ated in two ways:

(1) TEER readings of three concentration levels were joined into
a single value target (Tpot) to create an approachable mod-
elling question: Is the potency of a new surfactant-like
enhancer high, medium or low?

(2) Filtering of correlated descriptors to reduce redundant infor-
mation and to remove descriptors with no univariate corre-
lation to target parameter was performed to avoid too many
descriptors being progressed to the random forest model
with few training examples.

From the validations employed i.e., internal cross-validation,
experimental validation and literature validation, the model was
found to predict potency of permeation enhancers. Furthermore,
it was possible to extract common structural features for high
potency enhancers. Such knowledge is useful to assess the credibil-
ity of the built model and/or inspire our understanding of what
makes a surfactant-like permeation enhancer potent.

Hereby, we have outlined how to robustly perform in silico
screening for permeation enhancers with non-linear random for-
est, with the possibility to assess and learn from the model. The
provided QSAR model forms a good basis for a systematically
approach for the development of oral therapeutics formulated with
potent permeation enhancers.
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CHAPTER 5
Interpretation of random

forest models
5.1 Modeling with random forest
The random forest model started to play a bigger role for this thesis as it showed to
outperform linear regularized regression models as partial least squares and elastic
net. Also RF seem to outperform the non-linear k-nearest neighbor. The random
forest algorithm is certainly not always the best choice of a model, the non free
lunch theorem states that there is no optimal silver bullet. That said Random forest
together with radial support vector machine and gradient boosting was in comparison
on 110 data sets found to be the in generel top performing algorithm in terms of cross-
validated accuracy [wainer2016comparison]. If the underlying model generating
the data is truly linear, e.g. in octane concentration determination in near-infrared
light spectroscopy [kalivas1997two], then linear regression well perform better than
random forest.

5.2 One interpretation of interactions
Throughout the work of this thesis, there have been an emphasis on identifying and
visualizing interactions. In this process, I have developed my own definitions of inter-
actions, that especially relate to geometrical interpretations of model structures. In
our paper Forest Floor Visualizations of Random Forests we introduce an interaction
as:

”Interactions in the model structure mean that the model predictions
in part rely on the interplay on two or more features. Thus, the interaction
parts of a model structure cannot be reduced to additive scoring rules, one
for each feature. Likewise, to plot single feature-to-prediction relationships
is not a sufficient context for visualizing any interactions.” [Wel+16]

I would like to elaborate on this definition of interactions. First definitions of the
model structures, feature spaces and prediction spaces are needed. A given model
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structure 1 f maps from feature space X to a prediction space ŷ, such that ŷ = f(X).
X is a real valued euclidean vector space, constituted by d axes x1,...,xd. Any point
is a unique combination of feature values. 2 For regression the prediction space ŷ is
simply an one-dimensional real axis. We understand f as a function which connect
any point in the feature space to some point in prediction space. To discuss how to
describe interactions, I will introduce a simple structure. We can imagine the surface
of a regression function f in a Eucledian 3D space, for two features x1 and x2 spanning
the horizontal plane and one vertical prediction axis. We call this joint feature space
and prediction space for the mapping space. We can imagine the structure of f
is a geographical landscape model of altitude as function of coordinates. This f
mapping has potentially valleys and mountains. Essentially, if f can be reduced into
separate additive score functions, we can for any (x1,x2) coordinate position in this
landscape not only use f to calculate the altitude, but also f decomposed into f1
and f2, such that ŷ = f(X) = f1(x1) + f2(x2). When the mapping space is only
3D, it is not obvious, why we want to decompose f . However, for higher dimensional
models, we cannot directly visualize nor comprehend the geometrical structure. By
decomposing the model structure we allow ourselves to split the full structure in to
simpler pieces we can visualize and understand. Unfortunately not all landscapes can
be reduced to such additive scoring rules. Returning to the altitude model f , imagine
a landscape model of a single pyramid surrounded by a flat dessert, see Figure 5.1. A
function describing the local height of this landscape would reflect, that only when x1
AND x2 match the position of the pyramid, then the predicted altitude should rise
above the sands. To decompose this topological map into f1 + f2 would analogously
correspond to two observers on either side of the pyramid, where neither can see the
entire pyramidn but only their respective front sides. Either observer would notice
that in the middle of their respective fields of view, the altitude is elevated due to the
pyramid. Each observer could generalize what they see to a partial function parallel
to their field of view. However, as they cannot see their back side of the pyramid,
neither of the observers will know if this is generally true for any position on the
other axis. If we simply combined by averaging the altitude predictions of the two
naive observers, the model structure would more look like the roof of a tower, not a
pyramid.

In the mini review (letter) of boulesteix et al points out that the definition of
interations can be vague and ambiguous in recent litterature [Bou+14]. They refer
to the simple classical statistical logit-model, that contains a well defined two-feature
saddle point interaction. Here f is decomposed such that ŷ = f(X) = P (β1x1+β2x2+
β12x1x2) where P is the logit transfer function P (z) = log( z

1−z ). The logit function is
used to let ŷ describe the probability of some binary outcome. We could generalize and
say P could be any polynomial function. An interaction term stated as the product of

1Throughout Chapter 3, f has referred to the underlying function to match the notation of
Figure 3.1[Abu12]. However, in this chapter f refers to the model structure to match the notation
of the forestFloor article [Wel+16].

2See the forestFloor article [Wel+16] or this how to handle categorical features, an idea originally
from Friedmans gradient boosting and partial dependence article [Fri01].
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Figure 5.1: Left, pyramid in flat sands, an example of a model structure with non-
global non-saddle interaction. XY-plane describes the coordinates. Z-
axis is the altitude. Two naive observers f1 and f2 cannot approximate
the shape of the pyramid alone. Right, approximated shape of the
pyramid if f1 and f2 are combined additively..

two features is called a saddle point structure, as the shape resembles a saddle. Even
when the product of two features is wrapped in a transfer function P , this interaction
is a saddle point. The transfer function P can be seen as a compression/rearrangement
of the ŷ prediction axis. The limitation of the saddle point structure is that it can
neither fit the shape of the pyramid, because the pyramid is a local interaction in an
otherwise flat dessert sand landscape. My postulate is that there is no combination
of compressing, stretching or looping of the ŷ axis, which can morph a saddle point
structure into the pyramid structure. Therefore, I postulate that logistic models
comprised by the coefficient weighted sum of main effects and a number of saddle
point interactions and any transfer function P is not a suitable basis for decomposing
any model structure. There are structures, which do not fit this scheme. For any f12
there is not necessarily a P such that f12(x1, x2) = P (βx1 + βx2 + β12x1x2.

To decompose any possible landscape, including the pyramid, let f(X) = f1(x1)+
f2(x2) + f12(x1, x2). If f12 = f then not much have been accomplished. In fact their
are a lot of really unuseful decompositions of f . In general it would be helpful to
describe as much of the structure as possible as additive main effects and only what
absolutely necessary as a higher order interaction. Let us imagine the pyramid is
placed in a landscape steadily descending towards a ocean. Then the f1 and/or f2
can describe this general descending trend, while f12 describe the pyramid.

A non-linear regression model of d features can be decomposed into bias/offset, d
main effects, d−1 second order effects, and a number of higher order effects. The type
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of decomposition we aim for is one, that explains as much of the structural features in
lower order effects. In the following, I derive that the number of possible components
approximately doubles per feature.

For a model of d features there will be effects of d different orders. The smallest of
first order (main effect) and the highest of dth order. The number of combinations to
draw i features in a d-features can be described as binomials. Summing all binomial
counts from i = 1 to d give the number possible components/effects of the system.
Therefore, nd the number of possible effects are calculated as, nd =

∑d
i=1

(
i
d

)
. Fur-

thermore the number nd can be defined by nd−1 as, nd = 2nd−1 + d. For d = 10
there are staggering 2036 possible components effects. Suddenly one may get sweaty
hands, when to learn there are so many different effects of a multivariate model with
10 features. The promise that decomposition of the model structure would bring
simplicity and clarity seems far from fulfilled. Fortunately, we can ignore a high
number of these components when emphasizing model structures trained by random
forest or any other reasonable machine learning algorithm. As shown in supplemen-
tary materials for the forest floor article, random forest can only poorly fit a saddle
point interaction of 3 orders and 4 orders are nearly impossible. We live in a real-
ity where fifth order interactions always will be near impossible to robustly estimate
with statistical models and finitely sized training sets. Adhering to the Occam’s Ra-
zor guideline, that we should always pick the simplest model explaining the observed
data, all effects of more than 2 or 3 orders can in practice be disregarded. Further-
more, a subset of features will often be used more frequently than others in splits
in the trees of the random forest. Interactions terms can only be learned in a tree
model, when one split by one feature is conditioned by another feature split upstream.
As the most dominant features tend be the ones upstream, interactions in the model
structure are most likely found in the model structure as second order interactions
between one relatively dominant feature (high variable importance) and some other
feature. Therefore, interactions between weak features can be disregarded at first.
Therefore, the a random forest model can be decomposed into d main effects and a
lower number of second order effects, where at least one feature likely have been the
favorite splitting feature. To summarize, an interaction effect of ith order is one that
cannot be fully be described by any combination of lower order effects.

This broad definition of interaction effects can also cover classification and multi
classification, where f map to a K − 1 dimensional simplex probability space, where
K is the number of classes. Second order interaction effects for a probabilitic classi-
fication model mapping to 3 classes(K = 3) are visualized in the forest floor article,
see figure 12 [Wel+16]. However, the surface of this second order interaction effect
is not 3 dimensional as the pyramid example. For a second order interactions(i = 2),
the mapping space has i+K −1 = 2+3−1 = 4 dimensions. In the forest floor article
a such 4D problem is visualized in Figure 12. Here a 2D triangular (K-1)-simplex
diagram is used to describe the probability distribution of predictions, and different
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color gradients in turn represent the different feature axes. 3

Returning to pyramid example. Let’s say f1 described the gradual descending
of the landscape towards the ocean. As f1 is non-linear, it could describe a single
sand dune, a local maximum, parallel to the beach. This local sand dune now have
to stretch infinitely to both sides, such that for any x2 the effect of f1 is static. We
can use this observation to make a bottom up definition of interactions also. Let S
be a subset of all features X of the model. Let T bet the complimentary subset of
features. An interaction effect by subset S, fS , has the order equal to size of |S|.
We would know that fS is an adequately detailed decomposition of f , as for every
parallel plane spanned by the features in S, the curvature of fS align with f . In
contrary when the interaction curvature is far from the same by any combination
of feature vales of T , we know we are missing an important interaction with some
feature(s) from T . Furthermore, that feature of T , by which the S-plane curvature
changes the most, is the one that need to be included in S, in order to obtain a better
generalized effect. This bottom up definition of interaction effects lend it notion of
complimentary feature subsets S and T from Friedmans paper on gradient boosted
machines and partial dependence plots [Fri01]. What I effectively state here is, that if
a partial dependence plot of subset S is a poor generalization of f , then an interaction
with one or more features from T are missing.

5.3 Article 3: Forest Floor Visualizations of Random
Forests

First version submitted to arXiv.org the 30th of May 2016. Latest version (3rd)
submitted to arXiv.org the 4th of July 2016.

3If number of classes K >= 5 is higher than 5, the (K-1)-simplex diagram would require a 4D
or higher visualization. Instead Figure 10 of article depicts how to plot probability predictions by
each class by a single axis.
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Abstract

We propose a novel methodology, forest floor, to visualize and interpret random forest (RF)
models. RF is a popular and useful tool for non-linear multi-variate classification and regression,
which yields a good trade-off between robustness (low variance) and adaptiveness (low bias). Direct
interpretation of a RF model is difficult, as the explicit ensemble model of hundreds of deep trees is
complex. Nonetheless, it is possible to visualize a RF model fit by its mapping from feature space to
prediction space. Hereby the user is first presented with the overall geometrical shape of the model
structure, and when needed one can zoom in on local details. Dimensional reduction by projection is
used to visualize high dimensional shapes. The traditional method to visualize RF model structure,
partial dependence plots, achieve this by averaging multiple parallel projections. We suggest to first
use feature contributions, a method to decompose trees by splitting features, and then subsequently
perform projections. The advantages of forest floor over partial dependence plots is that interactions
are not masked by averaging. As a consequence, it is possible to locate interactions, which are not
visualized in a given projection. Furthermore, we introduce: a goodness-of-visualization measure,
use of colour gradients to identify interactions and an out-of-bag cross validated variant of feature
contributions.

1 Introduction

We propose a new methodology, forest floor,
to visualize regression and classification problems
through feature contributions of decision tree en-
sembles such as random forest (RF). Hereby, it is
possible to visualize an underlying system of inter-
est even when the system is of higher dimensions,
non-linear, and noisy. 2D or 3D visualizations of
a higher-dimensional structure may lead to details,
especially interactions, not being identifiable. In-
teractions in the model structure mean that the
model predictions in part rely on the interplay on
two or more features. Thus, the interaction parts
of a model structure cannot be reduced to addi-
tive scoring rules, one for each feature. Likewise,
to plot single feature-to-prediction relationships is
not a sufficient context for visualizing any inter-
actions. Often a series of complimentary visual-
izations are needed to produce an adequate repre-
sentation. It can be quite time consuming to look
through any possible low dimensional projection of
the model structure to check for interactions. For-

est floor guides the user in order to locate promi-
nent interactions in the RF model structure and to
estimate how influential these are.

For RF modeling, hyper parameter tuning is not
critical and default parameters will yield accept-
able model fits and visualizations in most situa-
tions [10, 23]. Therefore, it is relatively effortless to
train a RF model. In general, for any system where
a model has a superior prediction performance, it
should be of great interest to learn its model struc-
ture. Even within statistical fields, where decision
tree ensembles are far from standard practice, such
insight from a data driven analysis can inspire how
to improve goodness-of-fit of a given model driven
analysis.

Although the RF algorithm by Breimann [3]
has achieved the most journal citations, other later
decision tree ensemble models/algorithms such as
ExtraTrees [14], conditional inference forest [8],
Aborist [21], Ranger [26] and sklearn.random.forest
[17] will often outperform the original RF on ei-
ther prediction performance and/or speed. These
models/algorithms differ only in their software im-
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plementation, split criterion, agreggation or in how
deep the trees are grown. Therefore all variations
are compatible with the forest floor methodology.
Another interesting variant, rotation forest [19],
does not make univariate splits and is therefore un-
fortunately not directly compatible with forest floor
visualizations. To expand the use of feature con-
tributions and forest floor, we also experimented
with computing feature contributions for gradient
boosted trees [6]. This is possible, as splits still are
univariate and trees contribute additively to the
ensemble prediction. A proof-of-concept of com-
puting feature contributions on gradient boosted
regression trees and visualizations are provided in
supplementary materials.

Decision trees, as well as other machine learning
algorithms, such as support vector machines and ar-
tificial neural networks can fit regression and classi-
fication problems of complex and noisy data, often
with a high prediction performance evaluated by
prediction of test sets, n-fold cross validation, or
out-of-bag (OOB) cross validation. The algorithms
yield data driven models, where only little prior be-
lief and understanding is required. Instead, a high
number of observation are needed to calibrate the
adaptive models. The models themselves are com-
plex black-boxes and can be difficult to interpret.
If a data driven model can reflect the system with
an impressive prediction performance, the visual-
ization of the model may deduce knowledge on how
to interpret the system of interest. In particular,
a good trade-off between generalization power and
low bias is of great help, as this trade-off in essence
sets the boundary for what is signal and what is
noise. The found signal is the model fit, which can
be represented as the mapping from feature space to
prediction space (output, target, response variable,
dependent variable, y). The noise is the residual
variance of the model. The estimated noise com-
ponent will both be due to random/external effects
but also lack of fit.

1.1 Overview of the article

In this article we introduce the forest floor method-
ology. The central part is to define a new map-
ping space visualization, forest floor. Forest floor
rely on the feature contributions method [9][16],
rather than averaging many projections (partial de-
pendence) [6] or projecting the average (sensitivity
analysis) [5]. In Section 1.2 these previous mapping
space visualizations are introduced and the chal-
lenges to overcome are discussed. In the theory
section, 2.1, we discuss the feature space, predic-
tion space and the joined mapping space for any
regression or classification model and define local
increments as vectors in the prediction space. Prop-
erties of the RF algorithm by Breimann [3] and the

feature contributions method by Kuz’min et al [9]
and Palczewska et al [16] are highlighted and il-
lustrated in section 2.2. In section 2.3 we argue
that the prediction of any node in any tree is a
point in the prediction space and the local incre-
ments are the vectors that connect the nodes of the
trees. Any prediction for any observation is basi-
cally a summed sequence of local increments plus
the grand mean or base rate. Since local increments
are vectors and not a tree graph, the sum of vec-
tors is not dependent on the order of the sequence.
In Section 2.4 we show how that feature contribu-
tions, a particular reordering of local increments
by splitting feature, can be used to decompose the
model structure 2.4. We also introduce a new cross-
validated variant of feature contributions and pro-
vide an elaborated definition of feature contribution
to also account exactly for the bootstrapping pro-
cess and/or stratification.

The materials and methods sections, 3.1 and
3.2, provide instructions on how to reproduce all
visualization in this paper. The result section 4 is
dedicated to three practical examples of visualiz-
ing models with forest floor. The three examples
are a simulated toy data set, a regression problem
(white whine quality) and a classification problem
(contraception method choice). A low-dimensional
visualization is not likely to convey all aspects of a
given RF mapping surface. For all practical exam-
ples, we describe how to find an adequate series of
visualizations that do.

1.2 Representations of random for-
est models

A RF model fit, like other decision tree based mod-
els, can be represented by the graphs of the multi-
ple trees. Few small tree graphs can be visualized
and comprehended. However, multiple fully grown
trees are typically needed to obtain an optimal pre-
diction performance. Such a representation cannot
easily be comprehended and is thus inappropriate
for interpretation of model fits. A random forest fit
can be seen as a large set of split rules which can
be reduced to a smaller set of simpler rules, when
accepting a given increase in bias. This approach
has been used to reduce the model complexity [13].
But if the minimal set of rules still contains a large
number, e.g. hundreds or thousands, then this sim-
plified model fit is still incomprehensible. It is nei-
ther certain which rules have influence on predic-
tions nor which rules tend to cancel each other out.
We believe that the rule-set or tree-structure rep-
resentations are mainly appropriate to understand
how a RF algorithm possibly can model data. On
the other hand, these representations are indeed in-
appropriate for interpreting RF model fits and con-
veying the overall model structure. For that pur-

2
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Figure 1: Illustration of sensitivity analysis and partial dependence plots. The grey response surface
depicts a given learned model structure of two input features (X1 and X2) and one prediction axis (ŷ).
11 data points vs. predictions are depicted as blue dots. 1D-sensitivity analysis (fat red lines): one
partial function slice intersects the centroid where X2 = X2 an is projected to the X1-y plane. ICE plot:
Multiple function slices (black lines) all parallel to X − 1 intersects each one data point and all slices are
projected to the X1-y plane. Partial dependence plots: Each data point intersected by one black line is
projected to any black lines (green points). The green point outline a grid. All green and blue points are
projected into the X1-y plane, and the fat green line connects the average prediction values as a function
of X − 1. This illustration can be generalized to any dimensional reduction.

3

66 5 Interpretation of random forest models



pose, a mapping space visualization is superior in
terms of visualization and communication.

If we join the feature space and prediction space,
this function will be represented as a geometrical
shape of points. Each point represents one predic-
tion for a given feature combination. This geomet-
rical shape is the model structure and is an exact
representation of the model itself. Nevertheless, for
a given d -dimensional problem where d > 3, this is
still difficult to visualize or even comprehend. In-
stead, one may project/slice or decompose the high-
dimensional mapping into a number of marginal vi-
sualization where small subsets of features can be
investigated in turns. This allows us to compre-
hend the isolated interplay of one or a few features
in the model structure.

Following, we will introduce previous examples
of mapping space visualizations to specify what for-
est floor aims to improve. Different types of sensi-
tivity analysis (SA) were used by Cortez and Em-
brechts to make such investigations [5], we will here
discuss sensitivity analysis and data based sensi-
tivity analysis. First a supervised machine learn-
ing model is trained. Next the model is probed.
That means to input a set of simulated feature ob-
servations (points in feature space) into the model
fit and record the output (target predictions). In-
stead of probing the entire high-dimensional map-
ping space, only one confined slice of fewer dimen-
sions is probed in order to make feasible visualiza-
tions.

The simplest visualization in SA is one dimen-
sional (1D-SA), where a single feature is varied in a
range of combinations, and this range will span the
X-axis of the visualization. When two features are
varied (2D-SA), the resulting grid of combinations
will span the XY-plane. All other features must
be fixed at e.g. the mean value, the feature cen-
troid of the training set. The model fit is probed
with these observations and the resulting predic-
tions will be plotted by the Z-axis. The obtained
line/surface will now visualize one particular 2D or
3D slice of the full mapping structure.

In figure 1, a non-linear regression model struc-
ture (y = sin(X1)8sin(X2)8 + ε) is represented by
the grey transparent surface. The model has two
feature axes in the horizontal XY-plan and the pre-
diction axis by the vertical Z-axis. Thus, the map-
ping space has 3 dimensions and the model struc-
ture is some curved 2D-surface which connect any
given feature combination with one prediction. The
red line/slice in the model structure is the example
of an 1D-SA visualization. This single slice is pro-
jected into the X1-Z plane. This 1D-SA projection
portrays the partial effect of feature X1 in the spe-
cial case, where other features are set to mean ob-
served value. Notice that the red line almost com-
pletely misses the local hill in the model structure.

A single low dimensional slice of the mapping struc-
ture can easily miss prominent local interactions,
when number of model dimensions is high.

A 2D-SA slice can explain a main effect and/or
the possible interaction within two selected fea-
tures. Figure 1 only illustrates a 1D-SA slice pro-
jection, but represents the idea of any projection.
The depicted model structure itself could infact be
a 2D-SA projection of a higher dimensional model
structure. Whether a given slice is a good general-
ization of the full mapping structure is unknown. A
good generalization means that any parallel slices,
where the fixed features are set to another combina-
tion, yield the same XYZ-visualization, with only
perhaps a fixed offset in the prediction axis (Z) [7].
We will for now term that such visualization has
a high goodness-of-visualization. In section 2.4 we
will propose a metric for goodness-of-visualization.
For a data structure with only additive effects and
no interactions, the obtained model mapping struc-
ture is likely to have no interactions as well as any
slice will be identical to its many parallel counter-
parts. In Figure 1, all the black parallel slices to the
red slices give different projection lines in the mir-
ror plane which could not be corrected by a simple
offset. Therefore the model structure must have an
interaction which cannot be seen in this projection
alone. The iceBOX package displays multiple pro-
jection lines to search for masked interactions and
is a good alternative to the forest floor approach
[7].

A second concern is whether a given slice or
slices extrapolate the training data. For a RF
model with a satisfactory cross validated prediction
performance, the mapping structure will represent
the underlying data structure, but only within the
proximity of the training data. Extrapolated areas
of the mapping structure are far from guaranteed
to represent an underlying data structure. Several
different non-linear learners (RF, SVM, ANN, etc.)
may easily have comparable model structures in
the proximity to training data points, whereas far
from the training set the models will heavily dis-
agree. For RF models containing dominant inter-
action effects, the mapping structure on the borders
of the training data becomes noise sensitive, as de-
cision trees only can extrapolate parallel to feature
axes, as the splits only are univariate. RF models
only containing additive main effects have stable
and smooth mapping structure at the borders of
the training data. Model extrapolation of random
forests with dominant interaction effects have been
illustrated in supplementary materials.

SA plots remain a useful tool. When forest floor
yield plots of similar structure, these plots generally
represents the model mapping well. Visualization
of multiple parallel projections, the so called ICE
plots (individual conditional expectation) with the

4
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ICEbox package, can also reveal interactions. How-
ever multiple projection lines cannot directly filter
out main effects by other features. These will tend
to offset the projection lines on the prediction axis.
Centered ICE (c-ICE) visualizations do adjust this
offset by centering the prediction axis for all pro-
jections in one specific location [7].

A frequently used visualization method pro-
posed by Friedman is the partial dependence plot
(PD) which is the same as what Cortez and Em-
brechts later have termed data-based sensitivity
analysis (DSA)[5, 6]. In Figure 1, the green fat
line in the mirror plane represents a partial de-
pendence projection. Whereas 1D-SA and 2D-SA
only project the slice intersecting e.g. the training
data centroid, the partial dependence plot projects
multiple slices. Each projected slice intersects one
data point. The partial dependence line is the
average prediction values of all slices. Thus, the
obtained PD visualization summarizes all parallel
slices of the mapping structure by averaging. To
summerize, SA averages and then projects, whereas
PD projects and then averages. ICE-plot projects
many slices and do not aggregate. The PD ap-
proach may improve generalization across slices as
it up-weighs the parts of mapping structure, that
are well represented by data points. Still, inter-
actions between varying and fixed features will be
lost by averaging. Furthermore, the PD projections
form a regular data grid spanned by the data ob-
servations. See the grid of black and green lines
on the model structure surface in Figure 1. How-
ever, for data sets with high feature collinearity,
data points will mainly be positioned in one di-
agonal of the grid, whereas the remaining part of
the grid will span extrapolated parts of the model
structure. This extrapolation occur for both SA,
PD and ICE-plots.

Feature contributions was introduced by
Kuz’min [9] for RF regression and elaborated
by Palczewska et al [16] to also cover RF multi-
classification. Feature contributions are RF pre-
dictions split into components by each feature.
Feature contributions are essentially computed uti-
lizing information from the tree networks of a RF
model. Feature contributions have not before been
used or understood in conjunction with the idea of
function mapping structures. The contribution of
this paper, is to show that feature contributions can
be understood as a different way of slicing the map-
ping structure. From this insight the methodology,
forest floor, was developed.

We have developed a number of tools to increase
the usefulness of the forest floor methodology.
These are: Out-of-bag cross validated feature con-
tributions to increase robustness without increasing
computation time, goodness-of-visualization tests
to evaluate how well slices generalize the mapping

structures and color gradients traversing mapping
space to visually identify latent sources of interac-
tions. Furthermore, the methods have been imple-
mented as a freely available R-package, from which
all mapping visualizations of this paper originate.
The R-package forestFloor [25] aims to assist the
user visualizing a given RF model fit through a se-
rious of appropriately chosen visualizations.

2 Theory and calculation

Here is provided a new notation for RF regression
and classification to combine a mapping space rep-
resentation with the feature contributions method
developed by Kuz’min [9] and Palczewska et al.
[16]. Moreover to obtain an exact decomposition
of the model structure, we expand the previous no-
tion of feature contribution to also cover the initial
bootstrap and/or stratification step for each deci-
sion tree. For RF multi-classification we describe
a probabilistic (K-1)-simplex prediction space, to
improve the interpretation of feature contributions.
Lastly we introduce how to calculate out-of-bag
cross-validated feature contributions.

2.1 Defining regression and classifi-
cation mappings

Any regression model fr can be seen as a mapping
between a d-dimensional feature space X ∈ Rd and
and a prediction scale ŷ ∈ R1

ŷ = fr(X) , (1)

where X represents the infinite set of points in the
feature space. A subset of points in X can be no-
tated as e.g. Xt where t is a defined set. Sin-
gle value entries of a countable subset of X is no-
tated as xij where i ∈ {1, ..., N} (N points) and
j ∈ {1, ..., d} (d features). ŷ represents the en-
tire prediction scale, where ŷt could be a subset,
if countable with point entries ŷi.

The entire mapping can be represented as a d-
dimensional (hyper)surface S in a d+1-dimensional
mapping space V . S can be understood as a learned
model structure trained on a set of training obser-
vations, t. Obviously, if d ∈ {1, 2}, then S can
conveniently be plotted by Cartesian axes as a 2D
function plot or a 3D response surface (prediction
as function of two features). Each label of a cat-
egorical feature can be assigned an integer value
from 1 to K’ categories and thus also be plotted.

A classification model can be seen as a map-
ping from X ∈ Rd to ŷ ∈ {1, 2, ...,K}. Some
models, as RF, provides a probabilistic prediction
(pluralistic voting) of class membership p̂k for any
class k ∈ {1, 2, ...,K} and assign the class member-
ship hereafter. Thus, the probabilistic classification

5
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model fc is a mapping from X to the probability
space P ,

fc(X) = P . (2)

Any point in P is a possible prediction p̂ with
a unique probability distribution over K mutually
exclusive classes, such that p̂ = {p̂1, p̂2, ..., p̂K}. As
class memberships are mutually exclusive, the sum
of the class probabilities is always one, |p̂|1= 1.
Therefore the probability space is a K-1 dimen-
sional simplex [15], which contains any possible
combination of assigned probabilities to K mutu-
ally exclusive classes, see Figure 2 . The K axes,
which assign probability of 0 to 1, are not orthog-
onal, meaning it is not possible to modify the as-
signed probability of one class without affecting at
least one other.

The classification mapping can be represented
by simply joining the simplex-space with the fea-
ture space, but this would only allow a 2D or 3D
visualization when (d + K − 1) ∈ {2, 3}, thus ei-
ther maximally a 2 feature problem for 2 classes,
or a 1 feature separation for 3 classes. Instead,
this mapping can also be represented as K separate
d-dimensional surfaces Sk in a d + 1-dimensional
space V with d axes representing features and one
axis p̂k representing the probability of either of the
K classes. Thus, we align the directions of all K
probability axes to reduce the dimensionality of the
mapping space with K − 2 dimensions. Then, any
line parallel to the probability axis p̂k, will intersect
every Sk surface, describing the predicted proba-
bility of the kth class at this point of input fea-
tures. The sum of predicted probabilities of all in-
tersections for any such line will be equal to one.
To summarize, multi classification model structures
are more difficult to visualize, as each class adds
another dimension to the mapping space. It is pos-
sible to plot the individual predicted probability of
each class and overlay these plots. Figure 2 sum-
marizes the mapping topology for regression, for
binary classification, and for multi classification.

RF mapping for both regression and classifica-
tion can jointly be defined as

ŷ = f(X) . (3)

Here ŷ is the c-dimensional prediction space.
For regression, c = 1, f maps to a 1-dimensional
prediction scale. For classification, c = K classes,
and f maps to a prediction vector space, where
the kth dimension predicts the probability of class
k. For classification the predictions ŷ can be any
point within the (K − 1)-simplex. On the other
hand, the training examples y can only be of one
class each, which are the K vertices (corners) of the
(K − 1)-simplex.

We define a local increment vector, L, pointing
from ŷi to ŷj in a prediction space of c dimensions,

such that

Lij = ŷj − ŷi = {ŷj1 − ŷi1, ..., ŷjc − ŷic} . (4)

For regression, where (c = 1), the local incre-
ment is a scalar with either a positive or negative
direction. For classification, (c > 1), the local in-
crement is a vector with c elements, one for each
class. Each node of a RF model fit is a prediction,
which is a specific point in the prediction space. Lo-
cal increments are the connections between nodes,
describing the change of prediction. Computing the
thousands or millions of local increments for trees
and nodes, and sum these individually for each ob-
servation and feature is essentially the feature con-
tributions method.

2.2 Properties of random forest re-
lated to feature contributions

RF is an ensemble of bootstrapped decision trees
for either regression or classification. Figure 3 il-
lustrates how the RF algorithm operates for regres-
sion. For each of the trees (1 to ntree) the training
set is bootstrapped (random sampling with replace-
ment). In average (N−1N )N ≈ 0.37 of N observa-
tions will not be included in each bootstrap. These
observations are called out-of-bag (OOB). Thus for
any tree, a selection of observations will be ’in-
bag’ and used to train/grow the tree starting from
the root node. Any node will have a node predic-
tion which is defined by in-bag observations in that
node.

ŷ′′j =
1

nj

nj∑
i=1

yij (5)

For a regression tree, the node prediction of the
jth node ŷ′′j is equal to the mean of in-bag target

values in the jth node. Where yji is the target value
of the ith observation in the jth node. nj is the
number of observations in the jth node. Thus we
are only computing a node prediction from in-bag
elements.

For classification, the probabilistic node predic-
tion pjk of the class k of the node j is equal to
the number of in-bag observations of class k di-
vided with total number of in-bag observations in
the node.

p̂jk =
njk
nj

. (6)

A node prediction ŷ′′j can also describe all class
probabilities at once as a vector corresponding to a
point in the (K − 1)-simplex space.

ŷ′′j = {p̂(j,1), ..., p̂(j,K)} (7)

6
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Figure 2: Topologies of random forest model represented as a function mapping from d-dimensional
feature space to one of the following prediction spaces: (a) regression, 1-dimensional scale; (b) binary
classification, K = 2 − 1 probability simplex reducible to a 1-dimensional probability scale; (c) multi-
classification, probabilistic (K − 1)-simplex. The mapping can be represented as a high-dimensional
surface S, in a joined feature and prediction space linking any combination of features to a given predic-
tion. For multi-classification, S can be split into multiple Sk surfaces describing predicted probability
for each of K individual classes.

For classification c > 1, the class probabilities
of any node will always sum to 1 for any node:

|ŷ′′j |1=
K∑
k=1

pjk = 1 . (8)

Therefore, the elements of any local increment
vector for classification, see Equation 4 will always
sum to zero. This is not true for the local increment
scalars of regression, c = 1.

For an original RF implementation [10], predic-
tions of terminal nodes of classification trees are
reduced to a single majority vote. Other imple-
mentations such as sklearn.randomForestClassifier
[17] would rather pass on the probabilistic vote from
terminals nodes and only on the ensemble level per-
form reduction by majority vote or just keep the
full probabilistic average. In practice, implemen-
tations of feature contributions usually have to re-
estimate node predictions. A feature contributions
implementation such as forest floor should match
the specific rule of terminal node predictions of the
specific model algorithm.

A node is by default terminal if there are 5 or
less in-bag observations left for regression or a sin-
gle in-bag observation for classification. Any non-
terminal node will be split into two daughter nodes
to satisfy a loss-function. For regression the loss
function is typically the sum of squared residuals.

For classification, a Gini criterion is used as the
loss function. That is to select the split yielding
the lowest node size weighted Gini impurity. Gini
impurity (g) is 1 minus the sum of squared class

prevalence ratios in nodes, g = 1−
∑K
k=1 p̂

2
jk. Gini

impurity is in fact the equation of a K-dimensional
hypersphere, where

√
1− g is the radius and all p̂jk

are the coordinates. The (K − 1)-simplex space in-
tersects this hypersphere where all prevalences sum
to one, 1 =

∑K
k=1 p̂jk. Therefore for a K = 3 clas-

sification, a Gini loss function isobar appear as a
2D-circle, when visualized in the (K − 1)-simplex
space. One circular isobar is drawn in Figure 4.
The Gini loss function chooses the split placing two
daughter nodes the furthest from the center of the
(K − 1)-simplex.

Splitting numerical features of ratio-, ordinal- or
integer-scale is all the same for RF. A break point
will direct observations lower or equal to the left
node. Splitting by categorical features is to find the
best binomial combination of categories designated
for either daughter node. A feature with 8 cate-
gories will have 28−1−1 = 63 possible binary splits.
Any available break point are evaluated by the loss-
function, but the RF algorithm is constrained to
only access a random selection of the features in
each node. The amount of features available, mtry,
can e.g. be a third of the total amount of features.
This random variables subspace and bootstrapping
will ensure decorrelation of trees and feature regu-
larization without overly increasing the bias of each
fit. Each fully grown tree is most likely highly over-
fitted, as the individual predictions of each terminal
node are dictated by 5 or less observations. Com-
bining the votes of many overfitted but decorrelated
trees form an ensemble with lowered variance and
without increased bias. Out-of-bag(OOB) predic-
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tions are calculated for each terminal nodes. As
OOB observations are not used actively in growing
the trees of the forest, they can serve as an inter-
nal cross validation which yields similar results as
a 5 fold cross validation [23]. The prediction of in-
dividual trees are written as ŷ′ij for i ∈ {1, ..., N}
observations predicted by j ∈ {1, ..., ntree}. The
ensemble predictions are computed as

ŷi =
1

ntree

ntree∑
j=1

ŷ′ij , (9)

and the OOB cross validated ensemble predic-
tions ỹi are computed as

ỹi =
1

|J̃i|

∑
j⊆J̃i

ŷ′ij , (10)

where J̃i is the subset of {1, ..., ntree} trees,
where ith observation is OOB. |J̃i| is the size of the
subset J̃i. Thus let any training observation i iter-
ate through the J̃i subset of trees, defined as those
trees where i was not in-bag, and find the mean of
terminal node predictions.

To obtain value/class predictions of new obser-
vations, the observations will be forwarded through
all trees according to the established split rules. A
tree prediction is dictated by the terminal node a
given observation ends up in. The ensemble predic-
tion of a RF model fit will by default be the average
for regression and the majority vote for classifica-
tion. Figure 3 explains graphically the structure of
a single regression tree by feature x1 and x2. First
all bootstrapped observations exist within the node
n1. The mean prediction value of n1 is in this ex-
ample 0.14 a slight offset compared to the training
set prediction mean of 0. The first split is over a
break point in x2, dividing n1 into n2 with low pre-
diction value and n3 with a high prediction value.
Both n2 and n3 are further split by x1. Interest-
ingly, n2 and n3 have almost opposite splits by x1.
In n2, high x1 leads to a lower prediction, while re-
versely in n3. This illustrated tree have only grown
7 nodes. Nonetheless, the tree contains an interac-
tion term, where high x1 only contribute positively
to the prediction ŷ when conditioned by high x2.

2.3 Local increments and feature
contributions

This section explains how feature contributions are
computed. This paper expands the feature contri-
butions defined by Palczewska et al [16] to also ac-
count for bootstrapping and/or stratification and to
allow OOB cross validation. Feature contributions
summarize the pathways any observation (a given
combination of input features) will take through the
many decision trees in a RF model. Each sub node

of the trees holds a prediction, which is average
observed target of observations populating it, see
Equations 5 & 6. The sum of the many steps from
node to node (local increments) is for regression ex-
actly the resulting large step from the grand mean
of the training set to the given numeric target pre-
diction. Likewise for classification, the large step
is from base rate to a probabilistic target predic-
tion. A proof hereof is provided in supplementary
materials. As these many small steps towards the
final prediction is an additive process, it is possible
to reorder the sequence of steps and end up by the
same prediction. The important implication hereof
is that the RF model structure can be decomposed
into additive sub models, each with the same di-
mensionality. As each sub model structure is the
sum local increments of decision splits by one spe-
cific feature, each sub model structure tend to only
describe the main effect of this one specific feature
plus perhaps interactions with other features.

In order to efficiently describe how variations of
feature contributions are computed, a notation of
how to access any local increment in a given RF
model fit is formulated. We define L as a list of
lists of lists containing all local increments. L is
defined in the following three levels (observations,
trees, increments):

1. Li is a list with i ∈ {1, ..., N}, and N is the
number of observations predicted by the for-
est. i is the ith observation.

2. Each element of Li, called Lj is a list with
j ∈ {1, ..., ntree}, and ntree is the number of
trees in the ensemble.

3. Each element of Lj , called Lk is a list with
k ∈ {1, ..., nincrement,i,j}, and nincrement,i,j is
the number of increments encountered by the
ith observation in the jth tree.

Note that L can be ordered as a 2-dimensional
array (i observation, j tree) where each element is
a sequence of local increments specific for the ith

observation in the jth tree. Overall, we can access
any local increment in L with Lijk. Depending on
the model type, L will contain local increments as
scalars for regression or as vectors for classification.
The first local increment k = 1 for any tree and ob-
servation in Lijk is the step from node 0 (training
set) to node 1 (root node of tree). Thus the kth

local increment steps from the parent node k−1 to
a daughter node k. The local increment Lijk is the
change of node prediction ŷ′′ijk − ŷ′′ij(k−1)

Equation 11 describes how any prediction can
be computed from Lijk as the sum of all local in-
crements plus grand mean or base rate. A proof
hereof can be found in the supplementary materi-
als.
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Figure 3: Random forest and local increments explained. Left, an 3D illustration of a small regression
tree of 7 nodes. Right, the same tree described by node means(u), node size(n) and local increments
Lijk. L is subsetted by observation, tree, node and feature. A observation falling in e.g. node 4, will
have a prediction as the sum of the local increments in its path plus the grand mean of the training set.

The target prediction ŷi is computed as

ŷi =

∑ntree

j=1

∑nincrement,i,j

k=1 Lijk

ntrees
+ y , (11)

where Lijk is a local increment and where y is
the grand mean or base-rate. The numerator is a
scalar for regression and a vector for classification.
The denominator, ntree, is always a scalar.

So far the prediction of the ith observation is the
grand mean (regression) or the base-rate (classifi-
cation) plus the sum of all local increments Lijk en-
countered by this ith observation divided by ntrees.

Figure 4 is a new geometrical representation of
local increments for a 3-class classification. Figure
4 is not intended as a model structure visualiza-
tion, but rather as a representation of how decision
trees branch out in the prediction space. Each node
in the classification tree can be seen as a proba-
bilistic prediction defining a point in a probabilistic
(K − 1)-simplex. Figure 4 depicts node predictions
and local increments for a small tree with four ter-
minal nodes. To this tree graph is appended a node
(T) for training set to the root node of the tree.
This train node represents the class distribution of
the training set. The bootstrap increment leads to
the root node. This step is often small and a result
of random uniform sampling w/o replacement. If
applying class stratification, the length and direc-
tion of this step can be controlled. Stratification
corresponds to defining a prior expected class dis-
tribution, which will be the position of the root

nodes in the prediction space. From here all trees
will branch out from this point. The following lo-
cal increments and nodes comprise the entire tree.
Any split produces two nodes and two local incre-
ments of opposite direction. If not of equal node
size, there will be one shorter local increment de-
fined of many in-bag observations and one longer lo-
cal increment defined of fewer in-bag observations.
This is a consequence of that class distributions of
daughter nodes multiplied by the node sizes and
added together is exactly equal to class distribu-
tion of parent node multiplied by its node size. This
symmetry effect can be found in Figure 11 in sec-
tion 4.3. For the unbalanced binary features wives’
religion, wives working and media exposure the pre-
diction is offset a lot for a few observations, while
the prediction of remaining many observations will
only change a little in the exact opposite direction.
For regression and binary classification such a di-
rection is essentially one-dimensional and can be
positive or negative. For multi classification the di-
rection is a vector of K elements with the restriction
that the sum of elements is zero. In Figure 4, the
circle represents a Gini loss function isobar. The
further away (euclidean distance) nodes are placed
from uniform class distribution the better a split
according to RF Gini loss function. The best kind
of split is one placing both daughter nodes onto two
of the K vertices of the (K-1)-simplex.

For the training set, a cross validated OOB-
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Figure 4: A representation of how node predictions and local increments for a small classification tree
with four terminal nodes. The first node in center represents the class distribution of a balanced training
set (T). The bootstrap increment leads to the root node of the tree (R). The following local increments
and nodes comprises the entire tree. Any split produces two local increments of opposite direction. The
circle represents Gini loss function isobar. The further the two nodes (weighted by size) are from uniform
class distribution the better a split according to the Gini loss function.

prediction ỹ can be formulated as

ỹi =

∑
j⊆J̃i

∑nincrements,i,j

k=1 Lijk

|J̃i|
+ y , (12)

where J̃i is the subset of trees where ith sam-
ple is OOB. One can reason, that if Equation 11
is true for any set of trees, then Equation 12 must
also be true for a given subset of any trees, such as
the OOB subset J̃i, see supplementary materials.

When predicting the training set with an RF
model, any training observation i ∈ {1, ..., N} will
have a high proximity to itself, that is, it will in any
in-bag tree both define the in-bag node predictions
of the terminal node and be predicted by the very
same terminal node. For data sets with a high noise
level this becomes a problem and the points Si of
model structure S will overfit the sampled train-
ing set observations Ti, and visualizations hereof
will look more noisy. If the RF training parame-
ter minimum terminal node size is increased and/or
bootstrap sample size is lowered then training ob-
servation i will have a lower influence on its own
prediction and visualizations will not look noisy.

To compute feature contributions, the summed
local increments over each observation and feature,
it is necessary to keep a record of splitting features
in each parent node. In Equation 11, the ith ob-
servation in the jth tree encountered the local in-
crements for k ∈ {1, ..., nincrements,i,j}. For this ith

observation in jth tree, let Hijl be the subset of lo-
cal increments where the parent node was split by
the lth feature. The local increments of bootstrap-
ping are assigned to feature 0. The letter H is used,
as K already is used to describe number of classes.

This distinction between OOB-predictions ỹ
and regular test predictions ŷ of training set now
becomes important as how to feature contributions
are defined. Previously [16, 9] feature contributions
have been defined for regression and classification
analogous to this:

Fil =

∑ntree

j=1

∑
k⊆Hijl

Lijk

ntree
, (13)

Here Fil, the feature contribution of the ith ob-
servation for the lth feature, is a subtotal of local
increments Lijk, where k only iterates over Hijl,
which is those times the parent nodes were split by
feature l.

This definition of feature contributions is fine if:
(a) the noise level is low or (b) if feature contribu-
tions F only is computed for some test set different
from training set or (c) if the user is confident, that
the model structure is not over fitted. It would be
possible to cross validate by segregating the data
set in a training set and test set to avoid over fitted
visualizations. To discard data points is not de-
sirable for a data set with limited observations. It
would be possible to perform an n-fold cross valida-
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tion, but n-fold random forests would be necessary
to train.

We propose to compute feature contributions
for the OOB cross validated predictions. OOB cross
validated predictions are only the sum of local in-
crements over trees where ith observation was OOB,
see Equation 12. Analogously, we OOB feature con-
tributions F̃il as

F̃il =

∑
j⊆J̃i

∑
k⊆Hijl

Lijk

|J̃i|
, (14)

where j only iterates the subset of trees J̃i, and
where ith observation was OOB. |J̃i| is the total
number of times the ith observation was OOB and
the size of the subset J̃i. Equation 14 is used in for-
est floor visualizations to compute cross validated
feature contributions of the training set predictions.

2.4 Decomposing the mapping sur-
face with feature contributions

We can compute the OOB cross validated set of
points S̃i = {Xi, ỹi} for i ∈ T the training set. That
is the combination by training features Xi and the
cross validated predictions ỹi, where c = 1 for re-
gression and c > 1 for classification. To decompose
S̃i, then ỹi} is expanded with F̃il, such that:

ỹi =
d∑
l=0

F̃il + y . (15)

Likewise non cross-validated ŷi is a sum of non
cross-validated F ,

ŷi =
d∑
l=0

Fil + y . (16)

The ensemble prediction ŷ or ỹ is equal to sum
of local increments + grand mean / base rate, see
Equation 11,12. As sequences of additive vectors
can be rearranged, it is possible to compute sub to-
tals of local increments of the full prediction. Fea-
ture contributions is just the subtotal of encoun-
tered local increments for the for the ith observation
where the parent node was split by the lth feature.

Notice feature 0 (l = 0) is included to accurately
account for the normally small and negligible fea-
ture contribution of random bootstrapping. For an
increasing number of trees, this bootstrapping fea-
ture contribution will approach zero. However, if
the bootstrapping is stratified Fi0 and F̃i0 is equal
to local increment from training set base rate y to
the chosen stratification rate in every root node.

Figure 5 illustrates OOB cross validated feature
contributions and regular feature contributions. A
so called “one-way feature contribution plot” is a
single feature contribution column plotted against
the values of the corresponding feature. In Figure

5 the ”one-way feature contribution plot” can be
seen as projections of F̃ . Conveniently, the main
effects of either feature x1 and x2 have been sepa-
rated with feature contributions before the projec-
tion into the 2D plane. In Figure 5, the goodness-
of-visualization fit to the projected feature contri-
butions can be seen for both F̃i1 and F̃i2. If it is
possible to re-estimate the set feature contributions
e.g. F̃i1 with some estimator f only by the fea-
ture context of the visualization, it is certain, that
no interactions have been missed. Thus the model
structure do not contain any interaction effect with
feature x1. To quantify this we use a leave-one-out
cross validation,

GOV (f̂λ) = cor(ĝ.l, F̃.l)
2 , (17)

here the goodness-of-visualization (GOV ), is
the pearson correlation between LOO predicted fea-
ture contributions. Where ĝil = f̂−ii (Xiλ) is the
leave-one-out prediction of the F̃il feature contri-
bution of the ith observation for the lth feature.
λ is the features which are used to fit the estima-
tor. When λ = l, GOV quantifies how well feature
contribution of the lth feature F̃.l is explained as
a main effect. In Figure 5 F̃.1 is predicted by X.1

and F̃.2 is predicted by X.2. GOV can also quantify
other visualization contexts than main effect plots.
E.g. in Figure 7 of result section the goodness of
a visualization context of two features x3 and x4 is
quantified, where λ = {3, 4}.

3 Materials and methods

3.1 Data and software

The real datasets contraceptive method choice
(cmc) and white wine quality (wwq) were acquired
from the UCI machine learning repository [4, 11].
All algorithms were implemented in R (3.2.4) [18]
and developed in Rstudio (0.99.892) [20]. The
main functionality is available as the R-package,
forestFloor (1.9.5) [25], published on the repository
CRAN. If not stated otherwise all RF models was
trained with the CRAN package randomForest [10]
by default parameters except keep.inbag=TRUE in
order to reconstruct the individual pathways of ob-
servations through the trees. To reproduce result
section, R scripts for each data example have been
included in the package.

3.2 Simulating toy data

To demonstrate that the visualizations in the re-
sult section 4 provide correct representations of the
data structure, it is beneficial to use simulated (toy)
data from a given hidden function. Such functions
as Friedman#1 and ’Mexican hat’ are known ex-
amples [1]. To illustrate the principal functionality
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Figure 5: (1) Simulated data set of 5000 observations, yi = f(Xi) = −(Xi1)2− cos(Xi2)) + εi where Xi1

and Xi2 are drawn from a uniform distribution such that X1 ∈ [−π2 ; π2 ], X2 ∈ [0; 8π]. For all plotted
points, a colour gradient (hue color wheel) is used to mark different combinations of X1 and X2. (2)
Out-Of-Bag cross-validated predictions ỹ are plotted. (2a/2b) ỹ is decomposed into feature contribu-
tions F̃1 and F̃2 and projected into a 2D plane, see Equation 14 and 15. Either contain almost only
variance from the two main effects −(X1)2 or cos(X2). (3) Blue surface depict the full model structure,
ŷ = f(X). To either side (3a/3b) ŷ is decomposed into F1 and F2, see Equation 13. The sum of cross-
validated feature contributions by each observation plus the grand mean y is equal to the cross-validated
predictions, and vice versa for non-cross validated. F0 is the corrections for random or stratified boot-
strapping. If no stratification, F0 will be negligibly small. This illustration also generalizes more input
features/dimensions and probabilistic classification.
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of forestFloor a new hidden function, G is defined.
G is the ideal hidden structure, which cannot be
observed directly. The toy function was defined as
G(X)+ε = G∗(X) = y = x21+ 1

2sin(2πx2)+x3x4+
εk and was sampled 5000 times. xi were sampled
from a uniform distribution U(−1, 1). The noise
variable ε was sampled from a normal distribution
N(0, 1) and k was set such that the Pearson cor-
relation cor(G(X), G∗(X)) = 0.75. Thus the true
unexplainable variances component is roundly 25%
of the total variance. The level of detail, RF can
capture from hidden structure G, declines as the
noise increases.

4 Results

Three data sets were modeled with RF regression
or RF classification and subsequently explored with
forest floor. The examples demonstrate how fea-
ture contributions can be used to visualize the data
structure and how to identify unaccounted interac-
tions in a visualization.

4.1 Random forest regression of toy
data

A default RF regression model was trained on the
toy data set with a hidden structure, y = x21 +
1
2sin(2πx2) + x3x4. Figure 6 plots feature contri-
bution of all six features against the training set
feature values of the toy data. This type of plotting
illustrates the main-effects, as feature contributions
by each feature were plotted against their respective
feature values. Hereby, the mapping surface S was
visualized as the sum of d partial functions(black-
lines), one for each feature. As the feature contri-
butions retained any variance (main effects + inter-
actions) associated with the node splits by each fea-
ture, it was possible to visually verify and test the
goodness-of-visualization. Notice that main effect
plots of x1 and x2 form nonlinear patterns repre-
senting the underlying additive x21 and 1

2sin(2πx2)
contributions to the target y. Therefore, the leave-
one-out R2 goodness-of-visualization was > 0.95 for
both these plots. As the explained variance of fea-
ture contributions of x1 and x2 was more than 95%
when fitted as main effects, there was no consider-
able unaccounted interactions. On the other hand,
feature contributions of x3 and x4 were poorly ex-
plained in main the effect plots. The GOV was
poor, less than R2 < 0.1. It was hence concluded
that plotting the one-way feature contributions of
x3 and x4 did not assist to explain the structure
of S. Feature contributions of x5 and x6 were also
poorly explained but contained no large variance
and were therefore not interesting to explore fur-
ther. The features x5 and x6 could also be identified
as unrelated to the target y for having a very low

variable importance (not shown). To include such
uncorrelated/unrelated features illustrated the base
line of random fluctuations in the mapping struc-
ture. This helped to assess whether a given local
structure only was a random ripple.

As the feature contributions of x3 and x4 were
inadequately accounted for, a broader context was
needed to understand the hidden structure. To
identify interactions relevant for the feature contri-
bution of x3 a color gradient (red-green-blue) was
applied in mapping space V along the x3 axis. The
color of any other observation in any other plot was
decided by its projected position on the x3 axis.
Low values were assigned red and high values blue.
Figure 6 depicts the main effects feature contribu-
tion plot of x1,...,x6 with the applied color gradient
to x3. Any main effect feature contribution plot of
features who neither correlate and neither interact
with x3 will show a random color pattern. Such
features were x1, x2, x5 and x6, which neither cor-
related nor interacted with x3. Plots of only corre-
lated features would reproduce the same horizontal
color pattern. In the extreme case, a feature iden-
tical to x3 would reproduce the exact same hori-
zontal color pattern. Plots of only interacting fea-
tures would reproduce the color gradient vertically
along the feature contribution axis. A combination
of correlation and interaction would make the color
gradient reappear diagonally. In Figure 6 the color
gradient suggests, that x3 interacted with x4 due
to the vertical color gradient in the plot of x4. In
Figure 7 their combined feature contributions were
plotted in the context of both feature x3 and x4.
In this 3D plot it was observed, that the 2D rule of
color gradients of interacting features was a basic
consequence of perspective. Both color patterns of
x3 and x4 could be reproduced by rotating the 3D
plot. In this 3D plot, there was no large deviation
of feature contributions from the fitted grey. Thus,
it was evident that any structure of S related to
x3 and x4 were well explained in the joined context
of both features x3 and x4. The GOV of this fit
was R2 > .9. Therefore, this second order effect
plot was an appropriate representation of how x3
and x4 contribute to the target y. The depicted
saddle-point structure of Figure 7 was expected, as
the product of x3 and x4 contributed additively to
the target y. Overall, the model surface S, could be
represented by two one-way plot of x1 and x2 and
one two-way plot of x3 and x4. Hereby the hidden
structure of the toy data was fully recovered.

4.2 Random forest regression of
white wine quality (wwq)

The previous example of forest floor visualization
was an idealized example with uncorrelated fea-
tures and either representing clear main effect or
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Figure 6: Forest floor main effect plot of a RF mapping structure trained on hidden function y =
x1

2 + 1
2sin(πx2) + x3x4 + kε. x5 and x6 have no relation to y and were included only to illustrate a

base line signal. A color gradient parallel to x3 is applied to identify latent interaction with x4. Leave-
one-out k-nearest neighbor gaussian kernel estimation provides goodness-of-visualization(black line & R2

correlation) to evaluate how well each feature contribution can be explained as a main effect.

clear interaction effects. The white wine quality
data set (wwq) is an example of mixed main ef-
fects and interactions by most features. The tar-
get, consumer panel ratings(1-10) of wines, was pre-
dicted on basis of 11 chemical features. A default
RF model was trained and explained 56% of vari-
ance and the mean absolute error was 0.42 rating
levels matching the previous best found model per-
formance [5]. To explore the model structure of S,
first all main effect plots were inspected. Figure 8
depicts all plots by all 11 features. Features were
sorted in reading direction by variable importance
to present most influential feature first. A color gra-
dient along the most influential feature, alcohol, was
applied to search for interactions. Hereby it was ob-
served that density was negatively correlated with
alcohol, that volatile acidity interacted with alcohol
and that residual sugar both correlated and inter-
acted with alcohol. The observed correlation be-
tween residual sugar, density and alcohol is trivial,
where low-density alcohol linearly lowers density
while high-density residual sugar increases density.
Close to 98% of the scaled variance of these three
features can be described by two principal compo-
nents. This information redundancy was expected
to affect variable importance of the three implicated
features and to lower the general variance of the re-
spective feature contributions. Although the over-
all structure suggested that alcohol content in gen-
eral was associated with higher preference scores,
there was a local cluster identified as low alcohol,
high residual sugar and low pH which was asso-
ciated with high preference scores also. Figure 8
suggested that wines could achieve a high prefer-

ence score when residual sugar≈17, pH≈2.9, citric
acid≈.35 and fixed acidity<7 despite a low alco-
hol content. Such white wines was perhaps by the
consumer panel attributed fruity and fresh. Any
found interaction could be investigated with several
color gradients and two-way forest floor plots. It
was chosen to investigate the interactions of volatile
acidity, as this feature was the third most impor-
tant feature, whereas the goodness-of-visualization
of the one-way forest floor plot was only R2 = 0.69.
Two-way forest floor plot was therefore a more suit-
able representations of this effect. The color gradi-
ent along alcohol content already suggested a no-
table interaction between volatile acidity and alco-
hol. Figure 9 depicts the two-way forest floor plot of
feature contributions of volatile acidity in the con-
text of itself and the feature alcohol. The goodness-
of-visualization was then R2 = 0.94. Therefore, the
residual variance of feature contributions not ex-
plained by this plot was low. For wines with alcohol
content more than 10% (blue area) volatile acid-
ity appeared slightly positively to preference score.
For wines with lower than 10% alcohol (red area)
volatile acidity appeared to contribute negatively
to preference score.

4.3 Random forest multi-classification:
Contraceptive method choice
(cmc)

To illustrate the capabilities of forest floor for multi-
classification the data set cmc was chosen. The
data set originates from a survey of 1473 non-
pregnant wives in Indonesia in 1987 comparing cur-
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Figure 7: One forest floor interaction plot. XY-plan represent feature values x3 and x4 and Z-axis is
the summed feature contributions of F̃i3 + F̃i4. goodness-of-visualization is evaluated with leave-one-out
k-nearest neighbor gaussian kernel estimation (grey surface, R2 = .90). This indicates no remaining
latent interactions related to features x3 and x4.
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rent choice of contraception with socioeconomic
features. These features were, wives’ age (16-
49), wives’ education level (1-4), husbands’ educa-
tion (1-4) , n children (0-16), wives’ religion (0
(not islam), 1 (islam) ), wives working (0 (yes),
1(no)), husbands’ occupation (I,II,III,VI), standard-
of-living index (1-4), media exposure (0=Good,
1=not good) and the target contraceptive method
choice (1=no-use (629), 2=long term(333), 3=short
term (511)).

In the cmc data set the choice of contraception
was far from fully described by the available fea-
tures [12]. The OOB cross validated RF model
error-rate was .44. Assuming wives did not use
contraception (the most prevalent case) yielded a
629
1473 = .57 error rate. Anyhow, if the RF model
performance would be regarded as good by domain
specialists, the model structure could possibly pro-
vide insights to the socioeconomic mechanisms in
play. Hyper parameters Sample size and mtry were
tuned to yield the best OOB cross validated perfor-
mance. Optimal parameters was found to be boot-
strap sample size= 100 and mtry = 2. A lower
sample size can increase robustness by tree decor-
relation but also introduce more bias. To lower
sample size of trees can be advantageous, when
explained variance component is less than 50%.
Thus a RF model different from default settings,
was chosen to slightly improve predictions and to
simplify/smooth the mapping structure to explore.
Hereby the mapping structure may better represent
the underlying social/economic mechanisms, that
the specific data structure of survey reflects.

Three types of plots were constructed to investi-
gate the mapping structure. As the number of fea-
tures was d = 9 and number of classes was c = 3, a

full dimensional mapping space visualization would
require 12 dimensions. As shown in Figure 2, prob-
ability axes can be aligned along the y-axis, to re-
duce the number of dimensions to represent predic-
tion space to only one. Also, when the cross vali-
dated predictions were decomposed into cross vali-
dated feature contributions, only 2 dimensions were
needed to plot any main-effect. These plots resem-
bled one-way forest floor regression plots although
coloring was reserved to identify class of predicted
probability. Otherwise each class by each feature
would need to be plotted separately. Black assigns
no usage. Red assigns long-term usage and green
assigns short-term usage. Figure 10 illustrated the
main effects of each feature of a RF-fit, the y-axis
describes the additive change of predicted probabil-
ity for each observation for each each class. The ac-
tual feature value for each observation was depicted
by the x-axis. Thus any observation were placed
three times in each plot by the same feature value
in three colors once for each three classes. The sum
of changed probability over classes for any observa-
tion must be zero, see Equation 8. Overall, Figure
10 showed that main effects were dominant, as most
variance was explained by the respective features.
n children was the most important feature strongly
predicting (probability change up to +/- .30) that
wives with 0 or 1 child tended not to use contra-
ception. On the other hand, more than 4 children
predicted a slight increase in either type of con-
traception. Except for a preference separation for
long-term contraception over short-term for wives
with more 7 children, the n children feature was
not found useful to predict the choosing betwen the
two types of contraception. Wives’s education es-
pecially separated between no-use of contraception
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and long-term use, where lowest level predicted up
to +/-10% probability change. With more educa-
tion the wives tended to use long-term contracep-
tion over no usage. The use of short-term contra-
ception was comparably unchanged as a function of
wives’ education. Wives’ age, the third most impor-
tant feature, favored short-term contraception for
wives younger than 30, while long-term and no con-
traception for wives elder than 30. After 40 years,
either use of contraception declined. Husbands’ ed-
ucation elicited same pattern as wives’ education
though size of effect was half. A small subgroup of
7% was reported to have a not good media expo-
sure and this predicted a probability increase in no
contraception of 8%. Type of Husband’ occupation
favored for category I long-term by 5% over short-
term, whereas category III predicted an opposite
3% effect. Standard of living predicted a pattern
much similar to husband’s eduction. A small sub-
group (15%) of wives were not muslim, and this
predicted a 5% increase in short-term contracep-
tion over long-term usage and no usage. Lastly for
a subgroup of 25% working wives was predicted a
very slight increase (2%) of no-usage over short-
term.

The main effects for this 3-class problem could
also be depicted as a series of (3 − 1)-dimensional
simplexes, where the position in the triangle depicts
the predicted probability distribution for any obser-
vation. Colors can either depict true class (black:
no-usage, red: long-term and green: short term) or
colors can depict a feature (low value (red), middle
(green), high(blue)). Figure 11 depicts all main ef-
fects in bi-simplex plots, with left simplex colored
by cross-validated true class separation, and right
simplex colored by feature value distribution across
the simplex space. Figure 11 depicts 10 pairs of
simplexes. Lines were added to the simplexes to il-
lustrate majority vote. Only 17% of wives were pre-
dicted to use long-term contraception even though
22% of the sample population did so. Because RF
models effectively used the sampled base rate as
prior (marked as a blue cross) and the effective sep-
aration was weak, predictions tended to be skewed
towards largest class away from smallest class. A
different prior than the sampled base rate could be
set by stratified bootstrapping of each tree in a ran-
dom forest model. E.g. to stratify sampling by tar-
get class would move the blue cross to the middle
of the simplex, and roughly a third of predictions
would fall into either class. Stratified bootstrapping
would e.g. be reasonable if the preferred contracep-
tion is expected to be different in the full population
than in the training population.

In the second total separation simplex, to
present an overview of any differences in socioe-
conomic status, principal component analysis was
used to reduce the full feature space to two principal

color components. Here a purple cluster indicated
no-usage, a green cluster was shifted towards long-
term usage, light blue cluster predicted short-term
usage, and a dark-blue cluster predicted short-term
or no usage. The color separation was not perfect,
partly because the separation problem was difficult
and partly because PCA cannot fully characterizes
a potential nonlinear mapping surface of random-
forest. To colour be several features at the same
time, seemed to be most useful for data sets with
high linear feature collinearity.

The left of following bi-plots of simplexes de-
picted the effective separation of true class separa-
tion by any feature contribution. The right simplex
depicted the separation as a function of the corre-
sponding feature (by color). This second simplex
could be used both to illustrate the main effect of
each feature and to assess whether higher order ef-
fects were present. For features with small set of
levels such as womans education, a separation in
four clusters (red(1), brown(2), pale blue(3), deep
blue(4)) could be seen. Education level 1 and 2
were partly joined. The local centroids of these
cluster was interpreted as the main effect, and the
deviation from the centroids as higher order effects
+ unfiltered noise. For all simplexes the global cen-
troid and prior is the (blue cross).

The series of bi-plot simplexes of Figure 11
could illustrate with finer detail the predicted prob-
ability distribution for any observation, whereas the
precise feature value was depicted with less fidelity
than in Figure 10.

The three features media exposure, wives’ reli-
gion and wives working were binary and showed the
largest change of predicted probability in the small-
est subgroups. This observation was regarded triv-
ial, as the group size weighted probability change
across a binary feature split must have equal size.
Thus few observations can change prediction a lot,
if many observations only change prediction a little
in a opposite direction. This was regarded a prop-
erty for all binary decision tree models and Figure
4 in Section 2.3 depicted a similar pattern of how
local increments would propagate in a probability
simplex.

To search for higher order effects, similar to for-
est floor regression, simplex plots can in turn be
colored by other features. In Figure 12 the simplex
plots of wives’ age and wives’ education was printed
3 times each. From left to right, color gradients il-
lustrated respectively wives’ age, wives’ education,
and lastly n children. The simplexes in the diago-
nal reproduced the main effect coloring from Fig-
ure 11, whereas other depicted simplexes possibly
would detail 2nd order interactions. E.g. wives’ ed-
ucation of Figure 12 showed the four clusters, one
for each education level. The distance from any
point to its local cluster as a mix of higher order
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effects and a small noise component. It was found
that wives with highest education aged 20 were pre-
dicted more likely to use contraception than when
aged 25. Wives’ with highest education and few
children (red) preferred short term contraception
over long term. As the features n children and
wives’ age are correlated, these will both interact
with wives’ education, not only one.

5 Discussion

Forest floor is a methodology to visualize the map-
ping structure of a RF model using feature contri-
butions. RF can be termed a predictive algorith-
mic model, designed to have a high predictive accu-
racy on the expense of model transparency [22, 3].
RF could also be termed as data driven, as the
model can adapt itself to the data with little guid-
ance. The opposite is a theory driven model where
the user manually choose an explicitly and clearly
stated model to capture the data structure. A prac-
tical advantage of using RF, is when the user have
little prior knowledge or theory on the subject. The
majority of nonlinear machine learning algorithms
models have in common, that the resulting model
stated as an equation is fairly complex in the eyes
of a human user. The complexity may be difficult
to avoid if the model should be able to capture an
unknown structure. But exactly when little prior
theory is given, that is when the model should in-
spire the interpretation of the data structure. A
dualistic approach is to choose both a perhaps lin-
ear explanatory model to interpret the system and
a machine learning algorithm to get the most accu-
rate predictions [22]. Such an approach may leave
a gap between users comprehension and the ac-
tual structure of the nonlinear model. If the user
is far from understanding a certain data-structure
any optimization cannot hardly evolve from brute
trial-and-error searches such as grid search or ant-
colony-optimization methods.

For nonlinear high-dimensional multivariate
models, it is not straight forward to visualize the
trained mapping function. The provided visual-
izations can be understood as slices or projections
of the mapping structure. It appears that a given
series of 2D and/or 3D projections can jointly ex-
plain the structure of a RF mapping surfacesa. The
quantifiable goodness-of-visualization measure de-
scribes how well the variance of the full structure
can be explained in the context of the provided fea-
ture axis. If a large component of feature contribu-
tion variance remains unexplained, there is likely
an unaccounted interaction pattern associated with
this feature. Thus an advantage of forest floor is,
that it aids the user to learn what local interac-
tion effects are not yet visualized. With feature
contributions it is possible to make an interpreta-

tion of what variance is attributed main effects, sec-
ond order effects or higher order effects. Feature
contributions can be computed from the training
set itself and thus do not extrapolate the training
set. The training set is used to set boundaries for
model structure, such that extrapolated and unre-
lated model structures are not visualized. Feature
contributions can be combined with the out-of-bag
concept allowing cross validation to avoid present-
ing an overfitted mapping structure. Visualizations
of cross validated feature contributions appear less
noisy.

Color gradients allowed to include one or two
extra dimensions in an illustration thus otherwise
limited of three dimension. Color gradients travers-
ing entire mapping space was used to highlight se-
lected latent dimensions in a series of main effect
plots to pinpoint missing interactions. We perceive
colors as a combination of three channels red, green
and blue. Thus, it may seem possible to visualize
three additional dimensions in colors. Nonetheless,
the ranges of color saturation and brightness should
be constrained to avoid indistinguishable grey color
tones and to ensure a minimal contrast to the back-
ground. Such considerations, limited color gradi-
ents to provide only two additional dimensions at
maximum. It was possible to summarize a high-
dimensional structure with e.g. principal compo-
nent analysis and apply color gradients along the
first 2 loading vectors, such as in Figure 11. In prac-
tice, we found a sequence of 1-dimensional color
gradients best suited to uncover latent interaction
structures in a RF model fit.

Feature contributions were first described in the
context of RF regression, where a given feature can
contribute either positively or negatively to a given
prediction [9]. Next, the concept of feature contri-
butions has previously been extended to classifica-
tion, where the categorical majority vote labeling
were replaced with numeric probability predictions
[16]. We have argued that these probabilistic pre-
dictions are confined in a prediction space defined
the (K−1)-simplex, for model with K classes. Any
node in any tree will itself be a prediction and have
a position in this space. We argue local increments
are in fact vectors connecting nodes in the (K−1)-
simplex space. The first local increment (the boot-
strap increment) of any tree will be the vector con-
necting the class distribution of the training set to
the class distribution of the root node. As the boot-
strap increments will point randomly in any direc-
tion, the sum of a large number of such will ap-
proach the zero vector if no stratification is chosen.
For stratification by true class, the bootstrap incre-
ments will connect the training set class distribu-
tion point in the (K − 1)-simplex to the point in
the (K − 1)-simplex chosen by stratification.

The Gini loss function can be understood as
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maximizing the squared distance of node positions
to the center of (K − 1)-simplex (equal class prob-
ability). Therefore any split by Gini will place
the daughter nodes the furthest from the center,
weighted by node size. As the classification trees
are fully grown, the terminal nodes of one pure
class can only be positioned on the vertices of the
simplex. In Figure 11 was shown that the distri-
bution of classes in the training set will function
effectively as the prior of the RF model. If the user
do not expect to find the same class distribution in
future predictions as in training set, this prior can
be moved in the simplex by stratification during
the bootstrap process. In Figure 11 the center blue
cross marked that the average root node center was
skewed towards class 1 (no contraception) as 42%
of the wives did not use any contraception. As class
separation by the RF model was not strong the ma-
jority of predictions fall close to this prior base rate.
In supplementary materials a RF model was trained
with bootstrap stratification by true class such that
the average root node is positioned in the center of
the (K − 1)-simplex and following predicted class
probabilities were also centred around this point.
Figure 4 depicted how any node-split will produce
two new nodes with local increments in perfectly
opposite direction. Thus, training set predictions
will always be centred around this point.

Direct plotting of K class probabilities requires
K−1 dimensions. This is possible for 3 or 4 classes
with 2D plot or 3D plot respectively. The context
of feature values can only be included as one ex-
tra axis or as color gradients. We have shown that
the axis of the (K− 1)-simplex can be aligned such
that only one axis is needed to visualize the feature
contributions as seen in Figure 10. This frees 1 or 2
axis to provide an adequate feature value context.
In such visualization each observation will be plot-
ted one time for each predicted class probability.
Colors can be used to distinguish the classes.

In a previous article we trained a molecular
descriptor model with RF to predict protein per-
meation enhancement in an epithelial cell model
(Caco-2) [24]. A diagnostic tool was missed to ad-
dress why such a model would be credible and to
communicate intuitively the found pattern to fellow
chemists/biologist with little knowledge of machine
learning. We first stumbled upon feature contribu-
tions in the two articles [16, 9] and experimented to
plot these feature contributions against the feature
values. The R package rfFC [2] provided the first
computations of feature contributions and was an
inspiration to the design of the forestFloor package
[25]. Hereafter we discovered partial dependence
plots and sensitivity analysis [5, 6]. Now in hind-
sight we can report the set of advantages to forest
floor, especially the tracking of unaccounted inter-
actions such that no strong interaction will be over-

looked when visualizing the mapping structure.
The following citation by Friedman [6] origi-

nates from an article from 2001 discussing the use-
fulness of partial dependence plots on nonlinear
functions: ”Given the general complexity of these
generated targets as a function of their arguments,
it is unlikely that one would ever be able to uncover
their complete detailed functional form through a
series of such partial dependence plots. The goal
is to obtain an understandable description of some
of the important aspects of the functional relation-
ship.” [6]

Indeed the structure of RF models can be highly
complex and visualizations are unlikely to present
every detail at once. Therefore a visualization tool-
set should assist the user to navigate the mapping
structure. This has been done by isolating the part
of the model structure related to the data struc-
ture, by evaluating the goodness-of-visualization of
a given plot, and by pointing to where locally in the
model structure a sizable latent interaction is not
yet visualized. Our goal is to present complex mod-
els as adequately detailed visualizations. In a RF
model there will likely always be a baseline of ran-
dom ripples in the mapping structure, that we do
not expect to be able to reproduce. These ripples
are partly filtered of by using the out-of-bag cross
validated feature contributions. Other ripples oc-
cur due to biases of the RF algorithm. Especially
does the RF model structure surface contain wave
like curvature parallel to the feature axes due to the
univariate step functions of RF, see RF surfaces in
Supplementary Materials.

We predict that 4D projections of a third order
interaction rarely would be needed for the RF al-
gorithm. In supplementary materials we have pro-
vided a simulation suggesting that RF only poorly
can fit interactions higher than second order even
when trained on 10.000 observations without any
noise. This can be explained as the RF algorithm
is limited in its potential complexity as the algo-
rithm only can perform univariate splits decided
by an immediate loss function. Another algorithm
such as rotation forest [19] is not limited to perform
univariate splits and therefore better on such sim-
ulated tasks with higher order interactions. What
initially was an interaction effect can be rearranged
into a main effect by new combined features. Mul-
tivariate split methods are not compatible with for-
est floor, but they are compatible with the generic
methods partial dependence plots and sensitivity
analysis [6, 5].

6 Conclusion

Forest floor has extended the tool-box to visual-
ize the mapping structure of RF models. The geo-
metrical relationship between random forest models
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and feature contributions has been described. For
RF multi-classification it was useful to understand
the prediction space as a (K − 1)-simplex proba-
bility space. Hereby the feature contributions can
be interpreted as changes of predicted probability
due to a given feature. A (K − 1)-simplex predic-
tion space can also visualize how the training set
stratification affect RF predictions. Target class
stratification is effective to modify the prior for the
RF model.

We have emphasized that parts of a mapping
structure which extrapolates the training set are
irrelevant. To extract only the relevant mapping
structure, feature contributions are computed only
from the training set itself. Two new variants of
feature contributions have been introduced to avoid
inherent overfitting when using training set pre-
dictions. These variants of feature contributions
are out-of-bag cross validated feature contributions,
and n-fold cross validated feature contributions.

Feature contributions from a single feature can
contain variance from main effects and/or interac-
tion effects. A measure of goodness-of-visualization
has been introduced to evaluate if the feature con-
tributions of a given feature alone can be explained
in the context of itself. If not, color gradients
traversing the mapping space can be used to pin-
point overlooked interactions within feature contri-
butions and features. Sizable interactions can be vi-
sualized in two-way interaction plots in the context
of two features and perhaps even a third feature as
color gradient. Again a goodness-of-visualization
can be computed and evaluated for such a visual-
ization.

Ultimately, it is difficult to communicate a con-
text of more than 2 or 3 dimensions + target di-
mension(s). Thus fourth order interactions would
be difficult to visualize and communicate. Anyhow,
such visualizations are likely not missed, as the ran-
dom forest algorithm could not fit fourth order in-
teractions well and had a poor efficiency already
with third order interactions.

As forest floor can break down a RF model fit
into effects attributed to each feature and assist to
find adequate context to understand these effects.
It is intended that RF no longer should be seen as a
non interpretable model. Learned associations be-
tween features and targets should inspire new ideas
of the underlying possible causality structure.
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Suplementary materials for: ”Forest Floor

Visualizations of Random Forests”.

Soeren H. Welling, Line K.H. Clemmensen, Hanne H.F. Refsgaard, & Per B. Brockhoff

August 17, 2016

1 Proof for Equation [11] and [12] of article.

Part 1 - Any sequence of d-dimensional vectors: Denote a sequence of n+1 real vectors

(or scalars) describing points in a Rd d-dimensional space as ŷ′′k for k ∈ {0, ..., n}. The difference

between any two adjacent vectors is defined as Lk = ŷ′′k − ŷ′′k−1 for k ∈ {1, ..., n}.

Lemma 1:

ŷ′′n =

n∑
k=1

Lk + ŷ′′0 (1)

Proof 1:

For k ∈ {1, ..., n}, ŷ′′k is the additive part of Lk and ŷ′′k−1 the substractive part.

When summing every Lk, all intermediary vectors of the sequence cancel out.∑n
k=1 Lj = (ŷ′′1 − ŷ′′0) + (ŷ′′2 − ŷ′′1) + (ŷ′′n − ŷ′′n−1) = ŷ′′n − ŷ′′0

Replacing
∑n

k=1 Lk with ŷ′′n − ŷ′′0 in stated Lemma 1, one obtain

ŷ′′n = ŷ′′n − ŷ′′0 + ŷ′′0

Part 2 - a single tree: A tree is a hirachial graph. The first node, node 0, is connected to

node 1. Every node from node 1 is either terminal and only connected to one parent node or

2
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an intermediary node and has two daughter nodes. Every node of a tree has a prediction ŷ′′k

which is a real vector/scalar with exactly d dimensions.

Notes for part 2

For regression, a node prediction is a real scalar and computed as the target mean of inbag

samples passing through the node. For classification a vector of d dimensions, where d is the

number of classes in the training set, and each element from 1 to d describe the prevalence ratio

of inbag samples by a given class. Notice some random forest implementation use majority

voting in terminal nodes. Here majority class element will be 1 and the remaining 0. Virtually

any other prediction rule for nodes in classification trees outputting real valued vectors of length

|ŷ′′k |1= 1 would be acceptable. Virtually any other prediction rule for nodes in regression trees

outputting real values would be acceptable.

An observation is an entity which will take one direct path of steps through the tree, starting

from node 0 and ending in a terminal node. Observations are enumerated for i ∈ {1, ..., N}.

Each observation will attain a sequence of predictions, one for each node it passes through.

Each prediction is a real vector/scalar and written ŷ′′ik, where k sequentially enumerates the n

nodes of the path for observation i. As n may differ for each observation i, it is thus written ni.

In one tree, any observation step sequence share the same first node 0 and node 1 also called the

root node of the tree. A local increment (Lik) is defined as a vector describing the prediction

difference from (k − 1)th to the kth node for observation i.

Therefore we write Lik = ŷ′′i,k − ŷ′′i,k−1 for k ∈ {1, ..., n} for ni >= 1.

The first node y0 of one tree contain all observations and the prediction is the training set

base rate / grand mean. y0 can also be written as y. The tree prediction of the ith observation

ŷ′i, is defined as defined as the terminal node ŷ′i = ŷ′′ik where k = ni.

Lemma 2

ŷ′i =

ni∑
k=1

Lik + y for any i ∈ {1, ..., N} (2)

Proof 2: As a given sequence of node predictions ŷ′′ik for a given observation i are real

3
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vectors/scalars, then the local increments of this sequence must be a part of any sequence

postulated in lemma 1. Replacing y with y0 and ŷ′i with ŷ′′n we obtain lemma 1. Thus lemma 2

must be true also.

Part 3 - the test set prediction of any ensemble of trees The tree prediction of the

ith observation of the jth tree is written ŷ′i. An ensemble prediction ŷi of ntree decision trees

is equal to the mean of the tree predictions ŷ′ij for each i observation. ŷi = 1
ntree

∑ntree
j ŷ′ij for

A local increment of the jth tree Lik can be written Lijk the number of local increments/steps

for the ith sample in the jth tree can be written nij .

Lemma 3

ŷi =

∑ntree
j=1

∑nij

k=1 Lijk

ntree
+ y, (3)

Proof 3:

ŷi =
∑ntree

j=1

∑nij
k=1 Lijk

ntree
+ y

ŷi =
∑ntree

j=1

∑nij
k=1(Lijk+y)

ntree
, use Lemma 2 to replace Lijk with prediction of jth tree ŷ′ij

ŷi =
∑ntree

j=1 ŷ′ij
ntree

, this is the definition of the ensemble prediction

Part 4 For any jth tree, any training observation i is either be designated as inbag or out-

of-bag (OOB). The OOB prediction ỹi computed from a subset of all trees {1, ..., ntree} where

i is OOB, we call this subset for J̃i and this set will have nOOBtree,i members. The OOB

ensemble prediction is defined as the mean prediction of OOB tree for the th observation.

ỹi = 1
nOOBtree,i

∑
j∈J̃i yij where subset J̃i ⊆ {1, ..., ntree}.

Lemma 4

ỹi =

∑
j∈J̃i

∑nij

k=1 Lijk

ntree
+ y (4)

Proof 4: As lemma 3 was shown for any set of trees in an ensemble, and as lemma 4 is just

the special case for particular subsets of trees, then lemma 4 must be true also.

4
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1.1 How to highlight the mapping structure of a local cluster

In the white wines quality (wwq) data set. A local interaction was identified among wines with

the lowest alcohol content (< 9.3%). In spite of low alcohol content in general lead to lower

preference predictions, a subgroup of low alcohol wines deviated from this main effect. It was

possible to further characterize this local interaction in the mapping structure of the trained RF

model. Any wine of alcohol content more than than 9.3 was colored transparent grey. Remaining

low alcohol wines were colored by the feature contribution of alcohol, such that wines with a

relatively positive impact of low alcohol content were marked blue and wines with a relatively

negative impact were marked red. Intermediate wines were green. Main effect plots by all

features were colored by these scheme as depicted. Hereby it was possible to visualize the local

interaction. It was possible to observe that the most clear differences between wines marked

blue and wines marked red was the content of chlorides, citric˙acid and residual˙sugar. This

observation characterized a certain cluster of fruity wines (acidic and sweet) of high preference

despite low alcohol content.

5
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Figure 1: Cross-validated main effect feature contributions of predicted preferences of 4900

white whines. The color gradient along feature contributions of alcohol characterizes the specific

interaction pattern between low alcohol content and remaining features.
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1.2 RF mapping unrelated to data structure

Two normal distributed(N(0,1)) variables x1 and x2 is related to a target y by either G1(X) =

y1 = (x1)
2 + 2sin(2x2) or G2(X) = y2 = x1x2. 3000 samples were drawn and a default RF-

model was trained. A grid of 300 grid lines and 3002 grid points was formed. Each grid point

represented a combination of x1 and x2 from −7 to 7 such that the entire grid extended the

range of sampled values 3 times. Any grid point of x1 and x2 was predicted by the RF model.

The predicted ŷ was plotted as a function of x1 and x2 in a 3D plot. The mapping structure was

represented as a surface outlined by the grid points and colored by high ŷ (red/high, green/low).

The mapping of the training set is represented by the set blue points on the mapping surface.

For the data structure G1 there is no unstable boundary effect as the partial quadratic function

of x1 and the partial sine function of x2 do no interact and simply intersect additively in the

region of the training set (blue points). The saddle-point structure of G2 is not the sum of two

additive partial functions. In a rectangular boundary of were training set was observed a series

of ripples in the mapping structure was observed. Here predictions alternated between high and

low values. This boundary mapping structure do not reflect the data structure of G2. Likely

as RF only performs univariate splits, it can only capture interaction effects by splitting data

into sub groups. As these sub group becomes less populated at the boundaries of the data set

the fit becomes markedly unstable.
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Figure 2: RF regression model structure of two hidden functions y1 = (x1)
2 + 2sin(2x2) (left)

or y2 = x1x2 (right). Red-green color gradient is parallel to the vertical target axis, ŷ. Positions

marked blue are the training examples used to train the mapping structure. The visualized

surface extrapolates the trainnig set 100% in each direction. Left plot(y1) depicts a stable main

effect only structure. Right plot(y2) depicts a unstable interaction effect only structure.

1.3 Shallowness of Random forest

Although splits of nodes in RF is performed univariately, RF can still capture interactions

due to the many local rules applied. Presumably as the sequential decisions performed by RF

satisfy only an immediate loss function of each split and splits are only univariate, RF cannot

grow decision trees to capture 4th order interactions or higher. To test the ability of RF to

captivate data structures of various complexity, three hidden structures were designed. A series

of i variables xi were drawn from a distribution and multiplied. The structure have no error

component. Figure ?? depicts from d = 1(light green) to d = 6(red) the ability of random forest

models to fit a training set of N train samples. A single main effect is modelled with almost

no error already from 100 observations. A second order interaction needs 100-200 samples to

explain 75% of the variance when cross validated. A third order interaction in a feature space

of continous variables (”saddle” & ”sineprod”) requires 10,000 samples to explain 75% variance

cross validated.

8

5.3 Article 3: Forest Floor Visualizations of Random Forests 97



”saddle”

yd =

d∏
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xi, xi ∈ N(0, 1) (5)
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xi, xi ∈ U{−1, 1} (7)
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Figure 3: How many orders of interactions can RF capture? Three structures saddle, sineProd

and binaryProd, ranging from main effect(light green) 6th order of interaction(red line). RF

already becomes an poor estimator at 3rd order interactions.

1.4 The effect of stratification

Stratified bootstrapping by target variable moves weighted centroid of cross validated training

predictions to the center of the simplex. Hereby, highly prevalent classes are down-sampled,

but every sample will likely participate at least in a small number of trees. Appendix Figure ??

depicts such a stratified RF model, where root node is balanced in respect of target classes. Be-

sides the centroid of prediction were moved to the center of K-1 probability simplex, the general

structure of the model structure seemed similar to the non-stratified version in manuscript.
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Figure 4: Feature contributions for contraceptive method choice (cmc) data set when RF was

trained with target class stratification. Blue cross marks average root node which is also the

center of the average cross validated prediction.
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1.5 forest floor visualizations of gradient boosted trees

Gradient boosted trees suggested by Friedman is a boosted ensemble, where each new tree is

fitted to the residuals of the current ensemble of trees [?]. Nonetheless, all grown trees in the

ensemble are regular decision trees similar to trees of random forest ensembles. The greadient

boosted ensemble prediction is the sum of votes, whereas for a random forest ensemble it is

the average vote. In either case, both boosted trees and bagged trees contribute additively to

the ensemble prediction. Therefore can every prediction be split into local increments and the

feature-wise subtotals, named feature contributions can be computed. Presently, the perhaps

most popular gradient boosting algorithm is XGBoost [?]. To make a fast proof-of-concept we

preferred not to write an entirely new adaptor for XGBoost, but rather to write a wrapper

around the randomForest implementation [?], making it behave as a gradient boosted ensemble

and retain compatibility with forestFloor. This short wrapper is printed below and included in

the forestFloor package as an example script ffGradientBoost.R.

Figure 5: forestFloor visualization of a simpleBoost model. simpleBoost is a gradient boosted

tree ensemble, implemented as a simple wrapper of the CRAN randomForest algorithm.
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1

l i b r a r y ( randomForest ) ; l i b r a r y ( f o r e s tF l o o r )

3 #s imulate data

X = data . frame ( r e p l i c a t e (6 ,4 ∗ ( r un i f (3000)- . 5 ) ) )

5 Xtest = data . frame ( r e p l i c a t e (6 ,4 ∗ ( r un i f (1500)- . 5 ) ) )

y = with (X,X1ˆ2+s in (X2∗2∗pi )+X3∗X4) + rnorm (3000) /3

7 y t e s t = with ( Xtest ,X1ˆ2+s in (X2∗6∗pi )+X3∗X4) + rnorm (3000) /3

9 #de f i n e boosted t r e e wrapper

s impleBoost = func t i on (

11 X, y , #t r a i n i n g data

M=100 , #boost ing i t e r a t i o n s and nt r e e s

13 v=.1 , #l ea rn i ng ra t e

. . . ) { #other parameters passed to randomForest

15 y hat = y ∗ 0 #l a t e s t ensemble p r ed i c t i on

r e s hat = 0 #r e s i d u a l s he r eo f . . .

17 Fx = l i s t ( ) #l i s t f o r t r e e s

f o r (m in 1 :M) {

19 y hat = y hat + re s hat ∗ v #update pred i c t i on , by l e a rn i ng ra t e

r e s = y - y hat #compute r e s i d u a l s

21 hx = randomForest (X, res , n t ree=1,keep . inbag=T , . . . ) #grow t r e e on r e s i d u a l s

r e s hat = pr ed i c t (hx ,X) #pred i c t r e s i d u a l s

23 cat ( ”SD=” , sd ( r e s ) , ”\n” ) #pr in t

hx$ f o r e s t $nodepred = hx$ f o r e s t $nodepred ∗ v #mult ip ly nodepred i c t i ons by l e a rn i ng ra t e

25 Fx [ [m] ] = hx #append t r e e to f o r e s t

}

27 Fx = do . c a l l ( combine , Fx) #combine t r e e s with randomForest : : combine ( )

Fx$y = y #append y

29 Fx$oob . t imes = apply (Fx$ inbag , 1 , func t i on (x ) sum( ! x ) ) #update oob . t imes

c l a s s (Fx) = c ( ” s impleBoost ” , ” randomForest” ) #make simpleBoost a subc l a s s o f randomForest

31 return (Fx)

}

33

p r ed i c t . s impleBoost = func t i on (Fx ,X) {

35 c l a s s (Fx) = ”randomForest”

predMatrix = pr ed i c t (Fx ,X, p r ed i c t . a l l = T) $ i nd i v i dua l

37 n t r e e s = dim( predMatrix ) [ 2 ]

r e turn ( apply ( predMatrix , 1 , sum) )

39 }

41 p lo t . s impleBoost = func t i on (Fx ,X, ytest , add=F , . . . ) { #plo t s l e a rn i ng curve

c l a s s (Fx) = ”randomForest”

43 predMatrix = pr ed i c t (Fx ,X, p r ed i c t . a l l = T) $ i nd i v i dua l

n t r e e s = dim( predMatrix ) [ 2 ]

45 a l lP r ed s = apply ( predMatrix , 1 , cumsum)

preds = apply ( a l lPreds , 1 , func t i on ( pred ) sd ( y t e s t -pred ) )

47 i f ( add ) p lo t=po int s

p lo t ( 1 : ntrees , preds , . . . )

49 return ( )
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}

51

#bui ld grad i ent boosted f o r e s t

53 rb = simpleBoost (X, y ,M=300 , r ep l a c e=F, mtry=6, sampsize=500 ,v=0.005)

55 #make f o r e s tF l o o r p l o t s

f f b = f o r e s tF l o o r ( rb ,X, Xtest )

57 #co r r e c t f o r that t r e e votes o f g rad i ent boosts are summed , not averaged .

#f o r e s tF l o o r w i l l as d e f au l t d iv ide by the same number as here mu l t i p l i ed with

59 f f b $FCmatrix = f f b $FCmatrix ∗ c ( rb$oob . times , rep ( rb$ ntree , sum( ! f f b $ i sTra in ) ) )

61 #p lo t f o r e s tF l o o r f o r OOB-CV f ea tu r e con t r i bu t i on s and r egu l a r f e a tu r e con t r i bu t i on s

p lo t ( f fb , p lotTest=T, co l=f c o l ( f fb , 3 , p lotTest = TRUE) )

63 p lo t ( f fb , p lotTest=F, co l=f c o l ( f fb , 1 , p lotTest = FALSE) )

65 #va l i d a t e model s t r u c tu r e

pred = pred i c t ( rb ,X)

67 pred t e s t = pr ed i c t ( rb , Xtest )

p l o t (y , pred , c o l=”#00000034” )

69 p lo t ( rb , Xtest , ytest , l og=”x” )

vec . p l o t ( rb ,X, i . var =1:2)

71

#export p l o t

73 png ( f i l e = ” f fGrad ientBoost . png” , bg = ” transparent ” , width=800 , he ight = 500)

p lo t ( f fb , p lotTest=T, co l=f c o l ( f fb , 1 ) )

75 r e c t (1 , 5 , 3 , 7 , c o l = ”white ” )

dev . o f f ( )
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CHAPTER 6
Discussion and conclusion

In agreement with Novo Nordisk, the specific methods of combining permeability
predictions and solubility predictions and the actual suggested candidates have not
been included in this thesis. However the distribution of solubility predictions and
permeation predictions is a good basis for a discussion of whether it is possible to
search for permeation enhancers that are both soluble and sufficiently potent.

6.0.1 Is predicted potency the same as insolubility
In Figure 6.1 the predicted solubility and permeability are plotted for 10,000 molecules.
Permeability predictions are based on a model similar to the one described in article
of Section 4.1. As the predictive model rely on molecular descriptor computations
with the MOE software suite, and this take in average 1 second per molecule to com-
pute. The full available million molecule search set would have taken 11 days to run.
To narrow down the search set, molecules were selected by criteria of rotatable bonds
and molar weight in anticipation, that molecules with less than a certain fraction of
rotatable bonds would likely not have fatty carbon chains.

As discussed in Section 4.0.1, it was a major consideration, that the permeabil-
ity model and solubility model both perhaps only would recognize lipophilicity-like
properties as predictors, and thus perform exactly opposite predictions. However this
seems not to be the case for the 10,000 predicted molecules, as there are molecules
with various predicted ratios between solubility and permeability enhancement. How-
ever, in the Figure no molecules ocour in the top right ’unrealistic’ corner, where
molecules would be predicted as both very soluble and very potent.

In Figure 6.1 the majority of molecules are not potent enough. Sodium caprate
has been set as the lower bar of required potency = 0.67. A potency of 0.67 predicts
that if a compound was used as permation enhancer and added to three Caco-2 mono-
layers in solution at 1%, 0.1% and 0.01% (w/w), the electrical resistance across the
monolayers would in average be lowered 67%. As discussed in article from Section
4.1, the permeation model overestimate the potency of non permeation enhancers, as
the training set contained no non-permation enhancers. Thus the permeation model
likely has not learned to separate non potent from weekly potent. However, a perme-
ation enhancement potency below sodium caprate (C10) is probably too weak, since
no C8 or C6 permation enhancers have been successfully included in a formulation.
Therefore the most important task of the model is to distinguish the highly potent
enhancers from the medium potent.
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Figure 6.1: Predictions of logS water solubility and permeation enhancement in
Caco-2 model for 10,000 compounds. Few molecules are both solu-
ble and potent permeation enhancers. Figure has been segmented into
groups of ’too insoluble’, ’not potent enough’, ’promising’ and ’unreal-
istic’. For a given group of surfactant permeation enhancers, the acylic
carbon chain can be reduced or elongated (γ). The blue arrows from γ6
to γ18 exemplify a given enhancer group, where the γ18 is too insoluble
and γ6 not potent enough. For some other enhancer family with a less
favorable head group, the chain length path (red arrows) may never
cross into the ’promising’ segment..
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6.0.2 Uncertainty of predictions
In Section 4.1 the root mean square prediction error of the permeation enhancer model
was found to be 0.16, on the defined potency scale from 0 to 1. The prediction error
was estimated by cross-validation and on a external data set. Therefore it is reason-
able to expect the model can recognize molecules as highly potent, medium potent or
non-potent permeation enhancers. The prediction error (standard deviation) of the
solubility model as discussed in the results part of the draft ”Learning the structure
of random forest models QSAR modelling: Predicting molecular Solubilty” in Section
A.1 estimated by cross-validation is 0.64 on the logS scale. A standard deviation on
logS scale of 0.64 translates to a 4-fold deviation in absolute solubility. As the train-
ing molecules in the Huskonnen et al data set [Pal+07] span the logS scale from -10
to +2, a prediction error of 0.64(RMSE) seems as a quite accurate model. Likewise,
the cross-validated estimated explained variance of the model is 90%. However to
function as an permeation enhancer, if logS is below -6, the dissolution rate would
likely be too slow.

Most surfactant based permeation enhancers have an ability to form micelles, such
that the apparent solubility of very lipophilic permeation enhancers could be close -1.
However the lipophilic permeation enhancers will have a low dissolution rate. The
predictions of a theoretical logS replaces the intrinsic dissolution rate, that likely
would have been the best property to predict. No large public data set, was found
for intrinsic dissolution

Solubility models [Del04; Pal+07] are mainly derived from solubility measure-
ments at room temperature 20-25 degrees Celcius. As the solubilization occurs at
37 degrees Celcius, some molecules may improve solubility more than others. Noyes-
Whitney dissolution rate equation predict dissolution as proportional to the concen-
tration gradient. The more soluble an enhancer is, the proportionally faster it can
ideally pass from solid form to mono-meric form and diffuse away from the tablet.
The temperature sensitivity of molecules has not been accounted for. All logS predic-
tion match 20 to 25 degrees celcius. Most likely the majority of molecules will have
a higher logS value at 37 degrees, however some molecules may be more sensitive to
temperature than others. This will contribute with extra uncertainty, when extrapo-
lating to 37 degrees Celcius. One future approach could be to model the temperature
sensitivity for a smaller data set and use these temperature sensitivity predictions to
correct predictions at room temperature [Kli+16].

6.0.3 Interplay of dissolution rate and insulin permeability
Permeation enhancers can increase the permeability of insulin across the epithelial
barrier. Insulin degrade with time due to enzymes in the luminal space of the small
intestine. To reduce the time in luminal space, the permeation enhancer must con-
tribute to a fast efficient dissolution of the tablet. A very slow release will give
apparent zero-order enzyme reactions an advantage to break down all insulin. Also
the permeation enhancer may be cleared from the site of action faster than the release
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from the tablet, such that the overall concentration of permeation enhancer in the
epithelial membrane will be too low to have an effect.

Figure 6.2: Two figures copied from [TT08; Naw+11] to illustrate why the potency
of lipophilic permeation enhancers are likely overestimated in in-vitro
studies using surfactant free buffers. Left, palmitoyl carnitine a C16
surfactant enhancer was found by Tippin et al to be 12 times less potent
in a FaSSIF buffer with taurocholate and lechitine an EC50. Right, in
the intestinal lumen taurocholate and lechitine will be released from the
bile duct and form micelles and liposomes. Small concentrations of long
chain lipophilic enhancer will absorbed by the liposomes instead of the
epithelial membrane.S.

Identifying new potent enhancers with the Caco-2 cell model do not emphasize
the dissolution speed. As a substitute for intrinsic dissolution speed measurements,
logS-solubility was used instead, as intrinsic dissolution measurements were too sparse
and not available in the public domain. Predicting both solubility and permeation en-
hancement allowed to correct for the over-optimistic scoring of lipophilic permeation
enhancers in the Caco-2 model. As the Caco-2 model uses watery HBSS buffer, the
lipophilic permeation enhancers will have no other place to bind than the epithelial
membrane. However under in-vivo conditions, there will be plenty of competing sites
to bind such as billary liposomes and micelles. Tippin et al has showed that in-vitro
models using HBSS buffers favor lipophilic permeation enhancers [TT08]. In a buffer
such as FaSSIF, that contain small amounts of inert surfactants, the lipophilic en-
hancers will be absorbed into the inert micelles instead of the site of action. On
the other hand, a medium potent permeation enhancer such as sodium caprate can
dissolve from the tablet fast enough, that the concentration of caprate is much higher
than the inert surfactants. The change of potency for a lipophilic enhancer palmitoyl
carnitine is described in Figure 6.2.



6 Discussion and conclusion 107

6.0.4 Interpretation of random forest
The regression random forest learner was used to build predictive models. The explicit
structure of the trained random forest models is too complicated to comprehend.
Feature contributions was used, in order to evaluate what properties of molecules
that constitutes soluble and potent permeation enhancers. With forest floor plots
a distinct interaction in the trained random forest model structure was discovered.
Specifically it was recognized that long carbon chains only increased the predicted
potency, if the molecule also had a dipole moment above a certain threshold. This
seems to be a reasonable rule to identify surfactants, as these must have both a
hydrophile and lipophile domain and there will likely be a dipole moment between
the two domains [RK12].

As the forest floor method of visualizing feature contributions, had not been de-
scribed before in literature and it seemed to have some advantages over other di-
agnostic methods for similar purposes, it was very interesting to develop a generic
visualization tool which could assist other random forest users in various fields to
understand the overall structure of the trained model. The outcome has been a sta-
tistical package computing feature contributions and diagnostic tools to direct how
the high dimensional model can be reduced to low dimensional visualizations. Today
the package has been downloaded 5000 times, I hope to see the amount of users grow
substantially the next years.
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APPENDIX A
An Appendix

A.1 Draft: Learning the structure of random forest
models in QSAR modelling: Predicting molecular
Solubility

This draft has been prepared, however not finished. The draft describes how the
solubility prediction model was trained and how to visualize the model structure
with forestFloor.
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Abstract: Random forest (RF) models are used in QSPR 

models to predict solubility by the molecular structure. Non-

linear models, such as RF, have been difficult to interpret as 

the model of many trees each of many nodes is far too 

complex to comprehend. Instead a model can be understood 

as a high-dimensional mapping structure which can be 

decomposed into a series of main effects and interactions. 

With feature contributions, and a newly developed tool it is 

possible to produce 2D and 3D visualizations to browse the 

model structure.  We have built a model 

of 12 standard molecular descriptors on a very cited data set 

of 1200 molecules and illustrated how a RF model fit weigh 

the information to produce predictions of solubility. It appears 

that interactions between used descriptors have a minor 

contribution on solubility prediction accuracy. The exemplified 

particular RF model fit can be boiled down to a series non-

linear transfer functions, one for each descriptor, and some 

minor interactions. Moreover, the error of making such a 

specific generalization can be quantified. The proposed tool 

will likely be useful to interpret many other RF based QSAR 

models. 

Keywords: keyword 1, keyword 2, keyword 3, keyword 4, keyword 5 

 

 

1 Introduction 

Quantitative structural activity/property relationship 

(QSAR/QSPR) models have been used to perform solubility 

predictions, and have e.g. been used in the pharmaceutical 

industry to select drug candidates for oral delivery. 

Insufficient solubility is likely lead to lower bioavailability [10]. 

Related, QSAR models have been used to estimate impact 

of pesticides on aquatic environment as a function estimated 

molecular octane/water partition coefficients (logP) [11]. 

QSAR models represent an empirical approach to establish 

a relationship between measured properties such as 

molecular solubility and a numerical description of molecules. 

Molecular formulas, SMILES or connection tables are graph 

representations of connected atoms by different types of 

bonds[cite]. These representations can be encoded to 

produce numerical descriptions, such as molecular weight or 

ratio of rotatable bonds. Molecular descriptors can make use 

of physicochemical theoretical calculations to estimate 

internal partial charges between atoms to predict e.g. polarity 

of the molecule [8,PEOE]. Prediction by other empirical 

derived models of logP(SlogP) or molar refractivity(SMR), 

can be reused to predict solubility [4(SlogP/SMR)]. Molecular 

descriptors, based on atomic contributions or functional 

group contributions, will naively view the molecule as a 

simple sum of its atoms or functional groups. Scores for each 

type of atom or functional group are fitted to explain a data 

set of measured logP or molar refractivity. Other descriptors 

such as Kierhall can quantify how branched the molecular 

graph is[cite]. Finally encodings can perform a 2D or 3D 

force field simulations predicting an energy favourable 

conformation of the molecule (MFA,dipole[cite]). 

[section on the previous models and descriptors from ESOL, 

huuskonnen, Delaney,] 

Multiple linear regression (MLR) has been used to find a 

linear relationship between molecular descriptors and the 

predicted property. Often within a narrow selection of related 

molecules [cite sulphonate prediction] or when the molecular 

descriptors are well designed, linear models will perform 

well[zheng]. The last couple of decades, non-linear models 

such as support vector machines, neural nets and random 

forest have improved the prediction performance[cite some 

review]. These algorithmic models do not rule out 

unspecified non-linear relationships and neither interactions. 
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[Continue with new models, new palmer, laura, bergstrom] 

Ideally by improving molecular descriptors a complex non-

linear regression model would not be needed. In practice it is 

difficult to adapt to an unknown non-linearity, especially 

when high. A successful RF model structure should not only 

be considered as a black-box structure, but it should inspire 

to new and better feature engineering. A deeper insight of 

the trained model structure of RF could improve our 

understanding of predicted molecular solubility and point to 

further improvements of molecular descriptors.  

1.2  Article, aim, goal, approach 

We will demonstrate how a RF model structure can be 

systematically deconstructed and visualized to describe the 

learned QSAR between molecular descriptors and solubility. 

In a previous article[cite], we used the concept of feature 

contributions[kuzmin, anna] to illustrate how a random forest 

model was able to predict a specific biological activity of 

molecules in a cell-culture model. Hereafter we investigated 

the topology of feature contributions and made a new tool, 

forest floor, to visualize and understand the structure of 

random forest models[cite]. In this article we build a 

conventional QSPR solubility model based on a highly cited 

and reused data set[((huskonnen)), Delaney, palmer, bergs-

trøm, laura] to discuss how RF utilize this information of 

molecular descriptors to produce predictions of solubility. 

[specify athours contribution, hertil gør palmer normalt så 

langt går vi videere]  

[Beskriv composition af artikel] 

2 Method 

2.1 Introduction to random forest regression 

A random forest model[leo] is a bootstrap aggregate 

ensemble model (bagging). It consists of hundreds or 

thousands of individual decision trees, whom are aggregated 

to form a joint robust, yet adaptive, ensemble model.  

Growing each decision tree starts with drawing N samples 

from the training set with replacement. Hereby, in average 

a .631 fraction out of N training set molecules are sampled to 

the root node of a tree at least once. These samples for a 

given tree are the inbag samples. The root node has a node 

prediction defined as the average measured solubility of the 

molecules in the node. The mean square error (mse) of the 

root node prediction can be reduced by splitting into two 

daughter nodes. Molecular descriptor are used to search for 

a splitting rule. A splitting rule (larger or equal to a value by 

one molecular descriptor) will split the node into two 

daughter nodes. One daughter node will have a higher 

molecular solubility and one with a lower than the parent 

node. The best split will lower mse of predicted solubility in 

the daughter nodes the most. By default, only a random third 

of descriptors are evaluated in any node to ensure not only 

one dominant molecular descriptor greedily is used first. 

Every node is recursively split until node size reaches 5 or 

less. Then the node is designated as terminal node. To 

perform predictions, new samples are passed down the tree 

according to the split rules. The terminal nodes will make up 

the possible solubility predictions of the tree. These almost 

fully grown trees are likely low biased, as the potential model 

structure is very flexible. Though individually, a tree has a 

high variance as each prediction is based on only 5 or less 

samples. To counter the instability of each tree, the 

bootstrapping and only evaluating a random third of 

descriptors in every node ensure low correlation between 

trees. When trees are less correlated and the variance is 

random and symmetrical, the learned structure will be 

amplified and the variance will be averaged out [breiman]. 

For every tree, a set of molecules will be out-of-bag (OOB) in 

contrary to inbag, when used to grow the tree. To estimate 

the accuracy of the model fit, it must be cross validated. Any 

sample will be OOB in roundly one third of the trees in the 

model and thee tree can independently predict this sample. 

The cross validated prediction error is the expected 

performance of the model if new molecules were predicted, 

assuming these molecules were drawn independently from 

the same population as the training set. OOB cross 

validation is faster and yields comparable estimates as 5-fold 

cross validation [wessivik]. Variable importance (VI) can be 

used to order molecular descriptors by usefulness to the 

model. VI is the decrease of OOB cross validation 

performance (mse) if a given molecular descriptor, after 

growing trees, but before predicting OOB samples, was 

permuted (random shuffled) [caroline strobl]. VI can be used 

for variable selection or as in the visualizations of this paper, 

to bring the attention to the most useful variables first. 

Random forest and feature contributions can also be used 

for probabilistic classification[mig, anna]. In a QSAR context 

mainly regression is used. 

2.2  Decomposing a RF model with feature contributions 

The applied methodology, forest floor, does not visualize 

directly the decision trees of the random forest. With 

hundreds or thousands of trees, it is intractable for a user to 

comprehend the overall structure of a trained RF model by 

inspecting the trees.  Instead the model can be understood 

as the learned mapping function (f), that maps from a feature 

space of molecular descriptors (X) to a physicochemical 

target (𝒚̂). X has as many dimensions as features in the 

model. The geometrical shape of the model mapping can 

neither be visualized nor comprehended directly, as the 

mapping is likely non-linear and high dimensional. Instead, 

projections or decompositions are needed to visualize the 

structure with only 2-3 dimensions. Feature contributions 

[kuzmin, anna] serve as a particular useful decomposition of 

the prediction for each descriptor, which assist to choose the 

optimal visualization of the model structure. 

A random forest algorithm (𝒈) when trained on a data set of 

N solubility measurements 𝒚𝒊 , 𝒊 ∈ {𝟏, … ,𝑵}  and encoded 

molecular features (𝑿𝒊) adjusted with a set of parameters (𝝎) 

will yield a model fit (𝒇). This model fit maps from any point in 

feature space (𝑿) of molecular descriptors to a predicted 

solubility scale (𝒚̂). This mapping can be understood as a 

high dimensional geometrical structure. A decomposition is 

used to visualize and navigate what model structure 

connects 𝑿 and 𝒚̂ in 2D or 3D visualizations. The simplest 

and perhaps adequately correct decomposition splits the 

solubility prediction into separate effects with one unique 

function to explain each molecular descriptor.  

A.1 Draft: Learning the structure of random forest models in QSAR modelling: Predicting molecular Solubility111
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Figure x: The Random forest algorithm is a function that when given a data set and training parameters will output a model fit. 

This model structure can as a start be interpreted as concisting of main effects only and visualized in 2D. Any deviation from a 

main effect only can be visualized as a 2
nd

 order interaction. 

[up to 2
nd

 order interactions, include. Make dash line boxes to indicateconcept formula]

Hereby the model fit 𝒇 can be simplified to series of additive 

functions 𝒇𝟏+𝒇𝟐+…, which separately can be plotted in 2D. 

Feature contributions are used to estimate such additive 

functions and allows an isolated interpretation of each 

molecular descriptor. 

2.3 Computation of feature contributions? 

Every root-, intermediary- or terminal node of a decision tree 

is an individual prediction. When a parent node is split by a 

given variable, the daughter nodes will each receive some of 

the inbag samples and hereby construct two new predictions. 

A local increment is the change of node predictions from a 

parent node to a daughter node. For any sample, the RF 

prediction is simply the sum of all its encountered local 

increments divided by number of trees plus the grand mean 

of the training set. Feature contributions are constructed by 

the same local increments divided by number of trees, but 

feature contributions are summed separately for each 

sample by each variable. Thus a feature contribution can be 

understood as the average change of prediction for one 

sample molecule due to the information of one specific 

molecular descriptor - given all other molecular descriptors. 

Given all, means in practice that any interaction structure is 

preserved in the feature contributions. 

When computing feature contributions for a training set, the 

yielded feature contributions can be arranged as a matrix 

with same dimensions as the molecular descriptor training 

matrix Xij. Feature contributions can be denoted Fij. Any 

prediction 𝒚̂𝒊  can be split into separate contributions 

attributed each of the molecular descriptors plus the grand 

mean of all solubility measurements (𝒚̅). 

𝒚̂𝒊 = ∑ 𝑭𝒊𝒋

𝒑

𝒋=𝟏
+ 𝒚̅ 

To estimate the most accurate RF model structure it is most 

efficient to use any available training sample. To visualize 

the model structure it is also preferable to use all training 

predictions to compute feature contributions. Just as training 

predictions of a RF model can be out-of-bag cross-validated, 

so can feature contributions. Cross validated feature 

contributions yields fewer random ripples in the visualized 

model structure. These random ripples arise from the 

inherent overfitting of individual decision trees. [forestFloor] 

2.4  Plotting, quantifying goodness-of-visualization and 

identifying latent interactions. 

The first way to plot feature contributions for a given 

molecular descriptor is as a function of the corresponding 

descriptor values, and this function can be fitted with an 

estimator. For this purpose, we suggest an estimator based 

on leave-one-out k-nearest neighbour Gaussian distance 

weighting, as it can fit most RF model structures and 

produces a fast cross-validation. 

𝑬(𝑭.𝒋, 𝑿.𝒋) → 𝒇𝒋(𝑿𝒊𝒋) = 𝑭̂𝒊𝒋  

Hereby is obtained, a 2-axes plot of feature contributions (y-
axis) versus the corresponding molecular descriptor values 
(x-axis) plus a fitted line describing the trending main effect 
not considering any interactions. See Figure 1 of the result 
section as an example. In Figure 1 the y-axis is feature 
contributions for any molecule in training set by a specific 
molecular descriptor (x-axis). 

The fitted line may be an inadequate description, as a 
random forest model possibly may also have captured one or 
more interaction effects related to this molecular descriptor. 
The cross-validated explained variance of the feature 
contributions (R

2
) by the fitted estimator quantified how well 

the 2D visualization describes the descriptor effect as a main 
effect only. 

𝑹𝒇𝒋

𝟐 = 𝟏 −
∑ (𝑭𝒊𝒋 − 𝑭̂𝒊𝒋)

𝟐𝑵
𝒊=𝟏

∑ (𝑭𝒊𝒋)
𝟐𝑵

𝒊=𝟏

 

If the explained variance is e.g. only 50%, one may choose 

to find a better context to understand the feature contribution. 

A broader context can be plotted as a 3D plot where the 

feature contribution e.g. can be plotted as a function of the 

two descriptors, e.g. by the first and second descriptor 

𝒈 𝑿𝒊, 𝒚𝒊, 𝝎  →  𝒚̂𝒊 = 𝒇 𝑿𝒊    ≈   𝒇𝟏 𝒙𝟏𝒊 + 𝒇𝟐 𝒙𝒊𝟐 + ⋯+ 𝒇𝒋(𝒙𝒊𝒋) + 𝒚̅ ≈   𝒇𝟏,𝟐 𝒙𝟏𝒊, 𝒙𝟐𝒊 + ⋯+ 𝒚̅ 

Training            
 

Model fit  

 

Main effects only 2
nd

 order interactions 

2D structures 3D structures 
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j={1,2}. Again the feature contributions can be fitted with an 

estimator and the goodness-of-fit can be quantified. 

𝑬(𝑭𝒊, 𝟏,𝟐 , 𝑿𝒊, 𝟏,𝟐 ) → 𝒇𝒋(𝑿𝒊, 𝟏,𝟐 ) = 𝑭̂𝒊𝒋 

In the 3D plot the estimated fit will no longer be a line but a 

surface, see the fitted surfaces in Figure 2. Unexplained 

variance of the estimated surface may remain; perhaps a 4D 

visualization is needed to explain an interaction between 3 

molecular descriptors. Fortunately, we observe for random 

forest models in several data sets, that main effects tend to 

dominate over second order effects, which tend to dominate 

over higher order effects[cite me]. Thus, visualizing a model 

structure in 2D and 3D is likely adequate for most practical 

purposes. 

Colour gradients can be used to provide one extra dimension. 

The molecule samples in a visualisation can be assigned to 

a colour gradient reflecting a latent variable to visually 

identify possible local or global interactions. A local 

interaction is understood as an interaction effect only learned 

in a smaller confined part of the model structure. A local 

interaction for a group of molecules can be highlighted with a 

colour pattern. In Figure 4 in result section such a 

highlighting is used to visualize the local model structure for 

57 polychlorinated bi-phenyl molecules . 

2.5  Software implementations 

All visualizations in this article were produced with the R 

package forestFloor (1.8.9) [cite forestFloor cran]. The 

supplementary file of this article contains scripts to reproduce 

the model and visualizations of this paper. The forestFloor 

package depends on the rgl[Duncan, version] package to 

produce 3D visualizations, the kknn[cite] package for 

function estimators and the Rcpp [eddelbuettel, versoion] 

package to integrate functions implemented in C++  with the 

R environment. The RF models were trained with 

randomForest packae [liaw, version]. All packages are 

available from the CRAN repository [cite cran]. 

2.6  Data set and molecular descriptors 

A public data set by Huuskonnen et al[3] was chosen 

because it is well cited and as it has been reused in many 

other datasets [palmer,Delaney,bergstrøm,wiisinger,Laura]. 

Training set and test set were merged in to on single data set 

of 1256 molecules. SMILES were imported to the software 

with the application MOE [cite] and sequentially pre-

processed with the following functions: ‘wash’ (simulating an 

ideal solubilised molecular form), ‘partial charges MMFFA96x’ 

calculating the electron densities necessary for a number of 

descriptor algorithms, and finally ‘energy minimize’ relaxing 

the molecule in the minimum 3D  state as suggested by 

[palmer]. To limit the scope of this article, only a small 

selection of 12 common and useful descriptors identified by 

Palmer et al[palmer] were used. The full data set with 

descriptors is provided in supplementary materials. 

3  Results 

3.1  Visualising main effects 

A default random forest model of 2000 trees and mtry=4 was 

trained on the data set. Mean test error of 20 repeated 10-

fold was 0.636(+/-0.004) sd? and r
2

s =  .903(+/-0.001). Which 

was a similar performance as [palmer, huskonnen, laura?, 

hou?]. With the default RF model, out-of-bag feature 

contributions for every molecule were plotted as a function of 

the respective features/descriptors (main effect plots). SlogP 

was the most important descriptor by variable permutation 

importance and plotted first in upper left corner, followed by 

other descriptors in a decreasing order. A negative linear 

relation with solubility contribution was observed. High SlogP 

yielded negative contribution to solubility. A flattening of the 

main effect curve was observed in both ends. Fitted lines 

and calculated explained variance hereof described how well 

each molecular descriptor could be regarded as a main 

effect. The explained feature contribution variance by fitted 

main effect lines ranged from 90%-87% for the first 7 most 

important descriptors. Hereafter declined the explained main 

effect to range .71 to .48 explained variance. And the least 

important descriptor was only explained 15% as a main 

effect. Hence, the latter 5 variables were poorly described as 

main effects, where at the same time less influential for the 

model prediction deemed on the variable importance and as 

seen in Figure 1 the absence of feature contribution variance. 

Thus, overall to visualize the entire random forest model fit 

as strictly additive explained by the sum 12 main effect 

estimators explained 89% of the cross validated predictions. 

Thus to view these descriptors as contributing individually 

additively to the prediction of solubility would be a fair 

generalization of this particular instance of a random forest 

model fit. 
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Figure 1.  Main-effect illustration of the 12 descriptors ordered by variable importance. Each molecule is represented once in each plot as a 

point of a specific colour. Point colour is by defined SlogP descriptor value of each molecule, corresponding to horizontal colour gradient in 

SlogP plots. A horizontal/diagonal gradient indicates local interactions with SlogP. Black lines + R
2
 values are estimated fits, a strictly non-

interaction interpretation of molecular descriptor effect, as described in equation 1.

3.2 Identifying and visualizing interactions 

To step beyond a strictly main effect interpretation, 

interaction effects must be identified. A colour gradient (red-

yellow-green-teal-blue) horizontally aligned with the SlogP 

axis was used to characterize SlogP value of molecules in all 

other plots. Each molecule will have the exact same colour in 

all plots. Correlations and interactions with SlogP were 

visually highlighted with this colour gradient. Molecular 

descriptors correlating with SlogP, reproduced the colour 

gradient horizontally as observed for SMR,  

PEOE_VSA_NEG, vsa_hyd, a_hyd, Weight, chi1v). Other 

descriptors TPSA and PEOE_VSA_FPOL  showed a 

reversed horizontal colour gradient as these descriptors 

negatively correlated with SlogP within the data set Rp~0.5. 

For all descriptors, deviations from fitted main effect lines 

were observed. Thus, the variance of each individual feature 

contribution could not entirely be explained by the descriptor 

alone. Molecules with specific SlogP values indicated by 

colour gradient were observed to deviate from the fitted lines 

in specific patterns. Hence, such deviations from a pure main 

effect could be explained by the many upstream decision 

splits by the SlogP or other correlated descriptors. In Figure 

1 a low Weight(<120 Dalton)  was attributed to a positive 

contribution to solubility, only when  SlogP<1.5  (red/yellow). 

Molecules with high (SlogP>4, blue) had a feature 

contribution near zero for any molecular weight. Only 61% of 

the feature contribution variance of Weight was explained by 

the fitted main effect line. The remaining variance was thus 

attributed to interactions, such as the interaction with SlogP 

identified with the colour gradient. Weight was a descriptor 

with medium importance, yet poorly explained as a main 

effect. Hence, it was found as needed to elucidate the model 

contribution of Weight further. Figure 2 depicts in 3D the 

feature contributions of Weight for every molecule plotted by 

Weight and SlogP. 

Again the interaction effect between SlogP and Weight could 
be observed. The fitted surface, explains the contribution of 
Weight (z-axis) as a main effect by Weight (x-axis) itself and 
as an interaction by SlogP (y-axis). This fit increased the 
explained feature contribution variance to 90%. In figure 2, it 
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was observed that there were no examples of molecules with 
low Weight and low SlogP. Thus this part the RF model 
structure is extrapolated and the model structure is less likely 
to be predictive for any such molecule. That the boiling point 

of small apolar molecules (e.g. propane, halothane etc.) is 
far below room temperature likely explains no such learning 
examples exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Feature contributions of Weight (z-axis) versus feature values Weight (X-axis) and feature values SlogP (Y-axis). Surface 

visualizes the fitted estimator, which describes 90% of the variance. Colour gradient parallel to SlogP axis as in figure 1. Image visualizes an 
interaction where Weight contributes most to solubility prediction when SlogP is negative. 
 

The SMR feature was the second most important feature. 

The main effect of SMR feature contribution (molecular 

refraction by atom contributions) was explained 87%. When 

viewed as an interaction with logS, 95% of the feature 

contribution variance was explained. SMR is intended to 

approximate the polarizability of molecules, such that these 

e.g. can form induced dipoles in polar solvents and obtain an 

energy favourable charged interaction with water[cite]. Such 

an effect may have been anticipated to contribute in general 

positively to solubility, but in fact as main effect SMR 

contribute negatively to solubility. As molar refractivity is the 

‘polarizability per molecule’, this measure was highly 

correlated with Weight (rp =.93). If the SMR feature was 

divided by Weight and the RF model was refitted. The SMR 

feature dropped to the 11
th
 most important feature and the 

main effect was flat. 

 

 

 

 

 

 

 

Figure 3. Interaction plot of SMR feature contribution as function 

SMR and SlogP. This fitted estimator describes 95% of variance of 

the feature contributions of SMR. 

3.2 Identifying local effects 

In main effect plot figure 1, a distinct group of 57 molecules 

with low logS showed distinct interactions in SlogP, SMR, 

TPSA and PEOE_RPC..1. The group of molecules can be 

identified in figure 2 middle plot, as having a perfect linear 

relationship between logS and SMR (rp=1). In figure 4, the 

position of these molecules in the model structure was 

highlighted by colouring any other molecule black. The 

observed interactions was for SlogP a flattening of the 

negative contribution to solubility of molecules with SlogP 

above 5 whereas ~15 non PCP molecule with SlogP >5 were 

predicted decreasing soluble as a function of SlogP.  For 

SMR a linear reduction in solubility as contrary to the general 

main effect. 

 Furthermore these molecules were not only on a line but 

only placed on 10 different steps with equal distance 

between them. The molecules were isolated and showed in 

table 3. 

 

 

 

 

 

 

Figure 4.  Highlighted feature contributions of PCB 

molecules. 
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Table 1: Depiction of 36 PCB molecules. What kind of table 
would be fine here? 
 

It showed that all molecules were polychlorinated biphenyl 
compounds (PCB). As both SlogP and SMR are defined by 
atomic contributions, all PCB with the same amount of 

substituted chloride atoms will have same SlogP and SMR 
values. In fact only two features chi1v and PEOE_RPC..1 
produced unique feature values for PCB’s with same amount 
of chloride atoms. But these differences in values were 
minute, and they were more likely to arise from a non-
deterministic convergence algorithm estimating the partial 
charges[cite method]. Also there appeared to be no obvious 
relationship between these two features and solubility 
beyond the number of chloride atoms. Moreover the random 
forest model fit did not seem to capture any relationship 
related to substitution pattern, as the OOB cross-validated 
predictions for these PCB with equal amounts of chloride 
atoms did not correlate with the actual solubility. Predictions 
ranged only 0.12 logS units for PCB with same amount of 
chloride atomes, where the predictions ranged 1.3 logS units. 
Thus the random forest model was unable with the 12 
selected features to predict the relationship between PCB 
substitution pattern and solubility.  
 
  

3.2 Model structure is affected by training parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Model structure varies with the parameters. Low mtry(1), uniform use of features. All variables have main effect and 

interaction effects. High mtry(12,all), algorithm will greedily use best feature first, other features are mainly used for interaction 

effects. Low sample size(50), smoothens model structure, interactions reduced, model approaches strictly additive model. 

Sample size is by default 1250 and mtry is by default 4.
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Discussion [unfinished] 

 

Choosing a correct set of low dimensional visualizations to 

account for a complex model structure is not necessarily fully 

attainable [friedman]. Forest floor can identify and quantify 

the residuals of any visualization, such that the depiction of 

the RF model structure can iteratively be elaborated until a 

sufficiently correct depiction has been attained. Any high 

dimensional structure cannot be visualized in two or three 

dimension. In a regression context, a main effect requires 2 

dimensions, a 2
nd

 order (interaction) effect requires 3 

dimensions and a 3
rd

 order requires 4 dimensions. That said 

it is possible to understand the 3D structure of a DNA helix 

from a 2D drawing, and likewise the 4D Kleinn-bottle 

structure in form a 3D representation. RF is a relatively 

shallow model and 3
rd

 or higher order interactions or seems 

almost absent. 

This presented methodology of decomposing effects by 

descriptors, estimating main effects and interactions effects 

is one representation of the model structure. Another 

representation such as the actual trained ensemble of 

decision trees is concise but is too complex to lend itself to a 

clear interpretation.  Another representation, such partial 

dependence plots can e.g. in 3D describe an interaction 

effect between two variables. But classic PD plots are not 

guaranteed to well generalize the overall high dimensional 

structure, nor do they point to the location of potential 

sizeable latent interactions. Thus, the forest floor is a 

methodology that provides the investigator means to browse 

the model structure of a random forest model and quantify 

how well a given low dimensional representation, as a series 

of visualisations, describe the overall structure. 

With  

3.1 discussion of other methods 

With another method to visualize a mapping such partial 

dependence plots, to uncover hidden interactions and avoid 

to extrapolation is more difficult.  

Today, mainly variable importance [palmer, laura, others] is 

used in conjunction with random forest models to interpret 

the model. Variable importance describes the loss of cross-

validated predictive performance when each variable in turns 

were permuted. VI only approximates the usefulness of each 

molecular descriptor. VI does not outline how each descriptor 

is used by the model. 

[insert in result section] A group of PCB molecules were 

identified as to elicit a distinctive interaction pattern. With the 

12 selected molecular descriptors, was the chloride 

substitution pattern of this PCP molecules not learned. SlogP 

and SMR the most important descriptors are e.g. themselves 

based predictions on logP and molar refractivity for 10.000 

measured molecules. Predictions are based summing 

empirical derived scores for each atom in the molecule. 

Atoms are categorized by atom number and type bonding to 

neighbouring atoms. Thus for PCB molecules having the 

same number of substituted chloride atoms all scores will be 

exactly alike. [maybe two extra sentrences of why neither 

other descriptors has any clue of this effect.]  Ghavami et al. 

[6]  produced a regression model only to predict solubility of 

PCB molecules and found that 90 percent of the variance of 

PCB log solubility can be attributed the number chloride 

atoms in a linear regression model. Introducing counts of 

ortho-, meta- and para configuration contributed to explain 

up to 97% cross-validated variance of the log solubility of 

PCB molecules. As the PCB molecules collapse to only 

extending a string of connecting points in the feature space, 

where each point concist of PCB molecules with same 

amount chloride atoms, the sampling density around these 

PCB molecules is high. Thus, is the random forest model 

able to fit a very specific structure accounting for the 

solubility variance related to chloride atoms in PCB 

molecules. If predicting the solubility of a random molecule, it 

would be unlikely to fall within the small sub feature space of 

PCB molecules. If it did fall within this subspace, the learned 

relationship from PCB’s would dominate the prediction of the 

RF model. 
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t showed that all molecules were polychlorinated biphenyl compounds. As both SlogP and SMR are computed by atomic 

contributions, all PCB with the same amount of substituted chloride atoms will have same SlogP and SMR values. In fact only 

two features chi1v and PEOE_RPC..1 produced different feature values for PCB’s with same amount of chloride atoms. But 

these differences in values were minute, and they were more likely to arise from a non-deterministic convergence algorithm 

defining the partial charges. Also there appeared to no relationship between these features, chloirde substitution configuration 

and actual logS. More over the OOB cross-validated predictions for these PCB varied only 0.12 units where the average 

variation with PCB with equal many chlorides was 1.3. And this OOB cross validated variation within PCB with equal amounts 

of chloride did not correlate with actual solubility. Thus the random forest model was unable with the 12 selected features to 

predict the relationship between PCB substitution configuration and solubility. 90 Percent of the variance of PCB solubility can 

be attributed the number chloride atoms or any other Ghavami et al. [6] showed how counting ortho meta and para 

configuration contribute to explain upto 97% cross-validated variance. 
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A.2 Random forest Q and A answers with illustrations
and code examples

During the last three years, two forums Stack Overflow http://stackoverflow.com/
for learning programming and Cross Validated stats.stackexchange.com for learn-
ing statistics have been invaluable daily sources of fast answers to questions on all
levels. Whenever you get stuck and that probably happens 10 times a day, you only
have to complain to google about the problem in a sentence. As we are six billions
on this planet, odds are favorable for, that some person on the same level already has
had this problem before. This person posed the same question in the same silly word-
ing as you do now, and some helpful person has already answered with a practical
example, and perhaps also provided answers to other question, you really ought to be
asking instead. The cross validated site is relatively small with only 83,000 questions
(July 2016), where Stack Overflow has 12,000,000 questions to cover most program-
ming languages. For the entertainment value and to test my knowledge on random
forest, I started to answer questions my self. By putting my beliefs on public display,
I sometimes receive swift criticism, when I was wrong. I have answered 92 questions.
Each answer required in average a page and often comprises visulizations, coding,
references to other material and took a half to 3 hours to write. I have included
some of my favorite answers here, and have referred to these through this thesis. The
cross-validated site has almost 100.000 users, and reputation voting wise, I rank top
200. My answers have presently in total 75,000 page views ( 50.000 views/yr), which
is probably some 4 orders of magnitude more than this chapter ever will be read.

A.2.1 Handling unbalanced data with with random forest

http://stackoverflow.com/
stats.stackexchange.com


7/15/2016 R package for Weighted Random Forest? classwt option? ­ Cross Validated

http://stats.stackexchange.com/questions/157714/r­package­for­weighted­random­forest­classwt­option/158030#158030 1/3

   

  
2,871  5 17 review help 

R package for Weighted Random Forest? classwt option?

I'm trying to use Random Forest to predict the outcome of an extremely imbalanced data set (the minority class rate is about only 1% or even
less). Because the traditional Random Forest algorithm minimizes the overall error rate, rather than paying special attention to the minority
classes, it is not directly applicable on imbalanced data. So I want to assign a high cost to misclassification of the minority class (cost sensitive
learning).

I read several sources that we can use the option   of   in R, but I don't know how to use this. And do we have any other
alternatives to the   funtion?

classwt randomForest
randomForest

 r random­forest

edited Aug 17 '15 at 13:11

Antoine
1,454 7 25

asked Jun 19 '15 at 11:50

Matemattica
529 4 20

1 Answer

This   refers to two other threads and a fine article on this matter. It seems classweighting
and downsampling are equally good. I use downsampling as described below.

thread

Remember the training set must be large as only 1% will characterize the rare class. Less than
25~50 samples of this class probably will be problematic. Few samples characterizing the
class will inevitably make the learned pattern crude and less reproducible.

RF uses majority voting as default. The class prevalences of the training set will operate as
some kind of effective prior. Thus unless the rare class is perfectly separable, it is unlikely this
rare class will win a majority voting when predicting. Instead of aggregating by majority vote,
you can aggregate vote fractions.

Stratified sampling can be used to increase the influence of the rare class. This is done on the
cost on downsampling the other classes. The grown trees will become less deep as much
fewer samples need to be split therefore limiting the complexity of the potential pattern learned.
The number of trees grown should be large e.g. 4000 such that most observations participate
in several trees.

In the example below, I have simulated a training data set of 5000 samples with 3 class with
prevalences 1%, 49% and 50% respectively. Thus there will 50 samples of class 0. The first
figure shows the true class of training set as function of two variables x1 and x2. 

Four models were trained: A default model, and three stratified models with 1:10:10 1:2:2 and
1:1:1 stratification of classes. Main while the number of inbag samples(incl. redraws) in each
tree will be 5000, 1050, 250 and 150. As I do not use majority voting I do not need to make a
perfectly balanced stratification. Instead the votes on rare classes could be weighted 10 times
or some other decision rule. Your cost of false negatives and false positives should influence
this rule.

The next figure shows how stratification influences the vote­fractions. Notice the stratified class
ratios always is the centroid of predictions. 
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http://stats.stackexchange.com/questions/157714/r­package­for­weighted­random­forest­classwt­option/158030#158030 2/3

Lastly you can use a ROC­curve to find a voting rule which gives you a good trade­off between
specificity and sensitivity. Black line is no stratification, red 1:5:5, green 1:2:2 and blue 1:1:1.
For this data set 1:2:2 or 1:1:1 seems best choice. 

By the way, vote fractions are here out­of­bag crossvalidated.

And the code:

library(plotrix) 
library(randomForest) 
library(AUC) 

make.data = function(obs=5000,vars=6,noise.factor = .2,smallGroupFraction=.01) { 
X = data.frame(replicate(vars,rnorm(obs))) 
yValue = with(X,sin(X1*pi)+sin(X2*pi*2)+rnorm(obs)*noise.factor) 
yQuantile = quantile(yValue,c(smallGroupFraction,.5)) 
yClass = apply(sapply(yQuantile,function(x) x<yValue),1,sum) 
yClass = factor(yClass) 
print(table(yClass)) #five classes, first class has 1% prevalence only 
Data=data.frame(X=X,y=yClass) 
} 

plot.separation = function(rf,...) { 
triax.plot(rf$votes,...,col.symbols = c("#FF0000FF", 
                                           "#00FF0010", 
                                           "#0000FF10")[as.numeric(rf$y)]) 
} 

#make data set where class "0"(red circles) are rare observations 
#Class 0 is somewhat separateble from class "1" and fully separateble from class "2" 
Data = make.data() 
par(mfrow=c(1,1)) 
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plot(Data[,1:2],main="separation problem: identify rare red circles", 
     col = c("#FF0000FF","#00FF0020","#0000FF20")[as.numeric(Data$y)]) 

#train default RF and with 10x 30x and 100x upsumpling by stratification 
rf1 = randomForest(y~.,Data,ntree=500, sampsize=5000) 
rf2 = randomForest(y~.,Data,ntree=4000,sampsize=c(50,500,500),strata=Data$y) 
    rf3 = randomForest(y~.,Data,ntree=4000,sampsize=c(50,100,100),strata=Data$y) 
rf4 = randomForest(y~.,Data,ntree=4000,sampsize=c(50,50,50)  ,strata=Data$y) 

#plot out‐of‐bag pluralistic predictions(vote fractions). 
par(mfrow=c(2,2),mar=c(4,4,3,3)) 
plot.separation(rf1,main="no stratification") 
plot.separation(rf2,main="1:10:10") 
plot.separation(rf3,main="1:5:5") 
plot.separation(rf4,main="1:1:1") 

par(mfrow=c(1,1)) 
plot(roc(rf1$votes[,1],factor(1 * (rf1$y==0))),main="ROC curves for four models predicting 
class 0") 
plot(roc(rf2$votes[,1],factor(1 * (rf1$y==0))),col=2,add=T) 
plot(roc(rf3$votes[,1],factor(1 * (rf1$y==0))),col=3,add=T) 
plot(roc(rf4$votes[,1],factor(1 * (rf1$y==0))),col=4,add=T)

edited Oct 5 '15 at 17:57

Antoine
1,454 7 25

answered Jun 21 '15 at 21:06

Soren Havelund Welling
2,871 5 17

     –       oups one figure caption says 1:5:5 instead of 1:2:2 Soren Havelund Welling Jun 21 '15 at 21:36

  
 

 –   
 

thank you very much for your detailed answer, that will definitely help me a lot in my daily work. There is one
sentence that I don't understand: "Main while the number of inbag samples(incl. redraws) in each tree will be
5000,1050, 250 and 150" .Could you please explain me where does the numbers come from? Matemattica Jun
22 '15 at 12:26

1  

–       

my pleasure ;) in this example the rare class had 50 members. If stratifying 1:10:10 we would need to specify
sampsize=c(50,500,500). 50+500+500 = 1050. A fully grown tree of 1050 samples will have 1050x2 nodes in total.
Soren Havelund Welling Jun 22 '15 at 13:07

  
 

 –   

Sorry if my question is idiot, but what is the meaning of 1:10:10, 1:2:2 and 1:1:1 stratification here? And when you
said "the votes on rare classes could be weighted 10 times". Which part of the code represents that? Is it 1:10:10?
Thank you very much! Matemattica Jun 24 '15 at 10:35

1  

 –
         

1:10:10 are the ratios between the classes. The simulated data set was designed to have the ratios 1:49:50. These
ratios were changed by down sampling the two larger classes. By choosing e.g. sampsize=c(50,500,500) the same
as c(1,10,10) * 50 you change the class ratios in the trees. 50 is the number of samples of the rare class. If you
furthermore set keep.inbag=TRUE and inspect rf$inbag, you will see that samples of the rare classes is inbag in
~2/3 trees whereas each non­rare class sample is included in very few trees because of down sampling.
Soren Havelund Welling Jun 24 '15 at 14:46

  
 

 –   So, if I understand correctly, it's "down sampling" technique, not weighted random forest? Matemattica Jun 24
'15 at 14:55

     –       ...as stated in third sentence of answer. Soren Havelund Welling Jun 24 '15 at 14:57

  
 

 –   Ok, perfect. Thank you very much for your kind answer:) Matemattica Jun 24 '15 at 16:07

Add Another Answer
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2,871  5 17 review help 

Fully grown decision trees in random forests

Several sources suggest it's ok to fully grow the decision trees in a RF (e.g.,   and  , p.
596).

Leo Breiman's article Elements of Statistical Learning

I don't understand the following. Suppose that due to noise, a single data point x of class A ended up somewhere deep inside class B (in
terms of its position in the space of features). Every tree that includes x will have a leaf that contains just x alone (because it's fully grown, so
it won't stop until each node can precisely identify the class on the training data set; and because x is so isolated from other points of class A,
that it can't ever be joined with them in a contiguous region of space carved by a tree). Roughly two­thirds of the trees will include x.
Therefore, it seems the majority vote would always be to classify any points close x as if they belong to class A ­ even though this is clearly
overfitting.

A similar argument can be made for any noise that caused a few points of one class to end up in the region that should be assigned to
another class.

How is it, then, that fully grown trees inside a RF aren't causing major overfitting?

   random­forest cart overfitting

asked Nov 14 '15 at 11:52

max
369 1 12

1
 

 –   

I will admit to being confused by the first sentence of this question. RFs don't "grow" a single tree but many trees.
The structure that results from a single tree is lost in the process of developing the forest and aggregating the
results across lots of "mini­trees." Therefore, the ensemble nature of the RF answer doesn't represent a "model"
that would even be vulnerable to "overfitting." DJohnson Nov 14 '15 at 12:25

  
 

 –   

Yes, RF has multiple trees, and each of these trees is fully grown. The structure isn't lost at all, each tree works like
usual, the ensemble just counts how many trees predicted each category, and selects the one with the highest
count. max Nov 14 '15 at 18:09

     –         ...for practical use of RF, I agree with DJohnson Soren Havelund Welling Nov 16 '15 at 10:50

1 Answer

Yes, even a single A­outlier (sample of class A) placed in the middle of many B examples (in a
feature space) would affect the structure of the forest. The trained forest model will predict new
samples as A, when these are placed very close to the A­outlier. But the density of neighboring
B examples will decrease size of this "predict A"­island in the "predict B"­ocean. But the
"predict A"­island will not disappear. For noisy classification, e.g. 

, the default random forest can be improved by lowering tried varaibles in each
split(mtry) and bootstrap sample size(sampsize). If sampsize is e.g. 40% of training size, then
any ' ' will completely drown if surrounded by only counter
examples, as it only will be present in 40% of the trees.

Contraceptive Method
Choice

single sample prediction island

EDIT: If sample replacement is true, then more like 33% of trees.

mean(replicate(1000,length(unique(sample(1:1000,400,rep=T))))) 

I made a simulation of the problem (A=TRUE,B=FALSE) where one (A/TRUE)sample is
injected within many (B/FALSE) samples. Hereby is created a tiny A­island in the B ocean. The
area of the A­island is so small, it has no influence on the overall prediction performance.
Lowering sample size makes the island disappear.

1000 samples with two features   and   are of class "true/A" if  .
Features are drawn from 

X1 X2 = + >= 0yi X1 X2
N(0, 1)
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library(randomForest) 
par(mfrow=c(2,2)) 
set.seed(1) 

#make data 
X = data.frame(replicate(2,rnorm(1000))) 
y = factor(apply(X,1,sum) >=0) #create 2D class problem 
X[1,] = c(‐1,‐1); y[1]='TRUE' #insert one TRUE outlier inside 'FALSE‐land' 

#train default forest 
rf = randomForest(X,y) 

#make test grid(250X250) from ‐3 to 3, 
Xtest = expand.grid(replicate(2,seq(‐3,3,le=250),simplify = FALSE)) 
Xtest[1,] = c(‐1,‐1) #insert the exact same coordinate of train outlier 
Xtest = data.frame(Xtest); names(Xtest) = c("X1","X2") 
plot(Xtest,col=predict(rf,Xtest),pch=15,cex=0.5,main="regular RF, red=TRUE") 

#zoom in on area surrouding outlier 
Xtest = expand.grid(replicate(2,seq(‐1.05,‐.95,le=250),simplify = FALSE)) 
Xtest = data.frame(Xtest); names(Xtest) = c("X1","X2") 
plot(Xtest,col=predict(rf,Xtest),pch=15,cex=0.5,main= "regular RF, zoom, red=TRUE") 

#train extra robust RF 
rf = randomForest(X,y,sampsize = 400) 
Xtest = expand.grid(replicate(2,seq(‐3,3,le=250),simplify = FALSE)) 
Xtest[1,] = c(‐1,‐1) 
Xtest = data.frame(Xtest); names(Xtest) = c("X1","X2") 
plot(Xtest,col=predict(rf,Xtest),pch=15,cex=0.5,main="RF, sampsize=400, red=TRUE")

Xtest = expand.grid(replicate(2,seq(‐1.05,‐.95,le=250),simplify = FALSE)) 
Xtest = data.frame(Xtest); names(Xtest) = c("X1","X2") 
plot(Xtest,col=predict(rf,Xtest),pch=15,cex=0.5,main="RF, sampsize=400, zoom, red=TRUE") 

edited Nov 16 '15 at 10:46 answered Nov 16 '15 at 10:27

Soren Havelund Welling
2,871 5 17

  
 

 –     

Lowering sample size, but still with replacements, correct? In that case, only 40% * ~2/3, or roughly 25% of the
original sample is used. I would have assumed that once you use less than 75% of the original sample, due to
replacement less than half the trees will see the point, and so the island will disappear ­ but maybe I'm missing
some detail. And about lowering  : it won't make the island disappear, but would reduce the noise in general,
right?

mtry
max Nov 16 '15 at 10:31

   
 –   

   

40% without replacement, 33% with replacement. try simulate with
mean(replicate(1000,length(unique(sample(1:1000,400,rep=T))))) Soren Havelund Welling Nov 16 '15 at 10:39

   
–       
lowering mtry will not make islands disappear. But for high dimensional data I guess it will make the islands smaller.
Soren Havelund Welling Nov 16 '15 at 10:42

  
 

 –
   

In the case of binary classification, let's say the number of trees that see any given observation falls below 50% (so
if you use replacements, you can start with maybe ~60%). Wouldn't that be guaranteed to remove the island if it
was formed by a single observation? It would seem the majority vote would be for the other class at that point?
max Nov 16 '15 at 18:20

   

 –   
   

So in practice don't worry about it :) If you have 1000 samples and 500 trees and sample 600 for each tree with
replacement. You are likely to have still some ~10 samples who happend to get picked for more than 250 trees. You
can simulate the distribution with this one­liner:
plot(table(table(unlist(replicate(500,unique(sample(1:1000,600,rep=T))))))) Soren Havelund Welling Nov 16 '15 at
22:15
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A.2.3 Random forest and outliers II: Robustness
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2,871  5 17 review help 

How are Random Forests not sensitive to outliers?

I've read in a few sources, including  , that Random Forests are not sensitive to outliers (in the way that Logistic Regression and other
ML methods are, for example).

this one

However, two pieces of intuition tell me otherwise:

1. Whenever a decision tree is constructed, all of the points must be classified. This means that even outliers will get classified, and hence
will affect the decision trees where they were selected during boosting.

2. Bootstrapping is a part of how a RandomForest does sub­sampling. Bootstrapping is susceptible to outliers.

Is there any way to reconcile my intuition about its sensitivity to outliers, with sources that disagree?

     random­forest bootstrap outliers cart

edited Dec 19 '15 at 16:58

m0nhawk
150 2 8

asked Dec 17 '15 at 6:23

Hunle
87 1 9

  
   –   

The answer, below, is very good. The intuitive answer is that a decision tree works on splits and splits aren't
sensitive to outliers: a split only has to fall anywhere between two groups of points to split them. Wayne Dec 20
'15 at 15:15

  
 

 –   So I suppose if the   is  , then it could be susceptible to outliers.min_samples_leaf_node 1 Hunle Dec 21 '15
at 0:13

     –
         
yes min_samples and bootstrap sample can completely remove the influence of 1b outliers in RF regression
Soren Havelund Welling Dec 21 '15 at 10:44

   

 – 
     

Some statisticians obtain a tunnel vision on those inliers, that one can predict and understand. Cherish the outliers
as 'known unknowns' and wonder if your business model is fragile towards them. Some outliers are fundamentally
unpredictable, but their impact is very real ... a paraphrase of N. Taleb's, 'Black Swan' Soren Havelund Welling
Dec 21 '15 at 10:52

3 Answers

 This outlier has one or more extreme feature values and is placed distant to any
other sample. The outlier will influence the initial splits of the trees as any other sample, so no
strong influence. It will have low   to any other sample, and will only define the model
structure in a remote part of feature space. During prediction most new samples are likely not
to be similar to this outlier, and will rarely end up in the same terminal node. Moreover decision
trees regards features as if they were ordinal(ranking). The value is either smaller/equal to or
larger than break point, thus it does not matter if a feature value is an extreme outlier.

outlier 1a:

proximity

 For classification one single sample may be regarded as an outlier, when
embedded in the middle of many sample of a different class. 
outlier 1b:

I described earlier how a default
RF model will get influenced by this one sample of odd class, but only very close to the
sample.

 This outlier has an extreme target value perhaps many times higher than any other
values, but the feature values are normal. A .631 fraction of the trees will have a terminal node
with this sample. The model structure will get affected locally close to the outlier. Notice the
model structure is affected mainly parallel to the feature axis, because nodes are split uni­
variately.

outlier 2:

I included a RF­regression simulation of outlier_2. 1999 points drawn from a smooth rounded
structure   and one outlier with a much higher target value(y=2, y = ( +x4

1 x4
2)

1
2 =0,x1 =0).

The training set is shown to the left. The learned RF model­structure is shown the the right.
x2

library(forestFloor) 
library(randomForest) 
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library(rgl) 
set.seed(1) 

X = data.frame(replicate(2,runif(2000)‐.5)) 
y = ‐sqrt((X[,1])^4+(X[,2])^4)^1 
Col = fcol(X,1:2) #make colour pallete by x1 and x2 
#insert outlier2 and colour it black 
X[1,] = c(0,0);y[1]=2 ;Col[1] = "#000000FF" #black 

#plot training set 
plot3d(X[,1],X[,2],y,col=Col) 

rf = randomForest(X,y) 
vec.plot(rf,X,1:2,col=Col,grid.lines = 400) 

EDIT: comment to user603

Yes for extreme outliers on target scale, one should consider to transform target scale before
running RF. I added below a   function which tweaks randomForest. Another
solutions would be to log transform before training.

robustModel()

. 
##‐‐‐code by user603 
library(forestFloor) 
library(randomForest) 
library(rgl) 
set.seed(1) 

X<‐data.frame(replicate(2,runif(2000)‐.5)) 
y<‐‐sqrt((X[,1])^4+(X[,2])^4) 
Col<‐fcol(X,1:2) #make colour pallete by x1 and x2 

#insert outlier2 and colour it black 
y2<‐y;Col2<‐Col 
y2[1:100]<‐rnorm(100,200,1);    #outliers 
Col2[1:100]="#000000FF" #black 
##‐‐‐ 

#function to make models robust 
robustModel = function(model,keep.outliers=TRUE) { 
  f = function(X,y,lim=c(0.1,.9),keep.outliers="dummy",...) { 
  limits = quantile(y,lim) 
  if(keep.outliers) {#keep but reduce outliers 
  y[limits[1]>y] = limits[1] #lower limit 
  y[limits[2]<y] = limits[2] #upper limit 
  } else {#completely remove outliers 
    thrashThese = mapply("||",limits[1]>y,limits[2]>y) 
    y = y[thrashThese] 
    X = X[thrashThese,] 
  } 
  obj = model(x=X,y=y,...) 
  class(obj) = c("robustMod",class(obj)) 
  return(obj) 
  } 
  formals(f)$keep.outliers = keep.outliers 
  return(f) 
} 

robustRF = robustModel(randomForest) #make RF robust 
rh = robustRF(X,y2,sampsize=250)     #train robustRF 
vec.plot(rh,X,1:2,col=Col2)          #plot model surface 
mean(abs(rh$predict[‐c(1:100)]‐y2[‐c(1:100)])) 
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edited Dec 21 '15 at 15:58 answered Dec 19 '15 at 16:38

Soren Havelund Welling
2,871 5 17

  
   –

   

You write "no other prediction will be affected". If you shift your single outlier to put   you will see that it
single handedly causes the prediction error   to jump by a factor of 20!

y[1]=200
on the uncontaminated observations

user603 Dec 21 '15 at 14:08

   

 –   
     

@user603 True that, In such cases the target scale can be transformed monotonically before handed to RF. I added
a 'robustModel: makes models robust' to my answer.....of course to predict such random target outlier(s) (type 2)
remains impossible, but the remaining model structure do not have to suffer Soren Havelund Welling Dec 21 '15
at 16:00

  
 

 –     

The Log transform is   (it merely hides the problem). The robustification of
RF you propose is essentially the approach advocated in Galimberti, G., Pillati, M., & Soffritti, G. (see my answer).
The main difference is that your ''robustModel" approach has a maximum breakdown point of 25% on the response
space (it can withstand 25% or arbitrary 'y'­outliers) whereas theirs has a bdp of 50%. Note that neither approach is
robust to outliers in the design space.

not, in general, a solution against outliers

user603 Dec 21 '15 at 16:06

Your intuition is correct. This answer merely illustrates it on an example.

It is indeed a   misconception that CART/RF are somehow robust to outliers.common

To illustrate the lack of robustness of RF to the presence of a single outliers, we can (lightly)
modify the code used in Soren Havelund Welling's answer above to show that a   'y'­
outliers suffices to completely sway the fitted RF model. For example, if we compute the mean
prediction error   as a function of the distance between the
outlier and the rest of the data, we can see (image below) that introducing   outlier (by
replacing one of the original observations by an arbitrary value on the 'y'­space) suffices to pull
the predictions of the RF model arbitrarily far away from the values they would have had if
computed on the original (uncontaminated) data:

single

of the uncontaminated observations
a single

 library(forestFloor) 
library(randomForest) 
library(rgl) 
set.seed(1) 

X = data.frame(replicate(2,runif(2000)‐.5)) 
y = ‐sqrt((X[,1])^4+(X[,2])^4) 
X[1,]=c(0,0); 
y2<‐y 
rg<‐randomForest(X,y)   #RF model fitted without the outlier 
outlier<‐rel_prediction_error<‐rep(NA,10) 

for(i in 1:10){ 
    y2[1]=100*i+2 
    rf=randomForest(X,y2)   #RF model fitted with the outlier 
    rel_prediction_error[i]<‐mean(abs(rf$predict[‐1]‐y2[‐1]))/mean(abs(rg$predict[‐1]‐
y[‐1])) 
    outlier[i]<‐y2[1] 
} 
plot(outlier,rel_prediction_error,type='l',ylab="Mean prediction error (on the 
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uncontaminated observations) \\\ relative to the fit on clean data",xlab="Distance of the 
outlier") 

How far? In the example above, the single outlier has changed the fit so much that the mean
prediction error (on the uncontaminated) observations is now   bigger
than it would have been, had the model been fitted on the uncontaminated data.

1­2 orders of magnitude

So it is not true that a single outlier cannot affect the RF fit.

Furthermore, as I point out  , outliers are much harder to deal with when there are
potentially   of them (though they don't need to be a large   of the data for their
effects to show up). Of course, contaminated data can contain more than one outlier; to
measure the impact of several outliers on the RF fit, compare the plot on the left obtained from
the RF on the uncontaminated data to the plot on the right obtained by arbitrarily shifting 5% of
the responses values (the code is below the answer).

elsewhere
several proportion
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Finally, in the regression context, it is important to point out that outliers can stand out from the
bulk of the data in both the design and response space (1). In the specific context of RF,
design outliers will affect the estimation of the hyper­parameters. However, this second effect
is more manifest when the number of dimension is large.

What we observe here is a particular case of a more general result. The extreme sensitivity to
outliers of multivariate data fitting methods based on convex loss functions has been
rediscovered many times. See (2) for an illustration in the specific context of ML methods.

Edit.

Fortunately, while the base CART/RF algorithm is emphatically not robust to outliers, it is
possible (and quiet easy) to modify the procedure to impart it robustness to "y"­outliers. I will
now focus on regression RF's (since this is more specifically the object of the OP's question).
More precisely, writing the splitting criterion for an arbitrary node   as:t

= arg [ var( (s)) + var( (s))]s∗ max
s

pL tL pR tR

where   and   are emerging child nodes dependent on the choice of   (   and   are
implicit functions of  ) and   denotes the fraction of data that falls to the left child node 
and   is the share of data in  . Then, one can impart "y"­space robustness to
regression trees (and thus RF's) by replacing the variance functional used in the original
definition by a robust alternative. This is in essence the approach used in (4) where the
variance is replaced by a robust M­estimator of scale.

tL tR s∗ tL tR

s pL tL

= 1 −pR pL tR

(1) Unmasking Multivariate Outliers and Leverage Points. Peter J. Rousseeuw and Bert C.
van Zomeren Journal of the American Statistical Association Vol. 85, No. 411 (Sep.,
1990), pp. 633­639

(2) Random classification noise defeats all convex potential boosters. Philip M. Long and
Rocco A. Servedio (2008). http://dl.acm.org/citation.cfm?id=1390233

(3) C. Becker and U. Gather (1999). The Masking Breakdown Point of Multivariate Outlier
Identification Rules.

(4) Galimberti, G., Pillati, M., & Soffritti, G. (2007). Robust regression trees based on M­
estimators. Statistica, LXVII, 173–190.

    library(forestFloor) 
    library(randomForest) 
    library(rgl) 
    set.seed(1) 

    X<‐data.frame(replicate(2,runif(2000)‐.5)) 
    y<‐‐sqrt((X[,1])^4+(X[,2])^4) 
    Col<‐fcol(X,1:2) #make colour pallete by x1 and x2 
    #insert outlier2 and colour it black 
    y2<‐y;Col2<‐Col 
    y2[1:100]<‐rnorm(100,200,1);    #outliers 
    Col2[1:100]="#000000FF" #black 

    #plot training set 
    plot3d(X[,1],X[,2],y,col=Col) 
    rf=randomForest(X,y)    #RF on clean data 
    rg=randomForest(X,y2)   #RF on contaminated data 
    vec.plot(rg,X,1:2,col=Col2,grid.lines=200) 
    mean(abs(rf$predict[‐c(1:100)]‐y[‐c(1:100)])) 
        mean(abs(rg$predict[‐c(1:100)]‐y2[‐c(1:100)])) 

edited Jan 2 at 1:58 answered Dec 20 '15 at 17:09

user603
14.1k 1 37 74

  
 

 –   

Thanks for your detailed answer. If there are several outliers in the same high dimensional space, it begs the
question what is our criteria for calling an “outlier”? In that case, I wonder what hyper parameters may be set so
that I can specify some kind of criteria for an outlier a priori? Hunle Dec 21 '15 at 0:53

  
   –   

Right, so like I'm trying to say, I guess it's a matter of definition of "outlier". How do you build a definition of an
"outlier" into the hyperparameters of an RF algorithm? Hunle Dec 21 '15 at 1:19

1
 

 –
   
I have added my earlier comments to my answer. I hope it now does a better job of answering your question!
user603 Dec 21 '15 at 1:46

1
 

 –   Thanks. What are   and   in the formula?p s Hunle Dec 21 '15 at 2:34

1  

 –         

Why are combined outliers (1a+2) bad? In your example, the RF model fit the data structure perfectly, 99,99%
OOB MSE. The model structure of the middle land between the two clusters is pretty rough, yes, and more a
product of the model than of the data. But, no inference and/or predictions should be in this unknown area, so it
does not matter. Absolute robustness toward outliers is inevitably to ignore rare but perhaps important possible
events. Most ML algos would by default take a middle ground stance between robustness and 'flexibility' but can
be tweaked to increase robustness. Soren Havelund Welling Dec 21 '15 at 11:13

  
   –   

@SorenHavelundWelling: Thanks! fixed the example to show that the outliers can make the mean absolute error
arbitrarily large. user603 Dec 21 '15 at 16:15

  
 

 –   

When I first pondered this question, I assumed that the way an RF treats outliers would be the same regardless of
classification or regression. I’m actually interested in how this would be different if, say, I were using RF for binary
classification. Hunle Dec 24 '15 at 19:42

  
 

 –     

If the response is binary, the only type of outliers that matter are those on the design space. Outliers on the design
are not handled by the robustification strategy outlined in the edit of my answer and I do not know how to modify
RF to handle them. user603 Dec 26 '15 at 12:24
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 –   

Is there any reason that in your code, @user603, that you eliminate the last value in the array in this line:
.

Why do you use   to eliminate the last value?
rel_prediction_error[i]<‐mean(abs(rf$predict[‐1]‐y2[‐1]))/mean(abs(rg$predict[‐  1]‐y[‐1]))

[‐1] Hunle Jun 7 at 6:55

  
 

 –   

@Hunle: yes y[1] is the outlier. rel_prediction_error is the vector of prediction errors on the 
. This corresponds to the sentence "For example, if we compute the mean prediction error of the

uncontaminated observations" in y text.

non outlying
observations

user603 Jun 7 at 7:15

  
   –   

This example seems a bit unfair, since the function you use is \­sqrt{x^4+x^4}\ and the outliers are positive. You
say you're measuring the "distance" of the outler ­ distance from what? Hunle Jun 8 at 7:35

  
 

 –     

@Hunle: a) why would this example be unfair? Could you elaborate? I do not understand the relevance of your
argument ' the function...the outliers are positive'. b) distance to where the original, uncontaminated observation
was. We measure the sensitivity of the RF to the presence of a single outlier in the data by showing that the 
fitted RF surface (at all values 

whole
) can be affected at will by just moving one of the original data point (x ∈x R2 ) to

an arbitrary location in the design space (
xxi

). The distance is xx′
i

.|| − ||xx′
i

xxi user603 Jun 8 at 8:01

It is not the Random Forest algorithm itself that is robust to outliers, but the base learner it is
based on: the  . Decision trees isolate atypical observations into small leaves
(i.e., small subspaces of the original space). Furthermore, decision trees are   models.
Unlike linear regression, where the same equation holds for the entire space, a very simple
model is fitted locally to each subspace (i.e., to each leaf).

decision tree
local

In the case of regression, it is generally a very low­order regression model (usually only
the average of the observations in the leaf).

For classification, it is majority voting.

Therefore, for regression for instance, extreme values do not affect the entire model because
they get averaged locally. So the fit to the other values is not affected.

Actually, this desirable property carries over to other tree­like structures, like dendograms.
Hierarchical clustering, for instance, has long been used for data cleaning because it
automatically isolates aberrant observations into small clusters. See for instance 

.
Loureiro et al.

(2004). Outlier detection using clustering methods: a data cleaning application

So, in a nutshell, RF inherits its insensitivity to outliers from   and 
.

recursive portioning local
model fitting

Note that decision trees are low bias but high variance models: their structure are prone to
changing upon a small modification of the training set (removal or addition of a few
observations). But this should not be mistaken with sensitivity to outliers, this is a different
matter.

edited Jan 1 at 19:33 answered Jan 1 at 19:27

Antoine
1,454 7 25

  
 

 –   

I actually considered using a clustering method, as you suggest, for the detection of outliers. But then, I'm unsure
where to apply the clustering. Should it be applied to   or   data? And how would this
clustering be achieved on heterogenous data that contains both categorical and numerical features?

labeled unlabeled
Hunle Jan

6 at 6:33

Add Another Answer
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2,871  5 17 1 review help 

Do random forest variable importance measures take into account the interactions?

Do random forest measures of variable importance (mean change of accuracy, mean change of Gini index) take the interactions into account?
I think I know how we come up with the variable importance plot (by permuting each of the predictors), and it doesn't seem that random forest
captures the interaction. Does anybody have another point of view? Thanks.

 random­forest importance

edited Jul 10 '14 at 4:39

Nick Stauner
8,550 5 24 53

asked Jul 10 '14 at 3:50

peace7
23 3

2 Answers

The variable importance obtained by permutations is computed only by permuting values for a
single variable. Thus, it computes some importance measure of the given variable in the
context that all other data is fixed. I think it is reasonable to state that the importance measure
includes in the measurement also interactions, if such interactions exists. I mean that I see VI
as an impure measure, a measure influenced by the main effect of that variable and also
interaction with others.

Gini importance is found often to be in concordance with permutation importance, and I see it
as a similar measure.

There is however something called interaction which is measured in random forests, and this
measures if a split on a given variable increase or decrease splits on other measure. This can
be computed for each pair of measures. It looks like a 2 measure interactions. If one want to
measure interactions with more than 2 variables than I suppose it is possible extending the
given procedure, but soon becomes too computer intensive.

Last thing called   is not implemented in R package   as far as I know.
Take a look on the brief description from the Breiman's page on RF  , and check for
Interactions section.

interactions randomForests
here

answered Jul 10 '14 at 9:18

rapaio
2,926 7 26

Run this code and assert that RF variable importance do incorporate interactions.

library(randomForest) 
obs=1000 
vars =4 
X = data.frame(replicate(vars,rnorm(obs))) 
ysignal = with(X,sign(X1*X2)) 
ynoise  = 0.1 * rnorm(obs) 
y = ysignal + ynoise 
RF = randomForest(X,y,importance=T) 
varImpPlot(RF) 

You should see X1 and X2 are found the important and X3 and X4 are not. y is only explained
as the interaction between X1 and X2, alone both variables are useless.

answered Apr 1 '15 at 14:38

Soren Havelund Welling
2,871 5 17

A.2 Random forest Q and A answers with illustrations and code examples 137



7/15/2016 Do random forest variable importance measures take into account the interactions? ­ Cross Validated

http://stats.stackexchange.com/questions/107418/do­random­forest­variable­importance­measures­take­into­account­the­interactions/144380#144… 2/2

  
 

 –   Two thumbs up! Nice work! rolando2 Apr 1 '15 at 23:45

  
 

 –
   

 very tight code +1X = data.frame(replicate(vars,rnorm(obs))) ysignal = with(X,sign(X1*X2))
Qbik Apr 26 at 7:11

Add Another Answer
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A.2.5 Interpolation with RF and SVM is very similar. Extrapolation is
not.
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2,871  5 17 review help 

When to use regression trees/forests?

As I was looking for a fine regression algorithm for my problem. I found out one can do that with simple decision trees as well, which is usually
used for classification. The output would be something like:

The red   would be the prediction states of such a tree or forest.noise

Now my question is, why at all to use this method, when there are alternatives, that really try to figure out the underlying equation (such as the
famous   SVM). Are there any positive / unique aspects, or was a regression tree more a nice­to­have­algorithm?support vector machines

     regression machine­learning svm random­forest

asked Jan 23 at 11:46

user3085931
108 4

1 Answer

As your figure exemplifies, single decision trees would under perform SVM in most problems.
But an ensemble of trees as random forest, is certainly a useful tool to have. Gradient boosting
is another great tree derived tool.

SVM and random forest(RF) algorithms are not alike, of course. But both are useful for the
same kind of problems and provide similar model structures. Of course the explicitly stated
model structures of forest/trees as hierarchical ordered binary step­functions are quite different
from SVM regression in a Hilbert space. But if focusing on the actual learned structure of the
mapping connecting a feature space with a prediction space the two algorithms produce
models with similar predictions. But, when extrapolating outside the feature space region
represented with training examples, the   of the model takes over and SVM and RF
predictions would strongly disagree. See the example below. That's because both SVM and
RF are predictive models, your can see that both SVM and RF did a terrible job extrapolating.

"personality"

y = sin( π) − .5x1 x2
2
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So No SVM is not trying to figure out   and certainly not anymore
than RF. I disagree with your platonist view­point, expecting real life problems to be governed
by some algebra/calculus math, that we humans coincidentally happen to teach each other in
high school/uni. Yes in some cases, such simple stated equations are fair approximations of
the underlying system. We see that in classic physics and accounting... But that does not
mean the equation is the true hidden reality. The 
would be one statement in a conversation going further from here...

the underlying true equation

"all models are wrong, but some are useful"

I does not matter if you use SVM, RF or any other appropriate estimator. You can always
inspect the model structures and perhaps realize the problem can be described by some
simple equation or even develop some theory explaining the observations. It becomes a little
tricky in high dimensional spaces, but it is possible.

In general rather consider RF over SVM, when:

You have more than 1 million samples

Your features are categorical with many levels(not more than 10 though)

You would like to distribute the training on several computers

Simply when a cross­validated test suggests RF works better then SVM for a given
problem.

.

library(randomForest) #randomForest 
library(e1071) #svm 
library(forestFloor) #vec.plot and fcol 
library(rgl) #plot3d 

#generate some data 
X = data.frame(replicate(2,(runif(2000)‐.5)*6)) 
y = sin(X[,1]*pi)‐.5*X[,2]^2 
plot3d(data.frame(X,y),col=fcol(X)) 

#train a RF model (default params is nearly always, quite OK) 
rf=randomForest(X,y) 
vec.plot(rf,X,1:2,zoom=3,col=fcol(X)) 

#train a SVM model (with some resonable params) 
sv = svm(X, y,gamma = 1, cost = 50) 
vec.plot(sv,X,1:2,zoom=3,col=fcol(X)) 

edited Jan 25 at 0:26 answered Jan 24 at 23:59

Soren Havelund Welling
2,871 5 17

  
 

 –   

thanks for your precise answer. Concluding (and making it very short) you want to tell, there is no rule for let's say
, since their drawbacks are not predictable for every

case. Means whatever I'm trying, I have to evalute in the end and if possible, compare with every available
algorithm evaluation there is.

use this category of algorithms, for these kind of problems etc.

user3085931 Jan 26 at 14:22

  
 

 –   

However I don't get the meaning from one of your points: 
. In the end I want to have a very accurate prediction. If I can distribute my training, but the result is

distinctively worse than my alternatives, why should I prefer then ?

You would like to distribute the training on several
computers

user3085931 Jan 26 at 15:12

1  

 –       

To answer the first comment, you typically start with simple ML models (linear regression / logistic regression) and
see if it works good enough. If not you, try to realize whats missing and try a more complex models or some data
fix. With experience you may realize typical pro's and con's pick a good model first time and/or you just learn to
brute force running thousands of model candidates including grid search and nested cross­validation to assist
model selecting. Soren Havelund Welling Jan 26 at 15:52

1  

–       

The biggest data set so far I used RF on was 16GB. 5000 rows some 500.000 columns. To compute 500 trees on
one PC took a day. To compute 3 trees on each of 80 nodes in a cluster took minutes. Each tree can be combined
afterwards. You cannot distribute SVM as easily. Lot of times big is not needed, to do good enough. Just dump 90%
of samples or features.   ­If you
are a  , you go with bigger for the fun :) , otherwise you go with what get you the best results of course.

"but the result is distinctively worse than my alternatives, why should I prefer then ?"
server nerd

Soren Havelund Welling Jan 26 at 16:02

1  
 –       

If you expect your data structure to be some kind of smooth yet complex polynomial surface, and you have limited
data points to train on. SVM would probably be quite superior. Soren Havelund Welling Jan 26 at 16:10

  
 

 –   

One last question: if my function to learn is e.g. the velocity of an object to track (in image processing), then pretty
sure I'm clearly getting a polynominal function ­ which is more or less what I am looking for in this special case.
However, doesn't everything you want to figure out by regression underlie a polynominal structur ? For a better
understanding, might you could give a simple example where this wouldn't be the case? user3085931 Jan 27 at
7:28

Add Another Answer
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A.2.6 How does CART break ties
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2,871  5 17 review help 

CART: Selection of best predictor for splitting when gains in impurity decrease are equal?

My question deals with   trees. Consider the following example from the Iris data set:Classification

I want to manually select the best predictor for the first split. According to the CART algorithm, the best feature to make a split is the one that
maximizes the decrease in partition impurity, also called Gini gain:

GiniGain(N , X) = Gini(N) − Gini( ) − Gini( )
∣ ∣N1

∣N∣
N1

∣ ∣N2

∣N∣
N1

Where   is a given feature,   is the node on which the split is to be made, and   and   are the two child nodes created by splitting  . 
 is the number of elements in a node.

X N N1 N2 N
∣. ∣

And  , where   is the number of categories in the nodeGini(N) = 1 − ∑K
k=1 p2

k
K

Now, since making a split based on   (axis #1) and   (axis #2) yields the same partition (all Setosa flowers are separated
from the non­Setosa), the GinGain scores will be exactly the same for each predictor. 

petal width petal length
So how does the CART algorithm decide which one

is best?

Intuitively, one can see that splitting on   (2) is associated with the greatest "margin", hence   should be chosen (it is
actually what happens when implementing   in R), but nothing in   measures margin, so the decision must be based on
something else.

petal length petal length
rpart GiniGain

Related   but without the answer to my question.thread

Related   without any answer.thread

       r machine­learning classification data­mining cart

edited Aug 13 '15 at 10:23 asked Aug 10 '15 at 21:49

Antoine
1,454 7 25

1 Answer

I confess to be a mediocre c­code interpreter and this old code is not not user­friendly. That
said I went through the source code and made these observations which makes me quite sure
to say: "rpart literally picks the first and best variable column". As column 1 and 2 produce
inferior splits, petal.length will be first split­variable because this column is before petal.width in
data.frame/matrix. Lastly, I show this by inverting column order such that petal.with will be first
split­variable.

In in the c source file "bsplit.c"   I quote from line 38:in source code for rpart
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 * test out the variables 1 at at time 
me‐>primary = (pSplit) NULL; 
for (i = 0; i < rp.nvar; i++) {

... thus iterating in a for loop starting from i=1 to rp.nvar a loss function will be called to scan all
split by one variable, inside gini.c for "non­categorical split" line 230 the best found split is
updated if a new split is better. (This could also be a user defined loss­function)

if (temp < best) { 
        best = temp; 
        where = i; 
        direction = lmean < rmean ? LEFT : RIGHT; 
}

and last line 323, the improvement for best split by a variable is calculated...

*improve = total_ss ‐ best

...back in bsplit.c the improvement is checked if larger than what previously seen, and only
updated if larger.

if (improve > rp.iscale) 
rp.iscale = improve;        /* largest seen so far */

My impression on this is that the first and best (of possible ties will be chosen), because only if
new break point have a better score it will be saved. This concerns both the first best break
point found and the first best variable found. Break points seems not to be scanned simply left
to right in gini.c so the first found tying break point may be tricky to predict. But variables are
very predictable scanned from first column to last column.

This behavior is different from the   where in classTree.c the
following solution is used:

randomForest implementation

/* Break ties at random: */ 
if (crit == critmax) { 
    if (unif_rand() < 1.0 / ntie) { 
        *bestSplit = j; 
        critmax = crit; 
        *splitVar = mvar; 
    } 
    ntie++; 
}

very lastly I confirm this behaviour by flipping the columns of iris, such that petal.width is
chosen first

library(rpart) 
data(iris) 
iris = iris[,5:1]  #flip/flop", invert order of columns columns 
obj = rpart(Species~.,data=iris) 
print(obj) #now petal width is first split  

1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)   
  2) Petal.Width< 0.8 50   0 setosa (1.00000000 0.00000000 0.00000000) * 
  3) Petal.Width>=0.8 100  50 versicolor (0.00000000 0.50000000 0.50000000)   
    6) Petal.Width< 1.75 54   5 versicolor (0.00000000 0.90740741 0.09259259) * 
    7) Petal.Width>=1.75 46   1 virginica (0.00000000 0.02173913 0.97826087) *

...and flip back again

iris = iris[,5:1]  #flop/flip", revert order of columns columns 
obj = rpart(Species~.,data=iris) 
print(obj) #now petal length is first split  
1) root 150 100 setosa (0.33333333 0.33333333 0.33333333)   
  2) Petal.Length< 2.45 50   0 setosa (1.00000000 0.00000000 0.00000000) * 
  3) Petal.Length>=2.45 100  50 versicolor (0.00000000 0.50000000 0.50000000)   
    6) Petal.Width< 1.75 54   5 versicolor (0.00000000 0.90740741 0.09259259) * 
    7) Petal.Width>=1.75 46   1 virginica (0.00000000 0.02173913 0.97826087) *

edited Aug 13 '15 at 0:30 answered Aug 13 '15 at 0:10

Soren Havelund Welling
2,871 5 17

  
   –   

Thank you very much for your answer. So, when more than one predictor corresponds to the optimal split, the first
one is selected, this has nothing to do with margins whatsoever. Kind of makes sense after all. Antoine Aug 13
'15 at 9:15

   
 –       

It was fun to figure out :) I guess margins are not natively implemented in many tree models as binary splits are
natively non­parametric Soren Havelund Welling Aug 13 '15 at 9:51

  
 

 –     

it might be helpful to mention that the source code for rpart can also be obtained from the R console via
, and then opening

the   folder in the current working directory (from this SO  ). Then the code for one particular function can
be viewed with  .

untar(download.packages(pkgs = "rpart",destdir = ".",type = "source")[,2])
src thread

Notepad++ Antoine Aug 13 '15 at 9:58

  
 

 – And the algorithm stops when splitting does not lead to any improvement anymore for all nodes, right? Antoine
Aug 13 '15 at 10:11

   

 –       

yep. in partition.c line 80 isch: " This is rather rare ­­ but I couldn't find a split worth doing" ...said the impersonated
recursive function. Hereafter the node is sealed off and the recursive algorithm return to previous node be calling
return(0). Soren Havelund Welling Aug 13 '15 at 11:06

  
 

 –
   
Awesome. Thanks for your confirmation. When all nodes are sealed off, the tree has reached maximum size.
Antoine Aug 13 '15 at 11:52
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     –
       
yup ­ btw copied your formula to answer this related question: stats.stackexchange.com/questions/144818/…
Soren Havelund Welling Aug 14 '15 at 18:40

Add Another Answer
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A.2.7 Variable importance for other models than random forest
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2,871  5 17 1 review help 

Is Random Forest the only algorithm to measure the importance of input variables …?

I have three time series say (Stock price open, Stock price high, Stock price low) and one output (Stock price close) and I need to know which
of the 3 inputs has a greater effect on my output. R's Random Forests' (importance) ' %IncMSE yields the importance for this case.

Are there any other algorithms apart from Random Forest, to measure the importance of a input variable?

     r machine­learning random­forest predictor

edited Feb 17 at 14:40

General Abrial
15.6k 4 35 74

asked Feb 17 at 11:31

Sudharsan
27 5

  
   –   

Gradient Boosting Machines with the "gbm" R package is other algorithm with similar performance than RF, and
showing also the importance of the predictors, but the ranking should be very similar Jesus Herranz Valera Feb
17 at 11:44

  
 

 –   Maybe   will help you:   ?Boruta algorithm cran.r­project.org/web/packages/Boruta/Boruta.pdf Maju116 Feb 17
at 11:50

1
   –   

Ordinary regression coefficients will tell you "importance" in a specific sense. What kind of importance are you
interested in? General Abrial Feb 17 at 14:39

2
 

 –     

@user777 Actually and unless the predictors have been standardized (never a good practice), your statement is
not true since regression coefficients are expressed in the unit of the predictor. As such they are   scale invariant
and sensitive to variations in the moments. A better, quick and dirty heuristic is to rank the standardized metrics
such as F­statistics, t­values and/or chi­squares associated with the parameters, as appropriate. For the "state­of­
the­art" in deriving relative importance, see Ulrike Groemping's papers on 'relaimpo'...a multivariate approach to
relative rankings

not

DJohnson Feb 17 at 14:52

  
 

 –   

@Maju116 I just now saw Random uniform forest package in R . I think it does the best with this use case of
finding the input variable affecting the response variable . Also if the input is categorical, say region(A,B,C) it also
shows the importance of each region . Sudharsan Apr 26 at 11:32

1 Answer

Any supervised regression/classification model, that I can think of, could be bootstrap
aggregated (bagged) and therefore variable importance could be computed. It would just be a
little slow to train e.g. svm 50 times compared to growing 50 trees.

"I need to know which of the 3 inputs has a greater effect on my output"

I would abstain from causal interpretation of importance and at most see it as a source of
inspiration. Importance only describe usefulness of features to predict, given all other features
and one specific model. Two highly redundant features will roughly share the same fixed
amount of variable importance. Two features can be complimentary and have a higher variable
importance, than if one of them were never included in the training. This happens if an
interaction between two features is useful to predict the output.

So importance is not an universal metric, and the answer will depend on your model and and
the included features. You may want to ask instead:

 ­You could use some fancy plots exploring the high dimensional model structure.
But I can reveal that the effective RF, SVM or NN model will be something very boring like 

"Which overall relationship between input and output has e.g. an RF/SVM/NN model
captured?"

clos = (ope + hig + lo )/3et nt ht wt

 ­ In this case, quite trivial, as the future absolute
price is highly dependent on the past price. If some asset were 10€ yesterday, its probably
gonna be priced 9€ or 12€ today, not 1 cent or 5000€.

"Is this relationship trivial or inspiring?"

Try use rolling window to predict the change of price, that is in contrary more challenging. If
you were to succeed better than others, then the effective structure of a well performing
empirical model could be very inspiring to form new hypotheses.

answered Feb 19 at 16:41

Soren Havelund Welling
2,871 5 17

Add Another Answer
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A.2.8 How to combine multiple models in a bootstrap
aggregated ensemble
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2,871  5 17 review help 

Use of a bagging model or feature engineering?

As a pet project, I have been learning some data analysis and machine learning skills (mainly text analytics) with the Analytics Edge course
on edX. I decided to put some of my new skills at use analysing a dataset from UCI Machine Learning:
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

I did some analysis already (can be seen at  ) and computed a
LogRegression Model, a RF Model and a CART Model. The Random Forest Model seems to be getting the best results regarding AUC and
accuracy but I'm still not happy with it.

https://github.com/Khaltar/Portfolio/blob/master/R/Machine%20Learning/SMS.R

A friend of mine suggested using a bagging approach joining the three models and using some kind of "voting" system to classify predictions
and achieve better results but I am completely at a loss on how to do that. My doubt is how to actually implement a bootstrapping model in R
using RF to raise accuracy of the model. I tried using bagRboostR package (sample code in my sms.R file in github) but I can't figure out how
to use it or if there is a simpler solution to implement it.

Thanks in advance

     r machine­learning text­mining bagging

edited Jul 9 '15 at 18:17 asked Jul 9 '15 at 16:36

Sarcus
11 2

  
 

 –   

This seems like a good question, but you'll need to be more specific than "Could I get some help..." in order to get a
viable answer here. Can you focus this more & provide a concrete problem? Bear in mind that you can ask a series
of questions w/ each springing from the previous as you get clearer on the issues. gung Jul 9 '15 at 17:14

1 Answer

Bagging a RF model do not normally improve prediction performance(AUC) as RF already is
bagged. If it does, probably some parameters in RF training are set suboptimal. So the easy
answer is: don't bag the randomForest algorithm. Also bagging RF could be computationally
slow.

Bagging CART is a good idea. Infact so good, that some guys did just that plus some extra
features and called it e.g. "random forests"! Bagging CART models is highly related to RF, but
still inferior as mtry is set to the number of variables. This will lead to a little less decorrelated
trees and lower robustness.

Bagging glm is a good idea for sparse and/or noisy datasets, as it will reduce overfitting. If you
have a rich dataset 1000 samples and 10 features, don't bother as the unbiased glm will be
very stable. Regularization could also be achieved more elegantly with the ridge­regression,
elasticnet, lasso, PLS etc.. Check out glmnet package.

If two classifiers would to be directly combined, the voting is either unanimously or equal. This
is of course a problem. Instead the classifiers can each be bagged(50 times e.g.) and all votes
could be combined. This works fine, unless the dataset is unbalanced.

Many classifiers actual calculate some kind of probability measure and make decision here
upon. This is true for logistic regression. For random forest the voting ratio can be understood
as a pseudo probability. Remember to either stratify(down sampling) or use a lower weighting
for the over­represented class. This will likely give a better model, see   and 

 on how to implement. If model do not provide any probability measure (regular SVM) it
would be needed to bag the model to achieve a better fusing of models. In case of SVM it
might smart to lower regularization to achieve more differentiated votes. As if the model is
completely consistent, bagging will only provide the same result many times.

this answer this
answer

If one classifier is strongly superior, combining models is not likely to improve prediction
performance. I tried to design a data­set of a linear component distributed on all variables
(regression is good at this) and a non­linear component(RF can fit this) such that combining
models is expected to improve performance. In example the models must identify if the sample
is "spam" but any real text­analysis is left out. Because I could not make your github script
work at first try.

I use a training­set to train, a calibration­set to decide weighting and a large test­set to
measure performance. For real data, I would replace calibration and test set with nested n­fold
cross­validation. But the example is already 100 lines, so I skip this for now.

Because you asked for bagging, I regularized glm by bagging and not by any other method.
Otherwise I would have used elastic­net and RF and combined the probabilistic predictions
directly.

I have tried to write all bagging function so general that you easily can use them for your
project even with completely different models. There is a makeSimData, trainBag, predictBag
and a combine function for glm. I train a RF model and bagged glm. I use the probabilistic
voting of either models and find best weighting with calibration­set. Other parameters could be
tuned also. Again, model weights and model parameters could also be found directly by cross
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validation on training set.

To speed things up a little bagging can easily be parallelized. But this implementation will not
work in windows, if running in windows set parallel=FALSE.

Lastly I post roc­AUC on test set. Of either RF and bagged­glm alone or in combination with
the best found linear weighting rule.

and lastly the code:

rm(list=ls()) 
library(parallel) #for linux&mac only 
#for windows use parallel=F below 
library(randomForest) 
library(AUC) 

std = function(x) x/sd(x) #scaling function 
makeSimData = function( 
  N = 500, 
  var = 250, 
  linW = .7, 
  noiseW = 1, 
  spamRatio = .5, 
  hidden.function = function(X) { 
    y.linear = apply(X,1,sum) #something glm is best at 
    y.quadratic = X[,1]^2     #something glm cannot fit 
    y.value = std(y.linear) * linW +  
              std(y.quadratic) * (1‐linW) + 
              rnorm(N) * noiseW * 2 #noise component 
    y.class = (y.value<=quantile(y.value,spamRatio))+1 
  } 
) { 
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  X = replicate(var,rnorm(N)) 
  y = c("regular","spam")[hidden.function(X)] 
  Data = data.frame(y=y,X=X) 
} 

trainBag = function( 
  Data,  #defined data structure as makeSimData 
  model_func,  #defined model function 
  trainPars,      #what we  
  reps=11, 
  sampsizeRatio= 1, # 
  parallel=TRUE) { 

  if(parallel) nCore=detectCores() else nCore=1 
  Nsamples = dim(Data)[1] 
  sampsize = ceiling(sampsizeRatio * Nsamples) 
  preds =  mclapply(1:reps,function(r) { 
    bootstrapData = Data[sample(Nsamples,sampsize,replace=T),] 
    do.call(model_func,trainPars) 
  },mc.cores=nCore) 
} 

predictBag = function( 
  myBag, 
  newData, 
  predPars, 
  combine = c, 
  parallel=TRUE 
) { 
  if(parallel) nCore=detectCores() else nCore=1 
  preds = mclapply(myBag, function(model.fit) do.call(predict,predPars), 
                   mc.cores=nCore) 
  out = combine(preds) 
}  

#make data 
trainData = makeSimData(500,spamRatio=.5,noiseW=.2) 
calibData = makeSimData(500,spamRatio=.5,noiseW=.2) #could also have used 10fold‐CV 
testData  = makeSimData(5000,spamRatio=.5,noiseW=.2) 

#train glm.bag and rf 
glm.trainPars = alist(formula=y~., #define how glm should be run 
                data = bootstrapData, 
                family = "binomial") 

glm.fit = do.call(glm,alist(formula=y~.,data=trainData,family="binomial")) 
glm.bag = trainBag(trainData,glm,glm.trainPars) 
rf.fit = randomForest(y~.,trainData) 

#predict bag and rf 
glm.predPars = alist(object = model.fit, 
                     newdata=newData, 
                     type="response") 

#combine predicted probs, #could also be true/false ratio but that would stupid 
glm_combine = function(bagPred) { 
  aMatrix = do.call(cbind,bagPred) 
  out = apply(aMatrix,1,mean) #combine by probabilistic average 
  #out = apply(aMatrix,1,x>0.5) #alternative combine by booleen voting 
  attributes(out) = NULL 
  return(out) 
} 

glmPred.calib = predictBag(glm.bag, 
                     calibData, 
                     glm.predPars, 
                     glm_combine, 
                     parallel=T) 
rfPred.calib = predict(rf.fit,calibData,type="prob")[,2]   

#tune weighting with calibration set (could also be some nFold‐CV more lines...) 
getBestWeight = function(Data,pred1,pred2) { 
  with(Data,{ 
    weights = seq(0,1,le=101) 
  AUCbyWeight = sapply(weights, function(weight) { 
    auc( roc(pred1 *    weight +  
             pred2 * (1‐weight) 
            ,y)) 
  }) 
  plot( 
    x=weights, 
    y=AUCbyWeight, 
    xlab = "(w)eight distr.  glm*w + rf * (1‐w)", 
    ylab = "calibration AUC", 
    main = "find best weighting", 
  ) 

  #return best weight 
  weights[which(AUCbyWeight==max(AUCbyWeight))[1]] 

  }) 
} 

#find best weight 
bestWeight = getBestWeight(calibData,glmPred.calib,rfPred.calib) 

#combine predictions with weighting, e.g. the best weighting 
weightedPredict = function(Data,w,pred1,pred2,...) { 
  with(Data,{ 

    weightedPred = pred1 * w + pred2 * (1‐w) 
    plot(roc(pred1,y),add=F,col="green",...) 
    plot(roc(pred2,y),add=T,col="red") 
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    plot(roc(weightedPred,y),add=T,col="blue")       
    return(weightedPred) 
  }) 
} 

glmPred.test  = predictBag(glm.bag, 
                           testData, 
                           glm.predPars, 
                           glm_combine, 
                           parallel=T) 
rfPred.test = predict(rf.fit,testData,type="prob")[,2]   

#apply  
weightedPred.test = weightedPredict(testData,bestWeight,glmPred.test,rfPred.test, 
                main="RF(red), bagged‐glm(green), combined(blue)")

edited Jul 20 '15 at 21:11 answered Jul 19 '15 at 23:07

Soren Havelund Welling
2,871 5 17

Add Another Answer
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A.2.9 Bootstrapping process of random forest: Sampling
proability as function of hyperparameters.
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2,871  5 17 review help 

number of trees that were built without minority class?

Lets assume that my random forest has 500 trees. My data is imbalance with 90% of class A and 10% of class B. I am wonder if there is any
way to calculate roughly the number of trees that are built with only samples from class A.

Thanks

 random­forest cart

asked Feb 4 at 20:31

rudky martin
16 2

1 Answer

You can also have the exact answer. Besides sizes of groups it depends on size of training set
( ). First I compute the probability that any given sample   is not selected for a tree. For a
given tree   samples are drawn and the probability     and the
probability of   =    .

N x
N (one draw not x) = N−1

N

(all draws not x) (one draw not x) N

N=unique(ceiling(10^((seq(.5,4,len=500))))) 
plot(N,((N‐1)/N)^N,log="x",type="l",xlab="N, samples", 
     main="probability of a given sample not getting\n 
            sampled by bootstrap in one single tree") 
PnotSample = (((N‐1)/N)^N) 

Next I define 6 scenarios where the small group   make out 0.1%, 1%, 5%, 10%, 20% and
50% for any number of training set size.   =   

X
(all draws not group X) (all draws not x) NgroupRatio

#probability of group not getting sampled to a tree 
groupRatio=c(0.001,.01,.05,.1,.2,.5) 
for(i in 1:length(groupRatio)) { 
  PnotGroup = PnotSample^(N*groupRatio[i]) 
  if(i==1) { 
    plot(N,PnotGroup,log="x",type="l",col=i, 
         xlab="N, samples",ylab="probability", 
         main="probability of no member from group  \n 
               get sampled to a given tree") 
  } else { 
    points(N,PnotGroup,type="l",col=i) 
  } 
} 
legend("topright",legend=groupRatio,fill=1:length(groupRatio)) 
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So in your case (blue line), not selecting any sample from minor group would be quite rare if
you have more than 50 samples in your training set. The expected number of trees not having
any from minor group is simply the probability for a single tree multiplied with number of trees
in forest. Anyhow, there could be a number of good reasons to modify these odds, you can
read about  .why and how in this answer

edited Feb 7 at 14:47 answered Feb 7 at 14:34

Soren Havelund Welling
2,871 5 17

Add Another Answer
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A.2.10 Simple tutorial on log transformation before PCA
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Why log­transforming the data before performing principal component analysis?

Im following a tutorial here:   to gain a better understanding of PCA.http://www.r­bloggers.com/computing­and­visualizing­pca­in­r/

The tutorial uses the Iris dataset and applies a log transform prior to PCA:

Notice that in the following code we apply a log transformation to the continuous variables as suggested by [1] and set   and 
equal to   in the call to   to standardize the variables prior to the application of PCA.

center scale
TRUE prcomp

Could somebody explain to me in plain English why you first use the log function on the the first four columns of the Iris dataset. I understand it
has something to do with making data relative but am confused what's exactly the function of log, center and scale.

 r pca

edited Aug 2 '15 at 22:31

amoeba
24.8k 5 88 148

asked Aug 2 '15 at 16:05

Marc van der Peet
53 3

2 Answers

The iris data set is a fine example to learn PCA. That said, the first four columns describing
length and width of sepals and petals are not an example of strongly skewed data. Therefore
log­transforming the data does not change the results much, since the resulting rotation of the
principal components is quite unchanged by log­transformation.

In other situations log­transformation is a good choice.

We perform PCA to get insight of the general structure of a data set. We center, scale and
sometimes log­transform to filter off some trivial effects, which could dominate our PCA. The
algorithm of a PCA will in turn find the rotation of each PC to minimize the squared residuals,
namely the sum of squared perpendicular distances from any sample to the PCs. Large values
tend to have high leverage.

Imagine injecting two new samples into the iris data. A flower with 430 cm petal length and one
with petal length of 0.0043 cm. Both flowers are very abnormal being 100 times larger and
1000 times smaller respectively than average examples. The leverage of the first flower is
huge, such that the first PCs mostly will describe the differences between the large flower and
any other flower. Clustering of species is not possible due to that one outlier. If the data are
log­transformed, the absolute value now describes the relative variation. Now the small flower
is the most abnormal one. Nonetheless it is possible to both contain all samples in one image
and provide a fair clustering of the species. Check out this example:

data(iris) #get data 
#add two new observations from two new species to iris data 
levels(iris[,5]) = c(levels(iris[,5]),"setosa_gigantica","virginica_brevis") 
iris[151,] = list(6,3,  430  ,1.5,"setosa_gigantica") # a big flower 
iris[152,] = list(6,3,.0043,1.5  ,"virginica_brevis") # a small flower 

#Plotting scores of PC1 and PC" without log transformation 
plot(prcomp(iris[,‐5],cen=T,sca=T)$x[,1:2],col=iris$Spec)
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#Plotting scores of PC1 and PC2 with log transformation 
plot(prcomp(log(iris[,‐5]),cen=T,sca=T)$x[,1:2],col=iris$Spec)

edited 39 mins ago answered Aug 2 '15 at 17:25

Soren Havelund Welling
2,921 6 19

2
 

 –   Nice demo and plots. ssdecontrol Aug 3 '15 at 0:55

Well, the other answer gives an example, when the log­transform is used to reduce the
influence of extreme values or outliers. 
Another general argument occurs, when you try to analyze data which are 
composed instead of   ­ PCA and FA model by their math such additive
compositions.   compositions occur in the most simple case in physical data like
the surface and the volume of bodies (functionally) dependent on (for instance) the three
parameters lenght, width, depth. One can reproduce the compositions of an historic example
of the early PCA, I think it is called "Thurstone's Ball­ (or 'Cubes'­) problem" or the like. Once I
had played with the data of that example and had found that the log­transformed data gave a
much nicer and clearer model for the composition of the measured volume and surface data

multiplicatively
addititively

Multiplicative
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with the three one­dimensional measures.

Besides of such simple examples, if we consider in social research data   , then we
ususally think them as well as multiplicatively composed measurements of more elementary
items. So if we look specifically at interactions, a log­transform might be a special helpful tool
to get a mathematical model for the de­composition.

interactions

answered Jul 2 at 8:48

Gottfried Helms
793 6 13

Add Another Answer
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A.2.11 Efficient implementation gini loss function in random forest
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2,921  6 19 review help 

Does Breiman's random forest use information gain or Gini index?

I would like to know if Breiman's random forest (random forest in R randomForest package) uses as a splitting criterion (criterion for attribute
selection) information gain or Gini index? I tried to find it out on   and in
documentation for randomForest package in R. But the only thing I found is that Gini index can be used for variable importance computing.

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

     r random­forest entropy gini

edited Apr 4 '15 at 16:36

Nick Cox
27.6k 3 54 82

asked Apr 4 '15 at 16:17

somebody
41 2

  
 

 –   I also wonder if trees of random forest in randomForest package are binary or not. somebody Apr 4 '15 at 16:51

1 Answer

The randomForest package in R by A. Liaw is a port of the original code being a mix of c­
code(translated) some remaining fortran code and R wrapper code. To decide the overall best
split across break points and across mtry variables, the code uses a scoring function similar to
gini­gain:

GiniGain(N , X) = Gini(N) − Gini( ) − Gini( )
∣ ∣N1

∣N∣
N1

∣ ∣N2

∣N∣
N2

Where   is a given feature,   is the node on which the split is to be made, and   and 
are the two child nodes created by splitting  .   is the number of elements in a node.

X N N1 N2
N ∣. ∣

And  , where   is the number of categories in the nodeGini(N) = 1 − ∑K
k=1 p2

k
K

But the applied scoring function is not the exactly same, but instead a equivalent more
computational efficient version.   and |N| are constant for all compared splits and thus
omitted.

Gini(N)

Also lets inspect the part if the sum of squared prevalence in a node(1) is computed as 

Gini( ) ∝ | |Gini( ) = | |(1 − ) = | | ∑
∣ ∣N2

∣N∣
N2 N2 N2 N2 ∑K

k=1 p2
k

N2
nclass2

2,k

|N2 |2

where   is the class count of target­class k in daughter node 1. Notice   is placed
both in nominator and denominator.

nclass1,k | |N2

removing the trivial constant   from equation such that best split decision is to maximize
nodes size weighted sum of squared class prevalence...

1−

score=   

 

| | + | | = | | + | |N1 ∑K
k=1 p2

1,k N2 ∑K
k=1 p2

2,k N1 ∑K
k=1

nclass2
1,k

|N1 |2
N2 ∑K

k=1
nclass2

2,k

|N2 |2

= | + |∑K
k=1

nclass2
2,k

1 N1 |−1 ∑K
k=1

nclass2
2,k

1 N1 |−2

= nominato /denominato + nominato /denominator1 r1 r2 r2

The implementation also allows for classwise up/down weighting of samples. Also very
important when the implementation update this modified gini­gain, moving a single sample
from one node to the other is very efficient. The sample can be substracted from
nominators/denominators of one node and added to the others. I wrote a prototype­RF some
months ago, ignorantly recomputing from scratch gini­gain for every break­point and that was
slower :)

If several splits scores are best, a random winner is picked.

This answer was based on inspecting source file 
line 209­250

"randomForest.x.x.tar.gz/src/classTree.c"

edited Aug 14 '15 at 18:33 answered Aug 14 '15 at 14:00

Soren Havelund Welling
2,921 6 19

Add Another Answer
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7/25/2016 r ­ Does Breiman's random forest use information gain or Gini index? ­ Cross Validated

http://stats.stackexchange.com/questions/144818/does­breimans­random­forest­use­information­gain­or­gini­index/167153#167153 2/2
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7/26/2016 random forest tuning ­ tree depth and number of trees ­ Stack Overflow

http://stackoverflow.com/questions/34997134/random­forest­tuning­tree­depth­and­number­of­trees/35012011#35012011 1/3

   

    
621  2 9 review help 

Dismiss

Announcing Stack Overflow Documentation
We started with Q&A. Technical documentation is next, and we need your help.

Whether you're a beginner or an experienced developer, you   contribute.can

I want to help →

random forest tuning ­ tree depth and number of trees

I have basic question about tuning a random forest classifier. Is there any relation between the number of trees and the tree depth? Is it
necessary that the tree depth should be smaller than the number of trees?

random­forest

asked Jan 25 at 16:11

Vysh
52 7

  
   –   

Are you sure you have the right forum? Should this maybe be in "The Great Outdoors" instead, or is this
really a programming question? B. Clay Shannon Jan 25 at 16:15

2
 

 –
   
@B.ClayShannon Random forests is a machine learning method. His question totally belongs here.
Tim Biegeleisen Jan 25 at 16:16

1
 

 –   

I have never heard of a rule of thumb ratio between the number of trees and tree depth. Generally you
want as many trees as will improve your model. The depth of the tree should be enough to split each node
to your desired number of observations. Tim Biegeleisen Jan 25 at 16:20

     –       @TimBiegeleisen here's my thumb rule :) Soren Havelund Welling Jan 26 at 12:06

2 Answers

For most practical concerns, I agree with Tim.

Yet, other parameters do affect when the ensemble error converges as a function of added
trees. I guess limiting the tree depth typically would make the ensemble converge a little
earlier. I would rarely fiddle with tree depth, as though computing time is lowered, it does not
give any other bonus. Lowering bootstrap sample size both gives lower run time and lower tree
correlation, thus often a better model performance at comparable run­time. A not so mentioned
trick: When RF model explained variance is lower than 40%(seemingly noisy data), one can
lower samplesize to ~10­50% and increase trees to e.g. 5000(usually unnecessary many). The
ensemble error will converge later as a function of trees. But, due to lower tree correlation, the
model becomes more robust and will reach a lower OOB error level converge plateau.

You see below samplesize gives the best long run convergence, whereas maxnodes starts
from a lower point but converges less. For this noisy data, limiting maxnodes still better than
default RF. For low noise data, the decrease in variance by lowering maxnodes or sample size
does not make the increase in bias due to lack­of­fit.

For many practical situations, you would simply give up, if you only could explain 10% of
variance. Thus is default RF typically fine. If your a quant, who can bet on hundreds or
thousands of positions, 5­10% explained variance is awesome.

the green curve is maxnodes which kinda tree depth but not exactly.
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7/26/2016 random forest tuning ­ tree depth and number of trees ­ Stack Overflow

http://stackoverflow.com/questions/34997134/random­forest­tuning­tree­depth­and­number­of­trees/35012011#35012011 2/3

library(randomForest) 

X = data.frame(replicate(6,(runif(1000)‐.5)*3)) 
ySignal = with(X, X1^2 + sin(X2) + X3 + X4) 
yNoise = rnorm(1000,sd=sd(ySignal)*2) 
y = ySignal + yNoise 
plot(y,ySignal,main=paste("cor="),cor(ySignal,y)) 

#std RF 
rf1 = randomForest(X,y,ntree=5000)  
print(rf1) 
plot(rf1,log="x",main="black default, red samplesize, green tree depth") 

#reduced sample size 
rf2 = randomForest(X,y,sampsize=.1*length(y),ntree=5000)  
print(rf2) 
points(1:5000,rf2$mse,col="red",type="l") 

#limiting tree depth (not exact ) 
rf3 = randomForest(X,y,maxnodes=24,ntree=5000) 
print(rf2) 
points(1:5000,rf3$mse,col="darkgreen",type="l") 

edited Jan 26 at 12:00 answered Jan 26 at 10:44

Soren Havelund Welling
621 2 9

  
 

 –   

Thank you so much for the explanation. I could understand to some extent what you mean, however, since
I am still getting used to this whole concept of developing random forest models, I have a few more
questions based on your answer. What exactly is the tree correlation and how do you measure it? Is the
OOB estimate and ensemble error the same things? Since these could be very basic, you could let me
know if there is an article if I can read up to understand the terms better.Thanks a lot! Vysh Jan 30 at
3:09

It is true that generally more trees will result in better accuracy. However, more trees also
mean more computational cost and after a certain number of trees, the improvement is
negligible. An article from Oshiro et al. (2012) pointed out that, based on their test with 29 data
sets, after 128 of trees there is no significant improvement(which is inline with the graph from
Soren).

Regarding the tree depth, standard random forest algorithm grow the full decision tree without
pruning. A single decision tree do need pruning in order to overcome over­fitting issue.
However, in random forest, this issue is eliminated by random selecting the variables and the
OOB action.

Reference: Oshiro, T.M., Perez, P.S. and Baranauskas, J.A., 2012, July. How many trees in a
random forest?. In MLDM (pp. 154­168).
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answered Jan 28 at 23:24

Sharp Yan
35 7

Add Another Answer
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Package ‘forestFloor’
June 1, 2016

Type Package

Title Visualizes Random Forests with Feature Contributions

Version 1.9.5

Date 2016-06-01

Author Soeren Havelund Welling

Maintainer Soeren Havelund Welling <SOWE@DTU.DK>

Depends
Suggests randomForest, utils, devtools, tools

Description Form visualizations of high dimensional mapping structures of random forests and fea-
ture contributions.

SystemRequirements OpenGL, GLU Library, zlib

License GPL-2

URL http://forestFloor.dk

Imports Rcpp (>= 0.11.3), rgl, kknn

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-06-01 14:11:11

R topics documented:
forestFloor-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
append.overwrite.alists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
as.numeric.factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
box.outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
convolute_ff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
convolute_ff2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
convolute_grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
fcol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
forestFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1
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2 append.overwrite.alists

plot.forestFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
plot_simplex3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
print.forestFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
recTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
show3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
vec.plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Xtestmerger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Index 38

forestFloor-package forestFloor: visualize the random forest model structure

Description

forestFloor visualizes randomForests models(RF). Package enables users to understand a non-
linear, regression problem or a binary classification problem through RF. Any model can be sepa-
rated into a series of main effect and interactions with the concept of feature contributions.

Details

Package: forestFloor
Type: Package
Version: 1.9
Date: 2015-12-25
License: GPL-2

Author(s)

Soren Havelund Welling

References

Interpretation of QSAR Models Based on Random Forest Methods, http://dx.doi.org/10.1002/minf.201000173
Interpreting random forest classification models using a feature contribution method, http://arxiv.org/abs/1312.1121

append.overwrite.alists

Combine two argument lists

170 A An Appendix



as.numeric.factor 3

Description

First argument list is master, second list slave

Usage

append.overwrite.alists(masterArgs,slaveArgs)

Arguments

masterArgs List of arguments, of which will stay unchanged

slaveArgs List of arguments, conflicts with masterArgs will be deleted. Additional args
will be appended.
s

Details

This function combines to lists of arguments. Conflicts will be resolved by masterArgs.

Value

List of arguments, being masterArgs appended by slaveArgs

Author(s)

Soren Havelund Welling

Examples

arglist1 = alist(monkey="happy",telephone.no=53)
arglist2 = alist(monkey="sad",house.no=12)

#this should yield a alist(monkey="happy", telephone.no=53, house.no=12)
forestFloor:::append.overwrite.alists(arglist1,arglist2)

as.numeric.factor Convert a factor to numeric.vector.

Description

Internal function which will drop unused levels and convert remaining to a number from 1 to
n.levels.

Usage

as.numeric.factor(x,drop.levels=TRUE)
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4 box.outliers

Arguments

x Normally a factor, can be a numeric vector(will be output unchanged)

drop.levels Boolean, should unused levels be dropped?

Details

Simple internal function, used to direct categorical variables to a 1 dimensional scale.

Value

A vector of same length, where each category/level is replaced with number from 1 to n

Author(s)

Soren Havelund Welling

Examples

as.numeric.factor = forestFloor:::as.numeric.factor #import to environment
some.factor = factor(c("dog","cat","monkey")[c(1,3,2,1,3,2,1,1)]) #make factor
a.numeric.vector = as.numeric.factor(some.factor) #convert factor representation.

box.outliers Box Outliers

Description

Squeeze all outliers onto standard.dev-limits and/or normalize to [0;1] scale

Usage

box.outliers(x, limit = 1.5, normalize = TRUE)

Arguments

x numeric vector, matrix, array, data.frame

limit limit(SD,standard deviation) any number deviating more than limit from mean
is an outlier

normalize TRUE/FALSE should output range be normalized to [0;1]?

Details

Can be used to squeeze high dimensional data into a box, hence the name box.outliers. Box.outliers
is used internally in forestFloor-package to compute colour gradients without assigning unique
colours to few outliers. It’s a box because the borders uni-variate/non-interacting.
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Value

matrix(n x p) of normalized values

Author(s)

Soren Havelund Welling, 2014

See Also

scale()

Examples

box.outliers = function (x, limit = 1.5) {
x = scale(x)
x[ x > limit] = limit
x[-x > limit] = -limit
x = x - min(x)
x = x/(limit * 2)
return(x)

}
n=1000 #some observations
p = 5 #some dimensions
X = data.frame(replicate(p,rnorm(n))) # a dataset
Xboxed =box.outliers(X,limit=1.5) #applying normalization
plot(Xboxed[,1],Xboxed[,2],col="#00000088") #plot output for first two dimensions

convolute_ff Cross-validated main effects interpretation for all feature contribu-
tions.

Description

convolute_ff estimates feature contributions of each feature separately as a function of the corre-
sponding variable/feature. The estimator is a k-nearest neighbor function with Gaussian distance
weighting and LOO cross-validation see train.kknn.

Usage

convolute_ff(ff,
these.vars=NULL,
k.fun=function() round(sqrt(n.obs)/2),
userArgs.kknn = alist(kernel="gaussian"))
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6 convolute_ff

Arguments

ff forestFloor object "forestFloor_regression" or "forestFloor_multiClass" consist-
ing of at least ff$X and ff$FCmatrix with two matrices of equal size

these.vars vector of col.indices to ff$X. Convolution can be limited to these.vars

k.fun function to define k-neighbors to consider. n.obs is a constant as number of
observations in ff$X. Hereby k neighbors is defined as a function k.fun of n.obs.
To set k to a constant use e.g. k.fun = function() 10. k can also be overridden
with userArgs.kknn = alist(kernel="Gaussian",kmax=10).

userArgs.kknn argument list to pass to train.kknn function for each convolution. See (link)
kknn.args. Conflicting arguments to this list will be overridden e.g. k.fun.

Details

convolute_ff uses train.kknn from kknn package to estimate feature contributions by their corre-
sponding variables. The output inside a ff$FCfit will have same dimensions as ff$FCmatrix and the
values will match quite well if the learned model structure is relative smooth and main effects are
dominant. This function is e.g. used to estimate fitted lines in plot.forestFloor function "plot(ff,...)".
LOO cross validation is used to quantify how much of feature contribution variation can be ex-
plained as a main effect.

Value

ff$FCfit a matrix of predicted feature contributions has same dimension as ff$FCmatrix. The output
is appended to the input "forestFloor" object as $FCfit.

Author(s)

Soren Havelund Welling

Examples

## Not run:
library(forestFloor)
library(randomForest)

#simulate data
obs=1000
vars = 6
X = data.frame(replicate(vars,rnorm(obs)))
Y = with(X, X1^2 + 2*sin(X2*pi) + 8 * X3 * X4)
Yerror = 5 * rnorm(obs)
cor(Y,Y+Yerror)^2
Y= Y+Yerror

#grow a forest, remeber to include inbag
rfo=randomForest(X,Y,keep.inbag=TRUE)

ff = forestFloor(rfo,X)
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convolute_ff2 7

ff = convolute_ff(ff) #return input oject with ff$FCfit included

#the convolutions correlation to the feature contribution
for(i in 1:6) print(cor(ff$FCmatrix[,i],ff$FCfit[,i])^2)

#plotting the feature contributions
pars=par(no.readonly=TRUE) #save graphicals
par(mfrow=c(3,2),mar=c(2,2,2,2))
for(i in 1:6) {

plot(ff$X[,i],ff$FCmatrix[,i],col="#00000030",ylim=range(ff$FCmatrix))
points(ff$X[,i],ff$FCfit[,i],col="red",cex=0.2)

}
par(pars) #restore graphicals

## End(Not run)

convolute_ff2 Low-level function to estimate a specific set of feature contribu-
tions by corresponding features with kknn-package. Used to estimate
goodness-of-fit of surface in show3d.

Description

Low-level function to estimate a selected combination feature contributions as function of selected
features with leave-one-out k-nearest neighbor.

Usage

convolute_ff2(ff,
Xi,
FCi = NULL,
k.fun=function() round(sqrt(n.obs)/2),
userArgs.kknn = alist(kernel="gaussian") )

Arguments

ff forestFloor object class "forestFloor_regression" or "forestFloor_multiClass" con-
sisting of at least ff$X and ff$FCmatrix with two matrices of equal size

Xi integer vector, of column indices of ff$X to estimate by.
FCi integer vector, column indices of features contributions in ff$FCmatrix to esti-

mate. If more than one , these columns will be summed by samples/rows. If
NULL then FCi will match Xi.

k.fun function to define k-neighbors to consider. n.obs is a constant as number of
observations in ff$X. Hereby k neighbors is defined as a function k.fun of n.obs.
To set k to a constant use e.g. k.fun = function() 10. k can also be overridden
with userArgs.kknn = alist(kernel="Gaussian",kmax=10).

userArgs.kknn argument list passed to train.kknn function for each convolution, see train.kknn.
Arguments in this list have priority of any arguments passed by default by this
wrapper function. See argument merger train.kknn
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Details

convolute_ff2 is a wrapper of train.kknn to estimate feature contributions by a set of features.
This function is e.g. used to estimate the visualized surface layer in show3d function. LOO CV is
used to quantify how much of a feature contribution variation can by explained by a given surface.
Can in theory also be used to quantify higher dimensional interaction effects, but randomForest do
not learn much 3rd order (or higher) interactions. Do not support orderByImportance, thus Xi and
FCi points to column order of training matrix X.

Value

an numeric vector with one estimated feature contribution for any observation

Author(s)

Soren Havelund Welling

Examples

## Not run:
library(forestFloor)
library(randomForest)
library(rgl)
#simulate data
obs=2500
vars = 6
X = data.frame(replicate(vars,rnorm(obs)))
Y = with(X, X1^2 + 2*sin(X2*pi) + 8 * X3 * X4)
Yerror = 15 * rnorm(obs)
cor(Y,Y+Yerror)^2 #relatively noisy system
Y= Y+Yerror

#grow a forest, remeber to include inbag
rfo=randomForest(X,Y,keep.inbag=TRUE,ntree=1000,sampsize=800)

#obtain
ff = forestFloor(rfo,X)

#convolute the interacting feature contributions by their feature to understand relationship
fc34_convoluted = convolute_ff2(ff,Xi=3:4,FCi=3:4, #arguments for the wrapper

userArgs.kknn = alist(kernel="gaussian",k=25)) #arguments for train.kknn

#plot the joined convolution
plot3d(ff$X[,3],ff$X[,4],fc34_convoluted,

main="convolution of two feature contributions by their own vaiables",
#add some colour gradients to ease visualization
#box.outliers squese all observations in a 2 std.dev box
#univariately for a vector or matrix and normalize to [0;1]
col=rgb(.7*box.outliers(fc34_convoluted),

.7*box.outliers(ff$X[,3]),

.7*box.outliers(ff$X[,4]))
)
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convolute_grid 9

## End(Not run)

convolute_grid Model structure grid estimated by feature contributions

Description

Low-level n-dimensional grid wrapper of kknn (not train.kknn). Predicts a grid structure on the
basis of estimated feature contributions. Is used to draw one 2D surface in a 3D plot (show3d) on
basis of feature contributions.

Usage

convolute_grid (ff,
Xi,
FCi = NULL,
grid = 30,
limit = 3,
zoom = 3,
k.fun=function() round(sqrt(n.obs)/2),
userArgs.kknn = alist(kernel="gaussian") )

Arguments

ff the forestFloor object of class "forestFloor_regression" or "forestFloor_multiClass"
at least containing ff$X and ff$FCmatrix with two matrices of equal size

Xi the integer vector, of col indices of ff$X to estimate by, often of length 2 or 3.
Note total number of predictions is a equal grid^"length of this vector".

FCi the integer vector, of col indices of ff$FCmatrix. Those feature contributions to
combine(sum) and estimate. If FCi=NULL, will copy Xi vector, which is the
trivial choice.

grid Either, an integer describing the number of grid.lines in each dimension(trivial
choice) or, a full defined matrix of any grid position as defined by this function.

limit a numeric scalar, number of standard deviations away from mean by any dimen-
sion to disregard outliers when spanning observations with grid. Set to limit=Inf
outliers never should be disregarded.

zoom numeric scalar, the size of the grid compared to the uni-variate range of data. If
zoom=2 the grid will by any dimension span the double range of the observa-
tions. Outliers are disregarded with limit argument.

k.fun function to define k-neighbors to consider. n.obs is a constant as number of
observations in ff$X. Hereby k neighbors is defined as a function k.fun of n.obs.
To set k to a constant use e.g. k.fun = function() 10. k can also be overridden
with userArgs.kknn = alist(kernel="Gaussian",kmax=10).

userArgs.kknn argument list to pass to train.kknn function for each convolution, see kknn for
possible args. Arguments in this list will have priority of any passed by default
by this wrapper function, see argument merger append.overwrite.alists
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Details

This low-level function predicts feature contributions in a grid with train.kknn which is k-nearest
neighbor + Gaussian weighting. This wrapper is used to construct the transparent grey surface in
show3d.

Value

a data frame, 1 + X variable columns. First column is the predicted summed feature contributions
as a function of the following columns feature coordinates.

Author(s)

Soren Havelund Welling

Examples

## Not run:
## avoid testing of rgl 3D plot on headless non-windows OS
## users can disregard this sentence.
if(!interactive() && Sys.info()["sysname"]!="Windows") skip=TRUE

library(rgl)
library(randomForest)
library(forestFloor)

#simulate data
obs=1500
vars = 6
X = data.frame(replicate(vars,runif(obs)))*2-1
Y = with(X, X1*2 + 2*sin(X2*pi) + 3* (X3+X2)^2 )
Yerror = 1 * rnorm(obs)
var(Y)/var(Y+Yerror)
Y= Y+Yerror

#grow a forest, remember to include inbag
rfo=randomForest::randomForest(X,Y,

keep.inbag=TRUE,
ntree=1000,
replace=TRUE,
sampsize=500,
importance=TRUE)

#compute ff
ff = forestFloor(rfo,X)

#print forestFloor
print(ff)

#plot partial functions of most important variables first
Col=fcol(ff,1)
plot(ff,col=Col,orderByImportance=TRUE)
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#the pure feature contributions
rgl::plot3d(ff$X[,2],ff$X[,3],apply(ff$FCmatrix[,2:3],1,sum),

#add some colour gradients to ease visualization
#box.outliers squese all observations in a 2 std.dev box
#univariately for a vector or matrix and normalize to [0;1]
col=fcol(ff,2,orderByImportance=FALSE))

#add grid convolution/interpolation
#make grid with current function
grid23 = convolute_grid(ff,Xi=2:3,userArgs.kknn= alist(k=25,kernel="gaus"),grid=50,zoom=1.2)
#apply grid on 3d-plot
rgl::persp3d(unique(grid23[,2]),unique(grid23[,3]),grid23[,1],alpha=0.3,
col=c("black","grey"),add=TRUE)
#anchor points of grid could be plotted also
rgl::plot3d(grid23[,2],grid23[,3],grid23[,1],alpha=0.3,col=c("black"),add=TRUE)

## and we se that their is almost no variance out of the surface, thus is FC2 and FC3
## well explained by the feature context of both X3 and X4

### next example show how to plot a 3D grid + feature contribution
## this 4D application is very experimental

#Make grid of three effects, 25^3 = 15625 anchor points
grid123 = convolute_grid(ff,

Xi=c(1:3),
FCi=c(1:3),
userArgs.kknn = alist(
k= 100,
kernel = "gaussian",
distance = 1),

grid=25,
zoom=1.2)

#Select a dimension to place in layers
uni2 = unique(grid123[,2]) #2 points to X1 and FC1
uni2=uni2[c(7,9,11,13,14,16,18)] #select some layers to visualize

## plotting any combination of X2 X3 in each layer(from red to green) having different value of X1
count = 0
add=FALSE
for(i in uni2) {

count = count +1
this34.plane = grid123[grid123[,2]==i,]
if (count==2) add=TRUE

# plot3d(ff$X[,1],ff$X[,2]
persp3d(unique(this34.plane[,3]),

unique(this34.plane[,4]),
this34.plane[,1], add=add,
col=rgb(count/length(uni2),1-count/length(uni2),0),alpha=0.1)

}
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## plotting any combination of X1 X3 in each layer(from red to green) having different value of X2
uni3 = unique(grid123[,4]) #2 points to X1 and FC1
uni3=uni3[c(7,9,11,13,14,16,18)] #select some layers to visualize
count = 0
add=FALSE
for(i in uni3) {

count = count +1
this34.plane = grid123[grid123[,4]==i,]
if (count==2) add=TRUE

#plot3d(ff$X[,1],ff$X[,2])
persp3d(unique(this34.plane[,2]),

unique(this34.plane[,3]),
this34.plane[,1], add=add,
col=rgb(count/length(uni3),1-count/length(uni3),0),alpha=0.1)

}

## End(Not run)

fcol Generic colour module for forestFloor objects

Description

This colour module colour observations by selected variables. PCA decomposes a selection more
than three variables. Space can be inflated by random forest variable importance, to focus coloring
on influential variables. Outliers(>3std.dev) are automatically suppressed. Any colouring can be
modified.

Usage

fcol(ff, cols = NULL, orderByImportance = NULL, plotTest=NULL, X.matrix = TRUE,
hue = NULL, saturation = NULL, brightness = NULL,
hue.range = NULL, sat.range = NULL, bri.range = NULL,
alpha = NULL, RGB = NULL, byResiduals=FALSE, max.df=3,
imp.weight = NULL, imp.exp = 1,outlier.lim = 3,RGB.exp=NULL)

Arguments

ff a object of class "forestFloor_regression" or "forestFloor_multiClass" or a ma-
trix or a data.frame. No missing values. X.matrix must be set TRUE for "forest-
Floor_multiClass" as colouring by multiClass feature contributions is not sup-
ported.
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cols vector of indices of columns to colour by, will refer to ff$X if X.matrix=T and
else ff$FCmatrix. If ff itself is a matrix or data.frame, indices will refer to these
columns

orderByImportance

logical, should cols refer to X column order or columns sorted by variable im-
portance. Input must be of forestFloor -class to use this. Set to FALSE if no
importance sorting is wanted. Otherwise leave as is.

plotTest NULL(plot by test set if available), TRUE(plot by test set), FALSE(plot by
train), "andTrain"(plot by both test and train)

X.matrix logical, true will use feature matrix false will use feature contribution matrix.
Only relevant if input is forestFloor object.

hue value within [0,1], hue=1 will be exactly as hue = 0 colour wheel settings, will
skew the colour of all observations without changing the contrast between any
two given observations.

saturation value within [0,1], mean saturation of colours, 0 is grey tone and 1 is maximal
colourful.

brightness value within [0,1], mean brightness of colours, 0 is black and 1 is lightly colours.

hue.range value within [0,1], ratio of colour wheel, small value is small slice of colour
wheel those little variation in colours. 1 is any possible colour except for RGB
colour system.

sat.range value within [0,1], for colouring of 2 or more variables, a range of saturation is
needed to obtain more degrees of freedom in the colour system. But as saturation
of is preferred to be >.75 the range of saturation cannot here exceed .5. If NULL
sat.range will set widest possible without exceeding range.

bri.range value within [0,1], for colouring of 3 or more variables, a range of brightness is
needed to obtain more degrees of freedom in the colour system. But as bright-
ness of is preferred to be >.75 the range of saturation cannot here exceed .5. If
NULL bri.range will set widest possible without exceeding range.

alpha value within [0;1] transparency of colours.

RGB logical TRUE/FALSE,
RGB=NULL: will turn TRUE if one variable selected RGB=TRUE: Red-Green-
Blue colour: a system with fewer colours(~3) but more contrast. Can still be
altered by hue, saturation, brightness etc.
RGB=FALSE: True-colour-system: Maximum colour detail. Sometimes more
confusing.

byResiduals logical, should coloring be residuals of main effect fit(overrides X.matrix=). If
no fit has been computed "is.null(ff$FCfit)", a temporarily main effect fit will be
computed. Use ff = convolute_ff(ff) to only compute once and/or to modify fit
parameters.

max.df integer 1, 2, or 3 only. Only for true-colour-system, the maximal allowed de-
grees of freedom in a colour scale. If more variables selected than max.df, PCA
decompose to request degrees of freedom. max.df = 1 will give more simple
colour gradients

imp.weight Logical?, Should importance from a forestFloor object be used to weight se-
lected variables? obviously not possible if input ff is a matrix or data.frame. If
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randomForest(importance=TRUE) during training, variable importance will be
used. Otherwise the more unreliable gini_importance coefficient.

imp.exp exponent to modify influence of imp.weight. 0 is not influence. -1 is counter
influence. 1 is linear influence. .5 is square root influence etc..

outlier.lim number from 0 to Inf. Any observation which univariately exceed this limit will
be suppressed, as if it actually where on this limit. Normal limit is 3 standard
deviations. Extreme outliers can otherwise reserve alone a very large part of a
given linear colour gradient. This leads to visualization where outlier have one
colour and any other observation another but same colour.

RGB.exp value between ]1;>1]. Defines steepness of the gradient of the RGB colour
system Close to one green middle area is missing. For values higher than 2,
green area is dominating

Details

fcol produces colours for any observation. These are used plotting.

Value

a character vector specifying the colour of any observations. Each elements is something like
"#F1A24340", where F1 is the hexadecimal of the red colour, then A2 is the green, then 43 is
blue and 40 is transparency.

Author(s)

Soren Havelund Welling

Examples

## Not run:
#example 1 - fcol used on data.frame or matrix
library(forestFloor)
X = data.frame(matrix(rnorm(1000),nrow=1000,ncol=4))
X[] = lapply(X,jitter,amount = 1.5)

#single variable gradient by X1 (Unique colour system)
plot(X,col=fcol(X,1))
#double variable gradient by X1 and X2 (linear colour system)
plot(X,col=fcol(X,1:2))
#triple variable gradient (PCA-decomposed, linear colour system)
plot(X,col=fcol(X,1:3))
#higher based gradient (PCA-decomposed, linear colour system)
plot(X,col=fcol(X,1:4))

#force linear col + modify colour wheel
plot(X,col=fcol(X,

cols=1, #colouring by one variable
RGB=FALSE,
hue.range = 4, #cannot exceed 1, if colouing by more than one var
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#except if max.df=1 (limits to 1D gradient)
saturation=1,
brightness = 0.6))

#colour by one dimensional gradient first PC of multiple variables
plot(X,col=fcol(X,

cols=1:2, #colouring by multiple
RGB=TRUE, #possible because max.df=1
max.df = 1, #only 1D gradient (only first principal component)
hue.range = 2, #can exceed 1, because max.df=1
saturation=.95,
brightness = 0.8))

##example 2 - fcol used with forestFloor objects
library(forestFloor)
library(randomForest)

X = data.frame(replicate(6,rnorm(1000)))
y = with(X,.3*X1^2+sin(X2*pi)+X3*X4)
rf = randomForest(X,y,keep.inbag = TRUE,sampsize = 400)
ff = forestFloor(rf,X)

#colour by most important variable
plot(ff,col=fcol(ff,1))

#colour by first variable in data set
plot(ff,col=fcol(ff,1,orderByImportance = FALSE),orderByImportance = FALSE)

#colour by feature contributions
plot(ff,col=fcol(ff,1:2,order=FALSE,X.matrix = FALSE,saturation=.95))

#colour by residuals
plot(ff,col=fcol(ff,3,orderByImportance = FALSE,byResiduals = TRUE))

#colour by all features (most useful for colinear variables)
plot(ff,col=fcol(ff,1:6))

#disable importance weighting of colour
#(important colours get to define gradients more)
plot(ff,col=fcol(ff,1:6,imp.weight = FALSE)) #useless X5 and X6 appear more colourful

#insert outlier in data set in X1 and X2
ff$X[1,1] = 10; ff$X[1,2] = 10

plot(ff,col=fcol(ff,1)) #colour not distorted, default: outlier.lim=3
plot(ff,col=fcol(ff,1,outlier.lim = Inf)) #colour gradient distorted by outlier
plot(ff,col=fcol(ff,1,outlier.lim = 0.5)) #too little outlier.lim

## End(Not run)
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forestFloor Compute out-of-bag cross-validated feature contributions to visualize
model structures of randomForest models.

Description

Computes a cross validated feature contribution matrix from a randomForest model-fit and outputs
a forestFloor S3 class object (a list), including unscaled importance and the original training set.
The output object is the basis for all visualizations.

Usage

forestFloor(rf.fit, X, Xtest=NULL, calc_np = FALSE, binary_reg = FALSE,
bootstrapFC = FALSE, ...)

Arguments

rf.fit rf.fit, a random forest object as the output from randomForest::randomForest

X data.frame of input variables, numeric(continuous), discrete(treated as contin-
uous) or factors(categorical). n_rows observations and n_columns features X
MUST be the same data.frame as used to train the random forest, see above
item.

Xtest data.frame of input variables, numeric(continuous), discrete(treated as contin-
uous) or factors(categorical). n_rows test_examples and n_columns features
Xtest MUST have same number and order of columns(variables) as X. Num-
ber of rows can vary.

calc_np TRUE/FALSE. Calculate Node Predictions(TRUE) or reuse information from
rf.fit(FALSE)? Slightly faster when FALSE for regression. calc_np=TRUE will
only take effect for rf.fit of class "randomForest" and type="regression". This
option, is only for developmental purposes. Just set =FALSE always, as function
will override this choice if not appropriate.

binary_reg boolean, if TRUE binary classification can be changed to "percentage votes" of
class 1, and thus be treated as regression.

bootstrapFC boolean, if TRUE an extra column is added to FCmatrix or one extra matrix
to FCarray accounting for the minor feature contributions attributed to random
bootstraps or stratifications. Mainly useful to check FC row sums actually are
equal to OOB-CV predictions, or to tweak randomForest into a "probability
forest"-like model.

... For classification it is possible to manually set majorityTerminal=FALSE. For
the randomForest classification implementation majorityTerminal is by default
set to TRUE, as each tree uses majority vote within terminal nodes. In other
implemenations terminal nodes are not neccesarily reduced by majority voting
before aggregetion on ensemble level.
majorityTerminal, does not apply to random forest regressions.
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Details

forestFloor computes out-of-bag cross validated feature contributions for a "randomForest" class
object. Other packages will be supported in future, mail me a request. forestFloor guides you to
discover the structure of a randomForest model fit. Check examples of how latent interactions can
be identified with colour gradients.

What is FC?: Feature contributions are the sums over all local increments for each observation for
each feature divided by the number of trees. A local increment is the change of node prediction
from parent to daughter node split by a given feature. Thus a feature contribution summarizes the
average outcome for all those times a given sample was split by a given feature. forestFloor use
inbag samples to calculate local increments, but only sum local increments over out-of-bag samples
divided with OOBtimes. OOBtimes is the number of times a given observation have been out-of-
bag. which is roundly ntrees / 3. In practice this removes a substantial self-leverage of samples to
the corresponding feature contributions. Hereby visualizations becomes less noisy.

What is FC used for?: Feature contributions is smart way to decompose a RF mapping structure
into additive components. Plotting FC’s against variables values yields at first glance plots similar to
marginal-effect plots, partial dependence plots and vector effect characteristic plots. This package
forsetFloor, make use of feature contributions to separate main effects and identify plus quantify
latent interactions. The advantages of forestFloor over typical partial.dependence plots are: (1)
Easier to identify interactions. (2) Training samples is a part of plot, such that extrapolated model
structure can be disregarded. (3) The "goodness of visualization" (how exactly the plot represent
the higher dimensional model structure) can be quantified. (4) Cheerful colours and 3D graphics
thanks to the rgl package.

RF regression takes input features and outputs a target value. RF classification can output a pseudo
probability vector with predicted class probability for each sample. The RF mapping topology of
classification is different than for regression as the output is no longer a scalar, the output is a vector
with predicted class probability for each class. For binary classification this topology can be sim-
plified to a regression-like scalar as the probability of class_1 = 1 - class_2. Set binary_reg=TRUE
for a binary RF classification to get regression like visualizations. For multi-class the output space
is probability space where any point is a probability prediction of each target class.

To plot forestFloor objects use plot-method plot.forestFloor and function show3d. Input parame-
ters for classification or regression are not entirely the same. Check help-file plot.forestFloor
and show3d. For 3-class problems the special function plot_simplex3 can plot the probability
predictions in a 2D phase diagram (K-1 simplex).

Value

the forestFloor function outputs(depending on type rf.fit) an object of either class "forestFloor_regression"
or "forestFloor_multiClass" with following elements:

X a copy of the training data or feature space matrix/data.frame, X. The copy is
passed unchanged from the input of this function. X is used in all visualization to
expand the feature contributions over the features of which they were recorded.

Y a copy of the target vector, Y.

importance The gini-importance or permutation-importance a.k.a variable importance of the
random forest object (unscaled). If rfo=randomForest(X,Y,importance=FALSE),
gini-importance is used. Gini-importance is less reproducible and more biased.
The extra time used to compute permutation-importance is negligible.
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imp_ind the importance indices is the order to sort the features by descending impor-
tance. imp_ind is used by plotting functions to present most relevant feature
contributions first. If using gini-importance, the order of plots is more random
and will favor continuous variables. The plots themselves will not differ.

FC_matrix [ONLY forestFloor_regression.] feature contributions in a matrix.
n_row observations and n_column features - same dimensions as X.

FC_array [ONLY forestFloor_multiClass.] feature contributions in a array.
n_row observations and n_column features and n_layer classes. First two di-
mensions will match dimensions of X.

Note

check out more guides at forestFloor.dk

Author(s)

Soren Havelund Welling

References

Interpretation of QSAR Models Based on Random Forest Methods, http://dx.doi.org/10.1002/minf.201000173
Interpreting random forest classification models using a feature contribution method, http://arxiv.org/abs/1312.1121

See Also

plot.forestFloor, show3d,

Examples

## Not run:
## avoid testing of rgl 3D plot on headless non-windows OS
## users can disregard this sentence.
if(!interactive() && Sys.info()["sysname"]!="Windows") skipRGL=TRUE

#1 - Regression example:
set.seed(1234)
library(forestFloor)
library(randomForest)

#simulate data y = x1^2+sin(x2*pi)+x3*x4 + noise
obs = 5000 #how many observations/samples
vars = 6 #how many variables/features
#create 6 normal distr. uncorr. variables
X = data.frame(replicate(vars,rnorm(obs)))
#create target by hidden function
Y = with(X, X1^2 + sin(X2*pi) + 2 * X3 * X4 + 0.5 * rnorm(obs))

#grow a forest
rfo = randomForest(

X, #features, data.frame or matrix. Recommended to name columns.
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Y, #targets, vector of integers or floats
keep.inbag = TRUE, # mandatory,
importance = TRUE, # recommended, else ordering by giniImpurity (unstable)
sampsize = 1500 , # optional, reduce tree sizes to compute faster
ntree = if(interactive()) 500 else 50 #speedup CRAN testing

)

#compute forestFloor object, often only 5-10% time of growing forest
ff = forestFloor(

rf.fit = rfo, # mandatory
X = X, # mandatory
calc_np = FALSE, # TRUE or FALSE both works, makes no difference
binary_reg = FALSE # takes no effect here when rfo$type="regression"

)

#print forestFloor
print(ff) #prints a text of what an 'forestFloor_regression' object is
plot(ff)

#plot partial functions of most important variables first
plot(ff, # forestFloor object

plot_seq = 1:6, # optional sequence of features to plot
orderByImportance=TRUE # if TRUE index sequence by importance, else by X column

)

#Non interacting features are well displayed, whereas X3 and X4 are not
#by applying color gradient, interactions reveal themself
#also a k-nearest neighbor fit is applied to evaluate goodness-of-fit
Col=fcol(ff,3,orderByImportance=FALSE) #create color gradient see help(fcol)
plot(ff,col=Col,plot_GOF=TRUE)

#feature contributions of X3 and X4 are well explained in the context of X3 and X4
# as GOF R^2>.8

show3d(ff,3:4,col=Col,plot_GOF=TRUE,orderByImportance=FALSE)

#if needed, k-nearest neighbor parameters for goodness-of-fit can be accessed through convolute_ff
#a new fit will be calculated and saved to forstFloor object as ff$FCfit
ff = convolute_ff(ff,userArgs.kknn=alist(kernel="epanechnikov",kmax=5))
plot(ff,col=Col,plot_GOF=TRUE) #this computed fit is now used in any 2D plotting.

###
#2 - Multi classification example: (multi is more than two classes)
set.seed(1234)
library(forestFloor)
library(randomForest)

data(iris)
X = iris[,!names(iris) %in% "Species"]
Y = iris[,"Species"]

rf = randomForest(
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X,Y,
keep.forest=TRUE, # mandatory
keep.inbag=TRUE, # mandatory
samp=20, # reduce complexity of mapping structure, with same OOB%-explained
importance = TRUE # recommended, else ordering by giniImpurity (unstable)

)

ff = forestFloor(rf,X)

plot(ff,plot_GOF=TRUE,cex=.7,
colLists=list(c("#FF0000A5"),

c("#00FF0050"),
c("#0000FF35")))

#...and 3D plot, see show3d
show3d(ff,1:2,1:2,plot_GOF=TRUE)

#...and simplex plot (only for three class problems)
plot_simplex3(ff)
plot_simplex3(ff,zoom.fit = TRUE)

#...and 3d simplex plots (rough look, Z-axis is feature)
plot_simplex3(ff,fig3d = TRUE)

###
#3 - binary regression example
#classification of two classes can be seen as regression in 0 to 1 scale
set.seed(1234)
library(forestFloor)
library(randomForest)
data(iris)
X = iris[-1:-50,!names(iris) %in% "Species"] #drop third class virginica
Y = iris[-1:-50,"Species"]
Y = droplevels((Y)) #drop unused level virginica

rf = randomForest(
X,Y,
keep.forest=TRUE, # mandatory
keep.inbag=TRUE, # mandatory
samp=20, # reduce complexity of mapping structure, with same OOB%-explained
importance = TRUE # recommended, else giniImpurity

)

ff = forestFloor(rf,X,
calc_np=TRUE, #mandatory to recalculate
binary_reg=TRUE) #binary regression, scale direction is printed

Col = fcol(ff,1) #color by most important feature
plot(ff,col=Col) #plot features

#interfacing with rgl::plot3d
show3d(ff,1:2,col=Col,plot.rgl.args = list(size=2,type="s",alpha=.5))

## End(Not run)
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plot.forestFloor plot.forestFloor_regression

Description

A method to plot an object of forestFloor-class. Plot partial feature contributions of the most
important variables. Colour gradients can be applied to show possible interactions. Fitted func-
tion(plot_GOF) describe FC only as a main effect and quantifies ’Goodness Of Fit’.

Usage

## S3 method for class 'forestFloor_regression'
plot(
x,
plot_seq=NULL,
plotTest = NULL,
limitY=TRUE,
orderByImportance=TRUE,
cropXaxes=NULL,
crop_limit=4,
plot_GOF = TRUE,
GOF_args = list(col="#33333399"),
speedup_GOF = TRUE,
...)

## S3 method for class 'forestFloor_multiClass'
plot(
x,
plot_seq = NULL,
label.seq = NULL,
plotTest = NULL,
limitY = TRUE,
col = NULL,
colLists = NULL,
orderByImportance = TRUE,
fig.columns = NULL,
plot_GOF = TRUE,
GOF_args = list(),
speedup_GOF = TRUE,
jitter_these_cols = NULL,
jitter.factor = NULL,
...)

Arguments

x forestFloor-object, also abbreviated ff. Basically a list of class="forestFloor"
containing feature contributions, features, targets and variable importance.

A.3 Manual: R CRAN package forestFloor 1.9.5 189



22 plot.forestFloor

plot_seq a numeric vector describing which variables and in what sequence to plot. Or-
dered by importance as default. If orderByImportance = F, then by feature/column
order of training data.

label.seq [only classification] a numeric vector describing which classes and in what
sequence to plot. NULL is all classes ordered is in levels in x$Y of forest-
Floor_mulitClass object x.

plotTest NULL(plot by test set if available), TRUE(plot by test set), FALSE(plot by
train), "andTrain"(plot by both test and train)

fig.columns [only for multiple plotting], how many columns per page. default(NULL) is 1
for one plot, 2 for 2, 3 for 3, 2 for 4 and 3 for more.

limitY TRUE/FLASE, constrain all Yaxis to same limits to ensure relevance of low
importance features is not over interpreted

col Either a colur vector with one colour per plotted class label or a list of colour
vectors. Each element is a colour vector one class. Colour vectors in list are
normally either of length 1 with or of length equal to number of training obser-
vations. NULL will choose standard one colour per class.

colLists Deprecetated, will be replaced by col input
jitter_these_cols

vector to apply jitter to x-axis in plots. Will refer to variables. Useful to for
categorical variables. Default=NULL is no jitter.

jitter.factor value to decide how much jitter to apply. often between .5 and 3
orderByImportance

TRUE / FALSE should plotting and plot_seq be ordered after importance. Most
important feature plot first(TRUE)

cropXaxes a vector of indices of which zooming of x.axis should look away from outliers

crop_limit a number often between 1.5 and 5, referring limit in sigmas from the mean
defining outliers if limit = 2, above selected plots will zoom to +/- 2 std.dev of
the respective features.

plot_GOF Boolean TRUE/FALSE. Should the goodness of fit be plotted as a line?

GOF_args Graphical arguments fitted lines, see points for parameter names.

speedup_GOF Should GOF only computed on reasonable sub sample of data set to speedup
computation. GOF estimation leave-one-out-kNN becomes increasingly slow
for +1500 samples.

... ... other arguments passed to par or plot
. e.g. mar=, mfrow=, is passed to par, and cex= is passed to plot. par() arguments
are reset immediately as plot function returns.

Details

The method plot.forestFloor visualizes partial plots of the most important variables first. Partial de-
pendence plots are available in the randomForest package. But such plots are single lines(1d-slices)
and do not answer the question: Is this partial function(PF) a fair generalization or subject to global
or local interactions.
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Author(s)

Soren Havelund Welling

Examples

## Not run:
## avoid testing of rgl 3D plot on headless non-windows OS
## users can disregard this sentence.
if(!interactive() && Sys.info()["sysname"]!="Windows") skipRGL=TRUE

###
#1 - Regression example:
set.seed(1234)
library(forestFloor)
library(randomForest)

#simulate data y = x1^2+sin(x2*pi)+x3*x4 + noise
obs = 5000 #how many observations/samples
vars = 6 #how many variables/features
#create 6 normal distr. uncorr. variables
X = data.frame(replicate(vars,rnorm(obs)))
#create target by hidden function
Y = with(X, X1^2 + sin(X2*pi) + 2 * X3 * X4 + 0.5 * rnorm(obs))

#grow a forest
rfo = randomForest(
X, #features, data.frame or matrix. Recommended to name columns.
Y, #targets, vector of integers or floats
keep.inbag = TRUE, # mandatory,
importance = TRUE, # recommended, else ordering by giniImpurity (unstable)
sampsize = 1500 , # optional, reduce tree sizes to compute faster
ntree = if(interactive()) 1000 else 25 #speedup CRAN testing

)

#compute forestFloor object, often only 5-10% time of growing forest
ff = forestFloor(
rf.fit = rfo, # mandatory
X = X, # mandatory
calc_np = FALSE, # TRUE or FALSE both works, makes no difference
binary_reg = FALSE # takes no effect here when rfo$type="regression"

)

#print forestFloor
print(ff) #prints a text of what an 'forestFloor_regression' object is
plot(ff)

#plot partial functions of most important variables first
plot(ff, # forestFloor object

plot_seq = 1:6, # optional sequence of features to plot
orderByImportance=TRUE # if TRUE index sequence by importance, else by X column

)
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#Non interacting features are well displayed, whereas X3 and X4 are not
#by applying color gradient, interactions reveal themself
#also a k-nearest neighbor fit is applied to evaluate goodness-of-fit
Col=fcol(ff,3,orderByImportance=FALSE) #create color gradient see help(fcol)
plot(ff,col=Col,plot_GOF=TRUE)

#feature contributions of X3 and X4 are well explained in the context of X3 and X4
# as GOF R^2>.8

show3d(ff,3:4,col=Col,plot_GOF=TRUE,orderByImportance=FALSE)

#if needed, k-nearest neighbor parameters for goodness-of-fit can be accessed through convolute_ff
#a new fit will be calculated and saved to forstFloor object as ff$FCfit
ff = convolute_ff(ff,userArgs.kknn=alist(kernel="epanechnikov",kmax=5))
plot(ff,col=Col,plot_GOF=TRUE) #this computed fit is now used in any 2D plotting.

###
#2 - Multi classification example: (multi is more than two classes)
set.seed(1234)
library(forestFloor)
library(randomForest)

data(iris)
X = iris[,!names(iris) %in% "Species"]
Y = iris[,"Species"]

rf = randomForest(
X,Y,
keep.forest=TRUE, # mandatory
keep.inbag=TRUE, # mandatory
samp=20, # reduce complexity of mapping structure, with same OOB%-explained
importance = TRUE, # recommended, else ordering by giniImpurity (unstable)
ntree = if(interactive()) 1000 else 25 #speedup CRAN testing

)

ff = forestFloor(rf,X)

plot(ff,plot_GOF=TRUE,cex=.7,
col=c("#FF0000A5","#00FF0050","#0000FF35") #one col per plotted class

)

#...and 3D plot, see show3d
show3d(ff,1:2,1:2,plot_GOF=TRUE)

#...and simplex plot (only for three class problems)
plot_simplex3(ff)
plot_simplex3(ff,zoom.fit = TRUE)

#...and 3d simplex plots (rough look, Z-axis is feature)
plot_simplex3(ff,fig3d = TRUE)

###
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#3 - binary regression example
#classification of two classes can be seen as regression in 0 to 1 scale
set.seed(1234)
library(forestFloor)
library(randomForest)
data(iris)
X = iris[-1:-50,!names(iris) %in% "Species"] #drop third class virginica
Y = iris[-1:-50,"Species"]
Y = droplevels((Y)) #drop unused level virginica

rf = randomForest(
X,Y,
keep.forest=TRUE, # mandatory
keep.inbag=TRUE, # mandatory
samp=20, # reduce complexity of mapping structure, with same OOB%-explained
importance = TRUE, # recommended, else giniImpurity
ntree = if(interactive()) 1000 else 25 #speedup CRAN testing

)

ff = forestFloor(rf,X,
calc_np=TRUE, #mandatory to recalculate
binary_reg=TRUE) #binary regression, scale direction is printed

Col = fcol(ff,1) #color by most important feature
plot(ff,col=Col) #plot features

#interfacing with rgl::plot3d
show3d(ff,1:2,col=Col,plot.rgl.args = list(size=2,type="s",alpha=.5))

## End(Not run)

plot_simplex3 3-class simplex forestFloor plot

Description

3-class forestFloor plotted in a 2D simplex. The plot describes with feature contributions the change
of predicted class probability for each sample due a single variable given all other variables. This
plot is better than regular multiclass plots (plot.forestFloor_multiClass) to show the change of class
probabilities, but the feature values can only be depcited as a colour gradient. But (fig3d=TRUE)
allows the feature value to be depicted by the Z-axis as a extra pop-up 3D plot.

Usage

plot_simplex3(ff,
Xi = NULL,
includeTotal = TRUE,
label.col = NULL,
fig.cols = 3,
fig.rows = NULL,
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auto.alpha = 0.25,
fig3d = FALSE,
restore_par = TRUE,
set_pars = TRUE,
zoom.fit = NULL,
var.col = NULL,
plot.sep.centroid = TRUE)

Arguments

ff x also abbrivated ff, forestFloor_mulitClass the output from the forestFloor func-
tion. Must have 3 classes exactly.

Xi vector of integer indices (refeering to column order of trainingset) to what fea-
ture contributions should be plotted in individual plots.

includeTotal TRUE / FALSE. Combined separation of all feature contributions, which is
equal to the separation of the entire model can be included.

label.col a colour vector of K classes length defining the colour of each class for plotting.
NULL is auto.

fig.cols How many columns should be plotted sideways, is passed to par(mfrow=c(fig.rows,fig.cols))
fig.rows How many rows should be plotted, is passed to par(mfrow=c(fig.rows,fig.cols))

NULL is auto
auto.alpha a scalar between 0.5 to 1 most often. Low values increase transparancy of points

used to avoid overplotting. auto.alpha is alpha corrected of samplesize such that
less adjustment is needed.

fig3d TRUE/FALSE, a 3D plot including the variable as an axis can be co-plotted with
rgl.

restore_par TRUE/FALSE, calls to graphics par() will be reset
set_pars TRUE/FALSE, if FALSE plot function will rather inherrit plot settings global

pars. USeful for multi plotting loops.
zoom.fit NULL/TRUE, if TRUE zooming on samples will be applied. Do not set to

FALSE.
var.col a single colour or a colour vector of N samples length. Samples will be coloured

accordingly. use function fcol to make colour gradient e.g. by the variable values
themselves. See example fcol.

plot.sep.centroid

TRUE/FALSE. Should the average bootstrap prediction be plotted? If no boot-
strap stratification, the average bootstrap prediction is equal to class distribution
training set. RF model probalistic predictions is equal to average bootstrap pre-
diction plus all feature contributions.

Details

Random forest 3 class maps from a feature space to a 3 dimensional (K-1) probability simplex space,
which can be plotted in 2D because class probabilities sum to one, and class feature contributions
sum to zero. The centroid these plots is the prior of the random forest model. The prior, unless
modified with statification is the target class distribution. Default majority voting lines would run
from middle to the corners.
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Author(s)

Soren Havelund Welling

Examples

## Not run:
library(randomForest)
library(forestFloor)
require(utils)

data(iris)

X = iris[,!names(iris) %in% "Species"]
Y = iris[,"Species"]
as.numeric(Y)
rf.test42 = randomForest(X,Y,keep.forest=TRUE,
replace=FALSE,keep.inbag=TRUE,samp=15,ntree=100)

ff.test42 = forestFloor(rf.test42,X,calc_np=FALSE,binary_reg=FALSE)

plot(ff.test42,plot_GOF=TRUE,cex=.7,
colLists=list(c("#FF0000A5"),

c("#00FF0050"),
c("#0000FF35")))

show3d(ff.test42,1:2,3:4,plot_GOF=TRUE)

#plot all effect 2D only
pars = plot_simplex3(ff.test42,Xi=c(1:3),restore_par=FALSE,zoom.fit=NULL,
var.col=NULL,fig.cols=2,fig.rows=1,fig3d=FALSE,includeTotal=TRUE,auto.alpha=.4
,set_pars=TRUE)

pars = plot_simplex3(ff.test42,Xi=0,restore_par=FALSE,zoom.fit=NULL,
var.col=alist(alpha=.3,cols=1:4),fig3d=FALSE,includeTotal=TRUE,
auto.alpha=.8,set_pars=FALSE)

for (I in ff.test42$imp_ind[1:4]) {
#plotting partial OOB-CV separation(including interactions effects)
#coloured by true class
pars = plot_simplex3(ff.test42,Xi=I,restore_par=FALSE,zoom.fit=NULL,
var.col=NULL,fig.cols=4,fig.rows=2,fig3d=TRUE,includeTotal=FALSE,label.col=1:3,
auto.alpha=.3,set_pars = (I==ff.test42$imp_ind[1]))

#coloured by varaible value
pars = plot_simplex3(ff.test42,Xi=I,restore_par=FALSE,zoom.fit=TRUE,
var.col=alist(order=FALSE,alpha=.8),fig3d=FALSE,includeTotal=(I==4),
auto.alpha=.3,set_pars=FALSE)

}

## End(Not run)
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print.forestFloor print summary of forestFloor.Object

Description

This function simply states the obvious and returns the elements inside the object list.

Usage

## S3 method for class 'forestFloor_regression'
print(x,...)

## S3 method for class 'forestFloor_multiClass'
print(x,...)

Arguments

x x also abbreviated ff, forestFloor_Object the output from the forestFloor func-
tion

... ... other arguments passed to generic print function

Details

prints short help text for usage of a forestFloor_object

Author(s)

Soren Havelund Welling

Examples

## Not run:
#simulate data
obs=1000
vars = 6
X = data.frame(replicate(vars,rnorm(obs)))
Y = with(X, X1^2 + sin(X2*pi) + 2 * X3 * X4 + 0.5 * rnorm(obs))

#grow a forest, remeber to include inbag
rfo=randomForest::randomForest(X,Y,keep.inbag=TRUE)

#compute topology
ff = forestFloor(rfo,X)

#print forestFloor
print(ff)

## End(Not run)
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recTree recursiveTree: cross-validated feature contributions

Description

internal C++ functions to compute feature contributions for a random Forest

Usage

recTree( vars, obs, ntree, calculate_node_pred, X,Y,majorityTerminal, leftDaughter,
rightDaughter, nodestatus, xbestsplit, nodepred, bestvar,
inbag, varLevels, OOBtimes, localIncrements)

multiTree(vars, obs, ntree, nClasses, X,Y,majorityTerminal, leftDaughter,
rightDaughter, nodestatus, xbestsplit, nodepred, bestvar,
inbag, varLevels, OOBtimes, localIncrements)

Arguments

vars number of variables in X

obs number of observations in X

ntree number of trees starting from 1 function should iterate, cannot be higher than
columns of inbag

nClasses number of classes in classification forest
calculate_node_pred

should the node predictions be recalculated(true) or reused from nodepred-matrix(false
& regression)

X X training matrix

Y target vector, factor or regression
majorityTerminal

bool, majority vote in terminal nodes? Default is FALSE for regression. Set
only to TRUE when binary_reg=TRUE.

leftDaughter a matrix from a the output of randomForest rf$forest$leftDaughter the node.number/row.number
of the leftDaughter in a given tree by column

rightDaughter a matrix from a the output of randomForest rf$forest$rightDaughter the node.number/row.number
of the rightDaughter in a given tree by column

nodestatus a matrix from a the output of randomForest rf$forest$nodestatus the nodestatus
of a given node in a given tree

xbestsplit a matrix from a the output of randomForest rf$forest$xbestsplit. The split point
of numeric variables or the binary split of categorical variables. See help file of
randomForest::getTree for details of binary expansion for categorical splits.

nodepred a matrix from a the output of randomForest rf$forest$xbestsplit. The inbag tar-
get average for regression mode and the majority target class for classification
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bestvar a matrix from a the output of randomForest rf$forest$xbestsplit the inbag target
average for regression mode and the majority target class for classification

inbag a matrix as the output of randomForest rf$inbag. Contain counts of how many
times a sample was selected for a given tree.

varLevels the number of levels of all variables, 1 for continuous or discrete, >1 for categor-
ical variables. This is needed for categorical variables to interpret binary split
from xbestsplit.

OOBtimes number of times a certain observation was out-of-bag in the forest. Needed to
compute cross-validated feature contributions as these are summed local incre-
ments over out-of-bag observations over features divided by this number. In pre-
vious implementation(rfFC), articles(see references) feature contributions are
summed by all observations and is divived by ntrees.

localIncrements

an empty matrix to store localIncrements during computation. As C++ function
returns, the input localIncrement matrix contains the feature contributions.

Details

This is function is excuted by the function forestFloor. This is a c++/Rcpp implementation comput-
ing feature contributions. The main differences from this implementation and the rfFC-package(Rforge),
is that these feature contributions are only summed over out-of-bag samples yields a cross-validation.
This implementation allows sample replacement, binary and multi-classification.

Value

no output, the feature contributions are writtten directly to localIncrements input

Author(s)

Soren Havelund Welling

References

Interpretation of QSAR Models Based on Random Forest Methods, http://dx.doi.org/10.1002/minf.201000173
Interpreting random forest classification models using a feature contribution method, http://arxiv.org/abs/1312.1121

show3d make forestFloor 3D-plot of random forest feature contributions

Description

2 features features(horizontal XY-plane) and one combined feature contribution (vertical Z-axis).
Surface response layer will be estimated(kknn package) and plotted alongside the data points. 3D
graphic device is rgl. Will dispatch methods show3d.forestFloor_regression for regression and
show3d_forestFloor_multiClass for classification.
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Usage

## S3 method for class 'forestFloor_regression'
show3d(

x,
Xi = 1:2,
FCi = NULL,
col = "#12345678",
plotTest = NULL,
orderByImportance = TRUE,
surface=TRUE,
combineFC = sum,
zoom=1.2,
grid.lines=30,
limit=3,
cropPointsOutSideLimit = TRUE,
kknnGrid.args = alist(),
plot.rgl.args = alist(),
surf.rgl.args = alist(),
user.gof.args = alist(),
plot_GOF = TRUE,
...)

## S3 method for class 'forestFloor_multiClass'
show3d(

x,
Xi,
FCi=NULL,
plotTest = NULL,
label.seq=NULL,
kknnGrid.args=list(NULL),
plot.rgl.args=list(),
plot_GOF=FALSE,
user.gof.args=list(NULL),
...)

Arguments

x forestFloor" class object

Xi integer vector of length 2 indices of feature columns

FCi integer vector of length 1 to p variables indices of feature contributions columns

col a colour vector. One colour or colour palette(vector).

plotTest NULL(plot by test set if available), TRUE(plot by test set), FALSE(plot by
train), "andTrain"(plot by both test and train)

orderByImportance

should indices order by ’variable importance’ or by matrix/data.frame order?

surface should a surface be plotted also?
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combineFC a row function applied on selected columns(FCi) on $FCmatrix or $FCarray.
How should feature contributions be combined? Default is sum.

zoom grid can be expanded in all directions by a factor

grid.lines how many grid lines should be used. Total surface anchor points in plot is
grid.lines^2. May run slow above 200-500 depending on hardware.

limit a number. Sizing of grid does not consider outliers outside this limit of e.g. 3
SD deviations univariately.

cropPointsOutSideLimit

#if points exceed standard deviation limit, they will not be plotted

kknnGrid.args argument list, any possible arguments to kknnkknn
These default wrapper arguments can hereby be overwritten:
wrapper = alist( formula=fc~., # do not change
train=Data, # do not change
k=k, # integer < n_observations. k>100 may run slow.
kernel="gaussian", #distance kernel, other is e.g. kernel="triangular"
test=gridX #do not change
)
see kknnkknn to understand parameters. k is set by default automatically to a
half times the square root of observations, which often gives a reasonable bal-
ance between robustness and adeptness. k neighbors and distance kernel can be
changed be passing kknnGrid.args = alist(k=5,kernel="triangular",scale=FALSE),
hereby will default k and default kernel be overwritten. Moreover the scale
argument was not specified by this wrapper and therefore not conflicting, the
argument is simply appended.

plot.rgl.args pass argument to rgl::plot3d, can override any argument of this wrapper, de-
fines plotting space and plot points. See plot3d for documentation of graphical
arguments.
wrapper_arg = alist( x=xaxis, #do not change, x coordinates
y=yaxis, #do not change, y coordinates
z=zaxis, #do not change, z coordinates
col=col, #colouring evaluated within this wrapper function
xlab=names(X)[1], #xlab, label for x axis
ylab=names(X)[2], #ylab, label for y axis
zlab=paste(names(X[,FCi]),collapse=" - "), #zlab, label for z axis
alpha=.4, #points transparency
size=3, #point size
scale=.7, #z axis scaling
avoidFreeType = T, #disable freeType=T plug-in. (Postscript labels)
add=FALSE #do not change, should graphics be added to other rgl-plot?
)

surf.rgl.args wrapper_arg = alist( x=unique(grid[,2]), #do not change, values of x-axis
y=unique(grid[,3]), #do not change, values of y-axis
z=grid[,1], #do not change, response surface values
add=TRUE, #do not change, surface added to plotted points
alpha=0.4 #transparency of surface, [0;1]
)
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see rgl::persp3d for other graphical arguments notice the surface is added onto
plotting of points, thus can e.g. labels not be changed from here.

label.seq a numeric vector describing which classes and in what sequence to plot. NULL
is all classes ordered is in levels in x$Y of forestFloor_mulitClass object x.

user.gof.args argument list passed to internal function ff2, which can modify how goodness-
of-fit is computed. Number of neighbors and kernel can be set manually with
e.g. list(kmax=40,kernel="gaussian"). Default pars should work already in most
cases. Function ff2 computed leave-one-out CV prediction the feature contribu-
tions from the chosen context of the visualization.

plot_GOF Boolean TRUE/FALSE. Should the goodness of fit be computed and plotted is
main of 3D plot? If false, no GOF input pars are useful.

... not used at the moment

Details

show3d plot one or more combined feature contributions in the context of two features with points
representing each data point. The input object must be a "forestFloor_regression" or "forest-
Floor_multiClass" S3 class object , and should at least contain $X the data.frame of training data,
$FCmatrix the feature contributions matrix. Usually this object are formed with the function forest-
Floor having a random forest model fit as input. Actual visualization differs for each class.

Value

no value

Author(s)

Soren Havelund Welling

Examples

## Not run:
## avoid testing of rgl 3D plot on headless non-windows OS
## users can disregard this sentence.
if(!interactive() && Sys.info()["sysname"]!="Windows") skipRGL=TRUE

library(forestFloor)
library(randomForest)
#simulate data
obs=2500
vars = 6

X = data.frame(replicate(vars,rnorm(obs)))
Y = with(X, X1^2 + sin(X2*pi) + 2 * X3 * X4 + 1 * rnorm(obs))

#grow a forest, remeber to include inbag
rfo=randomForest(X,Y,keep.inbag = TRUE,sampsize=1500,ntree=500)

#compute topology
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ff = forestFloor(rfo,X)

#print forestFloor
print(ff)

#plot partial functions of most important variables first
plot(ff)

#Non interacting functions are well displayed, whereas X3 and X4 are not
#by applying different colourgradient, interactions reveal themself
Col = fcol(ff,3)
plot(ff,col=Col)

#in 3D the interaction between X3 and X reveals itself completely
show3d(ff,3:4,col=Col,plot.rgl=list(size=5))

#although no interaction, a joined additive effect of X1 and X2
Col = fcol(ff,1:2,X.m=FALSE,RGB=TRUE) #colour by FC-component FC1 and FC2 summed
plot(ff,col=Col)
show3d(ff,1:2,col=Col,plot.rgl=list(size=5))

#...or two-way gradient is formed from FC-component X1 and X2.
Col = fcol(ff,1:2,X.matrix=TRUE,alpha=0.8)
plot(ff,col=Col)
show3d(ff,1:2,col=Col,plot.rgl=list(size=5))

## End(Not run)

vec.plot Compute and plot vector effect characteristics for a given multivariate
model

Description

vec.plot visualizes the vector effect characteristics of a given model. Geometrically it corresponds
to a specific 2D or 3D slice of a higher dimensional mapping structure. One variable (2D plot) or
two variables (3D plot) are screened within the range of the training data, while remaining variables
are fixed at the univariate means (as default). If remaining variables do not interact strongly with
plotted variable(s), vec.plot is a good tool to break up a high-dimensional model structure into
separate components.

Usage

vec.plot(model,X,i.var,grid.lines=100,VEC.function=mean,
zoom=1,limitY=F,moreArgs=list(),...)
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Arguments

model model_object which has a defined method predict.model, which can accept ar-
guments as showed for randomForest e.g. library(randomForest) model = ran-
domForest(X,Y) predict(model,X)
where X is the training features and Y is the training response vector(numeric)

X matrix or data.frame being the same as input to model

i.var vector, of column_numbers of variables to scan. No plotting is available for
more than two variables.

grid.lines scalar, number of values by each variable to be predicted by model. Total num-
ber of combinations = grid.lines^length(i_var).

VEC.function function, establish one fixed value for any remaining variables(those not chosen
by i.var). Default is to use the mean of variables.

zoom scalar, number defining the size.factor of the VEC.surface compared to data
range of scanned variables. Bigger number is bigger surface.

limitY boolean, if TRUE Y-axis is standardized for any variable. Useful for composite
plots as shown in example.

moreArgs any lower level graphical args passed to rgl::surface3d or points depending on
number of variables(length of i.var)

... any lower level graphical args passed to rgl::plot3d or plot depending on number
of variables(length of i.var)

Details

vec.plot visualizes the vector effect characteristics of a given model. One(2D plot) or two(3D plot)
variables are screened within the range of the training data, while remaining variables are fixed
at the univariate means of each them(as default). If remaining variables do not interact strongly
with plotted variable(s), vec.plot is a good tool to break up a high-dimensional model topology in
separate components.

Value

no value

Author(s)

Soren Havelund Welling

Examples

## Not run:
## avoid testing of rgl 3D plot on headless non-windows OS
## users can disregard this sentence.
if(!interactive() && Sys.info()["sysname"]!="Windows") skipRGL=TRUE
library(randomForest)
library(forestFloor)

#simulate data
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obs=2000
vars = 6
X = data.frame(replicate(vars,rnorm(obs)))
Y = with(X, X1^2 + 2*sin(X2*pi) + 2 * X3 * (X4+.5))
Yerror = 1 * rnorm(obs)
var(Y)/var(Y+Yerror)
Y= Y+Yerror

#grow a forest, remeber to include inbag
rfo2=randomForest(X,Y,keep.inbag=TRUE,sampsize=800)

#plot partial functions of most important variables first
pars=par(no.readonly=TRUE) #save previous graphical paremeters
par(mfrow=c(2,3),mar=c(2,2,1,1))
for(i in 1:vars) vec.plot(rfo2,X,i,zoom=1.5,limitY=TRUE)
par(pars) #restore

#plot partial functions of most important variables first
for(i in 1:vars) vec.plot(rfo2,X,i,zoom=1.5,limitY=TRUE)

#plotvariable X3 and X4 with vec.plot
Col = fcol(X,3:4)
vec.plot(rfo2,X,3:4,zoom=1,grid.lines=100,col=Col)

## End(Not run)

Xtestmerger merge training set (X) and (test) set

Description

... and expand inbag matrix and training target vector to compute FC for a test set.

Usage

Xtestmerger(X,test,inbag=NULL,y=NULL)

Arguments

X X , training set data.frame used to train a random forest model
test test, a test set data.frame which feature contributions should be computed for
inbag matrix of inbag sampling to expande with training set, which is set OOB for any

tree
y random forest target vector, which is set to first value for observation

Details

Xtestmerger is a low-level function to merge a test set with X training set. There can be no names,
column class, column number mismatch. Moreover any level in any factor of test must be present
in X, as RF/forestFloor cannot score a unknown factor level / category.
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Value

List of merged bigX, bigInbag and bigy. The two latter may be NULL if not provided.

Author(s)

Soren Havelund Welling

Examples

library(randomForest)
library(forestFloor)
#X y could be a training set
X = data.frame(numeric = c(1,5,2,7,-4.3),

factor1 = factor(c("jim","freddy","marley","marley","alfred")),
factor2 = factor(c("jill","ann","liz","leila","vicky")))

y = factor(1:5)
set.seed(1)
rf = randomForest(X,y,keep.inbag=TRUE,ntree=7)
#should not raise any error
test = data.frame(numeric = rnorm(5),

factor1 = factor(c("jim","jim","jim","freddy","freddy")),
factor2 = factor(c("jill","jill","vicky","leila","vicky"))
)

out = Xtestmerger(X,test,inbag=rf$inbag,y=y)
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