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Summary (English)

This thesis deals with the development of new mathematical models that sup-
port the decision-making processes of market players. It addresses the problems
of demand-side bidding, price-responsive load forecasting and reserve determi-
nation. From a methodological point of view, we investigate a novel approach
to model the response of aggregate price-responsive load as a constrained op-
timization model, whose parameters are estimated from data by using inverse
optimization techniques.

The problems tackled in this dissertation are motivated, on one hand, by the
increasing penetration of renewable energy production and smart grid technolo-
gies in power systems, that is expected to continue growing in the coming years.
Non-dispatchable electricity generation cannot ensure a certain production at all
times, since it depends on meteorological factors. Also, smart grid technologies
are affecting the consumption patterns that the load traditionally exhibited. On
the other hand, this thesis is motivated by the decision-making processes of mar-
ket players. In response to these challenges, this thesis provides mathematical
models for decision-making under uncertainty in electricity markets.

Demand-side bidding refers to the participation of consumers, often through a
retailer, in energy trading. Under the smart-grid paradigm, the demand bids
must reflect the elasticity of the consumers to changes in electricity price. Tra-
ditional forecasting models are typically not able to reflect this elasticity, hence
we propose two novel approaches to estimate market bids. Both approaches
are data-driven and take into account the uncertainty of future factors, as, for
example, price. In both cases, demand-side bids that comprise a price-energy
term decrease the expected imbalances and also increase the profit of retailers
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participating in electricity markets.

In the field of load forecasting, this thesis provides a novel approach to model
time series and forecast loads under the real-time pricing setup. The relation-
ship between price and aggregate response of the load is characterized by an
optimization problem, which is shaped by a set of unknown parameters. Such
parameters are estimated from data by using an inverse optimization framework.
The usability of the proposed method is studied and we conclude that inverse-
optimization-based modeling is a computationally attractive method that out-
performs the forecasting capabilities of traditional time series models.

Regarding the reserve determination, the special characteristics of the Danish
power system do not allow for co-optimizing the unit commitment and reserve
requirements. Hence, we propose a probabilistic framework, where the reserve
requirements are computed based on scenarios of wind power and load forecast
errors and power plant outages. The solution of the stochastic optimization
models increases the safety of the overall system while decreases the associated
reserve costs, with respect to the method currently used by the Danish TSO.



Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in partial fulfil-
ment of the requirements for acquiring a Ph.D. degree.

The thesis deals with three decision-making problems in the context of electricity
markets and smart grids: demand-side bidding, price-responsive load forecasting
and reserve determination. The developed solutions comprise techniques from
time series analysis, stochastic optimization and inverse optimization. Various
evaluation studies consider the positive impact of the proposed approaches.

The thesis consists of a summary report and four research papers, documenting
the research conducted over the period of January 2013 to July 2016.

Kgs. Lyngby, 29-July-2016

Javier Sáez Gallego
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Chapter 1

Introduction

The problems solved in this thesis are ultimately motivated by the increas-
ing share of electricity produced by renewable means, such as wind and solar
power production. Traditionally, the supply in power systems has been provided
mostly by nuclear, coal, or gas plants. These types of plants are dispatchable,
meaning that their output can be scheduled and modified as required. Renew-
able energy, on the other hand, is a non-dispatchable source of energy, since its
production is subject to meteorological factors.

As the share of electricity produced by renewables increases, several challenges
must be faced. Amongst the vast number of problems to be solved in relation to
the integration of renewable energy in power systems [1], this thesis tackles three
of them. The three problems are optimal bidding, load forecasting, and reserve
determination. They relate to decision-making in electricity markets, and share
the common objective of finding the most optimal decision under uncertain
future factors. Examples of such uncertain factors are the load and the price.
The need for making a decision now, whose future effect is only partially known
in the future, calls for advanced methodologies as the ones elaborated in this
thesis.



4 Introduction

1.1 Thesis Objectives and Contributions

In this dissertation, we start by giving an introduction to the different electricity
markets in the Nordic countries, focusing specifically on the Danish case. The
functioning of the markets and the bidding process play an important role in the
integration of renewable energy, since all players must interact with electricity
markets to buy or sell electricity. Paper A deals with reserve capacity markets
and the optimal reserve schedule. The integration of demand response in current
power systems is also analyzed. Papers B, C and D of this thesis tackle two
problems that arise in the case where demand response and dynamic pricing
coexist.

From a methodological point of view, the objective of this thesis is to develop
new models that combine concepts from time series analysis and operations
research to support the decision making. The summary report of this thesis
provides an overview of the mathematical tools used. One of the main contri-
butions is the use of a constrained optimization model to characterize the price
response of the aggregate load. This novel concept is proved to be relevant in
Papers B and D of this dissertation. Stochastic optimization models are also
provided in Papers A and C for reserve determination and optimal bidding,
respectively. In general, the developed methods represent a mixture between
operations research models and time series models.

Application-wise, the objectives and contributions of this thesis are threefold:

• Optimal bidding in electricity markets. We consider the case where
consumers of electricity are equipped with a smart grid meter and commu-
nication devices that receive a price associated with a period of time. An
aggregator or retailer buys energy from the wholesale electricity market on
behalf of its pool of consumers. The aggregator must submit a bid to the
market that reflects the response of the pool, specially to changes in price.
In this thesis, we tackle the bidding problem, and propose two solutions to
it. In Paper B, the optimal bidding problem is based on the minimization
of expected imbalances, while in Paper C the bids are used to maximize the
aggregator’s profit.

• New load forecasting techniques under the smart grid paradigm.
We develop a novel methodology to forecast the aggregate load of a pool of
price-responsive consumers. By price-responsive consumers, we understand
consumers that change their profile of consumption depending on the price
of electricity during the considered period. An example of such a consumer
is a household with an energy management control system with a dynamic
pricing contract. The proposed methodology is based on inverse optimization,
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and its usefulness is benchmarked against traditional time series forecasting
models. The work is presented in Paper D.

• Reserve determination. One of the challenges that arise when managing
power systems with high penetration of renewable energy production is the
determination of electricity reserves. In brief, reserves are “extra” capacity
that is ready to be activated if necessary. A well-known rule, called n-1
rule, sets the minimum amount of manual reserves to be the capacity of
the largest online generator. With an increased penetration of renewable
energy, deterministic rules might not be the most optimal. The solution
proposed in Paper A leverages the cost of not supplying the load versus the
cost of scheduling reserves. The methodology considers the uncertainty of
wind production, power plant outages and load, to provide a schedule for the
optimal level of reserves.

1.2 Thesis Structure

This thesis is structured as follows.

Part I is subdivided in chapters and consists on a summary report outlining
the main contributions of this thesis. Chapter 2 provides an overview of the
electricity markets, focused on the case of the Nordic Countries and Denmark.
Chapter 3 presents the mathematical tools that have been developed and used
in this thesis. In Chapter 4, the applications problems are presented with the
corresponding research results. Chapter 5 provides conclusions and perspectives.

Part II consists of the publications that contribute to this thesis, summarized
as follows:

Paper A is a journal article published in Energy. It consists of a stochastic
optimization model to optimally schedule the electricity reserves in the
western power system area of Denmark, based on the uncertainty related
to the load, the wind power production, and to the outages of power plants.

Paper B is a journal article published in IEEE Transactions on Power Sys-
tems. An inverse optimization method is used for estimating the optimal
complex market bid, relative to a pool of price-responsive consumers.

Paper C is a journal article submitted to IEEE Transactions on Power Sys-
tems. This publication presents both analytical and computational bid-
ding models for a retailer that aggregates users that respond to dynamic
prices.
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Paper D has been submitted for consideration to IEEE Transactions on
Smart Grid. It presents a practical solution method for generalized in-
verse optimization problems, which is then applied to short-term load
forecasting. A case study based on the simulation of the price-response
behavior of a pool of buildings equipped with a heat pump is built and
analyzed.



Chapter 2

Electricity Markets

This chapter starts by providing with an overview of the special characteristics of
electricity that make it different to other types of goods, serving as a motivation
for the need of electricity markets. Then, in Section 2.2, we introduce the
structure of the electricity markets in the Nordic countries, focusing in the
specific case of Denmark. We give a short introduction to the day-ahead market
and the real-time market, also called Elspot and balancing market. Furthermore,
in Section 2.2.1, we motivate the need for electricity reserves and present the
current regulations in this regard. Finally, in Section 2.3, we introduce the
concept of demand response and the role of the aggregator.

2.1 The Characteristics of Electricity

Electricity is one of the most necessary elements in a contemporary society. It
is used by millions of people in their houses and offices to empower appliances,
cool down or heat the air, by factories to power up their production machinery,
transport goods, and power up computers, amongst other uses. As most of
the commodities, as for example food and electronic objects, consumers and
producers of electricity buy and sell electricity through a market. However, the
characteristics of the electricity markets are different to the markets where other
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goods are traded. These differences are caused by the nature of the electricity
itself, which are summarized as follows:

1. The physical system works much faster than any other market. Electricity
can be transported long distances in a much faster way than other com-
modities. Moreover, it requires a special and expensive infrastructure of
cables and transformers.

2. The energy produced by power plants is pooled on the way to the con-
sumer, making the consumer unable to determine from which power plant
the electricity comes from.

3. The electricity must be supplied at the same time when it is consumed.
This also means that the production and consumption must be the same
at all times.

4. The demand has been traditionally very inelastic, implying that consumers
generally do not change their consumption depending on the price. The
first reason why this occurs is because electricity dot not have a direct
substitute product that consumers can switch to if electricity becomes too
expensive. The second reason is that small consumers are traditionally
not affected by prices changes instantly. This fact could change in the
future with the implementation of smart grid technologies.

The need for an organized electricity market structure arises mostly by the fact
that, for technical reasons, consumers cannot determine who produced their
electricity. Similarly, suppliers cannot determine who is consuming their pro-
duction. A market managed by an independent entity allows to exchange pay-
ments and ensure secure and reliable supply of and demand for electricity. In
the remaining of this chapter we provide an overview of the current structure
in Denmark.

2.2 Market Structure in Denmark

Denmark has been integrated into the Nordic Power exchange area since 2000,
trading energy through the Nord Pool Spot market [2] since then. The Nord
Pool Spot AS market is an organization that offers both day-ahead and in-
traday markets to its members, 380 companies from 20 countries. Nord Pool is
owned by the Nordic transmission system operators from Norway (Statnett SF),
Sweden (Svenska kraftnät), Finand (Fingrid Oy), Demark (Energinet.dk), and
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the Baltic transmission system operators (Elering, Litgrid and Augstsprieguma
tikls).

Denmark is split into two regions. The West Denmark grid area, also called
DK1, covers the Jutland peninsula, Fyn island, and the rest of the islands to
the west of the Great Belt. The East Denmark area, also called DK2, covers the
island to the East of Fyn. A map illustrating the grid areas is shown in Figure
2.1

Depending on the time when the electricity is traded, one could distinguish be-
tween several electricity markets. The market with the longest trading horizon
is the financial market, arranged by Nasdaq Commodities [4]. Financial con-
tracts are used for price hedging and risk management, and there is no physical
delivery for financial power market contracts, only cash settlement. Moreover,
technical conditions such as grid congestion and access to capacity are not taken
into consideration when entering financial contracts.

After the financial markets are closed, the next market to be cleared is the
reserve capacity market, where players receive payments for having various types
of reserve capacity available in face of contingency. This market is introduced
below in Section 2.2.1. The next market to be cleared is the day-ahead market,
also called Elspot, where physical power is traded on a daily basis. The day-
ahead market is explained in Section 2.2.2. On a shorter horizon, at the intraday
market or Elbas market, buyers and sellers can trade volumes closer to real time,
in order to bring the market back in balance, as explained in Section 2.2.3. The
regulating or real-time market, introduced in Section 2.2.4, closes 45 minutes
before operational time and is the last market before the electricity is actually
exchanged.

2.2.1 Reserve Capacity Market

The reserve capacity market guarantee that enough back-up generation is avail-
able in case of equipment failure, drastic fluctuations of production from inter-
mittent sources and sudden demand changes [5]. In Denmark, the Transmission
System Operator, namely Energinet.dk, is responsible for organizing reserve
capacity markets. Energinet.dk pays the providers of the reserve services and
recover the cost from the users trough taxes. Producers are paid for the avail-
ability of the energy, even though they might not be used at the operational
time. At the market closure, the TSO collects bids from producers willing to
provide reserve capacity, and selects them by a cost merit-order procedure

The reserve capacity market is settled independently of and before the day-
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Figure 2.1: Map of Denmark. The West Denmark DK1 gird region is high-
lighted in orange while East Denmark or DK2 is colored in green.
The main transmission lines and power plants are included as well
[3]
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ahead energy market, implying that, at the moment of scheduling reserves, no
information about which units will be online is known. Currently, the reserve
levels in Denmark are computed by deterministic rules such as allocating an
amount of reserve equal to the capacity of the largest unit online, the so-called
n-1 rule [6, 7]. In a system with high penetration of renewable intermittent
production, such deterministic rules might not be the most optimal. This issue
has been addressed in Article A of this thesis.

Depending on certain technical conditions, Energinet.dk buys several kinds of
reserves: primary reserves, secondary reserves, manual reserves, black-start ca-
pability, short-circuit power, reactive reserves and voltage control reserves. All
those types are commonly named ancillary services. The scope of this dis-
sertation includes primary, secondary, and manual reserves. Their technical
differences, as explained in [7], are outlined in the subsections below.

2.2.1.1 Primary Reserves

The primary reserve regulation ensures that the balance between production
and consumption is restored after a deviation from the 50Hz of frequency. The
first half of the reserve must be activated within 15 seconds, while the second
half must be fully supplying within 30 seconds. The reserve must be supplied for
maximum 15 minutes. Energinet.dk buys two types of primary reserve, upwards
regulation power and downward regulation power, in case of under frequency or
over frequency respectively. An auction is held once a day for the coming day
of operation. Bids are sent before 15:00, stating an hour-by-hour volume and
price having the 24-hour period divided into six equally sized blocks. In 2011
the quantity of the primary reserves sums up to +/- 27MW, having the option
of buying +/-90MW from other European transmission system operator as well
as from East Denmark area, the Nordic countries and Germany.

2.2.1.2 Secondary Reserves

The secondary reserve serves two proposes. One is to release the primary reserve
which has been activated and the other is to restore any imbalances on the inter-
connections to follow the agreed plan. The requested energy must be supplied
within 15 minutes and it can be supplied by a combination of unit in operation
and fast-start units. It consists of upward and downward regulation that can be
provided by several of production or consumption units. Energinet.dk currently
buys approximately +/- 90MW on a monthly basis, based on a recommendation
from the ENTSO-E RG Continental Europe organization.
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2.2.1.3 Manual Reserves

The manual reserves are sometimes referred as tertiary reserves, and their pur-
pose is to relieve the secondary reserve in the event of minor imbalances, en-
suring that the demand is fulfilled in the event of outages, restrictions affecting
productions plants and international connections. Manual reserves are typically
less costly than secondary reserves. The reserve must be supplied in full within
15 minutes of activation, so often it is players with fast start units such as gas
turbines or local CHP plants who can provide this reserve.

Energinet.dk activates the reserve by manually ordering upward and downward
regulation to the suppliers. The method used to determine the requirements
for reserve is known as the n-1 rule: setting the minimum amount of manual
reserves to be the capacity of the largest online generator.

2.2.2 Day-ahead market

The day-ahead market, also known as Elspot market, allows Nordic market
participants trade power contracts for next-day physical delivery. At 12:00 CET
each day, bids for either purchase or sale are collected and at 12:42 CET, or later,
the hourly prices are announced to the market participants. From 00:00 CET
of the next day, power contracts are physically delivered and power is provided
to the buyer.

Each participant submits volume bids to the market in MWh. There are four
different types of bids, summarized as follows:

1. Single hour order. The member specifies the purchase and/or sales
volume for each hour. The member can submit two different types of
single-hour bid. One is a price independent order, where the member
receives the specified volume for all hours. The other type of hourly bid
is price dependent, and may consist of up to 62 price steps in addition to
the current ceiling and floor price limits set by Nord Pool Spot. This is
the most flexible product and, in fact, the largest share of the bids belong
to this group.

2. Block order. It consists of a specified volume and price for at least three
consecutive hours within the same day. These bids can be fully accepted,
fully rejected or partially accepted, depending on the specified constraints
from the supplier.
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Figure 2.2: Aggregate supply and demand curves, taken from [2].

3. Exclusive group. It is a cluster of sell and/or buy blocks out of which
only one block can be activated.

4. Flexible order. The user can define which energy volume they would
be willing to sell or buy at a specified order price limit. In addition to
the volume and the price limit, the duration and time interval within the
delivery day must be specified.

At 12:00 CET, Nordpool collects all the bids and aggregates them into a supply
and a demand curve. An example of these curves is depicted in Figure 2.2. The
system price is calculated as the intersection between the supply and demand
curve.

Whenever there is congestions in the transmission lines, the system price is not
applied to all areas. In this case, some areas will sell more and purchase less,
while others areas will do the opposite. The different prices are calculated by
aggregating the curves in each areas and hence obtaining a new equilibrium in
each one.

2.2.3 Elbas

Elbas is a continuous market where power trading takes place until one hour
before the power is delivered. Members submit bids stating how much power
they want to sell and buy and at what price. Trading is then set based on a
first-come, first-served basis between a seller and a buyer. West Denmark joined
this market in 2008. Since energy already traded on the Elspot market is higher
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prioritized than energy traded on the Elbas market, transactions between areas
where transmission capacities are already fully utilized are not allowed.

This market is specially interesting for stochastic producers, as wind power pro-
ducers, and for retailers of aggregate demand response unit, because the trading
horizon is shorter than for the day-ahead market. The shorter horizon allows
players to use more accurate information about the actual volume compare to
what they know one day in advance.

2.2.4 Balancing Market

The Balancing market, sometimes referred as real-time market, is cleared up
to 45 minutes prior to the upcoming delivery hour [8]. It allows producers
and consumer to alter their plans with a very short notice. The balancing
market is divided in two submarkets: the regulating power market, and the
balancing power market. Regulating power is bought or sold by Energinet.dk,
according to the regulating bids submitted by the players. The balancing market
happens after the delivery hour, and imbalances have been quantified. Then,
Energinet.dk buys/sells balancing power to neutralize imbalance incurred by the
players.

In the regulating market, we distinguish between two types of bids. Up-regulating
bids refer to the increase of production or, similarly, decrease of consumption.
Down-regulating bids, on the other hand, refer to the decrease of production or
the increase of consumption. Player must be able to fully activate a given bid
in maximum 15 minutes from receipt of the activation order.

The price in the regulating market is determined according to the day-ahead
price, in a way that buying/selling regulating volume is always more expen-
sive/cheaper than doing so in day-ahead price. This is commonly known as
two-price market, and it is designed in order to encourage scheduling one’s
production or consumption as much in advance as possible. Other regulating
markets around the world, as the one organized by the California Independent
System Operator [9], are one-price market allowing for players to arbitrage.
This case has been studied in Paper C of this thesis.
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2.3 Demand Response

The way the power system is operated traditionally can shortly be characterized
as consumption-based production. This means that the production is adjusted
to the needs of the consumers, so that that power plants increase or decrease
their production according to the load. However, in a future scenario where the
share of electricity produced by non-dispatchable renewable resources increase
drastically, the traditional consumption-based production will be much more
costly to achieve, as more fast-start power plants will be needed to counteract
the imbalances of the wind and solar producers. An alternative solution is
to switch the strategy from a consumption-based production to a production-
based consumption. This commonly called Demand-Side Management (DSM)
or Demand Response. Under the demand-response setup, consumers, together
with small producing units, are called Distributed Energy Resources (DER).

Demand response can be defined as the intentional alteration of the power con-
sumption profile by an end-user in response to an external stimulus [10]. Often,
it is the TSO, or another market entity, that manages the stimulus in order to
achieve a desired goal. In general, the market entity that aggregates the DERs
is called aggregator and its goal could be, for example, to shift, curtail, or defer
load.

Depending on the communication flow between aggregator and the DERs, we
differentiate between two ways of managing a portfolio of units:

• Direct control. The aggregator sends the DERs a consumption schedule
and expects the DERs to follow it. In return, the DER sends their consump-
tion plan. On-line consumption data is observed. The consumer is rewarded
economically when participating in such demand response programs.

• Indirect control. The aggregator decides on a price to bill its portfolio of
DERs and communicates it to each of them in advance or online. Afterwards,
each DER decides on how much to consume and when depending on the
billing price and also on their own preferences.

Papers B, C and D of this thesis deal with the latter case. These papers tackle
some of the problems that arise by the fact that DER are flexible, meaning
that they are capable of modifying their consumption depending on the price
of electricity. The flexibility of a DER is understood as its willingness to shift
their consumption from high priced hours to lower priced hours.

Generally, the flexibility of each DER is too small to provide a service to the
electric power system. However, by aggregating several DERs, it is possible
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Figure 2.3: Representation of the role of the aggregator as a link between
markets and DERs.

to reach volumes large enough for bidding into the markets. This concept is
commonly known as Virtual Power Plant (VPP), as it enables small DERs to
provide grid services similar to conventional power plants [11]. The aggregator
must then interact with the electricity markets on behalf of the clients in order
to provide for energy. As a summary, the role of the aggregator is depicted
in Figure 2.3. On the one hand, the aggregator buys and sells electricity from
the markets. On the other, it sells or buy from the DERs. Depending on the
characteristics of the portfolio of DERs and the control strategy, the aggregator
can interact with one or many markets.

The work presented in this thesis closely relates to the decision-making process
of an aggregator of price-responsive units. Papers B and C deal with the bidding
problem of an aggregator, while Paper D deal with forecasting the aggregate load
of a price-response pool of DERs.



Chapter 3

Mathematical Foundations

In this chapter we give an introduction to the mathematical models used to
solve the challenging applications presented in Chapter 4.

The mathematical tools are divided into two main categories. In the first cate-
gory, explained in Section 3.1, we present some of the time-series related models
used for this dissertation. The second category of mathematical tools relate
to operations research and they are introduced in Section 3.2. We elaborate
on linear problems, optimality conditions, bilevel programming and finally on
inverse optimization.

3.1 Time Series Related Models

Time series analysis comprises methods for analyzing data that are sampled
along time, and the goal is to infer information about its nature. Time series
forecasting aims to predict future values of a process, based on historical in-
formation from the process of interest and possibly other processes related to
it.

Let us first denote some of the basic elements of a time series model. To begin
with, let {Yt} denote the stochastic process that we aim to model, and Yt the
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random variable associated to such process at time t. Often, Yt is called depen-
dent variable. Here we consider the case where {Yt} is an univariate process for
brevity. The extension for multivariate processes is analogue and the reader is
referred to [12, Ch. 9] for a detailed explanation on that matter. Let us define
also a set of r stochastic processes, called Xr, and their associated random vari-
ables Xr,t, i.e. a random vector indexed by the time t, to be the explanatory or
independent variables. Independent variables are sometimes called regressors or
exogenous inputs. A time series model aim to explain the characteristics of the
dependent variable Yt by the use of past values of Yt, together with information
of the independent variable Xt. The relationship between Yt and Xt is modeled
trough a set of unknown parameters that must be estimated using historical
data.

In the following we present two time series model. In Section 3.1.1 we introduce
a parametric model based on linear relationship between the dependent and in-
dependent variables. Afterwards, in Section 3.1.2, we present a non-parametric
approach to estimate conditional densities. Finally, in Section 3.1.3, we com-
bine both time series models and elaborate on a methodology for generating
scenarios of future realizations of a stochastic process.

3.1.1 ARIMAX Models

In this section we introduce the Auto Regressive Integrated Moving Average
model with Exogenous variables (ARIMAX). This model represents a stochas-
tic process and ultimately forecast its future realizations. Generally speaking,
ARIMAX models are composed of four elements. The first group alludes to
lagged terms of the series, the co-called “auto regressive” terms. The “inte-
grated” label comes from the fact that the series is differentiated to become
stationary. The third element refer to the lags of the forecast errors, or “moving
average” terms. The fourth and last indicates that external regressors or “ex-
ogenous variables” are used to explain some part of the variability of the series
of interest.

In mathematical terms, the time varying process Yt is an ARIMA process if
described as [12]

Yt +
P∑
p=1

θpYt−p = µ+ εt +
Q∑
q=1

ψqεt−q +
R∑
r=1

γrXr,t. (3.1)
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The symbols in Equation (3.1) have the following interpretation:

P Number of autoregressive terms.
Q Number of moving average terms.
R Number of regressors.
µ Intercept term.
εt Gaussian white noise error at time t.
Xr,t Regressor r at time t.
θp Coefficient relative to the lagged observation yt−p.
ψq Coefficient relative to the lagged error term at time t− q.
γr Coefficient relative to the independent variable xr,t.

The parameters P andQ define the order of the ARIMAmodel. The intercept µ
and the coefficients θ,ψ and γ are commonly estimated from data by minimizing
the Sum of Square Error (SSE), written as follows:

SSE(µ,θ,ψ,γ) =
T∑
t=1

(yt − ŷt|t−1)2 (3.2)

where ŷt|t−1 is the estimated value of the dependent variable, given as the out-
come from (3.1) using µ,θ,ψ and γ as coefficients. Also, when computing ŷt|t−1
from (3.1), all the information up to time t− 1 is known.

An integrated ARMAX model, also called ARIMAX, is a generalization of (3.1),
where the output variable is differenced in the following way:

zt = (1−B)dyt (3.3)

where B is the lag or backshift operator. In the special case where d = 1,
equation (3.3) is equivalent to transforming the output variable yt by subtracting
it with the previous value such that y′t = yt−yt−1. Such transformation if often
used in practice in order to turn a non-stationary variable into a stationary one.

The ARIMAX model presented above can be extended to account for seasonal
patterns, as daily or weekly patterns. The explanation is left out of this disser-
tation for brevity but the reader is referred to [12] for a detailed description.

In Paper B and D we use an ARIMAX model to model the aggregate load of a
pool of households, and predict their response with respect to weather variables
and price of electricity. Furthermore, in Paper C we used an ARIMA model to
model the price of electricity in the day-ahead market.
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3.1.2 Kernel Density Estimation

Kernel density estimation is a non-parametric method for estimating the prob-
ability density function of a random variable. Let (x1, x1, · · · , xn) be an inde-
pendent and identically distributed sample drawn from some distribution with
an unknown density f . The kernel density estimation of f , evaluated at x, is
given by

f̂h(x) = 1
n

n∑
i=1

Kh(x− xi) (3.4)

where Kh(x) is a weight function, often called kernel, and h > 0 is a smooth-
ing parameter, often called bandwidth. The kernel function Kh(x) must be a
symmetric non-negative function that integrates to one. An example of a ker-
nel function is the uniform kernel, where Kh(x) = 1/h if a ≤ x ≤ a + h, and
Kh(x) = 0 otherwise. Another commonly used kernel is the Gaussian kernel,
where Kh(x) is equal to the standard normal density function with standard
deviation of h. In general, the bandwidth of the kernel is chosen by minimizing
a criteria, for example, the mean integrated square error. Often, a more suited
approach to real-life problem involves performing cross-validation. The reader
is referred to [13] and [14] for further information about optimal choice of the
bandwidth.

Next, we use a slightly modified version of the kernel density estimator that has
been used in Paper C of this thesis. Here, each of the observations (x1, x1, · · · , xn)
has an assigned weight, denoted by w = (w1, w1, · · · , wn), such that

∑n
i=1 wi =

1. Then, the kernel density estimation writes as follows:

f̂h(x) = 1
n

n∑
i=1

wiKh(x− xi). (3.5)

This modification of the kernel estimator allows to give different weight or “im-
portance” to observations. Indeed, the weights w can potentially be calculated
by a kernel. In this case, this approach could be seen as a two-step kernel
density estimation. This approach to estimate the density function has a very
powerful application, shown in Paper C of this thesis, that is to model the load,
conditioned to a price reference. In such a case, the weights allows us to give
greater importance to observations with a similar price.
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3.1.3 Generation of Scenarios

In this section we elaborate on a methodology to generate scenarios from a
stochastic process, conditioned on another stochastic process. Scenarios are of-
ten used in stochastic optimization problems due to the fact that they represent
the development of a stochastic variable along time. Moreover, a collection of
scenarios must be consistent with the innovation errors of the series. In Paper
C of this thesis we use cross-correlated scenarios of load and price as input for
a stochastic optimization problem.

In brief, the proposed method starts by transforming the input data to a nor-
mal distribution using a non-parametric transformation. Then, we compute
its covariance, and finally, generate random correlated Gaussian errors that
are transformed back to the original distribution. The estimated multivariate
non-parametric distribution is conditioned to a given value of another random
variable.

The advantage of the proposed approach is threefold. First, we do not make any
assumption on the distribution of the data we model, due to the non-parametric
nature of the kernel density estimation. Second, we do not make assumption
on the relationship between the variable of interest, and the one we condition
on. This means, the response of the variable of interest to the given one can
be non-linear. Finally, the proposed approach is computationally attractive and
big datasets can be quickly processed.

For illustrative purposes, below we show an example of a scenario generation
algorithm, which outcome is a scenario of load, for every hour of the day, condi-
tioned to a price. The example below relates to the contribution given in Paper
C of this dissertation.

Example 1 (Generation of price-responsive load scenarios) Let x(j)
t be

aggregate measured load of a price-responsive pool of loads, where j = 1, . . . , J
is the index relative to the considered day, and t = 1, . . . , 24 the index relative
to the hour of the day. Let us assume also that, together with the measured
load, we have a record of the price of electricity that the load paid for, denoted
by π(j)

t . The problem consists on generating scenarios of load, conditioned to a
given price reference π̃ = (π̃1, . . . , π̃24).

The first step is to weight the historical observations, so that the days when
the price resemble to the given one π̃ weight more. Denote the weights by w =
(w(1), . . . , w(J)), with one weight for each day, and such that

∑J
j=1 w

(j) = 1.
The reader is referred to Paper C for a practical approach to compute such
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weights.

The scenario-generation procedure consists of the following seven steps:

1. For each hour of the day, we compute a non-parametric estimation of the
density of the price-responsive load conditional on a price trajectory π̃.
We achieve this by computing the kernel density estimator at hour t, with
the weights w(j), in an analogue way as in (3.5):

f̂t(x|π̃) = 1
J

J∑
j=1

w(j)Kh(x− x(j)
t ), (3.6)

where Kh(x) is a kernel (non-negative function that integrates to one and
has mean zero), h is its bandwidth, and x(j)

t is the observed load at time
t and day j.

2. Using f̂t(x|π̃) from Step 1, we compute the cumulative density function,
called F̂t(x|π̃).

3. The transformed load values y(j)
t = F̂t(x(j)

t |π̃), for every hour t, follow a
uniform distribution U(0, 1). Then, we normalize the load data through
the transformation z(j)

t = Φ−1(y(j)
t ), where Φ−1(Y ) is the probit function.

Consequently, (z(1)
t , . . . , z

(J)
t ) ≡ Zt ∼ N(0, 1).

4. We estimate the variance-covariance matrix Σ of the transformed load Z,
relative to the 24 hours of the day. One could do it recursively as in [15].

5. Using a multivariate Gaussian random number generator, we generate a
realization of the Gaussian distribution Z̃ ∼ N(0,Σ).

6. We use the inverse probit function to transform Z̃ to a uniform distribu-
tion, that is, Ỹ = Φ(Z̃).

7. Finally, we obtain a scenario of load by transforming back Ỹ using the in-
verse cumulative density function from Step 2, that is, x̃t = F̂−1

t (Ỹt|π̃),∀t.
Numerically, we use a smoothing spline to interpolate F̂−1

t (Ỹt|π̃). The
scenario is finally given by x̃ = (x̃1, . . . , x̃24).

The procedure outlined above generates a scenario of load conditioned on the
price π̃. Steps 5 to 7 are repeated as needed if more scenarios of load per price
are desired. An example of the generated scenarios of day-ahead price is given
in Figure 3.1. By graphical inspection we conclude that the scenarios of day-
ahead price are a plausible representation of the actual day-ahead price and its
uncertainty.
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Figure 3.1: Actual price, point forecast and generated scenarios for the day-
ahead price.

3.2 Operations Research Fundamentals

In this section we present a brief introduction to some topics from the field of op-
erations research. We start by formulating one of the most fundamental models:
linear problems and their corresponding dual problem. Then, we elaborate on
bilevel programming and Mathematical Problems with Equilibrium Constraints
(MPECs), which is a widely used family of models in energy systems. Finally,
we introduce the concept of inverse optimization.

3.2.1 Linear Programming and Duality

Linear programming consists on choosing the values of a decision variable that
maximizes a linear function subject to some linear constraints. In mathematical
notation, a linear problem is written as follows:

Maximize
x

cTx (3.7a)

subject to Ax ≤ b (3.7b)

where x represents the decision variables, c the cost vector, A the matrix of
coefficients that define the left-hand side of the constraints, and b the vector
defining the right-hand side of the constraints.

The solution to Problem (3.7) is often denoted as x∗, and can be obtained by,
for example, using the simplex method [16] or by interior-point methods [17].
From the implementation perspective, one can solve this type of problems by
using computer software, as for example, GAMS [18] and CPLEX [19].
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The dual problem of (3.7) is defined as follows:

Minimize
λ

bTλ (3.8a)

subject to ATλ = c (3.8b)
λ ≥ 0. (3.8c)

Each dual variable, denoted in each element of λ, is relative to a constraint from
the linear problem (3.7), also referred as primal problem. Dual variables can
be interpreted as shadow price or marginal cost. In other words, dual variables
represent the change in the objective function of the primal problem (3.7a) when
the right-hand side of the constraint (3.7b) is marginally increased.

There are two main theorems that relate the solution of the primal and the
dual problems. The weak duality theorem states that the objective function
value of the dual at any feasible solution is always greater than or equal to
the objective function value of the primal at any feasible solution. The strong
duality theorem states that if the primal has an optimal solution, then the
dual also has also an optimal solution and the value of the objective functions
from the primal and the dual are the same. The reader is referred to [20] for
rigorous proofs of the theorems and further properties.

As a consequence of the weak and strong duality theorems, the following is
also satisfied: if the dual problem is unbounded, then the primal is infeasible.
Similarly, if the primal is unbounded, the dual must be infeasible.

3.2.2 Mathematical Programs with Equilibrium Constraints

Mathematical Programs with Equilibrium Constraints (MPEC) are a type of
optimization problems with nested structure, i.e., there is a an optimization
problem inside another optimization problem. The inner problem is sometimes
referred as lower-level problem, and the outer problem as upper-level problem.

In the following, we present an example of an MPEC where both the upper and
lower level problems are linear:

Minimize
x,y

cuT
x x+ cuT

y y (3.9a)

subject to Au
xx ≤ b

u
x (3.9b)

Au
yy ≤ b

u
y (3.9c)

x ∈

{
Maximize

z
cT
x (y)z
Axz ≤ bx(y)

}
. (3.9d)
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The formulation above includes two optimization problems. The lower-level
problem relates to the lower-level decision variable x. The coefficients of the
objective function of the lower-level problem are cx(y), and the right-hand side
of the constraints are bx(y). In this example, both cx(y) and bx(y) depend
on the upper-level variable y. However, from the perspective of the lower-level
problem, they are parameters. The matrix Ax is a given parameter.

In the example above, the upper-level problem minimizes a weighted sum of
x and y, subject to the constraints defined by the coefficient matrices Au

x and
Au
y , and the right-hand-side parameters bux and bux. Note that the upper and

lower level problems are interrelated, due to the fact that the constraints and
the objective function of the upper-level problem depends on the lower-level
variables. In addition, the constraints and the objective function of the lower-
level problem, depend on the upper-level variables.

Problem (3.9) relates to two of the challenges tackled in this thesis. The models
formulated in Paper B and Paper D are similar to Problem (3.9). In the re-
maining of this section, we elaborate on properties of such models and solution
techniques.

In order to solve (3.9), the lower-level problem needs to be reformulated. In the
following, we present two different reformulations for the lower-level problem
(3.9d). The first one, based on the The Karush-Kuhn-Tucker (KKT) conditions,
is related to Paper B in this dissertation. The second reformulation, based on
the primal-dual properties of the lower-level problem, has been used in Paper
D.

3.2.3 Reformulations Based on the Karush-Kuhn-Tucker
Conditions

Consider the lower-level problem from (3.9). Recall that x (or z) is the lower-
level variable and both the coefficient of the objective function cx(y) and the
right-hand-side vector bx(y) depend on the upper-level variable y. From the
point of view of the lower-level problem, y is a parameter. In other words, the
upper-level variable enters the lower-level problem as a parameter and should
treated as such. For this reason, the lower-level problem (3.9d) is analogue to
the basic linear problem (3.7).

For notational simplicity, let us use the notation from the generic linear program
(3.7) instead of the lower-level problem (3.9d). Its Lagrangian is defined as

L(x,λ) = cTx− λT(b−Ax). (3.10)
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The Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for
optimality for problem (3.7), meaning that the solution to the linear problem
(3.7) must satisfy the following:

c−ATλ = 0 (3.11a)
Ax− b ≤ 0 (3.11b)
λ ≥ 0 (3.11c)
λT(Ax− b) = 0. (3.11d)

Equations (3.11a) are the stationarity conditions, equations (3.11a) are the pri-
mal feasibility constraints, equations (3.11c) are the dual feasibility constraints,
and finally equation (3.11d) are the complementarity constraints.

The notation for constraints (3.11b), (3.11c) and (3.11d) can be compacted by
using the perpendicular sign “⊥”, which indicates perpendicularity between the
vectors on the right side and on the left side of ⊥. The constraints can be
denoted as

Ax− b ≤ 0 ⊥ λ ≥ 0. (3.12)

As a final comment, note that in the KKT conditions stated above, equations
(3.11) are non linear due to the complementarity constraint (3.11d).

3.2.4 Reformulation Based on the Primal-dual Properties

Here we describe the primal-dual reformulation of the linear problem (3.7), that
is analogue to the lower-level problem (3.9d). The solution of the primal and
dual problems can be found by solving the following set of equations:

cTx = bTλ (3.13a)
Ax− b ≤ 0 (3.13b)
ATλ = c (3.13c)
λ ≥ 0. (3.13d)

Equation (3.13a) is the strong duality condition, derived from the strong duality
theorem introduced in Section 3.2.1. To put it more simply, it enforces the
primal and the dual objective functions to be equal. Equation (3.13b) refers to
the constraints of the primal problem, and Equations (3.13c) and (3.13d) are
the constraints of the dual problem.
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The primal-dual reformulation of the lower-level problem in (3.9) has a compu-
tationally advantage over the KKT conditions, due to the fact that for linear
problems, the primal-dual formulation is linear.

Consider now the MPEC problem defined by (3.9), where the lower-level prob-
lem has been reformulated by using the primal-dual properties (3.13). The
MPEC now recast as a single-level non-linear problem. The reason is because
of the multiplication of cx(y) and bx(y) in the strong-duality constraint. Re-
call that the coefficient of the objective function cx(y) and the right-hand-side
vector bx(y) depend on the upper-level variable y.

3.2.5 Static Inverse Optimization

An inverse optimization problem is a special case of a MPEC. Generally, it
consists on inferring the value of the model parameters, i.e., the cost coefficients,
the right-hand side vector, and the constraint matrix, given the optimal decision
variables. In mathematical terms, an inverse optimization problems is defined
as follows. Consider the linear problem (3.7), re-defined below

Maximize
x

cTx (3.14a)

subject to Ax ≤ b (3.14b)

and let x′ be an optimal solution. The inverse optimization problem consists
on finding c, b and A, such that x′ is a solution to (3.14). The linear problem
above is sometimes referred as forward problem or reconstruction problem. It
should be noted that in this thesis we deal with inverse linear problems, meaning
that the reconstruction problems are linear programming problems.

Inverse optimization was first formally described by [21]. Their application
focused on finding the minimum perturbation of the cost coefficient, such that
the optimal decision variables are optimal. Recent work [22, 23, 24, 25, 26, 27,
28, 29, 28], including Papers B and D in this dissertation, have addressed inverse
optimization from a broad range of perspectives. The work performed in this
thesis differs with existing literature in two main aspects. First, we consider the
right-hand side of the constraints of the reconstruction problem to be unknown.
And second, we apply inverse optimization to time-series data by using external
regressors, hence making the inverse models dynamic. The static formulation is
introduced in this section, while the dynamic formulation is presented below in
Section 3.2.6.

We divided the inverse optimization models into two categories, depending on
the type of objective function that quantifies the “optimality” of x′. In the first
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category, the objective function consists of minimizing the distance between
the input optimal decision variables and the optimal value resulting from the
reconstruction problem. In this case, because the reconstructed value of x is
found by solving an optimization problem itself, the problem is a bilevel problem.
This is explained in detail in Section 3.2.5.1. In the second category, optimality
is quantified by minimizing a duality gap. The inverse optimization based on
minimization of a duality gap is introduced in Section 3.2.5.2

3.2.5.1 Minimizing a Norm

We start by showing an example of an inverse optimization problem, where the
aim is to minimize the distance, measured by the L1-norm || · ||, between the
input x′ and the variable x. It belongs to the group of MPEC problem, and
writes as follows:

Minimize
x,θ

||x′ − x|| (3.15a)

subject to Dθθ ≤ dθ (3.15b)

x ∈

{
Maximize

z
cTz

Az ≤ b

}
. (3.15c)

The variables that define the lower level problem are denoted, for brevity, as θ =
[c, b]. In this example, we assumeA to be know, even though it could potentially
be estimated as well, i.e., coming from a model. Equations (3.15b) define some
constraints on θ, that, for example, might be given by their nature. A typical
example is the positiveness of the parameter, defined by θ ≥ 0. The variable x
is defined by the lower-level problem (3.15c), and its value is dependent on θ.
Due to the bilevel nature of the inverse optimization problem (3.15), it provides
with an estimate of the reconstructed input x.

In this example, the objective function (3.15a) consists on minimizing a distance.
If the objective function at the optimum is equal to zero, it implies that the input
x′ can be reconstructed perfectly. On the other hand, if the objective function
is greater than zero, it means there does not exist a θ such that x′ = x. In other
words, the input x′ does not belong to any of the possible optimality regions of
the lower-level problem (3.15c).

It is noteworthy to say that other types of norm could be used instead of the
L1-norm, depending on the nature of the problem of interest. The advantage
of minimizing the L1-norm with respect to other norms, is that it can be refor-
mulated as a linear problem by introducing two auxiliary extra positive linear
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variables. In mathematical terms, the absolute value is reformulated as follows:

Minimize
x,θ,α+,α−

1T(α+ +α−) (3.16a)

subject to x′ − x = α+ −α− (3.16b)
Dθθ ≤ dθ (3.16c)

x ∈

{
Maximize

z
cTz

Az ≤ b

}
(3.16d)

where 1 is a vector of ones of appropriate size.

The bilevel problem (3.16) recasts as a single-level optimization problem by
replacing the lower-level problem with its optimality conditions. This reformu-
lation allows us to solve the problem using commercial software. In general, the
solution of the reformulated problem is nonlinear and non-convex. Below we
present two possible reformulations, based on KKT conditions and on primal-
dual properties.

Reformulation based on KKT conditions The KKT conditions, that were
previously introduced in Section 3.2.3, are used to reformulate the lower-level
problem in (3.16) as follows:

Minimize
x,θ,λ,α+,α−

1T(α+ +α−) (3.17a)

subject to x′ − x = α+ −α− (3.17b)
Dθθ ≤ dθ (3.17c)
c−ATλ = 0 (3.17d)
Ax− b ≤ 0 ⊥ λ ≥ 0 (3.17e)

Note that the problem above is non-linear due to the complementarity constraint
(3.17e). For practical applications, the complementarity constraints (3.17e) are
reformulated by including an extra vector of binary variables, denoted as w,
and two large constants termsM1 andM2. The so-called “big-M” reformulation
writes as follows:

Ax− b ≤ 0 (3.18a)
λ ≥ 0 (3.18b)
Ax− b ≥ −M1w (3.18c)
λ ≤M2(1−w) (3.18d)
w ∈ {0, 1} ∀w (3.18e)
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Using the reformulation above, the inverse optimization problem (3.17) recast
as a single-level Mixed-Integer Linear Program (MILP). Commercial software
can be used to solve this type of problems.

The reformulation of the inverse optimization problem based on the KKT con-
ditions has been studied in Paper B of this dissertation. Due to the large size
of the problem, commercial software was not capable of finding a solution in a
reasonable amount of time. For this reason, we developed a solution method,
based on a relaxation of the KKT conditions. The relaxed inverse model is the
following:

Minimize
x,θ,w,α+,α−

1T(α+ +α− + L1(b−Ax) + L2λ) (3.19a)

subject to x′ − x = α+ −α− (3.19b)
c−ATλ = 0 (3.19c)
Dθθ ≤ dθ (3.19d)

where L1 and L2 are penalty parameters. The solution to (3.19) is not necessar-
ily the same as for the original problem (3.17). However, our proposed approach
leverages data to calculate the penalty parameters L1 and L2 in an optimal way.
Further analysis on this can be found in Paper B of this dissertation.

Reformulation based on primal-dual properties Here we present a refor-
mulation of the inverse optimization problem using the primal-dual properties
introduced in Section 3.2.4. The reformulation is a non-linear problem and
writes as follows:

Minimize
x,θ,α+,α−

1T(α+ +α−) (3.20a)

subject to x′ − x = α+ −α− (3.20b)
Dθθ ≤ dθ (3.20c)
cTx = bTλ (3.20d)
Ax− b ≤ 0 (3.20e)
ATλ = c (3.20f)
λ ≥ 0. (3.20g)

Constraints (3.20d), (3.20e), (3.20f) and (3.20g) are the primal-dual optimal-
ity conditions of the lower-level problem (3.15c). Moreover, constraint (3.20c)
provides some a priori known constraints on θ. The norm-minimizing inverse
optimization problem, based on reformulating the lower-level problem with its
primal-dual properties, is non-linear due to the multiplications of two variables
in the strong duality condition (3.20d).
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3.2.5.2 Minimizing Duality Gap

In this section, we present an inverse optimization model where the measure of
optimality of the input x′ is a duality gap.

Below, we present an example that relates to Papers B and D in this thesis. For
simplicity, in the example we consider the reconstruction problem (3.7), with the
matrix of coefficients A and the right-hand side vector b to be known. Hence,
the coefficient c is the only “unknown parameter” that needs to be estimated
by the inverse model.

The objective function of the example is to minimize the duality gap of the
reconstruction problem:

Minimize
c,ε,λ

ε (3.21a)

subject to cTx′ + ε = bTλ (3.21b)
ATλ = c (3.21c)
λ ≥ 0. (3.21d)

Equation (3.21b) corresponds to the relaxed strong duality conditions from the
reconstruction problem (3.7), and equations (3.21c) and (3.21d) are its dual
feasibility constraints.

Note that, in the example, we assume A and b to be known. For this rea-
son, the primal constraints are not included in Problem (3.21). It should be
noted that the techniques developed in Paper D of this dissertation provide a
computationally attractive method to obtain b for the cases when is unknown.

Let us denote the solution to Problem (3.21) by c∗ ad ε∗. If ε∗ = 0, the input
x′ can be obtained by solving the reconstruction problem (3.7) with c∗. If,
on the other hand, ε∗ > 0, the input x′ cannot be obtained by solving the
reconstruction problem (3.7) with c∗.

The outcome of the primal-dual-based inverse optimization does not provide for
an estimate of the variable x. However, it can be easily obtain a posteriori by
solving the reconstruction problem (3.7) with c∗ as cost coefficient.
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3.2.6 Dynamic Inverse Optimization

In this section, we show an example of an inverse optimization model that
accounts for time-dependent changes. In other words, the model is dynamic.
This type of inverse-optimization models has been used in Paper B for optimal
bidding and in Paper D to predict price-responsive electricity load.

We start from the premise that the choices made by a certain decision-maker
(e.g., an aggregator of price-responsive power loads) at a certain time t, denoted
by xt, are driven by the solution to the following linear optimization problem:

RPt(pt|c, b): Maximize
xt

(c− pt)Txt (3.22a)

subject to Axt ≤ b (3.22b)
xt ≤ u (3.22c)

where pt is a given time-varying input (e.g., the electricity price). Problem (3.22)
is typically referred to as the reconstruction problem.

Now assume that the matrix of coefficients A and the right-hand side vec-
tor u are known and that we are able to observe the multivariate time series
X ′T = [x′1, . . . ,x′T ], which is presumed to be the solution to the reconstruction
problem (3.22) at every time t. That is, x′t represents the choices actually made
by the decision-maker at time t. The basic goal of our inverse optimization
approach is to infer the unknown parameter vectors c and b from X ′T given A,
u, and the series of measured inputs pt. To this end, one tries to find values
for the unknowns c and b such that the observed choices X ′T are as optimal as
possible for every problem (3.22).

When using inverse optimization for forecasting a time series, it is relevant to
consider the case where we let the unknown parameter vectors c and b vary over
time so as to capture structural changes in the decision-making problem (3.22).
To this end, we assume that we also observe a number of time-varying regressors
Zt that, to a lesser or greater extent, may affect the decision maker’s choices.
We then describe the unknown vectors c and b as functions of those regressors
by letting ct = fc(Zt) and bt = fb(Zt). In this way, functions fc(·) and fb(·)
become decision variables in our estimation problem.

In this thesis, we consider fc(·) and fb(·) to be affine functions, i.e., ct =
fc(Zt) = βT

c Zt and bt = fb(Zt) = βT
b Zt, where βc and βb are the affine

coefficients that relate Zt with ct and bt, respectively. Note that the past
choices of the decision-maker, namely, X ′t−1, can also be treated as regressors,
in an analogous way as ARMAX time series models.
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With the considerations from above in mind, we solve the following generalized
inverse optimization problem:

GIOP: Minimize
b,c,βc,βb,φ,λ

T∑
t=1

εt (3.23a)

subject to bTt λt + uTφt − εt = (ct − pt)Tx′t ∀t (3.23b)
[AT I][λTt φ

T
t ]T = (ct − pt) ∀t (3.23c)

Ax′t ≤ bt ∀t (3.23d)
ct = βT

c Zt ∀t (3.23e)
bt = βT

b Zt ∀t (3.23f)
φt,λt, εt ≥ 0 ∀t (3.23g)

where I is the identity matrix of an appropriate size. The objective of opti-
mization problem (3.23) is to minimize the sum over time of the duality gaps
associated with the primal-dual reformulation of problem (3.22). Thus, when
the objective function of GIOP is equal to zero, namely, the accumulated duality
gap is zero, x′t is optimal in RPt(pt|ct, bt), ∀t. The first and second constraints in
(3.23) are the relaxed strong duality condition and the dual problem constraints
of (3.22), respectively. The third inequality represents the primal feasibility
constraint involving the unknown right-hand side vector bt. The second primal
constraint in (3.22) is, in contrast, omitted in (3.23), because it does not involve
any decision variable in GIOP. Constraints (3.23e) and (3.23f) define the linear
relationship between the regressors Zt and ct and bt, respectively.

The GIOP problem (3.23) is non-linear due to the multiplication of two decisions
variables in (3.23b). In Paper D we provide a two-step estimation procedure
with a view to minimizing the out-of-sample prediction error. Furthermore,
the proposed two-step estimation procedure overcomes the nonconvexity and
computational issues mentioned above regarding the solution to problem (3.23).
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Chapter 4

Application Results

This chapter introduces three real-life problems that relate to decision-making
under uncertainty in electricity markets. The first application arises by the in-
creasing penetration of renewable energy in power systems. In this respect, in
Section 4.1 we propose a stochastic optimization framework to optimally deter-
mine the level of ancillary reserves needed to safely operate power systems. The
second application relates to the increasing importance of smart grid technolo-
gies and the necessary interaction of the price-responsive users with traditional
electricity markets. In Section 4.2 we propose two methodologies to optimally
compute demand-side bids to be submitted to the day-ahead market. The third
application, introduced in Section 4.3, focuses on load forecasting under the
real-time pricing paradigm.

4.1 Reserve Determination in Power Systems with
High Penetration of Renewable Energy

Paper A is motivated by the expected increase of wind power penetration in
Europe, where the European Union has set an ambitious target such that the
EU will reach 20% share of energy from renewable sources by 2020. This paper
focuses on Denmark, where this target is up to 30% [30]. In Denmark, in the
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Figure 4.1: The share of wind power offshore and onshore capacity is shown in
blue and green bars, respectively. The share of domestic electric-
ity demand supplied by wind power production is shown in red.
Figure taken from [31].

year 2014, wind power production accounted for 38.8% of domestic electricity
supply, compared with 32.5% in 2013 and only 1.9% in 1990. The increasing
trend of installed wind power capacity and its importance relative to the total
domestic electricity consumption is shown in Figure 4.1.

As the share of electricity produced by renewables increases, several challenges
must be faced. Non-dispatchable electricity generation cannot ensure a certain
production at all times, but instead depends on meteorological factors. The
stochastic nature of such factors inevitably leads to forecast errors that will
likely result in producers deviating from their contracted power, thus causing
the system to be imbalanced. Such imbalances are mitigated by scheduling extra
capacity, also called electricity reserves, that are activated only when needed.
A detailed description of the main types of reserves has been given in this
dissertation in Section 2.2.1.

Currently, the TSO in Denmark schedules the amount of electricity reserve
by deterministic rules. A well-known rule, called n-1 rule, sets the minimum
amount of manual reserves to be the capacity of the largest on-line genera-
tor. With a relatively high penetration of renewable energy, deterministic rules
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might not be the most optimal. Solutions call for methods capable of manag-
ing the uncertainty that wind power production and other stochastic variables
induce into the system. In response to this challenges, in Paper A we propose
two stochastic optimization models that account for future uncertainties and
determine the optimal level of electricity reserves.

The methodology discussed in Paper A of this thesis is mainly targeted to
the current structure of the Danish electricity market, where reserve markets
are settled independently of and before the day-ahead energy market, implying
that, at the moment of scheduling reserves, no information about which units
will be online is known. At the market closure, the TSO collects bids from
producers willing to provide reserve capacity, and selects them by a cost merit-
order procedure. Most of the existing literature focuses on co-optimizing the
unit commitment and reserve requirements at the same time [32, 33, 34, 35,
36]; such methods however cannot be applied under the current design of the
Danish electricity market.

In paper A we propose two models for determining the optimal amount of to-
tal reserves to be scheduled, differing in the way risk is measured. One of the
models is based on the Loss-Of-Load Probability (LOLP) and ensures that the
probability of shedding load remains under a given threshold. The other pro-
posed model calculates a trade-off between the cost of scheduling reserves with
the cost of shedding load, by minimizing the Conditional Value at Risk (CVaR)
of the total system cost. Both models are meant to be run before the clearing
of the reserve market and can be used by the TSO to decide on how many
MW of reserve should be scheduled. The reader is referred to Paper A for fur-
ther elaboration on the mathematical description of the stochastic optimization
models.

In Figure 4.2 we show an example of the results from the proposed model that
minimizes the CVaR of the total system cost. The blue line is the data relative to
the actual deployed reserves in Denmark West for every hour of the day. The red
line represents the TSO’s scheduled reserves, and finally the black lines represent
the optimal reserves for different risk levels. In the upper plot, shedding load is
set to be 500 e/MW, as opposed to the bottom plot, where shedding 1 MW of
load cost 5000e. In both cases, the optimal reserves are higher than the TSO’s
decision. Nevertheless, the solution from the proposed models, when minimizing
the CVaR, is from 3.38% cheaper with {α = 0.99, V LOL = 200 e/MW}, to
82.9% cheaper for {α = 0.99, V LOL = 5 000 e/MW}, compared to the solution
given by the TSO. Note that the CVaR method tends to schedule more reserves
than the Danish TSO’s solution, while at the same time the solution is cheaper,
because shedding load is highly penalized by the coefficient V LOL. Similar
conclusions are drawn when using the LOLP model.
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Figure 4.2: The reserve schedule using the CVaR methodology is displayed
for V LOL = 500 e/MW in the upper plot and for V LOL = 5 000
e/MW in the lower plot. The shaded areas in the background
represent the solution of the CVaR model for different values of
the risk aversion parameter α. The actual deployed reserve in DK1
and the reserve capacity scheduled by Energinet.dk (the Danish
TSO) are depicted on top.
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4.2 Demand Response Bidding in Electricity Mar-
kets

Demand response has been defined in Section 2.3 of this dissertation as the in-
tentional alteration of the power consumption profile by an end-user in response
to an external stimulus. In Chapter 2, we have seen that nowadays electricity
is traded through markets, where players submit bids reflecting their needs. In
this section, we tackle the challenge of linking both concepts: demand response
bidding in electricity markets.

Amongst the many different forms of demand response [10, 37], this thesis fo-
cuses on the case when the consumers are price-responsive. Under the smart-grid
paradigm, consumers are equipped with a smart grid meter and communication
devices that allow them to receive dynamical prices. This pricing scheme is com-
monly named as Real-time Pricing (RTP) [38, 39], also introduced in Section
2.3 under the denomination of indirect control scheme. In the case of house-
holds, the dynamic pricing allows the residents to schedule their appliances and
heating or cooling demand based on the price of the electricity and also on their
own preferences [39, 40, 41, 42, 43].

We consider the case where a retailer, also called aggregator, bids to the day-
ahead market on behalf of its price-responsive pool. Traditionally, retailers bid
an inelastic curve that simply indicates the desired amount of power, indepen-
dently of the market price. Nonetheless, because of the price-responsiveness of
the consumers under the considered setup, inelastic bidding curves might not be
the most adequate decision. Instead, a bidding curve with a price component,
or price-bid, can reduce imbalances and increase the retailer’s profit, as we show
in Paper B and Paper C of this thesis.

The bidding curves we consider in this thesis are composed by, at least, a set
of price and energy terms, forming an price-energy demand bid. Another way
of interpreting the price term of the bid is as the marginal utility of the aggre-
gate load. In both cases, the demand bid reflects the elasticity of the pool of
consumers to changes in the electricity price. Demand-side bids are typically
defined as monotonically decreasing block-wise functions. The bids are formed
by a price-bid term, and bock width term, denoted by ub and Eb, respectively,
with a total of B terms. For a day-ahead price pDA, the price-bid indicates that
the total load will be equal to

∑
b ybEb with

yb =
{

1 if ub ≥ pDA

0 if ub < pDA
. (4.1)
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We developed two methodologies that provide for an optimal bid, differing in the
way they measure the “goodness” of the estimated bid. The first methodology,
introduced in Section 4.2.1, relates to Paper B from this thesis. It aims at finding
the optimal bid that minimizes the expected imbalances between the scheduled
load in the day-ahead and the actual realized load. The second methodology,
explained in Section 4.2.2, relates to Paper C from this dissertation and focuses
on finding the optimal bid that maximizes the retailer’s profit.

4.2.1 Optimal Bidding By Minimizing Imbalances

The proposed approach presented in Paper B from this dissertation calculates
the optimal demand-side bid by minimizing the expected imbalances between
the scheduled load and the actual one. The distinctive features of our work
with respect to the existing literature are the fourfold. First, we develop a
novel approach to capture the price-response of the pool of flexible consumers
in the form of a market bid using price-consumption data. Second, we propose
a generalized inverse optimization framework to estimate the market bid that
best captures the price-response of the pool. Third, we use machine-learning
techniques to leverage auxiliary information on a set of features that may have
predictive power on the consumption pattern of the cluster. Lastly, we test our
methodology using data from a real-world experiment and compare its perfor-
mance with state-of-the-art prediction models on the same dataset.

The considered complex market bid is analogue to traditional supply bid, and
is defined by five elements:

ub,t Marginal utility corresponding to bid block b and time t.

P t Minimum power consumption at time t.

P t Maximum power consumption at time t

rut Maximum load pick-up rate at time t, analogue to the ramp-up limits of a
power generating unit.

rdt Maximum load drop-off rate at time t, analogue to the ramp-down limits of
a power generating unit.

In the proposed method, the aggregate load is characterized by an optimization
problem, called also reconstruction problem, which is defined by the bidding
parameters. In Figure 4.3 we show a representation of the functioning of the
reconstruction problem. On the x-axis, we show two time periods, denoted by
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Figure 4.3: Representation of the reconstruction problem, representing the es-
timated complex bidding problem. On the x-axis,

t − 1 and t. The interval defined by P t and P t indicates the range where the
load, denoted by P t +

∑
xb,t, can possibly realize. The evolution of the load

from time t − 1 to time t is constrained by the pick-up and drop-off limits,
denoted by rut and rdt . In Figure 4.3, only the pick-up limit appears. Observe
also that in the Figure 4.3, the load at time t is greater than at time t− 1.

Given the technical constraints imposed by rut , rdt , P t and P t, and the marginal
utility of the aggregate pool of consumers ub,t, the reconstruction problem
chooses the optimal load such that it maximizes the consumers’welfare:

Maximize
xb,t

T∑
t=1

(
B∑
b=1

ub,txb,t − pt
B∑
b=1

xb,t

)
(4.2a)

subject to

xtott = P t +
B∑
b=1

xb,t ∀t (4.2b)

−rdt ≤ xtott − xtott−1 ≤ rut ∀t > 1 (4.2c)

0 ≤ xb,t ≤
P t − P t

B
∀b, t (4.2d)

where xb,t is the consumption assigned to the utility block b during the time
t and pt is the price of the electricity during time t. Equations (4.2b) define
the total load as the minimum power consumption plus the load for each block.
Equations (4.2c) impose a limit on the load pick-up and drop-off rates, respec-
tively. The set of equations (4.2d) defines the size of each utility block to be
equally distributed between the maximum and minimum power consumptions,
with B being the total number of blocks. Constraint (4.2d) also enforces the
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consumption pertaining to each utility block to be positive. Note that, by defi-
nition, the marginal utility is decreasing in xt (ub,t ≥ ub+1,t), so one can be sure
that the first blocks will be filled first.

The parameters that shape the market bid, denoted by θt = {ub,t, rut , rdt , P t, P t},
are estimated using an inverse optimization framework. The model resembles
the inverse optimization model based on the minimization of an absolute value,
as presented in Section 3.2.5.1. In mathematical terms, the inverse optimization
problem is the following:

Minimize
xtot

t ,θt

T∑
t=1

wt
∣∣xtott − xmeast

∣∣ (4.3a)

subject to

ub,t ≥ ub+1,t ∀b, t (4.3b)
KKT conditions of (4.2) (4.3c)

where xmeast is the measured load at time t and wt is a given weight for each
time period.

Constraints (4.3b) are the upper-level constraints, ensuring that the estimated
marginal utility must be monotonically decreasing. Constraints (4.3c) corre-
spond to the KKT conditions of the bidding problem (4.2).

The objective function (4.3a) represents the mismatch or estimation errors be-
tween the measured load xmeast and the estimated load xtott resulting from the
reconstruction problem (4.2). The estimation errors could represent deviations
of consumption from the contracted power in a forward (e.g., day-ahead) mar-
ket, which must be settled by purchasing or selling energy in the balancing
market. Therefore, when the objective function (4.3a) is equal to zero, the load
is perfectly represented by the reconstruction problem, hence the contracted
power will be precisely the realized load.

Indicator variables and external variables, often referred to as features of regres-
sors, can be used to explain more accurately the parameters of the market bid
that best represents the price-response of the pool of consumers. This approach
is potentially useful in practical applications, as numerous sources of data can
help better explain the consumers’ price-response. Practical applications also
need to include a set of robust constraints to ensure the consistency of the mar-
ket bid for all possible realizations of the external variables and not only for the
ones observed in the past. This is explained in detail in the appendix of Paper
D.
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Figure 4.4: Averaged estimated block-wise marginal utility function for the
inverse-optimization based model (left panel), price in $/kWh
(middle panel), and load in kW (right panel). The solid lines
represent data relative to the 4th of December. Dashed lines rep-
resent data relative to the 11th of December.

The inverse optimization problem (4.3) is non-lineal due to the KKT conditions
of (4.2). For realistic applications involving multiple time periods and/or nu-
merous features, exact algorithms do not provide a solutions in a reasonable
amount of time. In order to overcome the computationally difficulties, we pro-
pose a two-step solution strategy. The proposed solution method is a heuristic in
the sense that it does not solve the inverse optimization problem to optimality.
However, our relaxed problem calibrates a penalty term in order to minimize
the out-of-sample prediction error. The reader is referred to Paper B for further
elaboration on a practical approach to solve the inverse optimization problem
above.

A case study with real data is performed using measurements relative to a pool of
price-responsive users. The data relates to the Olympic Peninsula experiment,
which took place in Washington and Oregon states between May 2006 and
March 2007 [44]. The results show that the estimated complex bid successfully
models the price-response of the pool of houses, in such a way that the mean
absolute percentage error incurred when using the estimated market bid for
predicting the consumption of the pool of houses is kept in between 14% and
22% for all the months of the test period. The performance results are in
line with reported measures from state-of-the-art forecasting methods [45] and
outperform traditional forecasting methods [46] for the same dataset.

An example of the estimated block-wise marginal utility function, averaged for
the 24 hours of the day, is shown in the left plot of Figure 4.4. The solid line
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corresponds to the 4th of December, when the price was relatively high (middle
plot), as was the aggregate consumption of the pool of houses (right plot). The
dashed line corresponds to the 11th of December and shows that the estimated
marginal utility is lower, as is the price on that day.

4.2.2 Optimal Bidding By Maximizing the Retailer’s Ben-
efit

In Paper C we propose a bidding model that maximizes the profit of a retailer
that aggregates price-responsive consumers. The retailer must decide, at the
time of closure of the day-ahead market, the optimal price-energy bids to be
submitted relative to the next operational day. When the day-ahead market
is cleared, the retailer is assigned a certain scheduled load that depends on its
submitted price-bid and also on the market price. Over the next day, as time
goes on and the load is actually realized, the imbalances between the scheduled
load at the day-ahead energy market and the actual load are purchased or sold
in the real-time market.

The uncertain nature of the market prices and the response of the load to
changes in price call for solutions that consider stochastic variables. Moreover,
the solutions should take into account the aversion of the retailer towards risk.
In response to these challenges, the contributions of the work shown in this
section and in Paper C are the following.

1. We develop an analytic solution to the problem of finding optimal block-
wise price-energy demand bids in the day-ahead market, when the retailer
is risk-neutral. Moreover, we propose a mixed-integer linear programming
solution approach to the case where the retailer is risk-averse.

2. The dynamic price-responsive behavior of consumers is modeled based on
scenarios. The conditional probability of the load given a certain retail
price trajectory is estimated using a non-parametric approach.

3. We assess the practicality of the proposed methodology by using data from
a real-world experiment.

It is important to note that, under the considered setup in Paper C and in
this section, the retail price is given exogenously. The leading reason for this
consideration is the fact that the retail price must, to a certain extent, represent
the true cost of electricity. This might not always be the case if the retail price
is subject to the will of the retailer [47]. Under the considered setup, the retail
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Figure 4.5: In (a), the day-ahead scenarios (lines) are shown together with the
estimated price-bids (horizontal segments) by the risk-constrained
model. The day-ahead purchase for each scenario, and the load in
each scenario, are shown in (b) and (c), respectively.

price can be, for example, equal to the day-ahead price plus a proportional fee.
This implies that the retailer’s decisions affect only its revenue, and not the
payments that its consumers face.

The responsiveness of the load to changes in price is represented by scenarios,
which are generated from a dataset in a non-parametric way. The procedure
used for generating scenarios using a non-parametric distribution is explained
in detailed in Section 3.1.3 of this dissertation. The proposed approach to char-
acterize uncertainty allows us to model the non-linear relationship between load
and price, without making any assumption on the nature of the load. Moreover,
utilizing scenarios of 24-hours allows us to describe realistic behaviors of the
price-responsive load as, for example, load-shifting and load reduction. Another
relevant advantage is that the scenario-generation technique is computationally
effective, so large datasets can be quickly analyzed. An example of the scenarios
of price-responsive load is shown in Figure 4.5(c).
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We develop a mathematical model that maximizes the retailer’s profit based on
the revenue that it collects from its loads, the payments it makes to the day-
ahead market, and the payments it makes or receives in the real-time market.
We distinguish two cases, whether the retailer is risk-averse or not.

For the risk-unconstrained case, in Paper C we formulate two theorems that are
used to calculate the optimal price-bid. These theorems allow us to compute the
optimal bid without performing any optimization problem. The results show
that, in the risk-unconstrained case, there is no extra benefit from bidding a
curve. Moreover, the optimal bid in this case is used for arbitrage. Naturally,
the profit of the risk-neutral retailer is maximized, with the downside that the
variability of the profit is also high. This fact is confirmed in the case study.

For the risk-averse case we formulate a stochastic optimization model, that
computes the optimal price-bid given a maximum level of allowed risk. In this
case, the risk-aversion is modeled by the following chance constraints:

P
(
XD
t ∈ [(1− L)Xt, (1 + L)Xt]

)
≥ β ∀t (4.4)

with XD
t being the scheduled load in the day-ahead market and Xt the realized

load. The risk-aversion is defined by two parameters. Parameter L represents
the fraction of the load that the retailer purchases in the real-time market. Thus,
a small allowed fraction indicates that the retailer is risk averse. Parameter β
imposes a minimum to the probability of the risk constraint to be fulfilled.

The results from the risk-averse case show that a block-wise bidding curve suc-
cessfully mitigate the risk, compared to the case where we trade based only on
point forecast of average values. This is empirically shown in the case study and
the results are summarized in Table 4.1. We show the mean (1st column) and
the standard deviation (2nd) of the profit of the retailer for three benchmark
models, using realistic data relative to the months of November and December.
We observe that the simple model ExpBid where the expected value of the load
is always purchased under-performs the rest of the models and, indeed, delivers
a negative expected profit. The risk-constrained problem LRisk yields positive
expected profit, with a variance greater than the ExpBid model but substantially
lower than for the risk-unconstrained model UncRisk. The risk-unconstrained
model UncRisk, as anticipated, provides the highest mean returns.

As a final remark, in Figure 4.6 we show the estimated bidding curves for two
different hours of the day. We show the estimated optimal price-bid for a risk-
neutral retailer and for a risk-constrained retailer in green and red, respectively.
In accordance to the developed theorems, the risk-unconstrained retailer bids
a flat curve, indicating that the retailer buys all-or-nothing in the day-ahead
market. On the other hand, the risk-constrained retailer bids a decreasing curve
that allows the retailer to adapt its purchase depending on the market price.
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Mean Std. dev.
ExpBid -1.78 34.52
LRisk 22.26 45.22

UncRisk 188.82 259.62

Table 4.1: Mean and standard deviation of the profit for the benchmarked
models during November and December.
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Figure 4.6: The left figure is relative to the 2nd of November, while the right
figure is relative to the 1st of November.

4.3 Forecasting Price-responsive Load

Load forecasting has been subject to research for many years and, in fact, is
still nowadays [1, 48, 49]. Prognoses of the load are used as a support to
decision-making processes, allowing the decision-maker to intelligently act upon
the uncertain nature of the load [5]. As an example, network operators use long-
term load forecasts to plan for grid expansions, and short-term forecasting to
mitigate possible congestions during high-demand hours. Also, load forecasting
is used by electric utilities to minimize the costs of over- or under-contracting
power in electricity markets.

As explained in Section 2.3, the role of demand response in power systems is
rapidly increasing. This relatively new set of technologies are changing the
patterns that the load traditionally exhibited. For this reason, forecasting load
that is equipped with smart grid technology is a challenge that needs to be
addressed.

In this Section, as well as in Section 4.2 above and in Paper D of this thesis,
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we deal with the case where consumers of electricity are equipped with an En-
ergy Management Control (EMC) system that allows them to receive a varying
price of electricity along the day. The EMC has a controller that optimizes the
consumption by scheduling the consumption at low-priced periods of time while
complying with the consumer’s preferences [39, 40, 41, 42, 43]. This type of
demand response has been introduced in Section 2.3 under the denomination
of indirect control, also referred as Real-Time Pricing (RTP) scheme [38, 39,
50, 51]. Under the indirect control setup, the load is considered to be price-
responsive.

The research conducted in Paper D focuses on forecasting price-responsive load.
The novelty of the proposed forecasting method with respect to the existing
literature is that the aggregate consumption is described by an optimization
problem, which is characterized by a set of unknown parameters. This opti-
mization problem is called forward or reconstruction problem, and its decision
variable is the estimated load at every time t, denoted by xt. In this regard,
Paper D of this thesis has been the first work to exploit inverse optimization for
time series forecasting and, in particular, for load prediction.

The unknown parameters that define the reconstructed model are the marginal
utility for every block b and time t, denoted by ub,t, and the maximum and mini-
mum power consumptions, denoted by P t and P t, respectively. The parameter-
estimation problem recast as an inverse optimization problem, and its goal is to
estimate appropriate values for ub,t, P t and P t, such that the solution to the
reconstruction problem serves as a good forecast of the future aggregate power
consumption of the load.

For the reconstruction problem, we consider that the available information is the
electricity price pt, which is broadcast to every load in the pool. The aggregate
response xt of the loads to the price of electricity at time t is assumed to be the
solution to the following optimization problem:

Maximize
xt

B∑
b=1

xb,t (ub,t − pt) (4.5a)

subject to 0 ≤ xb,t ≤ Eb,t ∀t, b (4.5b)

P t ≤
B∑
b=1

xb,t ≤ P t ∀t. (4.5c)

Problem (4.5) is a linear programming problem and fits into the generic formu-
lation given in Problem (3.7) from Section 3.2.1. Its objective function (4.5a),
to be maximized, represents the aggregate consumers’ surplus or welfare, given
as the product of the pool consumption and the difference between the marginal
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utility and the electricity price. We consider a step-wise marginal utility curve
made up of B blocks, each of a width Eb,t, as enforced by (4.5b), and a value
ub,t for each block. The aggregate load of the pool at time t, given as

∑B
b=1 xb,t,

is bounded from below and above by P t and P t, respectively, as expressed by
(4.5c).

Based on the observed historical load x′t and the price of electricity pt, the inverse
optimization method infers the appropriate values for ub,t, P t and P t, such that
x′t becomes as optimal as possible in the reconstruction problems (4.5) for every
time t. To this end, the proposed inverse methodology is able to exploit external
variables or regressors in an attempt to explain the variations of the unknown
parameters over time. In this paper, we consider affine relationship between the
regressors and ub,t, P t and P t. Hence, the inverse optimization problem boils
down to finding the most optimal set of intercepts and affine coefficients that
relate the regressors with the unknown parameters over time. The concept of
dynamic inverse optimization has been introduced in Section 3.2.6.

The inverse optimization model we use to estimate the unknown parameters
is similar to Problem (3.23). In brief, we seek a combination of the unknown
parameters such that the duality gap of the reconstruction problem (4.5) is
minimized. This approach arises several challenges summarized as follows:

• Non-linearity. The inverse optimization model is non-linear due to the product
of two variables appearing in the strong duality condition of (4.5). From
this point of view, a method capable of obtaining a good estimation of the
unknown parameters in a reasonable amount of time is needed, even if such
a solution may be suboptimal.

• Optimality: there might not exist a combination of the unknown parameters
that make the historical load x′t to be an optimal in (4.5).

• Feasibility: the historical load x′t is not necessarily feasible in the reconstruc-
tion problem (4.5)

In order to overcome these difficulties, in Paper D we propose a solution ap-
proach that consists of two steps, where a linear programming problem is solved
in each one:

1. Feasibility problem or bound estimation problem. It consists in finding
a “good” feasible region for the reconstruction problem (4.5) in terms of
prediction performance. The problem is linear and makes use of a penalty
parameter that ensures the bounds to have good predictive power. The
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penalty parameter is tuned by means of cross-validation in order to obtain
the smallest out-of-sample prediction error [14, Ch. 7].

2. Optimality problem or marginal utility estimation problem. Given a set
of bounds calculated by the bound estimation problem, we estimate the
marginal utility for every block b and time t such that the observed load
x′t becomes as optimal as possible in the reconstruction problem (4.5).

A detailed elaboration on the proposed solution method is left out of this chap-
ter for brevity. The reader is referred to Paper D of this thesis for further
information on the solution method.

The proposed inverse optimization framework can be seen as a generalization of
a linear time series model: the relationship between the load and the regressors
is linear, but the relationship between the load and the price at time t is not. In
other words, in the feasibility problem, we model the linear relationship between
the load and the regressors, excluding the price at time t. The outcome of the
feasibility problem is the power bounds P̂ t and P̂ t. In the optimality problem we
model the non-linear relationship between the load that falls inside the interval
[P̂ t, P̂ t], and the price at time t. Unlike in the proposed scheme, in a simple
linear regression model, the relationship between the load and the price is given
by an affine coefficient.

For the case study, we simulate two datasets using the work in [43]. In short,
we simulate 100 different buildings equipped with heat pumps. The heat pumps
in each building schedule their consumption by solving an Economic Model
Predictive Control (EMPC) problem that minimizes the cost of energy plus a
penalty term for not complying with a comfort temperature band. We simulate
and aggregate the load of the buildings in two datasets. One dataset, called no
flex, shows no response of the buildings to price. In the other dataset, called flex,
the buildings are price-responsive and the relationship between the aggregate
load and the price is non-linear, as shown in Figure 4.7.

The load is predicted 1-step ahead, and the performance of the proposed method
is compared with the forecasting capability of an Auto Regressive Model with
Exogenous Variables (ARMAX) [12]. An example of the predictions of the
aggregate load for the flex dataset is displayed on the top of Figure 4.8. The
estimated minimum and maximum load bounds are able to explain a certain
part of the variability of the load. The remaining variability is explained by
the relationship between the marginal utilities and the price. The predictions
made by the ARMAX model are also able to anticipate the behavior of the load,
but to a lesser extent. On the bottom plot of Fig. 4.8, the electricity price is
displayed together with the estimated marginal utility blocks, for each hour of
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Figure 4.7: Price and aggregate load for the non-flexible (left) and flexible
(right) cluster of buildings. Red and blue colors indicate high an
low ambient temperature, respectively.

the test period. The magnitude and distribution of the marginal utilities change
with time and capture the dynamic response of the load to the price.

Performance metrics computed over the test set are summarized in Table 4.2.
Each row is relative to one of the three benchmark models. Columns 1 and 3
give information on the Normalized Root Mean Square Error (NRMSE), defined
as

NRMSE = 1
xmax − xmin

√√√√ 1
T

T∑
t=1

(
B∑
b=1

x̂b,t − x′t

)
(4.6)

and columns 2 and 4 on the Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE = 1
T

T∑
t=1

|
∑B
b=1 x̂b,t − x′t|

(|
∑B
b=1 x̂b,t| − |x′t|)/2

. (4.7)

In Table 4.2 we also compare the performance of the proposed forecasting
method using the two simulated data sets. On the left part, we show the per-
formance measures relative to the no flex data set. The ARMAX and the
InvFor models yield almost identical results in terms of NRMSE and SMAPE.
The differences between the ARMAX and the InvFor stand out when used for
predicting the flex data set. On the right side of Table 4.2, we see that our
methodology outperforms the ARMAX with a NRMSE and a SMAPE 32%
and 16.8% lower, respectively. The persistence model, as expected, exhibits the
worst performance. We conclude that the non-linear relationship between the
price and the load is well captured by the InvFor model.
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No Flex Flex
NRMSE SMAPE NRMSE SMAPE

Persistence 0.1727 0.1509 0.3107 -
ARMAX 0.10086 0.08752 0.13107 0.08426
InvFor 0.10093 0.0886 0.08903 0.07003

Table 4.2: Benchmark for the test set
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Chapter 5

Conclusions and Perspectives

5.1 Contributions

In this dissertation we have provided a number of innovative contributions to
the state of the art. The contributions are novel from a methodological point of
view, and their applicability is rooted to decision making in power systems. This
thesis provides mathematical models that enhance the operation of electricity
markets and also of their players. In summary, the contributions of this thesis
are to the field of demand-side bidding, price-responsive load forecasting, reserve
determination and inverse optimization.

The first mayor contribution of the conducted research is on the development
of inverse optimization models applied to power system operations and time
series analysis. The use of constrained optimization models to characterize the
response of aggregate price-responsive load is a novel concept in the existing
literature, and has been proved to be relevant in Papers B and D of this dis-
sertation. From a mathematical perspective, the inverse optimization models
developed in Papers B and D pose several challenges to which we provide com-
prehensive answers. In both papers, we consider a generalized inverse optimiza-
tion scheme novel in the literature, where the unknown parameters appear both
in the objective function and in the constraints of the reconstruction problem.
To overcome the nonlinear and non-convex nature of the models, we provide
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two different computationally attractive methods that approximate the solution
to the proposed generalized inverse optimization models by solving instead two
linear programming problems. In Paper B the solution method is based on
the relaxation of the KKT conditions, while in Paper D it relies on a duality-
gap minimization problem preceded by a feasibility problem. In both cases,
by solving linear problems instead of one single nonlinear one, the computa-
tional burden is significantly reduced, allowing us to include external variables
or regressors that, in practice, are shown to enhance the performance of the so-
lutions. A special case of such regressors is time and calendar variables, which
allow to model the time-varying characteristics of the variables of interest.

Optimal bidding, though a relatively old concept in the field of power systems
and load forecasting, gains a whole new dimension when smart grid and real-
time pricing is considered. Traditionally, a forecast of the consumption of a pool
of loads comprises the inelastic bid that is submitted to the wholesale electricity
market, indicating the desired purchase quantity. In Papers B and C of this
dissertation, we prove the usefulness of more complex bids that capture the
response of the pool of consumers to changes in price. These bids are analogue
to the traditional supply bids, hence they can easily be implemented in the
current market clearing algorithms. The main challenge that we overcome is how
to obtain optimal demand-side bids that best represent the complex behavior
of the load to varying price.

This thesis proposes two methodologies that provide for an optimal demand-side
bid in the case where a retailer, also called aggregator, bids to the day-ahead
market on behalf of its price-responsive pool of consumers. From the market-
bid perspective, the bids take the form of a price-bid curve, as in Paper C, and
possibly other technical constraints as in Paper B. The contributions differ in
the way they measure the “goodness” of the estimated bid and their usefulness
depend on whether the retailer’s goal is to minimize its expected imbalances or
to maximize its profit. In both cases, the complex bids outperform simple bids
in terms of imbalances and retailer’s profit.

In the field of load forecasting, Paper D gives a novel approach to model time
series and forecast price-responsive loads. Under the real-time pricing setup,
the impact of the price on the aggregate load for every time period is naturally
non-linear. This relationship is modeled by an optimization problem, which is
characterized by a set of unknown parameters. The parameter estimation pro-
cess boils down to solving a generalized inverse optimization problem. For the
case study, it is shown that the performance of the inverse-optimization-based
method outperforms traditional time series models, in particular, ARMAXmod-
els.

In paper A we consider the problem of determining the most appropriate levels
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of electricity reserves to be scheduled in a market structure such as the ones in
Denmark and the Nordic countries. A probabilistic framework is given, where
the reserve requirements are computed based on scenarios of wind power and
load forecast errors and power plant outages. The proposed solution differs with
the existing work in that it is well-suited for power systems where the reserve
market and the day-ahead energy market are cleared independently at different
times and by different entities. We propose a stochastic optimization modeling
framework that, without knowing which units will be online, is able to determine
the optimal allocated reserves for the next operational day.

5.2 Perspectives and Future Research

The development of advanced metering and communication infrastructure in
smart grid opens up an interesting and broad field of research. In addition,
our energy needs are being increasingly covered by renewable energy production
means. Having said that, current electricity markets are designed for a no-smart
and no-renewable system. Research that is able to couple them is certainly
needed. This thesis provides solutions to some of the existing problems, but
certainly more needs to be done. Our focus has been to solve problems that
arise under the current electricity market structure. Nevertheless, new market
frameworks that facilitate the inclusion of smart grid technologies is a relevant
topic to be studied in future work.

From a methodological point of view, the research conducted in this thesis opens
up several lines of work. The most interesting one is the further application of in-
verse optimization modeling to power systems, whether it is for optimal bidding,
for load forecasting, or any other possible application. The research conducted in
this thesis has just touched the tip of the iceberg in regards to inverse optimiza-
tion and time series. Exploiting large amounts of data, allowing for non-linear
relationships by, for example, the use of splines, and obtaining robust solutions,
are only three of the many improvements that need to be addressed. From a
theoretical perspective, further mathematical foundations that characterize the
solutions to generalized inverse optimization problems could help to understand
better the underlying characteristics of this family of models.

Summarizing complex problems into simple optimization problems by using
inverse optimization seems applicable to other fields than just power systems.
Certainly, an exiting line of work would be to find such applications as for
example transport, biology and finance.

In regards to optimal reserve determination, the proposed approach could be
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enhanced by modeling the interconnections between grid areas and by modeling
the possible reserve capabilities of demand under the smart grid paradigm. Fur-
thermore, computing and allocating optimal reserves in a large interconnected
system like the European one could be of interest to policy makers. From the
perspective of the Danish power system, assessing the benefit of jointly de-
termining the day-ahead energy and reserve dispatch versus their independent
determination could shed some light on whether the market structure needs to
be changed.
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Determining Reserve Requirements in DK1
Area of Nord Pool Using a Probabilistic

Approach

Javier Saez-Gallego1, Juan M. Morales1, Henrik Madsen1, and Tryggvi
Jónsson2

Abstract

Allocation of electricity reserves is the main tool for transmission
system operators to guarantee a reliable and safe real-time opera-
tion of the power system. Traditionally, a deterministic criterion is
used to establish the level of reserve. Alternative criteria are given in
this paper by using a probabilistic framework where the reserve re-
quirements are computed based on scenarios of wind power forecast
error, load forecast errors and power plant outages. Our approach is
first motivated by the increasing wind power penetration in power
systems worldwide as well as the current market design of the DK1
area of Nord Pool, where reserves are scheduled prior to the closure
of the day-ahead market. The risk of the solution under the result-
ing reserve schedule is controlled by two measures: the Loss-of-Load
Probability (LOLP) and the Conditional Value at Risk (CVaR). Re-
sults show that during the case study period, the LOLP methodology
produces more costly and less reliable reserve schedules, whereas the
solution from the CVaR method increases the safety of the overall
system while decreasing the associated reserve costs, with respect to
the method currently used by the Danish TSO.

A.1 Introduction

Electricity is a commodity that must be supplied continuously at all times at
certain frequency. When this requirement is not fulfilled and there is shortage

1Department of Applied Mathematics and Computer Science, Technical University of Den-
mark, DK-2800 Kgs. Lyngby, Denmark

2Meniga ehf. Kringlan 5 103 Reykjavik, Iceland
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of electricity, industrial consumers can face the very costly consequences of out-
ages: their production being stopped or their systems collapsed. Households
will experience high discomfort and losses too. From a different point of view,
service interruptions also affect electricity producers as they are not able to sell
the output of their power plants. Therefore, it is of high importance that the
demand is always covered. The main tool for transmission system operators to
avoid electricity interruptions is the allocation of operating reserves. In practice,
scheduling reserves means that the system is operating at less than full capacity
and the extra capacity will only be used in case of disturbances.

The term operating reserves is defined in this paper as “the real power capability
that can be given or taken in the operating time frame to assist in generation
and load balance and frequency control” [A1]. The types of reserves are differ-
entiated by three factors: first, the time frame when they have to be activated
ranging from few seconds to minutes; secondly, their activation mode, either
automatically or manually; finally, by the direction of the response, upwards
or downwards. Members of the European Network for System Operators for
Electricity (ENTSO-E) and more specifically, the Danish Transmission System
Operator (TSO), follow this classification criterion. Primary control is activated
automatically within 15 seconds and its purpose is to restore the balance after a
deviation of ±0.2 mHz from the nominal frequency of 50Hz. Secondary control
releases primary reserve and has to be automatically supplied within 15 minutes
or 5 minutes if the unit is in operation. Manual reserve releases primary and
secondary reserves and has to be supplied within 15 minutes. In Denmark, this
type of reserve is often provided by Combined Heat-and-Power (CHP) plants
and fast start units. The activated manual reserves are often referred as regulat-
ing power. This paper deals with the total upward reserve requirements, namely
the sum of primary, secondary and manual reserves, neglecting the short-circuit
power, reactive and voltage-control reserves. The result of the proposed opti-
mization models, namely the schedule of reserves, refers to the total MW of
upward reserve required. It is assumed that the reserve acts instantaneously to
any generation deficit and no activation times are considered.

Currently the provision of reserve capacity in the DK1 area of Nordpool obeys
the following rules, which can be found in the official documents issued by the
Danish TSO [A2]. The requirements for primary and secondary reserve are
±27MW and ±90MW , respectively. The provision of tertiary or manual re-
serves follows the recommendations in both the ENTSO-E Operation Handbook
and the Nordic System Operation Agreement [A3], where it is stipulated that
each TSO must procure the amount of tertiary reserves needed to cover the
outage of a dimensioning unit in the system (the so-called N− 1 criterion), be
it a domestic transmission line, an international interconnection or a generating
unit. The inspection of the historical data reveals that this criterion roughly
results in an amount of tertiary reserve in between 300 and 600 MW.
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The methodologies discussed in this article are mainly targeted to the current
structure of the Danish electricity market, where reserve markets are settled
independently of and before the day-ahead energy market, implying that, at the
moment of scheduling reserves, no information about which units will be online
is known. At the market closure, the TSO collects bids from producers willing
to provide reserve capacity, and selects them by a cost merit-order procedure.
Most of the existing literature focuses on co-optimizing the unit commitment
and reserve requirements at the same time; such methods however cannot be
applied under the current design of the Danish electricity market.

This paper is also motivated by the increasing penetration of wind power pro-
duction in Europe and, in particular, in Denmark. As a matter of fact, the
commission of the European Countries has set an ambitious target such that
the EU will reach 20% share of energy from renewable sources by 2020, and in
Denmark the target is 30% [A4]. As the share of electricity produced by renew-
ables increases, several challenges must be faced. Non-dispatchable electricity
generation cannot ensure a certain production at all times, but instead depends
on meteorological factors. The stochastic nature of such factors inevitably leads
to forecast errors that will likely result in producers deviating from their con-
tracted power, thus causing the system to be imbalanced. Solutions call for
methods capable of managing the uncertainty that wind power production and
other stochastic variables induce into the system.

The main contributions of this paper are the following:

1. A probabilistic framework to determine the total reserve requirements in-
dependently to the generation power schedule in a power system with high
penetration of wind production. The reserve levels in Denmark are cur-
rently computed by deterministic rules such as allocating an amount of
reserve equal to the capacity of the largest unit online [A2, A3]. Another
example is the rule used in Spain and Portugal, where the upward reserve
is set equal to 2% of the forecast load plus the largest unit in the system.
These rules are designed for systems with very low penetration of renew-
able energy and fairly predictable load, where the biggest largest need for
reserve capacity arises from outages of large generation units. With the
increasing share of renewables (and decentralized production in general)
in the generation portfolio, renewables will naturally have a larger influ-
ence on the system imbalance. Hence, the non-dispatchable and uncertain
nature of these plants needs to be accounted for when reserve power is
scheduled [A5]. Previous studies perform a co-optimization of the energy
and reserve markets, either in a deterministic manner [A6] or in a proba-
bilistic way [A7, A8, A9, A10, A11, A12, A13]. However, these methods
cannot be applied directly to the DK1 area of Nord Pool since the reserve
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market and the day-ahead energy market are cleared independently at
different times and by different entities. The methodology in [A14] is not
suitable either as the Capacity Probability Table (COPT) refers to the
units that are online; this information is not available to the Danish TSO
at the time of clearing the reserve market.

2. A flexible scenario-based approach for modeling system uncertainty, which
takes into account the limited predictability of wind and load, and plausi-
ble equipment failures. Moreover, the distributions from which the scenar-
ios are generated are time-dependent, being the distributions of the scenar-
ios of forecasts errors of load and wind power production non-parametric
and correlated. The authors of [A9] characterize the uncertainty in the
system only by scenarios of wind power forecast errors. Load and wind
generation uncertainty is described in [A8, A15] by independent Gaus-
sian distributions and not in a scenario framework. Other authors [A7,
A15] use outage probabilities as a constant parameter for each unit and
for each hour. The authors of [A14] represent the forecast error distribu-
tions of the load and wind generation by a set of quantiles, assuming both
distributions are independent.

3. Equipment failures are modeled as the amount of MW that fail in the
whole system due to the forced outages of generating unit. This way we can
model and simulate simultaneous outages. Furthermore, the distribution
of failures is dependent on time. Existing literature takes into account
just one or two simultaneous failures [A7, A8, A15] or several [A14].

4. Two different methods for controlling the risk of the resulting capacity
reserve schedule. The first one imposes a target on the probability of load
shedding as in [A7], while the second one is based on the Conditional Value
at Risk of the reserve cost distribution. The latter method minimizes the
societal costs, while penalizing high cost scenarios given a certain level of
risk aversion.

The remaining of the paper is organized as follows. Section II presents two dif-
ferent optimization models for reserve determination. Section III describes the
methodology to generate scenarios of load forecast error, wind power forecast
error and equipment failures, which altogether constitute the input information
to the proposed reserve determination models. Section IV elaborates on the
estimation of the cost of allocating and deploying reserves. Section V discusses
the results and comments on the implications of applying the two reserve deter-
mination models to the Danish electricity market. Conclusions are summarized
in Section VI.
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A.2 Modeling Framework

This section presents two formulations for determining the reserve requirements
in DK1, both of them solved using a scenario-based approach. The first lim-
its the Loss-Of-Load Probability (LOLP), while the second one minimizes the
Conditional Value at Risk (CVaR) of the cost distribution of reserve allocation,
reserve deployment and load shedding. Both models are meant to be run to
clear the reserve market and can be used by the TSO to decide on how many
MW of reserve should be scheduled. In Denmark, where the study case in this
paper is focused, the reserve market is cleared previous to and independently of
the day-ahead energy market. This implies that the unit commitment problem
is not addressed at the time when the reserve market closes and thus neither is
it in this paper.

A.2.1 LOLP Formulation

The objective is to minimize the total cost of allocating reserves,

Minimize
Ri

M∑
i

λiRi, (A.1a)

where Ri is a variable representing the total amount of reserve assigned to
producer i and λi is the price bid submitted to the reserve market by this
producer. M is the total number of bids. The objective (A.1a) is subject to the
following constraints

Ri ≤ Rmaxi ∀i (A.1b)

RT =
M∑
i

Ri (A.1c)

LOLP =
∫ ∞
RT

f(z)dz (A.1d)

LOLP ≤ β (A.1e)
RT ≥ 0 ∀i. (A.1f)

The set of inequalities (A.1b) indicates that the amount of reserve provided
by producer i cannot be greater than its bid quantity. The total reserve to
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be scheduled is defined in (A.1c) as the sum of the reserve contribution from
each producer. The probability density function of balancing requirements is
represented by f(z), and hence the integral from z = RT to z = ∞ is the
probability of not scheduling enough reserves to cover the demand, namely the
loss-of-load probability, defined in (A.1d). It is constrained by a parameter
target β ∈ [0, 1] in Equation (A.1e), which is to be specified by the transmission
system operator. The smaller β is, the more reserves are scheduled, as the LOLP
is desired to be small. On the other hand, if β is equal to 1, no reserves are
allocated at all.

The optimal solution to problem (A.1a) can be found analytically, under the
assumption that the objective function (A.1a) is monotonically increasing with
respect to the total scheduled reserve RT (i.e., reserve capacity prices are non-
negative) and because the LOLP is a decreasing function with respect to RT
(note that f(z) is a density function and therefore, always non-negative). In-
deed, under the above assumption, greater RT implies greater costs, thus RT
is pushed as low as possible until the relation LOLP = β is satisfied. There-
fore, at the optimum, it holds that β =

∫∞
RT f(z)dz or similarly 1− β = F (RT )

being F (Z) = P (Z ≤ z) the cumulative distribution function of Z (the re-
quired reserve). Finally, since β is a given parameter, then the solution is
RT
∗ = F−1(1− β).

In practice, f(z) can be difficult to estimate in a closed form; one way of dealing
with this issue is to describe the uncertainty by scenarios. Let zw be the reserve
required to cover balancing needs in scenario w and πw the associated probability
of occurrence. Then the optimal solution to problem (A.1a) boils down to the
quantile 1 − β of the scenarios. In other words, let F̂ (Z) = P (Z ≤ z) be
the empirical cumulative distribution function of the set of scenarios {zw} with
F̂ : (−∞,∞)→ (0, 1), then the analytical solution is RT∗ = inf{z ∈ (−∞,∞) :
(1− β) ≤ F̂ (z)}.

Finally, we define the Expected Power Not Served (EPNS) as the expected
amount of MW of balancing power needed during one hour which cannot be
covered by the scheduled reserves. It can be computed, once the total scheduled
reserve RT∗ has been obtained, as

EPNS =
∫ ∞
RT∗

zf(z)dz. (A.2)

In the case where the uncertainty of reserve requirements is characterized by
scenarios, the EPNS can be determined as EPNS =

∑
w∈S(zw − RT∗)πw, S =

{w ∈W : zw > RT
∗}.



A.2 Modeling Framework 73

A.2.2 Conditional Value at Risk (CVaR) Formulation

The following reserve determination model corresponds to a two-stage stochas-
tic linear program where each scenario is characterized by a realization of the
stochastic variable Z “reserve requirements”. Variable RT represents the amount
of MW that the TSO should buy at the reserve market. In the jargon of stochas-
tic programming, this variable is referred to as a first stage variable, or equiva-
lently, as a here-and-now decision, i.e., a decision that must be made before any
plausible scenario zw of energy shortage is realized. This models the fact that
reserve capacity is to be scheduled before the scenarios of reserve requirement
are realized. For their part, the second stage variables, or recourse variables, rTw
and Lw, are relative to each scenario w, and represent the deployed regulating
power and the MW of shed load, respectively. Consequently, during the real-
time operation of the power system, once a certain scenario w of wind power
production, load and equipment failures realizes, reserve is activated rTw or some
load is shed (Lw). In such a way, the first stage of our stochastic programming
model represents the reserve availability market and the second stage represents
the reserve activation market. Finally, the probability of occurrence of each
scenario is denoted by πw.

The objective function to be minimized is the CVaRα of the distribution of
total cost. By definition, the Value-at-Risk at the confidence level α (VaRα) of
a probability distribution is its α-quantile, whereas the CVaRα is the conditional
expectation of the area below the VaRα. The CVaR is known to have better
properties than the VaR [A16] and hence, it is used in this paper. Parameter
α ∈ [0, 1) represents the risk-aversion of the TSO, i.e. the greater α is, the more
conservative the solution will be in terms of costs. The objective is to minimize
the CVaRα of the distribution of the total cost:

Minimize
RT ,Rg,rT

w,rgw,Lw,ξ,ηw,Costw
CVaRα = ξ + 1

1− α

W∑
w=1

πwηw (A.3a)

where ξ is, at the optimum, the α−Value at Risk (VaRα) and ηw is an auxiliary
variable indicating the positive difference between the VaR and the cost associ-
ated with scenario w. The cost of each scenario, named Costw, is computed in
(A.3b) as the sum of the cost of allocating and deploying reserve capacity plus
the cost incurred by involuntary load shedding. The objective (A.3a) is subject
to the following constraints:
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Costw =
J∑
j=1

λcap
j Rj +

G∑
g=1

λbal
g rgw + V LOLLw ∀w (A.3b)

RT =
J∑
j=1

Rj (A.3c)

rTw =
G∑
g=1

rgw ∀w (A.3d)

0 ≤ Rj ≤ IRj ∀j (A.3e)
0 ≤ rgw ≤ Irg ∀g, w (A.3f)

Costw − ξ ≤ ηw ∀w (A.3g)
rTw ≤ RT ∀w (A.3h)

zw − rTw ≤ Lw ∀w (A.3i)
0 ≤ Lw, ηw ∀w. (A.3j)

The first term in Equation (A.3b) represents the cost of allocating RT MW of
reserve capacity. The TSO has information about the marginal cost of allocating
reserves at the closure time of the reserve market, as it is given by the bids
submitted by producers to the reserve market. These bids, however, are treated
confidentially and hence, were not available for the study case. Consequently,
we estimate a cost function for the supply of reserve capacity from the historical
series of clearing prices in the Danish reserve market. Naturally, this function
must be monotonically increasing. The estimation of the parameters of this
function is discussed in Section A.3. In order to keep formulation (A.3) linear,
the marginal cost of reserve capacity is further approximated by a stepwise
function consisting of J intervals of length IRj each, as indicated in (A.3e), and
associated values λcap

j , which result from evaluating the estimated reserve cost
function at the midpoint of each interval. The term

∑J
j=1 λ

cap
j Rj represents

thus the total cost of allocating RT MW of reserves. Furthermore, the total
allocated reserves are given by (A.3c). Note that the formulation would remain
equal if the real bids were used instead of the estimated cost function. One
could interpret λcap

j and IRj as the bid that producer j submit to the reserve
market and Rj as the MW of reserve capacity provided this producer.

The second term of (A.3b) represents the reserve deployment cost. This cost
is unknown at the time of clearing the reserve market and therefore, has to be
estimated by as well. The estimation procedure is discussed in Section A.3.
Similarly as before, λbal

g can be seen as the cost of deploying rgw MW of reserve



A.3 Cost Functions 75

in interval g and scenario w. The length of the intervals is Irg , as stated in
(A.3f), having a total of G intervals. The total deployed reserve in scenario w
is then given by (A.3d).

The third term of (A.3b) represents the cost of involuntary load curtailment.
The parameter “Value of Lost Load” V LOL expresses the societal cost of shed-
ding 1 MWh of load. Often, the V LOL is interpreted as the maximum price of
upward regulation that is permitted to bid in the market, which in Denmark
is 37 500 DKK/MWh or roughly 5 000 e/MWh. In Great Britain, the V LOL is
estimated to be from 1 400 £/MWh to 39 000 £/MWh depending on the type
of consumer and the time of the year [A17]. A study performed on the Irish
power system indicates that, on average, the V LOL is 12.9 e/KWh [A18]. In
this paper, a sensitivity analysis is performed to study how the parameter V LOL

affects the solution.

Constraint (A.3g) is used to linearly define the CVaRα as in [A19]. Variable
ηw is equal to zero if Costw < ξ, and equal to Costw − ξ if Costw ≥ ξ; in
other words, ηw accounts for the difference between the cost in each scenario
and the VaRα when such a difference is positive. Equation (A.3h) indicates that
the deployed reserve cannot be greater than the scheduled reserves. Equation
(A.3i) is used to define the shed load Lw (or similarly, the lack of reserve). At
the optimum, Lw is equal to zero if zw ≤ RT , implying that zw = rTw; when
zw > RT , then Lw is equal to the difference between the reserve requirements
and the deployed reserves, namely, zw − rTw. In this case, the deployed reserve
is equal to the scheduled capacity reserve rTw = RT .

Once the CVaR problem has been solved, one can calculate the EPNS by mul-
tiplying the lacking reserve from each scenario L∗w at the optimum by its prob-
ability of occurrence πw, namely EPNS =

∑W
w=1 πwL∗w.

A.3 Cost Functions

This section elaborates on the estimation of the cost of allocating reserves and
the cost of providing regulating power.

In practice, the bids that producers submit to the reserve market, that are used
to define (A.3b), are available to the Danish TSO at the closure of the reserve
market. Nevertheless, this information is not available to us for the case study
presented in Section 5. Consequently, in order to adjust the optimization models
to the available data and test the efficiency of such, the bids of producers are
substituted by a cost function, being gR(z) the cost in e/MW of allocating of z
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MW of upward reserve. This function is built from the series of clearing prices
in the Danish reserve market, which is publicly available in [A20]. The price per
MW of reserve capacity is assumed to be quadratic for simplicity, in particular,
of the form gR(z) = az2. The coefficient a = 1.25 × 10−5 is estimated using
least-square method.

A staircase linear approximation of gR(z) is then used in order to maintain
formulation (A.3) linear. The reason for the choice of a staircase function is that,
due to market rules, the aggregated bidding curve is also a staircase function.
The feasible region of RT is split into intervals of length Irj = 30 MW ∀j, ranging
from 0 to an upper bound of RT chosen to be 1890MW. For every interval, we
compute the estimated marginal cost λcap

j at the mid point of the interval and
set it to the height of each stair. Figure A.1 shows on the left the data points
and the estimated curve of prices in Euro per MW of allocated reserve. The
data appears very homoscedastic, for example, the variability around RT = 300
MW is much lower than around RT = 450 MW. Nevertheless, the curve is not
intended to capture all the variability of the data but to represent a plausible
aggregated bidding curve in the reserve market.

The cost of deploying reserves is a necessary input to Equation (A.3b) and must
be estimated in practice, as it is unknown at the time of clearing the reserve
market. We denote the marginal cost of deploying zMW of reserve by gr(z). In
order to compute this cost, we approximate the clearing prices of the regulating
market by a quadratic term plus an intercept, gr(z) = µ+ bz2. The parameters
are estimated using the least-squares method and data relative to the clearing
price of the regulating market in DK1 collected from [A20]. The regulating
power traded versus the market price is displayed in dots in Figure A.1. The
resulting estimates of the parameters are µ = 48.2 and b = 6 × 10−4. In order
to maintain the optimization problem (A.3) linear, gr(z) is linearized as a stair-
case function, which is shown in the right plot in Figure A.1. More complex
functions could possibly be estimated, for example using time and other external
factors as explanatory variables. This implementation is left for future work.

Lastly, it should be noted the difference in scale between the settlement prices
of the two markets. On average, the price of allocating reserve is approximately
40 times lower than deploying them. Allocating reserve is cheaper as no energy
is actually deployed but only the capacity is allocated.
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Figure A.1: On the left, the settlement price and the allocated reserves in
the reserve market. Dots represent data and the staircase curve
constitutes the estimated fit. On the right, the data relative to
the settlement price of the regulating power market is shown in
dots while the fitted stair-wise curve is displayed on top.

A.4 Scenarios of Reserve Requirements

The total reserve capacity that should be scheduled and allocated in advance
is mainly affected by three factors or uncertainty sources: the forecast error of
wind power production, the forecast error of electricity demand and the forced
outages of power plants, namely failures of the plants that cause their production
to stop. They are all taken into account in this paper.

Suppose that wind power production is the only source of uncertainty. We
assume that wind power producers bid their expected production in the day-
ahead market. If the actual wind power production is greater than what was
expected, then there will be extra power to sell and hence a reduction in power
supply (down-reserves) will be required to maintain the system balance; if, on
the other hand, the realized wind is lower than the expected value, upward
reserves will be required. In other words, if the forecasts were perfect and
the errors equal to zero, no reserve would be needed. Likewise, as the forecast
errors increase, more reserves are required to account for the possible mismatches
between supply and demand. Similarly with the power load: it is assumed that
the amount of power traded in the day-ahead energy market is equal to the
expected power load demand, therefore positive errors imply upward reserve
requirements while negative errors imply downward reserve requirements. The
predicted outages of power plants lead directly to upward reserve requirements.

The probability distributions of the forecast errors and the power plant outages
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can be combined into one by convolving them, resulting in a function which will
represent the probability distribution of the combined balancing requirements
f(z). In this paper, we draw scenarios from each individual distribution and
sum them up to produce scenarios characterizing the total reserve requirements
in the DK1 area of Nord Pool. A scenario-based approach is chosen because the
convolution of the probability distributions of the individual stochastic variables
does not have a closed form and can be highly complex. The remaining of this
section elaborates on how the individual scenarios are obtained.

A.4.1 Scenario Generation of Wind Power Production and
Load Forecast Errors

In this subsection both the generation of scenarios of wind power production
and load forecast errors are discussed. Scenarios from both stochastic variables
are generated together to account for correlation between them.

Regarding the wind power production in DK1, point quantile forecast have been
issued using a conditional parametric model, i.e., a linear model in which the
parameters are replaced by a smooth unknown functions of one or more ex-
planatory variables. The explanatory variables are on-line and off-line power
measurements from wind turbines and numerical weather prediction of wind
speed and wind direction. The functions are estimated adaptively. The errors
are modeled as a sum of non-linear smooth functions of variables forecast by
the meteorological model or variables derived from such forecasts. Further in-
formation about the employed modeling approach can be found in [A21, A22,
A23].

The load in DK1 area has been modeled as a function of the temperature, the
wind, and the solar radiation. The annual trend is modeled by a cubic B-
spline basis with orthogonal columns. The daily variations are modeled as a
combination of different sinusoids, one referring to each time of the day. The
reader is referred to [A24] for a detailed description of the methodology used in
this paper to model the electricity demand in DK1.

The scenarios of wind production and load are generated in pairs in order to
account for their mutual correlation. Each scenario is composed by two variables
and is built in three steps as in [A25]: first by a sample of a multivariate
Gaussian distribution where the covariance matrix is estimated recursively as
new observations are collected; then, by applying the inverse probit function of
such sample, and finally by using the estimated inverse cumulative function of
the desired variables.
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Figure A.2: The histogram of forecast error scenarios of wind power produc-
tion and load during one specified hour shown are shown in gray
and white, respectively.

Figure A.2 shows the distribution of the scenarios of forecast errors of wind
power production and load in gray and white respectively, during the 15th Dec
2011 from 13:00 to 13:59. Note that the distribution of the forecast error of
wind power is wider, indicating that, in general, wind power production has
a greater impact on reserve requirements than the load. On average, forecast
error scenarios of wind exhibit five times more variance than the load scenarios.
Finally, note that both distributions are centered around zero.

A.4.2 Scenario Generation of Power Plant Outages

The modeling of individual power plant outages requires historical data and
specific information on each power plant which might not always be available
to the TSO. Secondly, it requires computing an individual model for each unit,
thus increasing complexity significantly. Thirdly, it requires information about
which units will be on/off during the operation horizon, which is not available
at the clearing of the Danish reserve market. An alternative approach taken in
this paper is to model the total amount of MW that fail in the entire system
by aggregating all the units into one. The predicted MW failed in the entire
system depend on time and on the load. Historical data of power plant outages
can be found at the Urgent Market Messages service of Nord Pool [A26]. The
left plot in Figure A.3 shows the forced outages in MW during 2011. The area
inside the box corresponds to the MW failed in May, also zoomed in the right
plot. In the course of 2011, there was 92% of the hours where 0 MW failed;
during the rest of the hours, either an outage of a single unit, a partly outage
or simultaneous outages occurred.
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Figure A.3: Historical data of MW forced to fail in DK1. On the left, data
relative to year 2011 is shown. The area inside the rectangle is
zoomed on the right plot and refers to May 2011.

The procedure proposed in this paper to model power plant outages is comprised
of two steps. In the first step, we model the presence or absence of an outage.
In the second step, we model the amount of MW failed, conditioned on the fact
that a failure occurred. In [A27] we explored alternative methodologies based on
Hidden Markov Models that were proven to perform worse at predicting future
outages.

The variable modeled in the first step Yt is defined as

Yt =
{

1 if failure occurs at time t
0 otherwise.

(A.4)

It is natural to assume that Yt follows a Bernoulli distribution, Yt ∼ bern(pt),
and therefore, it is appropriate to model Yt as a Generalized Linear Model [A28].
The link function chosen is the logit function. The explanatory variables are
the hour of the day, the day of the week and the month, all represented through
sinusoidal curves. Sinusoidal terms of the form k(1)cos(2π hourt

24 ), k(2)cos(2π dayt

7 )
and k(3)cos(2πmontht

12 ) with k(1) = 1...24, k(2) = 1...7, and k(3) = 1...12, are
considered, also using the sin function. Only the most relevant were kept using
a likelihood ratio test as in [A28]. The final model is
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(A.5)
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Figure A.4: Histogram of xt

nt
|yt = 1, namely the amount of MW failed divided

by the load at time t, knowing that a failure has occurred. The
curve represents the estimated Gamma distribution.

The reduced model indicates that the hour of the day is not significant when
predicting the probability of an outage. The day of the week and the month
are both significant variables. The parameters of the model are optimized using
train data and updated everyday including data from the previous 24 hours
during the test period.

The second stage of the model accounts for the amount of failed MW at time
t, Xt, conditioned on the fact that a failure has occurred. Note that the more
energy is demanded, the more power plants are online and more generators are
subject to fail, meaning that the load nt will affect our predictions of Xt. The
histogram of (Xt

nt
|Yt = 1) depicted in Figure A.4 clearly resembles the density

of a Gamma distribution. Thus, we assume that (Xt

nt
|Yt = 1) ∼ Gamma(st, k),

where k is the shape parameter, common for all observations, and st the scale
parameter at time t.

The probability density function of a Gamma distribution is defined as

f(x) = 1
Γ(k)skt

xk− 1e−
x
st , (A.6)

with mean µt = kst and variance σ2 = ks2
t . The canonical link for the gamma

distribution is the inverse link η = 1/µ [A28]. As in the previous binary model,
the explanatory variables are several sinusoidal curves. Several approximate χ2-
distribution tests were performed to disregard irrelevant terms. The final model
only including the significant terms is
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When predicting the ratio Xt/nt, the hour, the week day and the month are
statistically significant.

Scenarios are generated in an iterative process. Every day at 9:00 am, the
parameters of both models are updated including data from the previous day.
At this time, 5000 scenarios for each hour of the next day are generated, i.e.,
with lead time ranging from 16 to 40 hours. Each scenario corresponds to an
independent simulation of a Bernoulli multiplied by a Gamma simulated value
and by the predicted load nt.

A.5 Results and Discussion

The performance of the proposed reserve determination models is assessed by
comparing the reserve capacity scheduled by the models and the reserve capacity
actually deployed in the DK1 area of Nord Pool. The latter is calculated as the
sum of the activated secondary reserve, regulating power produced in DK1 and
the regulating power exchanged through the interconnections with neighboring
areas. Data pertaining to the activated secondary reserve and the total vol-
ume of regulating power can be downloaded from [A26] and [A20], respectively.
The regulating power exchanged through the interconnections with Germany,
Norway, Sweden and East Denmark is estimated using data from [A20]. More
specifically, it is computed by subtracting the total power scheduled for each
interconnector in the day-ahead market from the actual power that eventually
flows through it. Primary regulation was not considered due to unavailability
of the data. However, conclusions would be barely affected by considering the
primary regulation as it is comparatively very low. In the remainder of the
paper, a shortage event is defined as an hour when the scheduled reserves are
lower than the actual reserve deployed. In practice, a shortage event does not
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necessarily imply that load is shed. In the Nordic market, producers who are
scheduled to provide a certain capacity in the reserve market must place an
offer of regulating power of the corresponding size in the regulating market, 45
minutes before operational time. However, other players who are not committed
to provide reserves in the reserve market may still bid in the regulating market
and thereby provide regulating power. This case is not considered in this paper.

The presented case study has been performed on data spanning three years. The
training period of the scenario-generating models goes from the 1st January 2009
at 00:00 CET to the 30st June 2011 at 23:00 CET. The test period covers week
36 of year 2011 and weeks 3, 17 and 22 of 2012, all of them randomly selected.

Recall that scenarios are generated every day at 9:00 am with a lead time of
16 to 40 hours, namely the next operational day. The optimization models are
run using the same lead time, as if they were to be solved at the clearing of the
reserve market. The solutions to the LOLP and CVaR models are compared
with the actual deployed reserves in DK1 during the four testing weeks.

It is worth stressing that the proposed models for reserve determination focus on
the total reserve requirements, which are triggered by unexpected fluctuations
in the load and in the wind power production, and by outages of power plants.
We do not distinguish, therefore, between primary, secondary and tertiary re-
serve. In the case of the LOLP-formulation, it is up to the TSO to decide how to
split the total reserve requirements into the different types of reserve that may
be considered. Likewise, the CVaR-formulation can be easily tuned to represent
the three types of reserves through the estimated cost functions. Indeed, if it
is much easier for plants to participate in the tertiary reserve market, because
providing tertiary reserve is cheaper than providing primary and secondary re-
serve, then the distinction between these should be made through the supply
cost function for reserve, with the tertiary reserve being cheaper than the sec-
ondary and primary ones. If, on the contrary, it is much easier for the plants to
participate in the tertiary reserve market for reasons that cannot be translated
into costs, then the required primary and secondary reserve should be treated
as input information in the CVaR-method and subtracted from the total reserve
requirements.

A.5.1 LOLP-model Results

This subsection shows the results of applying the LOLP model introduced in
Section A.2.1. The model was run during the four testing weeks and the simu-
lation results are included in Figure A.5. The actual deployed reserves in DK1
and the total scheduled reserves by Energinet.dk are also shown in the figure.
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Figure A.5: The deployed reserves and the actual scheduled reserves by En-
erginet.dk are plotted as indicated in the text boxes. The shaded
areas in the background represent the solution of the LOLP model
for different values of β. Weeks are separated by vertical lines.

The shaded areas in the background represent the solution to the LOLP model
for different values of β. Weeks are separated by vertical lines. The amount
of scheduled reserve varies substantially depending on the level of uncertainty
of the wind, the load and the power plant outages. As an example, on the
Thursday of the fourth week, the prediction of load and wind power production
happened to be wrong, and up to 1 100 MW of regulating power were needed. In
this special case, both the LOLP solution and Energinet.dk’s reserve scheduling
criterion led to a shortage event.

The reliability plot in Figure A.6 shows i.e. the desired or expected LOLP
(parameter β), against the observed LOLP, namely, the number of shortage
events divided by the time span. The whole data set was used to compute
this reliability plot. The ideal case is illustrated by the dashed line where both
quantities, expected and observed, are equal. The actual performance of the
model is represented by the continuous line, which is fairly close to the ideal
one, indicating that the expected probability of reserve shortage is well adjusted
to the observed one.

It is worth mentioning that the value of the parameter β is directly connected
to the reliability level of the underlying power system. With this in mind, a
simple rule for the TSO to decide on an appropriate value for this parameter
would read as follows: divide the number of hours in a year where shedding load
is tolerated to happen by the total number of hours in the year. This simple
rule would roughly indicate the probability that, in each hour, the need for up-



A.5 Results and Discussion 85

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

P
ro

b
 D

R
 >

 R
to

t*  (
=

L
O

L
P

)

Figure A.6: Observed LOLP vs expected, namely parameter β

ward balancing power exceeds the scheduled reserves. The UCTE suggests that
enough reserve should be scheduled to manage energy deviations in 99, 9% of
all hours during the year [A29]. For example, if the TSO tolerates that there
are around 96 hours during a year where some load might not be covered, then
the resulting LOLP would be equal to 0.01. The case presented in [A14] is per-
formed using LOLP={1, 0.5, 0.1}. The authors in [A30] consider five scenarios
of demand, where the LOLP is in between 0.005 and 0.016. Note, however, that
the LOLP does not account for how many MW of load are shed or the cost of
such load shedding events.

Next, we perform a sensitivity analysis to asses how changes in β affect the
solution. We choose several plausible values of β which are displayed in the
first column of Table A.1, and then compute the optimal reserve schedule for
each of them. The four testing weeks are considered and the results shown are
averaged by the number of days. The second column shows the numbers of
shortage events. The cost of allocating the reserve given by the LOLP model
is displayed in the third column. It is computed using the cost function gR(z),
presented in Section A.3. The fourth column shows the cost of deploying the
actual reserve computed using the function gr(z), which estimation is discussed
in Section A.3. Lastly, the MW shed, or in other words, the number of MW of
actual deployed reserve exceeding the LOLP solution, is presented in the fifth
column.

Note that a decrease in the parameter β implies that the solution becomes
more conservative and hence, more reserve will be scheduled. For this reason,
as β decreases, the number of shortage events decreases too, at the expense
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β
Shortage Alloc. cost Deploy. cost MW
events in e×103 in e×103 not covered

0.2 5.214 1.194 95.643 862.056
0.15 4.107 2.077 110.966 668.879
0.089 2.678 4.528 134.826 423.645
0.07 1.928 6.132 143.782 346.910
0.05 1.464 9.150 153.939 270.271
0.01 0.428 33.032 187.791 85.464

Table A.1: The first column shows several values of parameter β which is an
input to the LOLP model. The second column presents the number
of shortage events on average per day. The third column includes
the cost of allocating the amount of reserves given by the LOLP
model on average per day. The fourth column displays the cost of
deploying the actual reserve requirements. The number of MW not
covered by the scheduled reserve on average per day when using
the LOLP solution are shown on the fifth column.

of increasing the allocation and deploy cost. On the other hand, the amount
of MW not covered by the scheduled reserves, collated in the fourth column,
decreases as β diminishes.

Next, we compare the solution to the LOLP model with the solution given by
Energinet.dk. TSO’s solution incurs 75 shortage events during the four testing
weeks, or equivalently 2.67 shortage events per day. The estimated total cost of
allocating reserve is 4 355 e; the estimated deployment cost is 132 350 e, and
the MW not covered 422.39.

For the same number of shortage events, the LOLP gives a worse solution that
Energinet.dk’s solution: the allocation costs are 3.97% higher, the deployment
cost 1.18% higher and the MW shed increase in 1.15 MW per day. This means
that during the four testing weeks, the LOLP methodology underperforms the
solution given by Energinet.dk in terms of reliability and economic efficiency.
The main advantage that the LOLP method brings is the analogy of the param-
eter β with the probability of a shortage event to occur, which is a very easy risk
measure to interpret. On the other hand, the method has two drawbacks. As
discusses before, its solution does not depend on the cost of allocating reserves,
namely on λi or on the estimated cost function g(z) (as long as it is increasingly
monotonic). Neither it depends on the cost of deploying reserves. The solution
only depends on the parameter β, as the relation LOLP = β in the optimiza-
tion problem (A.1) will always be satisfied at the optimum, no matter what the
cost is. The second disadvantage is that load shedding costs are not taken into
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account. These drawbacks are overcome by the CVaR model, for which results
are presented in the next subsection.

A.5.2 CVaR-Method Results

In this section we discuss the results of the CVaR-based reserve determination
method, which has been presented in Section A.2.2, and compare them with
the deployed reserves that were actually needed in DK1 during the simulation
horizon.

The CVaR model needs as input two parameters which, in practice, are to
be determined by the TSO: α, which controls the CVaR risk measure and
represents the risk aversion of the TSO, and V LOL, which accounts for the
cost in e of shedding 1 MW of load. We performed a sensitivity analysis to
determine how changes in these parameters affect the level of procured re-
serve. The model was run for values of α = {0, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99}
and V lol = {200, 500, 1 000, 2 000, 5 000} e/MW.

The cost of allocating and deploying reserve capacity, the cost of shedding load,
and the total cost, are displayed on the upper-left, upper-right, lower-left and
lower-right plot of Figure A.7. The cost is shown on the y-axis in e×103, while
the risk parameter α is shown on the x-axis. Each line represents a cost of
the reserve schedule solution for a certain V LOL. All costs are averaged by
the number of days in the test period. As the TSO becomes more risk averse,
i.e., as α increases, the allocation and deployment costs increase, because a
larger amount of reserve is procured. The same occurs as V LOL increases, since
shortage events become more penalized and more reserves are scheduled to avoid
them. On the other hand, the cost of curtailing load, depicted in the left-
lower plot, decreases as α increases, but does not necessarily increase as V LOL

increases. The reason for this is that, even though the amount of curtailed load
decreases as V LOL increase, the product V LOL × Lw representing the cost of
curtailing load in scenario w may still increase.

The total cost shown in the down-right subplot of Figure A.7 is computed
by summing up the reserve allocation, the reserve deployment and the load
shedding costs. In general, the total cost increases as the risk-aversion pa-
rameter α increases. However, this is not always the case when V LOL =
{1 000, 2 000, 5 000} e/MW. The reason for this discrepancy is that the gener-
ated scenarios do not represent the potential need for reserve capacity accurately
enough. Adding more variables to the scenario representation of the reserve re-
quirements, increasing the amount of scenarios or adding more weeks to the test
period could solve this issue, in particular, they underestimate the amount of
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upward balancing power that may potentially be required, as confirmed by the
plot in Figure A.6. Finally, one should notice that changes in the total cost are
mainly driven by changes in the V LOL, while changes in α have smaller impact
on the solution.

The scheduled reserves when V LOL = 500 e/MW and V LOL = 5 000 e/MW,
over time, are displayed in shadowed areas in the upper and lower plot of Figure
A.8. The actual deployed reserve and the reserve scheduled by Energinet.dk are
drawn on top. Weeks are separated by vertical lines. It is interesting to note
how the reserve schedule given by the CVaRα based reserve determination model
changes as V LOL changes. When minimizing the CVaR of the cost distribution of
reserve allocation and deployment, and load shedding costs, an increase in V LOL

makes the load shedding costs have more weight in the total costs, and hence the
events of reserve shortage will be penalized to a larger extent. When V LOL is
low, those events are less relevant and the curves look more flat. Another reason
for the flatness of the curves is the linear approximation of the cost functions
gR(z) and gr(z), both introduced in Section A.3. The increase in cost when
increasing the reserve in one unit is much higher when jumping from one step of
the stepwise function to another, than when the function remains in the same
step. The step lengths are defined in (A.3e) and in (A.3f). A finer linearisation
of such cost functions by reducing the step length would solve this issue.

The number of interruption events and the amount of load that is involuntarily
shed are further analyzed in Figure A.9, in the left and right plots, respec-
tively. As α and/or V LOL increase, both the number of interruptions and the
MW shed on average per day decrease. Under the assumption that only the
producers committed to the reserve market are allowed to participate in the
regulating market, the Danish TSO’s solution incurs 75 shortage events during
the four testing weeks. On average per day, the Danish TSO’s solution incurs
2.67 shortage events, with an estimated total cost of allocation equal to 4 355 e,
an estimated deployment cost of 13 2350 e, and amount of load shed of 422.39
MW. The CVaR-method produces cheaper results in terms of total cost. The
CVaR solution is from 3.38% cheaper with {α = 0.99, V LOL = 200 e/MW}, to
82.9% for {α = 0.99, V LOL = 5 000 e/MW}, compared to the solution given by
the TSO. Note that the CVaR method tends to schedule more reserves than the
Danish TSO’s solution, while at the same time the solution is cheaper, because
shedding load is highly penalized by the coefficient V LOL.

Figure 10 illustrates the so-called efficient frontier [A5]. This plot can be used
by the TSO to choose an appropriate value for the risk-aversion parameter α
according to its attitude towards risk. The efficiency frontier shows the expected
total cost per day, namely, the expected cost of allocating and deploying reserve
plus the load shedding cost per day, against the expected LOLP, that is, the
expected probability of a load shedding event. The numbers along the curve
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Figure A.7: Sensitivity analysis of the CVaR-based reserve determination
model. The parameter α is displayed on the x-axis and the cost in
e×103 on the y-axis. Each line represents the cost of the solution
for a certain V LOL. The cost of allocating and deploying reserve
capacity, the cost of shedding load and the total cost are displayed
on the upper-left, upper-right, lower-left and lower-right plot, re-
spectively. All costs are averaged by the number of days in the
test period.
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Figure A.8: The reserve schedule using the CVaR methodology is displayed
for V LOL = 500 e/MW in the upper plot and for V LOL = 5 000
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represent the solution of the CVaR model for different values of
the risk aversion parameter α. The actual deployed reserve in
DK1 and the reserve capacity scheduled by Energinet.dk (the
Danish TSO) are depicted on top.
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Figure A.9: In both plots, the reserve schedule, computed by the CVaR-based
method, is compared to the actual deployed reserve in the DK1
area, for different values of V LOL and α. On the left, we depict
the average number of shortage events per day, and on the right,
the average MW of load shedding.

indicate the value of the risk parameter α used to obtain such a point in the
curve. The efficient frontier shown in Figure 10 has been determined for a
V LOL equal to 5 000e/MW. Needless to say, the efficient frontier would change
for different values of V LOL, but the interpretation of the resulting curves would
remain similar.

The TSO can thus use this efficient frontier to resolve the trade-off between
desired or expected LOLP versus the expected total cost that such a level of
reliability would entail. For example, the TSO can achieve a LOLP of 0.001
with an expected total cost of approximately 3 × 105e per day. To this end,
the TSO should set the risk-aversion parameter α to 0.5. If, for instance, the
LOLP is to be decreased down to 0.0002, the expected total cost would raise up
to 3.2× 105e per day. In that case, the parameter α should be set to 0.9.

The main advantage that the CVaR method offers over the LOLP method is
that the TSO is able to input the cost of shedding load, V LOL, in the model
and, therefore, the reserve dispatch solution is dependent on it. On the contrary,
the LOLP method depends only on the number of interruption events and their
associated cost is not accounted for. Another advantage of the CVaR method
is that the reserve schedule depends on the reserve costs, both the allocation
and deployment cost. In a real set-up, the solution would depend on the bids
from the producers, while the solution of the LOLP method is independent
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of the reserve costs. Lastly, both optimization models are able to reflect the
risk aversion of the TSO through the risk parameters β or α. However, the
risk parameter α of the CVaR methodology does not have a straightforward
interpretation in real power systems, as compared to the parameter β from the
LOLP formulation, which has a direct physical interpretation.

A.6 Conclusion

In this paper we present two methods to determine the reserve requirements
using a probabilistic approach, suited for a market structure where the reserves
are scheduled independently of and before to the day-ahead energy market. This
is the case in the Nordic countries and, more specifically, in the DK1 area of
Nord Pool, under which the study case of this paper is framed. The first method
ensures that the LOLP is kept under a certain target. The second method
considers the costs of allocating and deploying reserve and of shedding load, and
minimizes the CVaR of the total cost distribution at a given confidence level
α. Both approaches are based on scenarios of potential balancing requirements,
induced by the forecast error of the wind power production, the forecast error
of the load, and the forced failures of the power plants in the power system.

The performance of the proposed reserve determination models is assessed by
comparing the resulting optimal scheduled reserves with the Danish TSO’s solu-
tion approach and with the actual deployed reserves during four testing weeks,
in terms of costs and shortage events. The results from the case study show that
the LOLP method underperforms the Danish TSO’s solution in terms of costs,
for the same shortage events. By using a CVaR risk approach, the cost of allo-
cating reserves is reduced from 3.38% to 82.9%, depending on the value of the
parameters of confidence level and value of lost load. The CVaR methodology
provides adequate levels of reserves.

Further studies should focus on the applicability of these methods to the Nordic
reserve market, by differentiating between types of reserves. This could be
achieved by modeling the amount of MWh of each type of reserve required at
every hour and the cost of allocating and activating each of them. Also, further
improvements should be done on the modeling of the failed MW in the whole
system. More specifically, time-dependencies could be modeled, since a power
plant is more likely to be off-line if the previous hour was off-line too. This could
be achieved by, for example, a non-homogeneous Hidden Markov Model, where
the transition probabilities between states depend on time and other external
variables.
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A Data-driven Bidding Model for a Cluster of
Price-responsive Consumers of Electricity

Javier Saez-Gallego1, Juan M. Morales1, Marzo Zugno2, Henrik Madsen1

Abstract

This paper deals with the market-bidding problem of a cluster of
price-responsive consumers of electricity. We develop an inverse op-
timization scheme that, recast as a bilevel programming problem,
uses price-consumption data to estimate the complex market bid
that best captures the price-response of the cluster. The complex
market bid is defined as a series of marginal utility functions plus
some constraints on demand, such as maximum pick-up and drop-off
rates. The proposed modeling approach also leverages information
on exogenous factors that may influence the consumption behavior
of the cluster, e.g., weather conditions and calendar effects. We test
the proposed methodology for a particular application: forecasting
the power consumption of a small aggregation of households that
took part in the Olympic Peninsula project. Results show that the
price-sensitive consumption of the cluster of flexible loads can be
largely captured in the form of a complex market bid, so that this
could be ultimately used for the cluster to participate in the whole-
sale electricity market.

Notation

The main notation used throughout the paper is stated below for quick reference.
Other symbols are defined as required.

1Department of Applied Mathematics and Computer Science, Technical University of Den-
mark, DK-2800 Kgs. Lyngby, Denmark.

2Nordea, DK-1401 Copenhagen, Denmark.
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Indexes

t Index for time periods t ∈ {1 . . . 24}.
b Index for bidding blocks b ∈ B.
i Index for features i ∈ I.

Lower-level variables

xb,t Estimated load at block b and time t.
λut Dual variable of pick-up limit constraint at time t.
λdt Dual variable of drop-off limit constraint at time t.
ψb,t Dual variable of maximum power constraint for block b at time t.
ψ
b,t

Dual variable of maximum power constraint for block b at time t.

Upper-level variables

e+
t , e
−
t Auxiliary variables to model the absolute value of the estimation error.

ab,t Marginal utility corresponding to bid block b and time t.
P t Minimum power consumption at time t.
P t Maximum power consumption at time t.
rut Maximum load pick-up rate at time t.
rdt Maximum load drop-off rate at time t.
a0
b Intercept relative to the estimation of the marginal utility corresponding

to bid block b.
P 0 Intercept relative to the estimation of the minimum power consumption.
P

0 Intercept relative to the estimation of the maximum power consumption.
ru0 Intercept relative to the estimation of the maximum load pick-up rate.
rd0 Intercept relative to the estimation of the maximum load drop-off rate.
αai Affine coefficient relative to the marginal utility for feature i.
αui Affine coefficient relative to the maximum load pick-up rate for feature i.
αdi Affine coefficient relative to the maximum load drop-off rate for feature

i.
αPi Affine coefficient relative to the minimum power consumption for feature

i.
α
P
i Affine coefficient relative to the maximum power consumption for feature

i.

Parameters

pt Price of electricity at time t.
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wt Weight of observation at time t.
xmeas Measured load at time t.
xmeas

′

b,t Split of the measured load at block b and time t.
Zi,t Feature i at time t.
L Penalization factor of the complementarity constraints.
E Forgetting factor.

B.1 Introduction

We consider the case of a cluster of flexible power consumers, where flexibility
is understood as the possibility for each consumer in the cluster to change her
consumption depending on the electricity price and on her personal preferences.
There are many examples of methods to schedule the consumption of individ-
ual price-responsive loads (see, e.g., [B1, B2, B3]). The portfolio of flexible
consumers is managed by a retailer or aggregator, which bids in a wholesale
electricity market on behalf of her customers. We consider the case where such
a market accepts complex bids, consisting of a series of price-energy bidding
curves, consumption limits, and maximum pick-up and drop-off rates. In this
paper, we present a data-driven methodology for determining the complex bid
that best represents the reaction of the pool of flexible consumers to the market
price.

The contributions of this paper are fourfold. The first contribution corresponds
to the methodology itself: we propose a novel approach to capture the price-
response of a pool of flexible consumers in the form of a market bid using price-
consumption data. In this work, the price is given as the result of a competitive
market-clearing process, and we have access to it only from historical records.
This is in contrast to some previous works, where the price is treated as a con-
trol variable to be decided by the aggregator or retailer. In [B4], for example,
the relationship between price and consumption is first modeled by a Finite
Impulse Response (FIR) function as in [B5] and peak load reduction is achieved
by modifying the price. Similar considerations apply to the works of [B6, B7,
B8, B9], where a bilevel representation of the problem is used: the lower-level
problem optimizes the household consumption based on the broadcast electricity
price, which is determined by the upper-level problem to maximize the aggre-
gator’s/retailer’s profit. Another series of studies concentrate on estimating
price-energy bids for the participation of different types of flexible loads in the
wholesale electricity markets, for example, time-shiftable loads [B10], electric
vehicles [B11] and thermostatically-controlled loads [B12]. Contrary to these
studies, our approach is data-driven and does not require any assumption about
the nature of the price-responsive loads in the aggregation. In that sense, our
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work is more similar to [B13], where the satisfaction or the utility of users is
estimated through historical data. The main differences are that we aim to
minimize prediction errors instead of just estimating the utility, and that our
estimated utility and further technical parameters defining a complex market
bid may depend on time and external factors. Furthermore, we test our method-
ology on actual data obtained from a real-life experiment.

The second contribution lays in the estimation procedure: we develop an inverse
optimization framework that results in a bilevel optimization problem. Method-
ologically, our approach builds on the inverse optimization scheme introduced
in [B14], but with several key differences. First, we let the measured solution
be potentially non-optimal, or even non-feasible, for the targeted optimization
problem as in [B15, B16, B17, B18]. Second, we seek to minimize the out-of-
sample prediction error through the use of a penalty factor L. Moreover, we
extend the concept of inverse optimization to a problem where the estimated
parameters may depend on a set of features and are also allowed to be in the
constraints, and not only in the objective function. Lastly, the estimation pro-
cedure is done using a two-step algorithm to deal with non-convexities.

Third, we study heuristic solution methods to reduce the computing times result-
ing from the consideration of large datasets of features for the model estimation.
We do not solve the resulting bilevel programming problem to optimality but
instead we obtain an approximate solution by penalizing the violation of com-
plementarity constraints following a procedure inspired by the work of [B19].

Finally, we test the proposed methodology using data from a real-world experi-
ment that was conducted as a part of the Olympic Peninsula Project [B20].

It should be stressed that the proposed methodology aims to capture the price-
response behavior of the pool of flexible consumers, and not to modify it. For
this reason, we treat the electricity price as an exogenous variable to our model
and not as a control signal to be determined. By means of our methodology,
the consumers are directly exposed to the wholesale market price, without the
need for the aggregator to artificially alter this price or to develop any trading
strategy. Notwithstanding this, the price-response model for the pool of flexible
consumers that we estimate in the form of a complex market bid could also be
used by the aggregator to determine a series of prices such that the consumption
of the pool pursues a certain objective.
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B.2 Methodology

In this section, we describe the methodology to determine the optimal market
bid for a pool of price-responsive consumers. The estimation procedure is cast
as a bilevel programming problem. The upper level is the parameter-estimation
problem and represents the aggregator, who aims at determining the parame-
ters of the complex market bid such that the estimated absolute value of the
prediction error is minimized. This bid can be directly processed by the market-
clearing algorithms currently in place in most electricity markets worldwide. A
detailed explanation is given in Section B.2.2. The estimated bid, given by the
upper-level problem, is relative to the aggregated pool of consumers. The lower-
level problem, explained in Section B.2.1, represents the price-response of the
whole pool of consumers under the estimated bid parameters.

B.2.1 Lower-Level Problem: Price-response of the Pool of
Consumers

The lower-level problem models the price-response of the pool of consumers in
the form of a market bid, whose parameters are determined by the upper-level
problem. The bid is given by θt = {ab,t, rut , rdt , P t, P t}, which consists of the
declared marginal utility corresponding to each bid block b, the maximum load
pick-up and drop-off rates (analogues to the ramp-up and -down limits of a
power generating unit), the minimum power consumption, and the maximum
power consumption, at time t ∈ T ≡ {t : t = 1 . . . T}, in that order. If the
whole aggregation of consumers behaves indeed as a utility-maximizer individ-
ual, the declared utility function represents the benefit that the pool of flexible
consumers obtains from consuming a certain amount of electricity. In the more
general case, the declared marginal utility, or simply the bidding curve, reflects
the elasticity of the pool of consumers to changes in the electricity price. The
declared marginal utility function together with the rest of parameters in (B.1)
define a complex market bid that can be processed by the market-clearing algo-
rithms used by most wholesale electricity markets worldwide, while representing,
as much as possible, the price-response behavior of the aggregation of consumers.

The declared marginal utility ab,t at time t is formed by b ∈ B ≡ {b : b = 1 . . . B}
blocks, where all blocks have equal size, spanning from the minimum to the
maximum allowed consumption. In other words, the size of each block is P t−P t

B .
Furthermore, we assume that the marginal utility is monotonically decreasing
as consumption increases, i.e., ab,t ≥ ab+1,t for all times t. Finally, the total
consumption at time t is given by the sum of the minimum power demand plus
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the consumption linked to each bid block, namely, xtott = P t +
∑
b∈B xb,t.

Typically, the parameters of the bid may change across the hours of the day,
the days of the week, the month, the season, or any other indicator variables
related to the time. Moreover, the bid can potentially depend on some ex-
ternal variables such as temperature, solar radiation, wind speed, etc. Indica-
tor variables and external variables, often referred to as features, can be used
to explain more accurately the parameters of the market bid that best repre-
sents the price-response of the pool of consumers. This approach is potentially
useful in practical applications, as numerous sources of data can help better
explain the consumers’ price-response. We consider the I external variables
or features, named Zi,t for i ∈ I ≡ {i : i = 1, . . . , I}, to be affinely related
to the parameters defining the market bid by a coefficient αi. This affine de-
pendence can be enforced in the model by letting ab,t = a0

b +
∑
i∈I α

a
iZi,t,

rut = ru0 +
∑
i∈I α

u
i Zi,t, rdt = rd0 +

∑
i∈I α

d
iZi,t, P t = P

0 +
∑
i∈I α

P
i Zi,t, and

P t = P 0 +
∑
i∈I α

P
i Zi,t. The affine coefficients αai ,αui , αdi , αPi and α

P
i , and

the intercepts a0
b , r

u0, rd0, P 0, P
0 enter the model of the pool of consumers (the

lower-level problem) as parameters, together with the electricity price.

The objective is to maximize consumers’ welfare, namely, the difference between
the total utility and the total payment:

Maximize
xb,t

∑
t∈T

(∑
b∈B

ab,txb,t − pt
∑
b∈B

xb,t

)
(B.1a)

where xb,t is the consumption assigned to the utility block b during the time
t, ab,t is the marginal utility obtained by the consumer in block b and time t,
and pt is the price of the electricity during time t. For notational purposes, let
T−1 = {t : t = 2, . . . , T}. The problem is constrained by

P t +
∑
b∈B

xb,t − P t−1 −
∑
b∈B

xb,t−1 ≤ rut t ∈ T−1 (B.1b)

P t−1 +
∑
b∈B

xb,t−1 − P t −
∑
b∈B

xb,t ≤ rdt t ∈ T−1 (B.1c)

xb,t ≤
P t − P t

B
b ∈ B, t ∈ T (B.1d)

xb,t ≥ 0 b ∈ B, t ∈ T . (B.1e)

Equations (B.1b) and (B.1c) impose a limit on the load pick-up and drop-off
rates, respectively. The set of equations (B.1d) defines the size of each utility
block to be equally distributed between the maximum and minimum power
consumptions. Constraint (B.1e) enforces the consumption pertaining to each
utility block to be positive. Note that, by definition, the marginal utility is
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decreasing in xt (ab,t ≥ ab+1,t), so one can be sure that the first blocks will
be filled first. We denote the dual variables associated with each set of primal
constraints as λut , λdt , ψb,t and ψb,t.

Problem (B.1) is linear, hence it can be equivalently recast as the following set
of KKT conditions [B21], where (B.2a)–(B.2c) are the stationary conditions and
(B.2d)–(B.2g) enforce complementarity slackness:

− λu2 + λd2 − ψb,1 + ψb,1 = ab,1 − p1 b ∈ B(B.2a)

λut − λut+1 − λdt + λdt+1 − ψb,t + ψb,t = ab,t − pt ∀b ∈ B, t ∈ T−1(B.2b)

λuT − λdT − ψb,T + ψb,T = ab,T − pT b ∈ B (B.2c)

P t +
∑
b∈B

xb,t − P t−1 −
∑
b∈B

xb,t−1 ≤ rut ⊥ λut ≥ 0 t ∈ T−1(B.2d)

P t−1 +
∑
b∈B

xb,t−1 − P t −
∑
b∈B

xb,t ≤ rdt ⊥ λdt ≥ 0 t ∈ T−1 (B.2e)

xb,t ≤
P t − P t

B
⊥ ψb,t ≥ 0 b ∈ B, t ∈ T (B.2f)

0 ≤ xb,t ⊥ ψb,t ≥ 0 b ∈ B, t ∈ T .(B.2g)

B.2.2 Upper-Level Problem: Market-Bid Estimation Via
Inverse Optimization

Given a time series of price-consumption pairs (pt, xmeast ), the inverse problem
consists in estimating the value of the parameters θt defining the objective func-
tion and the constraints of the lower-level problem (B.1) such that the optimal
consumption xt resulting from this problem is as close as possible to the mea-
sured consumption xmeast in terms of a certain norm. The parameters of the
lower-level problem θt form, in turn, the market bid that best represents the
price-response of the pool.

In mathematical terms, the inverse problem can be described as a minimization
problem:

Minimize
x,θ

∑
t∈T

wt

∣∣∣P t +
∑
b∈B

xb,t − xmeast

∣∣∣ (B.3a)
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subject to

ab,t ≥ ab+1,t b ∈ B, t ∈ T (B.3b)
(B.2). (B.3c)

Constraints (B.3b) are the upper-level constraints, ensuring that the estimated
marginal utility must be monotonically decreasing. Constraints (B.3c) corre-
spond to the KKT conditions of the lower-level problem (B.1).

Notice that the upper-level variables θt, which are parameters in the lower-
level problem, are also implicitly constrained by the optimality conditions (B.2)
of this problem, i.e., by the fact that xb,t must be optimal for (B.1). This
guarantees, for example, that the minimum power consumption be positive and
equal to or smaller than the maximum power consumption ( 0 ≤ P t ≤ P t).
Furthermore, the maximum pick-up rate is naturally constrained to be equal to
or greater than the negative maximum drop-off rate (−rdt ≤ rut ). Having said
that, in practice, we need to ensure that these constraints are fulfilled for all
possible realizations of the external variables and not only for the ones observed
in the past. We achieved this by enforcing the robust counterparts of these
constraints [B22]. An example is provided in the appendix.

Parameter wt represents the weight of the estimation error at time t in the
objective function. These weights have a threefold purpose. Firstly, if the
inverse optimization problem is applied to estimate the bid for the day-ahead
market, the weights could represent the cost of balancing power at time t. In
such a case, consumption at hours with a higher balancing cost would weigh
more and consequently, would be fit better than that occurring at hours with
a lower balancing cost. Secondly, the weights can include a forgetting factor to
give exponentially decaying weights to past observations. Finally, a zero weight
can be given to missing or wrongly measured observations.

The absolute value of the residuals can be linearized by adding two extra nonneg-
ative variables, and by replacing the objective equation (B.3a) with the following
linear objective function plus two more constraints, namely, (B.4b) and (B.4c):

Minimize
xt,θt,e

+
t ,e
−
t

T∑
t=1

wt(e+
t + e−t ) (B.4a)
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subject to

P t +
∑
b∈B

xb,t − xmeast = e+
t − e−t t ∈ T (B.4b)

e+
t , e
−
t ≥ 0 t ∈ T (B.4c)

ab,t ≥ ab+1,t t ∈ T (B.4d)
(B.2). (B.4e)

In the optimum, and when wt > 0, (B.4b) and (B.4c) imply that e+
t = xt−xmeast

if xt ≥ xmeast , else e−t = xmeast −xt. By using this reformulation of the absolute
value, the weights could also reflect whether the balancing costs are symmetric
or skewed. In the latter case, there would be different weights for e+

t and e−t .

To sum up, we have, on the one hand, problem (1), which represents the postu-
lated price-response model for the pool of flexible consumers. This optimization
problem, in turn, takes the form of a complex market bid that can be directly
submitted to the electricity market. On the other hand, we have problem (4),
which is an estimation problem in a statistical sense: it seeks to estimate the
parameters of problem (1), that is, the parameters defining the complex market
bid, by using the sum of the weighted absolute values of residuals as the loss
function to be minimized. This problem takes the form of a bilevel programming
problem.

Finally, it is worth pointing out that there is no obstacle to reformulating (B.3)
as a least-squares estimation problem by the use of the L2-norm to quantify the
prediction error. However, the minimization of the absolute value of residuals
(i.e., the minimization of the L1-norm of the estimation error) allows interpreting
the objective function of (B.3) as an energy mismatch (to be traded on a market
closer to real time), while keeping the estimation problem linear.

B.3 Solution Method

The estimation problem (B.4) is non-linear due to the complementarity con-
straints of the KKT conditions of the lower-level problem (B.2). There are sev-
eral ways of dealing with these constraints, for example, by using a non-linear
solver [B23], by recasting them in the form of disjunctive constraints [B24], or
by using SOS1 variables [B25]. In any case, problem (B.4) is NP-hard to solve
and the computational time grows exponentially with the number of comple-
mentarity constraints. Our numerical experiments showed that, for realistic
applications involving multiple time periods and/or numerous features, none of
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these solution methods were able to provide a good solution to problem (B.4)
in a reasonable amount of time. To tackle this problem in an effective manner,
we propose the following two-step solution strategy, inspired by [B19]:

Step 1: Solve a linear relaxation of the mathematical program with equilib-
rium constraints (B.4) by penalizing violations of the complementarity con-
straints.

Step 2: Fix the parameters defining the constraints of the lower-level prob-
lem (B.1), i.e., ru, rd, P , P , αai , αdi , αPi and αPi , at the values estimated in Step
1. Then, recompute the parameters defining the utility function, ab,t and αad.
To this end, we make use of the primal-dual reformulation of the price-response
model (B.1) [B15].

Both steps are further described in the subsections below. Note that the pro-
posed solution method is a heuristic in the sense that it does not solve the bilevel
programming problem (4) to optimality. However, data can be used to calibrate
it (through the penalty parameter L) to minimize the out-of-sample prediction
error. For the problem at hand, this is clearly more important than finding the
optimal solution to (4), see Section B.3.3 for further details.

B.3.1 Penalty Method

The so-called penalty method is a convex (linear) relaxation of a mathematical
programming problem with equilibrium constraints, whereby the complemen-
tarity conditions of the lower-level problem, that is, problem (B.1), are moved
to the objective function (B.4a) of the upper-level problem. Thus, we penalize
the sum of the dual variables of the inequality constraints of problem (B.1) and
their slacks, where the slack of a “≤"-constraint is defined as the difference be-
tween its right-hand and left-hand sides, in such a way that the slack is always
nonnegative. For example, the slack of the constraint relative to the maximum
pick-up rate (B.1b) is defined as st = rut −P t−

∑
b∈B xb,t+P t−1 +

∑
b∈B xb,t−1,

and analogously for the rest of the constraints of the lower-level problem.

The penalization can neither ensure that the complementarity constraints are
satisfied, nor that the optimal solution of the inverse problem is achieved. In-
stead, with the penalty method, we obtain an approximate solution. In the case
study of Section B.4, nonetheless, we show that this solution performs notably
well.
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After relaxing the complementarity constraints (B.2d)–(B.2g), the objective
function of the estimation problem writes as:

Minimize
Ω

∑
t∈T

wt(e+
t + e−t )+

L

(∑
b∈B
t∈T

wt

(
ψPb,t + ψ

P
b,t + P t − P t

B

)
+

∑
t∈T−1

wt

(
λut + λdt + rut + rdt

))
(B.5a)

with the variables being Ω = {xt, θt, e+
t , e
−
t , ψ

P
t , ψ

P
t , λ

u
t , λ

d
t , }, subject to the

following constraints:

(B.4b)− (B.4d), (B.1b)− (B.1e), (B.2a)− (B.2c) (B.5b)
λut , λ

d
t ≥ 0 t ∈ T−1 (B.5c)

ψb,t, ψb,t ≥ 0 b ∈ B, t ∈ T . (B.5d)

The objective function (B.5a) of the relaxed estimation problem is composed of
two terms. The first term represents the weighted sum of the absolute values of
the deviations of the estimated consumption from the measured one. The second
term, which is multiplied by the penalty term L, is the sum of the dual variables
of the constraints of the consumers’ price-response problem plus their slacks.
Note that summing up the slacks of the constraints of the consumers’ price-
response problem eventually boils down to summing up the right-hand sides of
such constraints. The weights of the estimation errors (wt) also multiply the
penalization terms. Thus, the model weights violations of the complementarity
constraints in the same way as the estimations errors are weighted.

Objective function (B.5a) is subject to the auxiliary constraints modeling the
absolute value of estimation errors (B.4b)–(B.4c); the upper-level-problem con-
straints imposing monotonically decreasing utility blocks (B.4d); and the pri-
mal and dual feasibility constraints of the lower-level problem, (B.1b)–(B.1e),
(B.2a)–(B.2c), and (B.5c)–(B.5d).

The penalty parameter L should be tuned carefully. We use cross-validation
to this aim, as described in the case study; we refer to Section B.4 for further
details.
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Finding the optimal solution to problem (B.5) is computationally cheap, be-
cause it is a linear programming problem. On the other hand, the optimal
solution to this problem might be significantly different from the one that we
are actually looking for, which is the optimal solution to the original estimation
problem (B.4). Furthermore, the solution to (B.5) depends on the user-tuned
penalization parameter L, which is given as an input and needs to be decided
beforehand.

B.3.2 Refining the Utility Function

In this subsection, we elaborate on the second step of the strategy we employ to
estimate the parameters of the market bid that best captures the price-response
of the cluster of loads. Recall that this strategy has been briefly outlined in
the introduction of Section B.3. The ultimate purpose of this additional step
is to re-estimate or refine the parameters characterizing the utility function of
the consumers’ price-response model (B.1), namely, a0

b and the coefficients αai .
In plain words, we want to improve the estimation of these parameters with
respect to the values that are directly obtained from the relaxed estimation
problem (B.5). With this aim in mind, we fix the parameters defining the con-
straints of the cluster’s price-response problem (B.1) to the values estimated in
Step 1, that is, to the values obtained by solving the relaxed estimation prob-
lem (B.5). Therefore, the bounds P t, P t and the maximum pick-up and drop-off
rates rut , rdt are now treated as given parameters in this step. Consequently, the
only upper-level variables that enter the lower-level problem (B.1), namely, the
intersects a0

b of the various blocks defining the utility function and the linear co-
efficients αai , appear in the objective function of problem (B.1). This will allow
us to formulate the utility-refining problem as a linear programming problem.

Indeed, consider the primal-dual optimality conditions of the consumers’ price-
response model (B.1), that is, the primal and dual feasibility constraints and
the strong duality condition. These conditions are also necessary and sufficient
for optimality due to the linear nature of this model.

We determine the (possibly approximate) block-wise representation of the mea-
sured consumption at time t, xmeast , which we denote by

∑
b∈B x

m′

b,t and is given

as a sum of B blocks of size P t−P t

B each. In particular, we define
∑
b∈B x

meas′

b,t

as follows:

∑
b∈B

xm
′

b,t =


P t if xmeast > P t , t ∈ T
xmeast if P t ≤ xmeast ≤ P t , t ∈ T
P t if xmeast < P t , t ∈ T .
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where each xm
′

b,t is determined such that the blocks with higher utility are
filled first. Now we replace xt in the primal-dual reformulation of (B.1) with∑
b∈B x

m′

b,t . Consequently, the primal feasibility constraints are ineffective and
can be dropped.

Once xt has been replaced with
∑
b∈B x

m′

b,t in the primal-dual reformulation
of (B.1) and the primal feasibility constraints have been dropped, we solve
an optimization problem (with the utility parameters ab and αai as decision
variables) that aims to minimize the weighted duality gap, as in [B15]. For
every time period t in the training data set, we obtain a contribution (εt) to the
total duality gap (

∑
t∈T εt), defined as the difference between the dual objective

function value at time tminus the primal objective function value at time t. This
allows us to find close-to-optimal solutions for the consumers’ price-response
model (B.1). Thus, in the case when the duality gap is equal to zero, the
measured consumption, if feasible, would be optimal in (B.1). In the case when
the duality gap is greater than zero, the measured consumption would not be
optimal. Intuitively, we attempt to find values for the parameters defining the
block-wise utility function such that the measured consumption is as optimal as
possible for problem (B.1).

Hence, the utility-refining problem consists in minimizing the sum of weighted
duality gaps

Minimize
ab,t,λ

u
t ,λ

d
t ,

ψP
t ,ψ

P

t ,ψb,t
,ψb,t,εt

∑
t∈T

wtεt. (B.6a)

Note that we assign different weights to the duality gaps accrued in different
time periods, in a way analogous to what we do with the absolute value of
residuals in (B.3). Objective function (B.6a) is subject to

∑
b∈B

ab,1x
m′

b,1 − p1
∑
b∈B

xm
′

b,1 + ε1 =
∑
b∈B

(
P 1 − P 1

B

)
ψb,1 (B.6b)

∑
b∈B

ab,tx
m′

b,t − pt
∑
b∈B

xm
′

b,t + εt =
∑
b∈B

(
P t − P t

B

)
ψb,t +(

rut − P t + P t−1
)
λut +

(
rdt + P t − P t−1

)
λdt t ∈ T−1 (B.6c)

(B.2a)− (B.2c) (B.6d)
ab,t ≥ ab+1,t t ∈ T (B.6e)
λut , λ

d
t ≥ 0 t ∈ T−1 (B.6f)

ψPt , ψ
P
t , ψb,t, ψb,t ≥ 0 t ∈ T (B.6g)
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The set of constraints (B.6c) constitutes the relaxed strong duality conditions,
which express that the objective function of the original problem at time t,
previously formulated in Equation (B.1), plus the duality gap at time t, denoted
by εt, must be equal to the objective function of its dual problem also at time t.
Equation (B.6b) works similarly, but for t = 1. The constraints relative to the
dual of the original problem are grouped in (B.6d). Constraint (B.6e) requires
that the estimated utility be monotonically decreasing. Finally, constraints
(B.6f) and (B.6g) impose the non-negative character of dual variables.

B.3.3 Statistical Learning Interpretation

The proposed method to solve the bilevel programming problem (B.4) is a
heuristic in the sense that it is not guaranteed to provide the optimal solu-
tion to (B.4), that is, it may not deliver the parameters of the market bid that
minimize the sum of the weighted absolute values of residuals (B.4a). However,
objective function (B.4a) measures the in-sample prediction error and it is well
known, from the theory of statistical learning [B26], that minimizing the pre-
diction error in-sample is not equivalent to minimizing it out-of-sample. Conse-
quently, the market bid that is the optimal solution to the bilevel program (B.4),
i.e., that minimizes the in-sample prediction error, as given in (B.4a), is not
necessarily the one performing best in practice. In fact, one could arbitrarily
decrease the in-sample prediction error down to zero, for example, by enlarging
the parameter space defining the market bid in order to overfit the data, while
the out-of-sample prediction error would dramatically increase as a result. Our
aim must be, therefore, to reduce the out-of-sample error as much as possible.
In this vein, the solution method that we propose shows two major advantages
over solving the bilevel program (B.4) to optimality, namely:

1. It runs swiftly as we indicate later on in Section V and can even be used
for real-time trading and very short-term forecasting. In contrast, finding
the optimal solution to (B.4) becomes rapidly computationally intractable
for sizes of the data sample acceptable to guarantee a proper estimation
of the market bid, that is, to avoid overfitting.

2. Besides its good computational properties, the relaxed problem (B.5) is
parameterized on the penalty factor L, which is to be tuned by the user.
Statistically speaking, this provides our solution approach with a degree of
freedom that directly solving (B.4) does not have. Indeed, we can let the
data decide which value of the penalty L is the best, that is, which value of
Lminimizes the out-of-sample prediction error. To compute a proxy of the
out-of-sample prediction error, we conduct a thorough validation analysis
[B26], which essentially consists in recreating the use of our approach in
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practice for several values of L, from among which we pick up the one
that returns the highest prediction performance. Furthermore, note that
both the tuning of the penalty L and the consequent re-estimation of
the market-bid parameters can be conducted offline, as new information
becomes available and as soon as we perceive a statistically significant
deterioration of the prediction performance of our approach.

In the case study of Section V, we demonstrate the effectiveness of the proposed
solution method by evaluating its performance out-of-sample and comparing
it against other solution approaches over the same data set from a real-life
experiment.

B.4 Case Study

The proposed methodology to estimate the market bid that best captures the
price-response of a pool of flexible consumers is tested using data from a real-
life case study. The data relates to the Olympic Peninsula experiment, which
took place in Washington and Oregon states between May 2006 and March 2007
[B20]. The electricity price was sent out every fifteen minutes to 27 households
that participated in the experiment. The price-sensitive controllers and ther-
mostats installed in each house decided when to turn on and off the appliances,
based on the price and on the house owner’s preferences.

For the case study, we use hourly measurements of load consumption, broadcast
price, and observed weather variables, specifically, outside temperature, solar
irradiance, wind speed, humidity, dew point and wind direction. Moreover, we
include 0/1 feature variables to indicate the hour of the day, with one binary
variable per hour (from 0 to 23), and one per day of the week (from 0 to 6).
A sample of the dataset is shown in Figure B.1, where the load is plotted in
the upper plot, the price in the middle plot, and the load versus the outside
temperature and the dew point in the bottom plots. The lines depicted in the
bottom plots represent the linear relationship between the pairs of variables,
and these are negative in both cases. The high variability in the price is also
noteworthy: from the 1st to the 8th of December, the standard deviation of the
price is 5.6 times higher than during the rest of the month ($67.9/MWh versus
$12.03/MWh).

On average, when using hourly data from the previous 3 months, i.e., 2016
samples, and a total of 37 features per sample, the time for the whole estimation
process takes 287 seconds to solve, with a standard deviation of 22 seconds, on
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Figure B.1: The upper and the middle plot show the load and the price, re-
spectively. The bottom plots represent the load in the vertical
axis versus the outside temperature and the dew point, on the
left and on the right, respectively. The data shown spans from
the 4th to the 18th of December.

a personal Linux-based machine with 4 cores clocking at 2.90GHz and 6 GB of
RAM. R and CPLEX 12.3 under GAMS are used to process the data and solve
the optimization models. These running times depend on the number of data
points and on the data itself. We conclude that the running time makes this
methodology attractive for bidding on short-term electricity markets.

Furthermore, in practice, we have parallelized a great deal of the code using
the High-Performance-Computing facility at the Technical University of Den-
mark[B27], achieving solution times in the order of seconds, so that the proposed
solution algorithm can even be used to bid in current real-time/balancing mar-
kets.

Also, parallel computing proves to be specially useful to tune the penalty pa-
rameter L through cross-validation. In this regard, it is important to stress that
both the value of L and the bid parameters as a function of the features can
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be periodically recomputed offline (for example, every day, or every week, or
every month) to capture potential changes in the pool of consumers that may
eventually deteriorate the prediction performance of our method.

B.4.1 Benchmark Models

To test the quality of the market bid estimated by the proposed methodology,
we quantify and assess the extent to which such a bid is able to predict the
consumption of the cluster of price-responsive loads. For the evaluation, we
compare two versions of the inverse optimization scheme proposed in this paper
with the Auto-Regressive model with eXogenous inputs (ARX) described in
[B5]. Note that this time series model was also applied by [B5] to the same data
set of the Olympic Peninsula project. All in all, we benchmark three different
models:

ARX, which stands for Auto-Regressive model with eXogenous inputs [B28].
This is the type of prediction model used in [B4] and [B5]. The consumption xt
is modeled as a linear combination of past values of consumption up to lag n,
Xt−n = {xt, . . . , xt−n}, and other explanatory variables Zt = {Zt, . . . , Zt−n}.
In mathematical terms, an ARX model can be expressed as xt = ϑxXt−n +
ϑzZt + εt, with εt ∼ N(0,σ2) and σ2 is the variance.

Simple Inv This benchmark model consists in the utility-refining problem pre-
sented in Section B.3.2, where the parameters of maximum pick-up and drop-
off rates and consumption limits are computed from past observed values of
consumption in a simple manner: we set the maximum pick-up and drop-off
rates to the maximum values taken on by these parameters during the last
seven days of observed data. All the features are used to explain the variabil-
ity in the block-wise marginal utility function of the pool of price-responsive
consumers: outside temperature, solar radiation, wind speed, humidity, dew
point, pressure, and hour and week-day indicators. For this model, we use
B=12 blocks of utility. This benchmark is inspired from the more simplified
inverse optimization scheme presented in [B16] and [B15] (note, however, that
neither [B16], nor [B15] consider the possibility of leveraging auxiliary infor-
mation, i.e., features, to better explain the data, unlike we do for the problem
at hand).

Inv This corresponds to the inverse optimization scheme with features that
we propose, which runs following the two-step estimation procedure described
in Section B.3 with B=12 blocks of utility. Here we only use the outside
temperature and hourly indicator variables as features. We re-parametrize
weights wt with respect to a single parameter, called forgetting factor, and
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denoted as E ≥ 0, in the following manner: wt = gapt
(
t
T

)E for t ∈ T and
T being the total number of periods. The variable gap indicates whether the
observation was correctly measured (gap = 1) or not (gap = 0). Parameter E
indicates how rapidly the weight drops (how rapidly the model forgets). When
E = 0, the weight of the observations is either 1 or 0 depending on the variable
gap. As E increases, the recent observations weight comparatively more than
the old ones.

B.4.2 Validation of the Model and Performance in De-
cember

In this subsection we validate the benchmarked models and assess their perfor-
mance during the test month of December 2006. As previously mentioned, the
evaluation and comparison of the different benchmarked models is conducted
in terms of prediction errors, and not in monetary values (e.g., in the form of
market revenues). This relieves us of having to arbitrarily assume a particular
market organization behind the Olympic Peninsula experiment and a particu-
lar strategy for bidding into the market based on the ARX model that we use
for benchmarking. Furthermore, a well-functioning electricity market should
not reward prediction errors, that is, energy imbalances. In fact, a number of
electricity markets throughout the world explicitly penalize prediction errors
through the use of a two-price balancing settlement (see, for instance, [B29] for
further information on this).

To predict the aggregated consumption of the pool of flexible loads, we need
good forecasts of the electricity price and the features, as these work as ex-
planatory variables in all the considered models. For the sake of simplicity, we
use the actual values of the electricity price and the features that were histori-
cally recorded as such good forecasts. Since this simplification applies to all the
benchmarked models, the analysis and comparison that follow is fair.

It is worth noticing, though, that the proposed methodology need not a pre-
diction of the electricity price when used for bidding in the market and not for
predicting the aggregated consumption of a cluster of loads. This is so because
the market bid expresses the desired consumption of the pool of loads for any
price that clears the market. The same cannot be said, however, for prediction
models of the type of ARX, which would need to be used in combination with
extra tools, no matter how simple they could be, for predicting the electricity
price and for optimizing under uncertainty in order to generate a market bid.

There are two parameters that need to be chosen before testing the models:
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Figure B.2: Results from the validation of the input parameters L and E, to
be used during December.

the penalty parameter L and the forgetting factor E. We seek a combination
of parameters such that the prediction error is minimized. We achieve this by
validating the models with past data, in a rolling-horizon manner, and with
different combinations of the parameters L and E. The results are shown in
Figure B.2. The MAPE is shown on the y-axis against the penalty L in the
x-axis, with the different lines corresponding to different values of the forgetting
factor E. From this plot, it can be seen that a forgetting factor of E = 1 or
E = 2 yields a better performance than when there is no forgetting factor at all
(E = 0), or when this is too high (E ≥ 3). We conclude that selecting L = 0.1
and E = 1 results in the best performance of the model, in terms of the MAPE.

Once the different models have been validated, we proceed to test them. For
this purpose, we first set the cross-validated input parameters to L = 0.1 and
E = 1, and then, predict the load for the next day of operation in a rolling-
horizon manner. In order to mimic a real-life usage of these models, we estimate
the parameters of the bid on every day of the test period at 12:00 using histor-
ical values from three months in the past. Then, as if the market were cleared,
we input the price of the day-ahead market (13 to 36 hours ahead) in the con-
sumers’ price-response model, obtaining a forecast of the consumption. Finally,
we compare the predicted versus the actual realized consumption and move the
rolling-horizon window to the next day repeating the process for the rest of the
test period. Similarly, the parameters of the ARX model are re-estimated every
day at 12:00, and predictions are made for 13 to 36 hours ahead.

Results for a sample of consecutive days, from the 10th to the 13th of Decem-
ber, are shown in Figure B.3. The actual load is displayed in a continuous
solid line, while the load predictions from the various benchmarked models are
shown with different types of markers. First, note that the Simple Inv model
is clearly under-performing compared to the other methodologies, in terms of
prediction accuracy. Recall that, in this model, the maximum and minimum
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Figure B.3: Load forecasts issued by the benchmark models, and actual load,
for the period between the 10th and the 13th of December.

MAE RMSE MAPE
ARX 22.176 27.501 0.2750

Simple Inv 44.437 54.576 0.58581
Inv 17.318 23.026 0.1899

Table B.1: Performance measures for the three benchmarked models during
December.

load consumptions, together with the maximum pick-up and drop-off rates, are
estimated from historical values and assumed to remain constant along the day,
independently of the external variables (the features). This basically leaves the
utility alone to model the price-response of the pool of houses, which, judging
from the results, is not enough. The ARX model is able to follow the load
pattern to a certain extent. Nevertheless, it is not able to capture the sud-
den decreases in the load during the night time or during the peak hours in
the morning. The proposed model (Inv) features a considerably much better
performance. It is able to follow the consumption pattern with good accuracy.

The performance of each of the benchmarked models during the whole month
of December is summarized in Table B.1. The first column shows the Mean
Absolute Error (MAE), the second column provides the Root Mean Square
Error (RMSE), and the third column collects the Mean Absolute Percentage
Error (MAPE). The three performance metrics lead to the same conclusions:
that the price-response models we propose, i.e., Inv, perform better than the
ARX model and the Simple Inv model. The results collated in Table I also
yield an interesting conclusion: that the electricity price is not the only driver
of the consumption of the pool of houses and, therefore, is not explanatory
enough to predict the latter alone. We conclude this after seeing the performance
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Figure B.4: Averaged estimated block-wise marginal utility function for the
Inv model (left panel), price in $/kWh (middle panel), and load
in kW (right panel). The solid lines represent data relative to the
4th of December. Dashed lines represent data relative to the 11th
of December.

of the Simp Inv, which is not able to follow the load just by modeling the
price-consumption relationship by means of a marginal utility function. The
performance is remarkably enhanced when proper estimations of the maximum
pick-up and drop-off rates and the consumptions bounds as functions of the
features are employed.

The estimated block-wise marginal utility function, averaged for the 24 hours of
the day, is shown in the left plot of Figure B.4 for the Inv model. The solid line
corresponds to the 4th of December, when the price was relatively high (middle
plot), as was the aggregated consumption of the pool of houses (right plot). The
dashed line corresponds to the 11th of December and shows that the estimated
marginal utility is lower, as is the price on that day.

B.4.3 Performance During September and March

In this section, we summarize the performance of the benchmarked models dur-
ing September 2006 and March 2007.

In Table B.2, summary statistics for the predictions are provided for September
(left side) and March (right side). The conclusions remain similar as the ones
drawn for the month of December. The Inv methodology consistently achieves
the best performance during these two months as well.
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September March
MAE RMSE MAPE MAE RMSE MAPE

ARX 7.649 9.829 0.2350 17.439 23.395 0.2509
Simple Inv 14.263 17.8 0.4945 44.687 54.616 0.8365

Inv 5.719 8.582 0.1462 12.652 16.776 0.1952

Table B.2: Performance measures for the three benchmarked models

By means of cross-validation [B26], we find that the user-tuned parameters
yielding the best performance vary over the year. For September, the best
combination is L = 0.3, E = 0, while for March it is L = 0.3, E = 1.

The optimized penalization parameter L turns out to be higher in September
and March than in December. This penalization parameter is highly related to
the actual flexibility featured by the pool of houses. Indeed, for a high enough
value of the penalty (say L ≥ 0.4 for this case study), violating the complemen-
tarity conditions associated with the consumers’ price-response model (B.1) is
relatively highly penalized. Hence, at the optimum, the slacks of the comple-
mentarity constraints in the relaxed estimation problem (B.5) will be zero or
close to zero. When this happens, it holds at the optimum that rut = −rdt and
P t = P t. The resulting model is, therefore, equivalent to a linear model of the
features, fit by least weighted absolute errors. When the best performance is
obtained for a high value of L, it means that the pool of houses does not respond
so much to changes in the price. On the other hand, as the best value for the
penalization parameter L decreases towards zero, the pool becomes more price-
responsive: the maximum pick-up and drop-off rates and the consumption limits
leave more room for the aggregated load to change depending on the price.

Because the penalization parameter is the lowest during December, we conclude
that more flexibility is observed during this month than during September or
March. The reason could be that December is the coldest of the months studied,
with a recorded temperature that is on average 9.4◦C lower, and it is at times
of cold whether when the electric water heater is used the most.

B.5 Summary and Conclusions

We consider the market-bidding problem of a pool of price-responsive consumers.
These consumers are, therefore, able to react to the electricity price, e.g., by
shifting their consumption from high-price hours to lower-price hours. The total
amount of electricity consumed by the aggregation has to be purchased in the
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electricity market, for which the aggregator or the retailer is required to place
a bid into such a market. Traditionally, this bid would simply be a forecast of
the load, since the load has commonly behaved inelastically. However, in this
paper, we propose to capture the price-response of the pool of flexible loads
through a more complex, but still quite common market bid that consists of a
stepwise marginal utility function, maximum load pick-up and drop-off rates,
and maximum and minimum power consumption, in a manner analogous to the
energy offers made by power producers.

We propose an original approach to estimate the parameters of the bid based on
inverse optimization and bi-level programming. Furthermore, we use auxiliary
variables to better explain the parameters of the bid. The resulting non-linear
problem is relaxed to a linear one, the solution of which depends on a penal-
ization parameter. This parameter is chosen by cross-validation, proving to be
adequate from a practical point of view.

For the case study, we used data from the Olympic Peninsula project to asses the
performance of the proposed methodology. We have shown that the estimated
bid successfully models the price-response of the pool of houses, in such a way
that the mean absolute percentage error incurred when using the estimated
market bid for predicting the consumption of the pool of houses is kept in
between 14% and 22% for all the months of the test period.

We envision two possible avenues for improving the proposed methodology. The
first one is to better exploit the information contained in a large dataset by
allowing for non-linear dependencies between the market-bid parameters and
the features. This could be achieved, for example, by the use of B-splines.
The second one has to do with the development of efficient solution algorithms
capable of solving the exact estimation problem within a reasonable amount of
time, instead of the relaxed one. This could potentially be accomplished by
decomposition and parallel computation.
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Appendix B.I: Robust Constraints

Next we show how to formulate robust constraints to ensure that the estimated
minimum consumption be always equal to or lower than the estimated maximum
consumption. At all times, and for all plausible realizations of the external
variables, we want to make sure that:

P 0 +
∑
i∈I

α
P
i Zi,t ≤ P

0 +
∑
i∈I

αPi Zi,t, t ∈ T , ∀Zi,t. (B.7)

If (B.7) is not fulfilled, problem (B.1) is infeasible (and the market bid does not
make sense). Assuming we know the range of possible values of the features,
i.e., Zi,t ∈ [Zi, Zi], (B.7) can be rewritten as:

P 0 − P 0 + Maximize
Z′i,t

s.t. Zi≤Z′i,t≤Zi
i∈I

{∑
i∈I

(αPi − α
P
i )Z ′i,t

}
≤ 0, t ∈ T . (B.8)

Denote the dual variables of the upper and lower bounds of Z ′i,t by φi,t and φi,t
respectively. Then, the robust constraint (B.8) can be equivalently reformulated
as:

P
0 − P 0 +

∑
i∈I

(φi,tZi − φi,tZi) ≤ 0 t ∈ T (B.9a)

φi,t − φi,t = αPi − α
P
i i ∈ I, t ∈ T (B.9b)

φi,t, φi,t ≥ 0 i ∈ I, t ∈ T . (B.9c)

Following the same reasoning, one can obtain the set of constraints that guar-
antees the non-negativity of the lower bound and consistent maximum pick-up
and drop-off rates. We leave the exposition and explanation of these constraints
out of this paper for brevity.
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Optimal Price-energy Demand Bids for
Aggregate Price-responsive Loads

Javier Saez-Gallego1, Mahdi Kohansal2, Ashkan Sadeghi-Mobarakeh2 and
Juan M. Morales1.

Abstract

In this paper we seek to optimally operate a retailer that, on one
side, aggregates a group of price-responsive loads and on the other,
submits block-wise demand bids to the day-ahead and real-time mar-
kets. Such a retailer/aggregator needs to tackle uncertainty both in
customer behavior and wholesale electricity markets. The goal in
our design is to maximize the profit for the retailer/aggregator. We
derive closed-form solutions for the risk-neutral case and also pro-
vide a stochastic optimization framework to efficiently analyze the
risk-averse case. In the latter, the price-responsiveness of the load
is modeled by means of a non-parametric analysis of experimental
random scenarios, allowing for the response model to be non-linear.
The price-responsive load models are derived based on the Olympic
Peninsula experiment load elasticity data. We benchmark the pro-
posed method using data from the California ISO wholesale electric-
ity market.

Notation

The main notation used throughout the paper is stated below for quick reference.
Other symbols are defined as required.
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Indexes and sets

t Time period t ∈ {1, 2, . . . 24}.
b Bidding block b ∈ {1, 2, . . . B}.
w Realization of the stochastic variables, represented as scenarios w =

{1, 2, . . . N}.

Input stochastic processes

X Load.
ΛD Day-ahead price.
ΛR Real-time price.
Π Retail price.

Decision variables

XD Stochastic process representing scheduled energy in the day-ahead mar-
ket.

xDt,w Scheduled energy in the day-ahead market for time t and scenario w.
ut,b Price bid for time t and block b.

Remark: a subscript t under the stochastic processes indicate the associated
random variable for time t.

Parameters

φw Probability of each scenario w.
xt,w Load at time t and scenario w.
λDt,w Day-ahead price at time t and scenario w.
λRt,w Real-time price at time t and scenario w.
πt,w Retail price at time t and scenario w.
Eb Width of energy block b.
L Fraction of the load that must be purchased in the day-ahead market.
β Probability of occurrence of chance constraint.
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C.1 Introduction

With the increasing deployment of smart grid technologies and demand response
programs, more markets around the world are fostering demand bids that re-
flect the response of the consumers to changing electricity prices [C1, C2]. In
this paper, we consider the case of a retailer who procures energy to a pool of
consumers in a typical two-settlement electricity market, as for example, the
California wholesale electricity market CAISO [C3]. The retailer submits price-
energy demand bids to the day-ahead market, and only energy quantity bids to
the real-time market in order to counterbalance the deviations from the sched-
uled day-ahead energy market to the actual load. The possibility of arbitrage
is indirectly allowed depending on the submitted bid to the day-ahead market
and the realization of the stochastic processes affecting the problem.

We assume that the load is price-responsive, in the sense that it changes de-
pending on the price of electricity during the considered period. The proposed
methodology relies on historical data of load and retail price to estimate the
relationship between price and load. Because of this, we do not make any as-
sumption on the nature of the load the retailer aggregates. Also, in the consid-
ered setup, the retail price is considered to be given exogenously. For example,
the retail price can be proportional to the day-ahead price plus a fee.

The contributions of the paper are summarized as follows:

• An analytic solution to the problem of finding optimal block-wise price-energy
demand bids in the day-ahead market when risk is not considered. Moreover,
we propose a mixed-integer linear programming solution approach to the risk-
averse case.

• The dynamic price-responsive behavior of consumers is modeled based on
scenarios. The conditional probability of the load given a certain retail price
trajectory is estimated using a non-parametric approach.

• We assess the practicality of the proposed methodology by using data from a
real-world experiment.

The estimation of demand bids has been extensively studied in the past years
[C4, ch. 7]. Several papers share the common goal of estimating price-energy
bids relative to specific types of load, for example, time-shiftable loads [C5],
electric vehicles [C6] and thermostatically-controlled loads [C7]. Our method-
ology differs with those in the fact that we do not make any assumption on the
nature of the load. Methodologies based on forecasting tools [C8, C9] generally
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do not make assumptions on the type of price-responsive load either, but, on
the other hand, do not tackle the bidding problem.

Besides the works on forecasting, another group of papers focus on finding the
optimal bid for generic loads. The work in [C10] elaborates on a robust bidding
strategy against procurement costs higher than the expected one, considering
uncertainty in the prices only. Uncertain prices and demand are taken into
account in [C11] but minimizing imbalances and disregarding the economic side
of the bidding. Our approach resembles that of [C12] with the main differences
being that we use data to estimate the price-response of the dynamic load, and
that we consider energy-block bidding in a one-price balancing market as the US
CAISO [C3]. Authors of [C13] consider, from the theoretical point of view, the
problem of allocating a deterministic load by deciding which fraction should be
purchased in the day-ahead market and which in the real-time market. Finally,
authors of [C14] study demand curves in an arbitrage- and risk-free situation
by using a game theory.

Regarding the generation of scenarios of the stochastic processes, our method-
ology is inspired from [C15, C16, C17]. From the application point of view, our
approach differs in the final goal, as they deal with wind energy production.
To our knowledge, there is no previous work that characterizes the dynamic
price-responsive load with a set of scenarios. From the methodological point of
view, our approach differs with the existing literature in the estimation of the
conditional distribution of the price-responsive load, taking into account the full
trajectory of the day-ahead price. This enables us to capture the full dynamics
of the load across the hours of the next operational day. The real-time price is
modeled in an analogous manner. In both cases, we model their distributions
using a non-parametric approach that allows for non-linear responses to a given
day-ahead price trajectory.

The paper is structured as follows. In Section C.2 we introduce the retailer’s
bidding problem. Section C.3 provides the analytic solution to the risk-neutral
case. In Section C.4 we formulate the stochastic optimization model for solv-
ing the bidding problem with risk constraints. Section C.5 elaborates on the
scenario-generation technique. Next, in Section C.6 we analyze results from the
bidding problem under the generated scenarios. Finally, in Section C.7 we draw
conclusions and implications.
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C.2 Problem Formulation

Consider a utility retailer/aggregator that seeks to maximize its profit based on
the revenue that it collects from its loads, the payments it makes to the day-
ahead market, and the payments it makes or receives in the real-time market.
Mathematically speaking, we need to solve the following optimization problem:

Maximize
XD

t ,ut,b

E
{ 24∑
t=1

(
ΠtXt − ΛDt XD

t − ΛRt
(
Xt −XD

t

))}
(C.1a)

subject to

XD
t =

B∑
b=1

Eb I(ut,b ≥ ΛDt ) ∀t, b (C.1b)

ut,b+1 ≤ ut,b ∀t, b = 1 . . . B − 1 (C.1c)
P
(
XD
t ∈ [(1− L)Xt, (1 + L)Xt]

)
≥ β ∀t (C.1d)

λ ≤ ut,b ≤ λ ∀t, b (C.1e)

where I(·) is the 0-1 indicator function.

The objective function (C.1a) is the expected total daily profit, composed of
three terms. The first term represents the revenue that the retailer makes form
selling energy to the consumers at the retail price. The second term represents
the cost of purchasing energy from the day-ahead market. The third term
accounts for the cost/revenue of purchasing/selling energy from/to the real-
time market. The energy purchased or sold in the real-time market is equal to
the difference between the purchased quantity at the day-ahead market and the
realized load, i.e., Xt −XD

t .

Constraint (C.1b) defines the scheduled energy in the day-ahead market to be
equal to the sum of the width of the blocks of energy which have a price-bid
higher than the market price. In other words, blocks of energy will be purchased
if their price-bid is higher or equal to the day-ahead price. Note that ut,b is the
decision variable which determines the shape of the submitted bidding curve to
the day-ahead market.

Constraint (C.1d) models the risk-aversion of the retailer through two param-
eters. Parameter L represents the maximum fraction of the load that can be
procured in the real-time market. This parameter could be defined by the re-
tailer, but likewise could be given by the ISO as a way to ensure the stability
of the system. Values of L close to 1 indicate that the full amount of the load
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can potentially be bought in the real-time market. On the other hand, as L
decreases, we give priority to purchasing energy in the day-ahead market. Pa-
rameter β indicates the minimum probability with which the constraint (C.1d)
must be fulfilled. Values of β close to 1 indicate a hard constraint, while lower
values of β indicate that the constraint is loose. The parameter β can be inter-
preted as the aversion of the retailer towards purchasing a certain fraction of
the load in the day-ahead market. Low values of β can be interpreted as a sign
that the retailer seeks to profit from arbitrage rather than from serving the load.
As we show in the case study, higher values of β yield lower expected profit but
also lower risk. Note that, for large L and small β, the constraint above (C.1d)
becomes irrelevant, indicating the neutrality of the retailer towards risk.

Constraint (C.1c) ensures that the estimated bidding curve is monotonically
decreasing which is a typical requirement in electricity markets. Finally, con-
straint (C.1e) set lower and upper bounds to the price bids, which are given by
the market rules [C18]. All in all, the expected profit depends on the decision
variable “price-bid” and also on the realization of the input stochastic variables.

The maximum number of blocks that is allowed depend on the market rules
[C18] as well. The width of each block Eb must be set by the retailer depending
on the magnitude of the load.

As in practice, here we assume that the retail price is given exogenously, in
other words, it is not a decision variable of the retailer. The main driver for this
consideration is the fact that the retail price must, to a certain extent, represent
the true cost of electricity. This might not always be the case if the retail price is
subject to the will of the retailer. As a consequence, the bidding curve does not
directly affect the welfare of the consumers, since the welfare of the consumers
depends on the retail price. Another implication is that the load, which is a
random variable dependent on the retail price, is not affected by the outcome
of the proposed methodology, yet only the profit of the retailer is.

C.3 Closed-Form Analytical Solution in Absence
of Risk Constraints

In this subsection we elaborate on the closed-form analytic solution to problem
(C.1), when the risk constraint (C.1d) is disregarded, or equivalently, when L→
∞ and/or β = 0. In such a case, the bidding problem (C.1) can be decomposed
by time period, so that for every time t we solve a single optimization problem.
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The risk-neutral problem, for every time t, is written as follows:

Max.
XD

t ,ut,b

(
E
{
Xt

(
Πt − ΛRt

)}
− E

{
XD
t

(
ΛDt − ΛRt

)})
(C.2)

subject to (C.1b), (C.1c) and (C.1e). The advantage of reformulation (C.2) is
that we can perform simpler optimization problems in parallel. It is noteworthy
to say that the first term of (C.2) is constant with respect to the decision
variables ut,b, however, the last terms is not.

Next we analyze the case when ΛD and ΛR are statistically independent. Re-
sults are presented in Theorem 1. For ease of readability, in the remaining of
this section we drop the index t, which generally affects decisions and random
variables.

Theorem 1 The optimal price bid u∗b in problem (C.2), when the day-ahead
and real-time prices are independent, is equal to the expected value of the real-
time price.

The proof of Theorem 1 is given in Appendix C.I. Theorem 1 also shows that,
given the risk-neutral setup and independent prices, we do not obtain extra
benefit from bidding a curve instead of a single price-quantity bid.

The assumption of statistically independent prices is not necessarily fulfilled
in practice (see, for example, [C19, Fig. 1]). For this reason, in Theorem 2
below, we provide the analytic solution to problem (C.2) when ΛD and ΛR are
statistically dependent.

Theorem 2 A global optimum solution to problem (C.2) satisfies that the
price bids for all blocks is equal to u∗. Moreover, u∗ is equal to either λ, λ, or
E
{

ΛR|ΛD = u∗
}
with d

duE
{

ΛR|ΛD = u∗
}
< 1 in the latter case.

The proof of Theorem 2 is given in Appendix C.II. One could interpret the result
of Theorem 2 in the following way: the optimal price bid will be the one for
which price consistency holds, namely, for which the expected real-time price is
equal to the day-ahead price. A second conclusion drawn from Theorem 2 is that
the maximum profit is achieved with the same price-bid for each block. If there
is more than one price bid that maximizes the expected profit (i.e., several global
maxima), then the price bid for each block can be chosen indistinctly between
them. Similarly as with Theorem 1, we do not obtain extra benefit from bidding
a curve when prices are dependent.
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From a practical point of view, Theorem 1 and 2 allow us to simplify the demand
curve to a simple price-quantity bid. By taking into account this implication, we
can obtain the optimal price bid in the case when the distributions of prices are
discrete, which allow us to compute the optimal price bid when the uncertainty
is modeled by scenarios. The optimal price bid can be chosen by evaluating the
profit in the local maxima, which are characterized according to the following
remark:

Remark 2 Given a discrete set of scenarios for the day-ahead and real-time
prices, let us consider the re-ordered pair of terms {λDw ,E

{
ΛR|ΛD = λDw

}
} such

that λDw ≤ λDw+1. Local maxima3 are achieved at the stationary points u∗ = λDw
such that λDw ≤ E

{
ΛR|ΛD = λDw

}
and λDw+1 > E

{
ΛR|ΛD = λDw+1

}
.

Note that, due to market rules, the price bid have a maximum and minimum
allowed values. In practice, one needs to check also if the maximum profit
is achieved when the price bid is equal to one of its bounds. Using Remark
2 one can find the optimal price-bid by just performing a finite set of simple
calculations.

As a final remark, it is noteworthy to say that the results from Theorem 1 and
2 show that the solution to (C.2) does not depend on the retail price, neither
on the load. From a practical point of view this means that the risk-neutral
retailer acts a financial trader, making profit by selling and buying energy in
both markets.

C.4 Scenario-based Solution in Presence of Risk
Constraints

In this section we present a solution to problem (C.1) using a scenario-based ap-
proach. The input for every time t is a set of N scenarios, each one characterized
by a realization of the retail price πt,w, the day-ahead price λDt,w, the real-time
price λRt,w, and the load xt,w. Each scenario has a probability of occurrence of
φw.

We reformulate constraint (C.1b) by adding a binary variable yt,w,b. Then,
constraint (C.1b) is replaced by:

3The proof is available upon request.
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xDt,w =
∑
b

yt,w,bEb ∀t, w

ut,b − λDAt,w ≤ Myt,w,b ∀t, w, b
−ut,b + λDAt,w ≤ M(1− yt,w,b) ∀t, w, b

yt,w,b ∈ {0, 1} ∀t, w, b

(C.3)

where M is a large enough constant. The equations above imply that yt,w,b = 1
if ut,b ≥ λDt,w and 0 otherwise.

Next, we reformulate constraint (C.1d) by adding two extra binary variables.
We first define zt,w = 1 if xDt,w ≤ (1−L)xt,w, and zt,w = 0 otherwise. Secondly,
we define zt,w = 1 if xDt,w ≥ (1 + L)xt,w, and zt,w = 0 otherwise. Consequently,
the chance constraint (C.1d) can be replaced by the following set of equations:

xDt,w − (1− L)xt,w ≤M(1− zt,w) ∀w
−xDt,w + (1− L)xt,w ≤Mzt,w ∀w
xDt,w − (1 + L)xt,w ≤Mzt,w ∀w
−xDt,w + (1 + L)xt,w ≤M(1− zt,w) ∀w

1
N

∑
w

(
zt,w + zt,w

)
≤ 1− β.

(C.4)

All in all, taking into consideration the reformulations presented above, the
optimal price-bid is found by maximizing, for every time t,

Maximize
xD

t,w,ub

∑
w

φw

(
πtwxtw − λDtwxDtw − λRtw(xtw − xDtw)

)
(C.5)

subject to (C.1c), (C.1e), (C.3), and (C.4).

C.5 Scenario Generation

In this section we elaborate on the modeling of the stochastic variables by sce-
narios. The proposed approach to generate scenarios has several advantages.
First, we do not need to make any assumption on the type of price-responsive
load we model. The response of the load to the price is directly observed in the
data and modeled by a non-parametric distribution. For this very same reason,
the response of the load to the price is allowed to be non-linear. Second, it
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is a fast approach, hence, big datasets can be quickly processed. Finally, the
proposed approach is adequate for bidding purposes, since forecasting the load
is not the main goal of the paper but rather account for its uncertainty in order
to make an informed decision.

Each scenario is characterized by a 24-long sequence of day-ahead prices, real-
time prices, retail prices and observed load. The proposed method to approx-
imate their joint distribution is summarized as follows. First of all, we model
the marginal distribution of the day-ahead price. Note that the day-ahead price
is not dependent on the real-time price, neither on the bid of a small price-taker
consumer. Second, we model the distribution of the load conditioned on the
retail price using a non-parametric approach. Lastly, we model the distribution
of the real-time price conditioned on the day-ahead price. The real-time price
depends on the day-ahead price, but not on the load of a price-taker retailer.

The rest of this section is organized as follows. First, in Section C.5.1, we briefly
elaborate on the technique to generate scenarios of day-ahead price. Then, for
each scenario of day-ahead price, we generate conditional scenarios of real-time
price and load in Section C.5.2.

C.5.1 Day-ahead Price Scenarios

The first step in the scenario generation procedure is to model the day-ahead
price using an Autoregressive Integrated Moving Average model (ARIMA). We
choose the most adequate model according to the AICc criteria [C20]. Using the
estimated model, we draw scenarios using the methodology explained in [C21].
Because the scenarios are used in day-ahead trading, they are generated in a
rolling horizon manner everyday at 12:00 with a lead time of 13 to 36 hours.

C.5.2 Load and Real-time Price Scenarios

In this section, we elaborate on the proposed methodology to draw scenarios
from the distribution of load conditioned on the retail price. The methodology
to generate conditional real-time price scenarios is analogous, hence, we omit it
for brevity.

For this subsection, we consider a scenario of day-ahead prices λ̃D = {λD1 , . . . ,
λD24} that is generated using the methodology explained in Section C.5.1. Under
the considered setup, as explained in the sections above, the retail price is given
exogenously. In the case study, we assume the retail price to be proportional to
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the day-ahead price, that is, Π = kλD. Therefore a scenario of retail price is
directly specified from a scenario of day-ahead price.

The procedure outlined next allows us to weigh the historical trajectories, such
that trajectories with a retail price “closer” to the given retail price π̃ weigh
more. These weights are used later in this section to compute the conditional
density function of the load, given π̃. To begin with, we define π(j) as the 24-long
vectors of retail price, with each element referring to an hour of the day, and
with j referring to the index of the historical day considered. Then, we compute
the Euclidean distance d(j) = ||π(j) − π̃||. In this way, we “summarize” each
historical price trajectory π(j) with a single value, so that trajectories “closer”
to the given retail price π̃ have a lower distance. Next, we use a Gaussian kernel
to weight trajectories, such that the weights are equal to w(j)′ = f(d(j)), where
f is the probability density function of a normal distribution with mean 0 and
standard deviation σf . For the case study, we used σf = Kσd, meaning that
the standard deviation for f is equal to the standard deviation of the distances
σd, multiplied by a bandwidth parameter K. Finally, we normalize the weight
w(j) = w(j)′∑

w(j)′ so that their sum is equal to 1.

The effect of the bandwidth parameter K over the weights can be seen in the left
plot of Fig. C.1. On its x-axis, we represent d(j) and on the y-axis the weights
w(j). A smaller bandwidth penalizes price references further away. This is the
reason why, when K = 0.5, there are few scenarios with a weight significantly
greater than zero. On the other hand, when K = 10, all scenarios weigh simi-
larly.

The procedure to generate each scenario is inspired from [C21] and [C16]. In
short, we first transform the load data to a normal distribution using a non-
parametric transformation. Then, we compute its covariance, and finally, gener-
ate random correlated Gaussian errors that are transformed back to the original
distribution. The procedure consists of the following seven steps:

1. For each hour of the day, we compute a non-parametric estimation of
the density of the price-responsive load [C22] conditional on a retail price
trajectory π̃. We do this by computing the kernel density estimator at
hour t with the weights w(j) in the following way:

f̂t(x|π̃) = 1
J

J∑
j=1

w(j)Gh(x− x(j)
t ), (C.6)

where Gh(x) is a kernel (non-negative function that integrates to one and
has zero mean), h is its bandwidth, and x(j)

t is the observed load at time
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Figure C.1: On the left, the weights of the historical retail price trajectories are
shown against their distance to the price reference. On the right,
the estimated conditional distribution of the load given the retail
price is shown for different values of the bandwidth parameter K.

t and day j. An example of a estimated density using a Gaussian kernel
is shown on the right plot in Fig. C.1, for different values of K and same
h. For K close to zero (K = 0.5 in the case study), the weighting gives
relatively high importance to few observations, therefore, the estimated
density is more localized around them.

2. Using f̂t(x|π̃) from Step 1, we compute the cumulative density function,
called F̂t(x|π̃).

3. The transformed load values y(j)
t = F̂t(x(j)

t |π̃) for every hour t follow a
uniform distribution U(0, 1). Then, we normalize the load data through
the transformation z(j)

t = Φ−1(y(j)
t ), where Φ−1(Y ) is the probit function.

Consequently, (z(1)
t , . . . , z

(J)
t ) ≡ Zt ∼ N(0, 1).

4. We estimate the variance-covariance matrix Σ of the transformed load Z,
relative to the 24 hours of the day. One could do it recursively as in [C21].

5. Using a multivariate Gaussian random number generator, we generate a
realization of the Gaussian distribution Z̃ ∼ N(0,Σ).

6. We use the inverse probit function to transform Z̃ to a uniform distribu-
tion, that is, Ỹ = Φ(Z̃).

7. Finally, we obtain a scenario of load by transforming back Ỹ using the in-
verse cumulative density function from step 2, that is, x̃t = F̂−1

t (Ỹt|π̃),∀t.
Numerically, we use a smoothing spline to interpolate F̂−1

t (Ỹt|π̃).



C.6 Case Study 141

The procedure outline above generates a scenario of load conditioned on the
retail price. Steps 5 to 7 are repeated as may times as needed if more scenarios
of load per retail price are desired.

C.6 Case Study

In this section we first introduce the datasets and the generated scenarios using
the methodology from Section C.5. Then, in Section C.6.2, we analyze in detail
the solution of the bidding model with and without considering risk. Afterwards,
in Section C.6.3, we benchmark the performance of the proposed models and
present the final conclusions.

C.6.1 The Data and Practical Considerations

The scenarios of day-ahead and real-time prices are generated using historical
hourly values from CAISO [C3]. We use three months of training data, from
August to October 2014. The test period spans over November 2014. For the
retail price and price-responsive load, we use data from the Olympic Peninsula
experiment [C23]. In this experiment, the electricity price was sent out every
fifteen minutes to 27 households that participated in the experiment. The price-
sensitive controllers and thermostats installed in each house decided when to
turn on and off the appliances, based on the price and on the house owner’s
preferences. The training and test months are the same as for the CAISO data,
but relative to year 2006.

Some practical considerations need to be addressed. Firstly, that the day-ahead
price and the retail price come from two different datasets. For this reason,
prices are normalized. The second practical consideration is that we assume
Π = kΛD with k = 1 even though it is not fulfilled in practice. However, this
does not affect the comparison of the proposed models, due to the fact that we
use the same set of scenarios for the benchmark and for all the models. This
issue could be solved in future work when data from new experiments becomes
available.

Throughout the case study, we set a total of 20 blocks, where the width is
equality distributed between a maximum and a minimum bidding quantities,
set to be equal to the historical range of the scenarios at every hour. They are
represented by the dotted lines in Fig. C.5(b).
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Figure C.2: Actual price, point forecast and generated scenarios for the day-
ahead price.

For the case study we use a total of 150 scenarios. For the estimation of the
densities, we use a Gaussian kernel with a bandwidth h given by Silverman’s
rule of thumb [C22]. Also, the bandwidth parameter is set to K = 0.5. For the
model of the day-ahead price we use an ARIMA(3,1,2)(1,1,1) with a seasonal
period of 24 hours. The Root Mean Square Error (RMSE) for the model of
the day-ahead price (13 to 36 lead hours) is, on average, 3.22$, which is in line
with the forecasting performance that other authors have achieved using similar
methods [C24].

A subset of the generated scenarios of day-ahead price is given in Fig. C.2. By
graphical inspection we conclude the scenarios of day-ahead price are a plausible
representation of the actual day-ahead price and its uncertainty.

C.6.2 Model Analysis

To begin with, we discuss the results from the risk-neutral model (C.2). The
solution to this model, for a given set of scenarios, is calculated either using
Remark 2 or by solving (C.5) with β = 0. In Fig. C.3, we show the scenarios
of retail price and load in dots for hour 20 of November 1st, and hour 2 of
November 2nd. The estimated bidding curve is displayed as a dashed green
line. In accordance with Theorem 2, the resulting bidding curve is flat.

Next, we discuss the results from the risk-averse model (C.5). We start by
analyzing the effect of the risk parameters L and β on the expected profit and
the feasibility of the problem. In Fig. C.4 we show, on the right axis, the
feasibility frontier plot for L and β and its standard deviation in a shadowed
area. We calculated it empirically, using data relative to the 1st of November.
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Figure C.3: The left figure is relative to the 2nd of November, while the right
figure is relative to the 1st of November.

The combinations of L and β shown below the displayed dark line result, on
average, in an infeasible solution. The frontier line is dependent on the scenarios
of load: higher variability in the scenarios of load will require a greater value
of L for the problem to be feasible. On the left axis of Fig. C.4, we show the
expected profit for the risk-averse problem, with the combination of β and L
that lay on the frontier line. Naturally, the highest profits are achieved for low
values of β, that is, when the retailer is less risk averse. From now on, we set
the risk parameter β to 0.8. The value of L is chosen from the frontier plot, to
be as small as possible.

Fig. C.5(a) shows the scenarios of day-ahead price (continuous lines), together
with the estimated optimal price bids (horizontal segments), for each hour.
We observe that the magnitude of the price bid depends on the scenarios of
day-ahead price. In Fig. C.5(b), we show the amount of energy bought in the
day-ahead market for each scenario and the span of the bidding blocks in dashed
lines. In (c), we show the scenarios of load. On average, we buy approximately
in day-ahead market the expected value of the load.

The estimated price bid by the risk-averse model is represented by the continu-
ous red line in Fig. C.3. Note that, at hour 2, the estimated price-responsiveness
is much smaller than during hour 20. The reason is that, according to the sce-
narios of load, the load shows a lower variation during the early morning than
during the early night.
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Mean Std. dev.
ExpBid -1.78 34.52
LRisk 22.26 45.22

UncRisk 188.82 259.62

Table C.1: Mean and standard deviation of the profit for the benchmarked
models during November and December.

C.6.3 Benchmark: Results in November and December

In this subsection, we benchmark the following models:

ExpBid Single block model, where E1 is equal to the expected value of the
load, and the price-bid of the single block is equal to infinity. In other words,
we always buy the expected load in the day-ahead market. No optimization is
needed as the solution is trivial.

LRisk Risk-averse model (C.5) with 20 bid blocks. The price-bid for each block
is optimized.

UncRisk Unconstrained risk model (C.2). The solution can be obtained by
using Remark 2 or by solving (C.5) with β = 0.

In order to reproduce the real-time functioning of the markets, we validate
the models using a rolling horizon procedure. Everyday at 12:00, we generate
scenarios for the next operational day, and afterwards obtain the optimal bidding
curve for all the benchmark models. The data from the last two months is used
in the scenario-generation procedure, and the process is repeated daily all over
the months of November and December.

In Table C.1 we show the mean (1st column) and the standard deviation (2nd)
of the profit for the three benchmark models, during November and Decem-
ber. We observe that the simple model ExpBid under-performs the rest of the
models and, indeed, delivers a negative expected profit. The risk-optimized
problem LRisk yields positive expected profit, with a variance greater than
the ExpBid model but substantially lower than for the UncRisk problem. The
risk-unconstrained model UncRisk, as anticipated, provides the highest mean
returns.
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C.7 Conclusion

In this paper we consider the bidding problem of a retailer that buys energy
in the day-ahead market for a pool of price-responsive consumers. Under the
considered setup, the deviations from the purchased day-ahead energy are traded
at the real-time market. We provide an analytic solution in the case that the
retailer is not risk averse. Additionally, we formulate a stochastic programming
model for optimal bidding under risk aversion. The price-responsiveness of the
consumers is derived from a real-life dataset, and the modeling approach is
non-parametric where non-linear relationships are allowed.

The analytic results show that, in the risk-unconstrained case, the optimal bid
is a single price, meaning that there is no extra benefit from bidding a curve.
On the other hand, the computational results from the risk-averse case show
that a block-wise bidding curve successfully mitigate the risk in terms of profit
volatility. Altogether, the proposed methodology allows the retailer to optimally
bid in the day-ahead market, whether it is for expected-profit maximization (by
leveraging arbitrage opportunities), or for the purpose of safely procuring energy.

Appendix C.I: Proof of Theorem 1

We start by computing the expected profit, conditional on the day-ahead price
(i.e., we treat ΛD = λD as a parameter). We disregard the first term in (C.2)
since it is constant with respect to the decision variables ub and XD, and there-
fore, does not affect the solution. The expected profit (C.2) conditioned on the
day-ahead price λD is thus given by

E
{
XD

(
ΛR − λD

)
|ΛD = λD

}
= (C.7)

B∑
b=1

I
(
ut,b ≥ λDt

)
Eb
(
E
{

ΛR
}
− λD

)
. (C.8)

Note that, since λDt is given, XD can be computed as
∑B
b=1 I

(
ut,b ≥ λDt

)
Eb.

We distinguish three cases:

(a) When E
{

ΛR
}
> λD, the second term in (C.8) is positive, hence the

expected profit is maximized when ub ≥ ub+1 ≥ λD, ∀b. This implies that
uB ≥ λD.
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(b) When E
{

ΛR
}
< λD, the second term in (C.8) is negative, hence the profit

is maximized when ub+1 ≤ ub < λD, ∀b. This implies that u1 ≤ λD.

(c) When E
{

ΛR
}

= λD, any solution that satisfies ub+1 ≤ ub is optimal.

Finally, we conclude that the expected value of the real-time price is an optimal
price bid, since u∗b = E

{
ΛR
}
maximizes the retailer’s expected income in the

three cases above.�

Appendix C.II: Proof of Theorem 2

Analogously as in Appendix C.I, from Equation (C.8), the expected profit con-
ditioned on ΛDt = λD is proportional to

B∑
b=1

I
(
ut,b ≥ λDt

)
Eb

(
E
{

ΛR|ΛD = λD
}
− λD

)
. (C.9)

Next, recall that, from the basic properties of the expected value, EX {g(X)} =∫∞
−∞ g(x)fX(x)dx. We compute the expected value of (C.9) with respect to ΛD,
which is equal to: ∫

ΛD

g(λD)fΛD (ΛD = λD)dλD (C.10)

with g(λD) equal to (C.9). Arranging terms, we obtain that (C.10) is equal to

B∑
b=1

Eb

(∫ ub

−∞

(∫ ∞
−∞

λRfΛR(λR|ΛD = λD)dλR
)
×

fΛD (λD)dλD −
∫ ub

−∞
λDfΛD (λD)dλD

)
. (C.11)

Now we relax problem (C.2) by dropping constraint (C.1c). Then, the problem
becomes decomposable by block, since (C.11) is a sum of B elements. For
notational purposes, let us rename each of the B terms in the summation in
(C.11) by hb(ub). Note the functions hb(ub) are continuous, since the integral of
a continuous function is continuous. Then, for each block, the relaxed problem
consists in maximizing the continuous function hb(ub) subject to λ ≤ ub ≤ λ.
By the intermediate value theorem, we know that the maximum of each term in
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the summation will be achieved either at u∗b = λ, at u∗b = λ, or otherwise inside
the interval

(
λ, λ

)
.

Considering the case when u∗b is inside the interval, we proceed to find the ub such
that it maximizes hb(ub). In order to achieve this, we calculate d

dub
hb(ub) = 0.

Note that d
du

∫ u
−∞ φ(x)dx = φ(u). With this in mind, the derivative of hb(ub) is

equal to ∫ ∞
−∞

λRfΛR(λR|ΛD = ub)dλRfΛD (λD = ub)

−ubfΛD (λD = ub). (C.12)

Assuming that fΛD (λD = ub) is different than zero, and solving d
dub

hb(ub) = 0,
we obtain the stationary point:{

u∗b |u∗b = E
{

ΛR|ΛD = u∗b
}}

. (C.13)

Next we calculate the second derivative4 of d2

du2
b

hb(u∗b). Its sign depends on the
value of ( d

dub
E
{

ΛR|ΛD = u∗b
}
− 1), which can be interpreted as the sensitivity

of the expected real-time price to the day-ahead price at the stationary point.
Depending on the sign of the second derivative, we distinguish three cases:

(a) When d
dub

E
{

ΛR|ΛD = u∗b
}
< 1, u∗b is a local maximum. From a practical

point of view, it means that at day-ahead price λD = u∗b , any marginal
increase of this price will imply a comparatively lower marginal increase
in the expected real-time price, hence, it becomes not profitable to buy
energy from the day-ahead market at price levels greater than u∗b .

(b) When d
dub

E
{

ΛR|ΛDt = u∗b
}
> 1, u∗b is a local minimum.

(c) When d
dub

E
{

ΛR|ΛD = u∗b
}

= 1, the solution u∗b is an inflection point that
delivers an expected profit equal to zero.

After having identified the possible candidates ub that might maximize hb(ub),
it is easy to see that at least one global optimum to problem (C.2) satisfies that
all ub are all equal to each other, i.e., ub = u∗,∀b. This is so because functions
hb are all identical for all blocks, hence, the solution u∗b that yields the highest
expected profit for one block b will also deliver the highest expected profit for
the remaining blocks.

4The calculation of d2

du2
b

hb(u∗
b ), where u∗

b is given by (C.13), is available upon request.
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Finally, we should point out that this global solution to the relaxed problem
(C.2)—without constraint (C.1c)— naturally satisfies constraint (C.1c), hence,
it must also be a global solution to the original problem (C.2).�
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Short-term Forecasting of Price-responsive
Loads Using Inverse Optimization

Javier Saez-Gallego1 and Juan M. Morales1.

Abstract

We consider the problem of forecasting the aggregate demand of a
pool of price-responsive consumers of electricity. The price-response
of the aggregation is modeled by an optimization problem that is
characterized by a set of marginal utility curves and minimum and
maximum power consumption limits. The task of estimating these
parameters is addressed using a generalized inverse optimization
scheme that, in turn, requires solving a nonconvex mathematical
program. We introduce a solution method that overcomes the non-
convexities by solving instead two linear problems with a penalty
term, which is statistically adjusted by using a cross-validation al-
gorithm. The proposed methodology is data-driven and leverages
information from regressors, such as time and weather variables, to
account for changes in the parameter estimates. The power load of a
group of heating, ventilation, and air conditioning systems in build-
ings is simulated, and the results show that the aggregate demand
of the group can be successfully captured by the proposed model,
making it suitable for short-term forecasting purposes.

Notation

The notation used throughout the paper is stated below for quick reference.
Other symbols are defined as required.

1J. Saez-Gallego and J. M. Morales are with the Technical University of Denmark, DK-
2800 Kgs. Lyngby, Denmark (email addresses: {jsga, jmmgo}@dtu.dk), and their work is
partly funded by DSF (Det Strategiske Forskningsråd) through the CITIES research center
(no. 1035-00027B) and the iPower platform project (no. 10-095378)
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Indexes

t Time period, ranging from 1 to T .
b Marginal utility block, ranging from 1 to B.
r Regressor, ranging from 1 to R.

Decision variables

xb,t Load from energy block b and time t.
P t Lower bound for electricity consumption at time t.
P t Upper bound for electricity consumption at time t.
ub,t Marginal utility of load block b at time t.
µ Intercept for the lower load-consumption bound.
µ Intercept for the upper load-consumption bound.
µu Intercept for marginal utility.
αr Coefficient relative to the affine dependence of the lower load-consumption

bound on regressor r.
αr Coefficient relative to the affine dependence of the upper load-consumption

bound on regressor r.
αur Coefficient relative to the affine dependence of marginal utility on regres-

sor r.
εt Duality gap at time t.
λt Dual variable associated with the lower bound for total load at time t.
λt Dual variable associated with the upper bound for total load at time t.
φ
b,t

Dual variable associated with the positive block-size constraint for block
b at time t.

φb,t Dual variable associated with the maximum block-size constraint for
block b at time t.

ξ
+
t Feasibility slack variable linked to the upper load-consumption bound at

time t.
ξ+
t

Feasibility slack variable linked to the lower load-consumption bound at
time t.

ξ
−
t Infeasibility slack variable linked to the upper load-consumption bound

at time t.
ξ−
t

Infeasibility slack variable linked to the lower load-consumption bound at
time t.

Parameters

x′t Measured load at time t.
x̃′b,t Adjusted measured load for block b at time t.
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pt Price of electricity at time t.
Zr,t Value of regressor r at time t.
Eb,t Width of load block b at time t.
K Feasibility penalty parameter.

D.1 Introduction

Demand response programs aim to alter the power consumption profile of end-
users by external stimulus [D1], with the final goal of avoiding over-investing
in transmission lines and generating capacities. A popular scheme amongst the
numerous programs for demand-side management is Real-time Pricing (RTP),
where the external stimulus consists of varying prices along the day reflecting
the change of balance between supply and demand [D2, D3]. Consumers of
electricity, equipped with a smart grid meter and an Energy Management Con-
troller (EMC), seek the most favorable pattern of consumption according to
the dynamic price. In the case of households, the EMC comprises a home au-
tomation equipment that considers both the price of electricity and the personal
preferences of the users to optimally schedule their electricity demand needs and
their appliances [D4, D5]. All in all, under the RTP paradigm, the consumers
are price-responsive.

Forecasting the expected electricity demand at aggregate levels, i.e., load fore-
casting, is of utmost importance for network operators to enhance planning,
for example, by mitigating grid congestion during peak-demand periods. Also,
it is widely used by electric utilities to minimize the costs of over- or under-
contracting power in electricity markets. The increasing penetration of smart
grid technologies call for solutions able to forecast the aggregate price-responsive
load as accurately as possible.

In response to these challenges, the contributions of this paper are threefold:

1. A methodology to forecast the aggregate consumption of a cluster of price-
responsive power loads using inverse optimization.

2. A computationally efficient method that approximates the solution to a
generalized inverse optimization problem by solving instead two linear
programming problems. The proposed approach relies on cross-validation
techniques to optimally tune a penalty parameter so that the out-of-sample
forecasting error is minimized.

3. A comprehensive analysis of the performance of the proposed forecasting
methodology. The analysis is based on a case study that considers the sim-
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ulated price-response of a group of buildings equipped with heat pumps.
Furthermore, we benchmark our methodology against persistence fore-
casting and a state-of-the-art autoregressive moving average model with
exogenous inputs [D6].

The presented methodology relates to the existing literature in several aspects.
First of all, its final goal is to predict a demand for electricity, hence, it fits
into the realm of load forecasting. Amongst the vast load forecasting literature
[D7], there are some authors that in the last years have focused on modeling the
effect of the price on the load, for example, using a B-spline approach [D8], an
Auto-Regressive Model With eXogeneous Inputs (ARX) [D6], neural networks
[D9], or a hybrid approach with data association mining algorithms [D10]. The
novelty of the proposed methodology in this paper with respect to the existing
literature, lies in the characterization of the response of the load to price by an
optimization problem. Indeed, to the best of our knowledge, we are the first
ones to exploit inverse optimization for time series forecasting and, in particular,
for load prediction.

The first formal description of the inverse linear programming problem is given
by [D11], which seeks to find the minimal perturbation of the objective func-
tion cost vector that makes a given data point optimal. More recent works
address the case where the observations are noisy and an exact solution of the
inverse problem might not exist [D12, D13, D14, D15, D16, D17]. The proposed
methodology neither makes any assumption on whether the data measurements
are noisy or not, nor on the existence of a solution to the exact inverse opti-
mization problem.

Here, as in [D12, D18], we extend the concept of inverse optimization to the case
where right-hand side parameters of the forward linear programming problem
are also to be estimated. Authors of [D18] assume that a feasible region for
the forward problem exists, whereas we do not make any assumption in this
regard. Indeed, we calculate the best feasible region, in terms of forecasting
capabilities, even though it makes the observed data infeasible. The novelty
of this paper with respect to [D12] is twofold. First, we propose an inverse
optimization scheme that is especially tailored to one-step ahead forecasting,
and not to market bidding. Second, the estimation problem we formulate is
not based on relaxing the KKT conditions of the forward problem. Instead,
we statistically determine the feasible region and the objective function of the
forward problem that render the best out-of-sample prediction performance.

The rest of this paper is structured as follows. In Section D.2 we provide a
general overview of the proposed forecasting methodology and the associated
estimation problem. Then, in Section D.3, the specific load forecasting model is
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provided. Section D.4 introduces the framework we have used to simulate the
price-response of a group of buildings equipped with heat pumps. In Section
D.5, we discuss results from a case study, and finally, in Section C.7, conclusions
are duly drawn.

D.2 Inverse Optimization Methodology

Next we introduce the problem of forecasting using inverse optimization and
describe the methodology that is applied later, in Section D.3, to predict price-
responsive electricity load.

We start from the premise that the choices made by a certain decision-maker
(e.g., an aggregation of price-responsive power loads) at a certain time t, denoted
by xt, are driven by the solution to the following linear optimization problem:

RPt(ρt|c, b): Maximize
xt

(c− ρte)Txt
subject to Axt ≤ b (D.1)

xt ≤ u,

where ρt is a given time-varying input (e.g., the electricity price) and e is an
all-ones vector of an appropriate size. In the technical literature, problem (D.1)
is typically referred to as the reconstruction problem or the forward problem
[D13, D15].

Now assume that the matrix of coefficients A and the right-hand side vec-
tor u are known and that we are able to observe the multivariate time series
X ′ = [x′1, . . . ,x′T ], which is presumed to be the solution to the reconstruction
problem (D.1) at every time t. That is, x′t represents the choices actually made
by the decision-maker at time t. The basic goal of our inverse optimization
approach is to infer the unknown parameter vectors c and b from X ′ given A,
u, and the series of measured inputs ρt. To this end, one tries to find values
for the unknowns c and b such that the observed choices X ′ are as optimal as
possible for every problem (D.1). With this aim in mind, we solve the following
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generalized inverse optimization problem:

GIOP: Minimize
b,φt,λt,c

T∑
t=1

εt

subject to bTλt + uTφt − εt = (c− ρte)Tx′t ∀t
[AT I][λTt φ

T
t ]T = (c− ρte) ∀t (D.2)

Ax′t ≤ b ∀t
φt,λt, εt ≥ 0 ∀t

where I is the identity matrix of an appropriate size. The objective of opti-
mization problem (D.2) is to minimize the sum over time of the duality gaps
associated with the primal-dual reformulation of problem (D.1). Thus, when the
objective function of GIOP is equal to zero, namely, the accumulated duality
gap is zero, x′t is optimal in RPt(ρt|c, b), ∀t. The first and second constraints in
(D.2) are the relaxed strong duality condition and the dual problem constraints
of (D.1), respectively. The third inequality represents the primal feasibility
constraint involving the unknown right-hand side vector b. The second primal
constraint in (D.1) is, in contrast, omitted in (D.2), because it does not involve
any decision variable in GIOP.

Several challenges arise when solving problem (D.2). The most noticeable one is
its nonlinear, nonconvex nature, which is the result of the product of variables
bTλt appearing in the strong duality condition. This nonlinearity makes GIOP
computationally expensive and hard to solve in general. From this point of view,
a method capable of obtaining a good solution to (D.2) in a reasonable amount
of time is needed, even if such a solution may be suboptimal.

Once the parameter vectors c and b have been estimated by solving (D.2),
we can use the reconstruction problem (D.1) to forecast future choices of the
decision maker. The estimation of c and b through GIOP is anchored in the
following two assumptions about the observed choices x′t:

1. Feasibility: x′t is feasible in RPt(ρt|c, b).

2. Optimality: Given the true c and b, x′t is optimal in RPt(ρt) and hence,
εt can be decreased to zero.

These two assumptions, however, do not usually hold in practice for a number
of reasons [D16]. First, the forward problem (D.1) might be misspecified in
the sense that it might not represent the actual optimization problem solved
by the decision-maker. Therefore, there might not exist c and b such that
the observed choices x′t are both feasible and optimal for (D.1). Second, the
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decision-maker might suffer from bounded rationality or implementation errors.
That is, even if the forward problem (D.1) does prompt the optimal choices to
be made by the decision-maker, she might be content with suboptimal choices
(due to cognitive or computational limitations, for instance) or there might not
be a way to implement such optimal choices without some level of error. Finally,
the observed choices X ′ might be corrupted by measurement noise.

In this work, though, our intention is to use inverse optimization to forecast the
future choices of the decision-maker by using the reconstruction problem (D.1).
This has two important practical implications at least. First, we are not that
concerned with the fact that the forward problem (D.1) might be misspecified
(this will be indeed the case in the application problem we present later). What
we demand from this problem, instead, is that it features good predictive power
on the futures choices of the decision-maker. In other words, our aim is not to
determine values for c and b that make the observed choices X ′ both feasible
and optimal for (D.1), but to find the values of these parameters that minimize
the out-of-sample prediction error.

Given all these practical considerations, in order to compute appropriate val-
ues for c and b, we develop a two-step estimation procedure that deals with
the assumptions of feasibility and optimality of X ′ in a statistical sense, i.e.,
with a view to minimizing the out-of-sample prediction error. Furthermore,
the proposed two-step estimation procedure overcomes the nonconvexity and
computational issues mentioned above regarding the solution to problem (D.2).

The first step of the estimation procedure consists in finding a “good” feasible
region. Note that if b → ∞, then the second constraint in (D.1) is always
satisfied. For this reason, we do not want just to find a region for which X ′ is
feasible, but the most adequate one in terms of prediction performance. For this
purpose, we solve optimization problem (D.3), which we refer to as the feasibility
problem FP(K) and which minimizes a trade-off between the “infeasibility slack
variables” ξ−, and the “feasibility slack variables” ξ+, being 0 ≤ K < 1 a
parameter that controls the trade-off between these two quantities.

FP(K): Minimize
b,ξ+,ξ−

T∑
t=1

(
K‖ξ+

t ‖+ (1−K)‖ξ−t ‖
)

subject to b−Ax′t = ξ+
t − ξ

−
t ∀t

D1b ≤ d1 (D.3)
ξ+
t , ξ

−
t ≥ 0 ∀t.

The value of parameter K is computed by means of cross-validation, as explained
below in Section D.2.1. Parameters D1 and d1 define constraints on b, known a
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priori, which might be imposed by the nature of b. An example of such a-priori
constraint may simply be b ≥ 0.

In the second step, we consider b given as the solution to FP(K), denoted by b̂.
Also, we adjust the observed quantity Ax̃′t = Ax′t − ξ

−∗
t , where ξ−∗t is taken

from the solution of FP(K). This modification makes x̃′t feasible in RPt(ρt|c, b̂).
As we show later in Section D.3.2, we may need to impose further constraints on
the adjusted quantity x̃′t in those cases where it is not univocally determined by
Ax̃′t = Ax′t − ξ

−∗
t . Then, we solve the following linear programming problem:

OP(b̂): Minimize
φt,λt,c

T∑
t=1

εt

subject to b̂
T
λt + uTφt − εt = (c− ρte)T x̃′t ∀t

[AT I][λTt φ
T
t ]T = (c− ρte) ∀t (D.4)

D2c ≤ d2

φt,λt, εt ≥ 0 ∀t.

The first, the second, and the last constraints in (D.4) are analogue to the ones
in (D.2). The third constraint defines a-priori conditions on c, specified by the
parameters D2 and d2. The outcome of this problem is the estimated value of
the coefficient vector c, named as ĉ.

Finally, given b̂, ĉ and ρT+1, we can forecast the future decision-maker’s choices
by solving RPT+1(ρT+1|ĉ, b̂).

D.2.1 Statistical Determination of K

In practice, we find the value of the penalty parameter K using cross-validation
[D19, Ch. 7]. We partition X ′ in three subsets: the training set X ′tr, the
validation set X ′val, and the test set. In a few words, for each given value of K,
we use the training set for parameter fitting and the validation set to asses the
forecasting performance. The best choice of K is, thus, the one that minimizes
the out-of-sample prediction error.

The advantage of using this approach is threefold. First, by tuning the value of
K for the validation set, we seek to minimize the out-of-sample prediction error
(a criterion specially suited for forecasting purposes). Second, we solve three
LP problems for each tested value of K, hence, the computational burden of the
tuning algorithm is relatively low. Finally, the evaluations of different values of
K are independent of each other so they can be executed in parallel.
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D.2.2 Leveraging Auxiliary Information

When using inverse optimization for forecasting a time series, it is relevant to
consider the case where we let the unknown parameter vectors c and b vary over
time so as to capture structural changes in the decision-making problem (D.1).
To this end, we assume that we also observe a number of time-varying regressors
Zt that, to a lesser or greater extent, may affect the decision maker’s choices.
We then describe the unknown vectors c and b as functions of those regressors by
letting ct = fc(Zt) and bt = fb(Zt) in problems (D.3) and (D.4), respectively.
In this way, functions fc(·) and fb(·) become decision variables in our estimation
problem. In this paper, we consider fc(·) and fb(·) to be affine functions. Hence,
the inverse optimization problem seeks the most optimal set of intercepts and
affine coefficients that relate Zt with ct and bt, as we exemplify below. Note
that the past choices of the decision-maker, namely, X ′, can also be treated as
regressors.

D.3 Methodology Applied to Forecast Price-responsive
Loads

In this section we illustrate the use of the proposed inverse optimization ap-
proach to forecast the aggregate power load of a pool of price-responsive con-
sumers.

We consider that the available information is the measured power consumption
x′t of the pool; the electricity price pt, which is broadcast to every load in the
pool; and the realizations of a set of explanatory variables Zr,t for every time
period t. The aggregate response xt of the loads to the price of electricity at
time t is assumed to be the solution to the following forward/reconstruction
problem:

Maximize
xt

B∑
b=1

xb,t (ub,t − pt) (D.5a)

subject to P t ≤
B∑
b=1

xb,t ≤ P t (λt, λt) (D.5b)

0 ≤ xb,t ≤ Eb,t (φ
b,t
, φb,t) ∀b. (D.5c)

Problem (D.5) takes the form of (D.1). Its objective function (D.5a), to be
maximized, represents the aggregate consumers’ surplus or welfare, given as the
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product of the pool consumption and the difference between the marginal utility
and the electricity price. We consider a step-wise marginal utility curve made
up of B blocks, each of a width Eb,t, as enforced by (D.5c), and a value ub,t. The
aggregate load of the pool, given as

∑B
b=1 xb,t, is bounded from below and above

by P t and P t, respectively, as expressed by (D.5b). Symbols within parentheses
correspond to the dual variables associated with each constraint.

The goal of our inverse optimization methodology is to estimate appropriate
values for ub,t, P t and P t, based on the observed x′t, pt, and Zr,t, such that
the solution to the reconstruction problem (D.5) serves as a good forecast of
the future aggregate power consumption xt+1 of the pool of loads. For this
purpose, we employ the estimation procedure outlined in Section D.2. Note
that the width of each block, Eb,t, is treated as a parameter and need not to be
estimated. Later, in Section D.3.2, we give a practical rule for fixing it.

Next we provide concrete formulations for the estimation of P t, P t and ub,t. The
problem of estimating the bounds P t and P t, which we refer to as the bound
estimation problem, is presented in Section D.3.1. The problem of estimating
the marginal utilities ub,t, which we call the marginal utility estimation problem,
is presented in Section D.3.2. A discussion about the proposed methodology is
finally given in D.3.3.

D.3.1 Bound Estimation Problem

The bound estimation problem is derived from the feasibility problem (D.3)
and consists in determining the bounds P t and P t by minimizing the following
objective function:

Minimize
P ,P ,ξ,µ,α

T∑
t=1

(
(1−K)

(
ξ

+
t + ξ+

t

)
+

K
(
ξ
−
t + ξ−t

))
(D.6a)
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subject to

P t − x′t = ξ
+
t − ξ

−
t ∀t (D.6b)

x′t − P t = ξ+
t
− ξ−

t
∀t (D.6c)

P t ≤ P t ∀t (D.6d)

P t = µ+
R∑
r=1

αiZr,t ∀t (D.6e)

P t = µ+
R∑
r=1

αiZr,t ∀t (D.6f)

0 ≤ ξ+
t , ξ
−
t , ξ

+
t
, ξ−
t

∀t (D.6g)

where ξ =
[
ξ

+; ξ+; ξ−; ξ−
]
, µ =

[
µ;µ

]
, and α = [α;α].

The objective function (D.6a) comprises two terms, weighted by the parameter
K with 0 ≤ K < 1. The first and second terms represent the amount of measured
load that falls inside and outside the interval [P t, P t], respectively.

Constraint (D.6d) ensures that the estimated lower bound is always lower than
the upper bound. Constraints (D.6e) and (D.6f) impose an affine relationship
between the regressors and the load bounds. We denote the estimates of the
lower and upper bounds at the optimum as P̂ t and P̂ t, respectively. It is worth
mentioning the special case where previous load observations x′t−1 . . . x

′
t−l are

included as regressors, in a similar way as traditional auto-regressive models do
[D20]. Also, it should be noted that we do not treat the price at time t as a
regressor here, since its effect is captured through the objective function of the
forward problem by solving the optimality problem (D.8).

The parameter K is computed using the cross-validation approach outlined in
Section D.2.1. Values of K close to 1 yield a “wide” interval [P̂ t, P̂ t], whereas
values of K close to zero produce a narrow interval. Therefore, K can be inter-
preted as an indicator of the price responsiveness of the load, since the precise
value that the load will take on within the interval [P̂ t, P̂ t] is left to be explained
by the electricity price. Notice that when K = 0 the bound estimation problem
boils down to fitting an ARX model by minimizing the MAE, because in this
case it holds that P̂ t = P̂ t.

Now consider the solution to (D.6). In order for the reconstruction problem
(D.5) to be feasible, the estimated bounds must satisfy that P̂ t ≤ P̂ t. This
is enforced for the training data set by Equation (D.6d), but it is not neces-
sarily satisfied for any plausible data point outside this set. Generally, when
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forecasting, consistent bounds P t ≤ P t must be obtained for all possible future
realizations of the regressors Zr,t. We can ensure this by robustification [D21],
as done in [D12].

D.3.2 Marginal Utility Estimation Problem

The marginal utility estimation problem is derived from the optimality problem
(D.4) once the bounds P̂ t and P̂ t have been estimated by solving problem (D.6).

Prior to solving the marginal utility estimation problem, the measured load is
adjusted so that it becomes feasible in the reconstruction problem (D.5). For
this purpose, we define the adjusted load as x̃′t = x′t− ξ

−∗
t + ξ−∗

t
, where ξ−∗t and

ξ−∗
t

are taken from the solution to problem (D.6). Note that this is equivalent
to defining x̃′t as

x̃′t =
B∑
b=1

x̃′b,t =


P̂ t if x′t < P̂ t

x′t if P̂ t ≤ x′t ≤ P̂ t
P̂ t if x′t > P̂ t

(D.7)

with x̃′b,t ≤ Eb,t. We further impose that the load blocks are to be filled in
sequential order starting with b = 1.

To fix the width of each load block, we proceed as follows. We set the width of
the first block to be equal to the lower bound, namely, E1,t = P̂ t. The width
of the remaining blocks is computed such that the interval [P̂ t, P̂ t] is equally
divided, that is, Eb,t = (P̂ t − P̂ t)/(B − 1), ∀b > 1,∀t. In order for the lower
bound to be effective, we set the marginal utility for the first block (denoted as
u1,t) to a large number. This is done in Equation (D.8f). Consequently, at the
optimum, the first block of energy is always filled with x1,t = E1,t = P̂ t, since its
corresponding marginal utility is always higher than the electricity price. This
practical rule allows us to enforce the lower bound through the use of E1,t and
u1,t.

The optimization variables in the marginal utility estimation problem (D.8)
are Ω = {ε,u,µu,αu,λ,λ,φ,φ}. This problem aims to minimize the sum of
duality gaps εt of the reconstruction problem (D.5), that is, to find the marginal
utilities ub,t such that the adjusted observed load x̃′ is as optimal as possible.
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Minimize
Ω

T∑
t=1

εt (D.8a)

subject to P̂ tλt − P̂ tλt +
B∑
b=1

Ebφb,t − εt =

B∑
b=1

x̃′b,t (ub,t − pt) ∀t (D.8b)

−φ
b,t

+ φb,t − λt + λt = ub,t − pt ∀b, t (D.8c)

ub,t = µub +
∑
r

αurZr,t ∀b, t (D.8d)

µub ≥ µub+1 ∀b < B (D.8e)
µu1 ≥ 200 + µu2 (D.8f)
0 ≤ λt, λt, φb,t, φb,t ∀b, t. (D.8g)

Constraint (D.8b) defines the relaxed strong duality condition, with the objec-
tive function of the dual of problem (D.5) minus the duality gap on the left-hand
side, and the primal objective function on the right-hand one. Equations (D.8c)
are the constraints of the dual of problem (D.5). Constraint (D.8d) defines the
marginal utilities as affine combinations of the regressors. Constraint (D.8e)
forces the estimated marginal utility to be monotonically decreasing, and con-
straint (D.8f) imposes a high utility for the first block. Finally, constraint (D.8g)
enforces the non-negative character of the dual variables.

D.3.3 Discussion

The proposed inverse optimization framework can be seen as a generalization of
a linear time series model: the relationship between the load and the regressors
is linear, but the relationship between the load and the price at time t is not.

Recall that the proposed methodology is composed by two problems that are
solved sequentially: the feasibility problem (D.6) and the optimality problem
(D.8). In the feasibility problem, we model the linear relationship between the
load and the regressors, excluding the price at time t. The penalty parameter K
is optimally chosen by cross-validation, and it affects the width of the interval
[P̂ t, P̂ t]. Afterwards, in the optimality problem we model the non-linear rela-
tionship between the load that falls inside the interval [P̂ t, P̂ t], and the price at
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time t. For this reason, a narrow interval implies that the variability of the load
left to be explained by the price at time t is very small. On the other hand,
a wide interval indicates that the load can be explained by the price at time
t to a large extent. Its non-linear relationship is estimated by the optimality
problem. Unlike in the proposed scheme, in a simple linear regression model,
the relationship between the load and the price is given by an affine coefficient.

D.4 Simulation of Price-responsive Buildings

We simulate the price-response behavior of a pool of buildings equipped with
heat pumps. To this end, we use the work in [D22]. The heating dynamics of
each building is described by a state-space model that consists of three states:
indoor air temperature yrt , floor temperature yft , and temperature of the water
ywt inside a tank connected to a heat pump. The only input is the electricity con-
sumption xt. The state-space model writes as follows, where yt = [yrt , y

f
t , y

w
t ]T :

yt = Ayt−1 + Bxt−1 + Ezt−1 ∀t (D.9)

where A, B and E are the matrices of the coefficients defining the state-space
model. The temperature of the air outside the building zat and the solar irradi-
ance zst are considered as external disturbances in zt = [zat , zst ]T .

The heat pump in each building schedules its consumption by solving an Eco-
nomic Model Predictive Control (EMPC) problem that minimizes the cost of
its consumption plus a penalty term for not complying with a comfort band:

Minimize
y,x,v

T∑
t=1

ptxt + ρvt (D.10a)

subject to yt = Ayt−1 + Bxt−1 + Ezt−1 ∀t (D.10b)
0 ≤ xt ≤ xmax ∀t (D.10c)
yrt,min ≤ yrt + vt ∀t (D.10d)
yrt,max ≥ yrt − vt ∀t (D.10e)
vt ≥ 0 ∀t. (D.10f)

The objective function (D.10a) minimizes the cost of purchasing xt kWh of
energy at the price pt, with a penalization of ρvt if the room temperature is
not within the desired comfort band. Equation (D.10b) determines the time
evolution of the states of the model. The maximum power consumption of the
heat pump, set by Equation (D.10c), is xmax kW. Finally, equations (D.10d),
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Figure D.1: Evolution of room temperature, comfort bands, price, load, and
disturbances for one building during 72 hours

(D.10e) and (D.10f) define the comfort temperature band, given by yrt,min and
yrt,max, and the slack variable vt.

The values for the coefficients of the EMPC model (D.10) are taken from [D23,
Tab. 1]. The effect of the solar irradiance on the room temperature is set to
be equal to 0.01 ◦C/(W/m2), and of 0.001 ◦C/(W/m2) on the floor tempera-
ture. An example of the behavior of one building during 72 hours, with hourly
observations, is depicted in Fig. D.1.

A total of 100 buildings are simulated by randomly perturbing the heat-transfer
coefficients that define matrix A. Modifying slightly these coefficients allows us
to simulate the behavior of buildings with different structural characteristics.
The perturbations are randomly drawn from a uniform distribution centered
around zero with a variance equal to 1/50 the magnitude of the corresponding
coefficient. The magnitude of the perturbations is chosen high enough so that
different building structures are modeled, but not too high so that the state-
space system becomes unstable. The magnitude of the perturbations has been
chosen by trial-and-error, and its effectiveness is proven to be useful as explained
in the remaining of this section and in the case study of Section D.5.

We simulate the behavior of two classes of buildings and aggregate the simulated
information in two data sets. In the first one, called no flex, the comfort bands
for the temperature inside the room are equal to each other. In the second
case, called flex, the comfort bands for the temperature of the air inside the
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Figure D.2: Room temperature and comfort bands. Left: no-flex case; right:
flex case
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Figure D.3: Price and aggregate load for the non-flexible (left) and flexible
(right) cluster of buildings. Dark tonalities indicate low ambient
temperature.

room are 2 ◦C apart from each other. A sample of the simulated comfort bands
and temperatures inside the rooms is shown in Fig. D.2. On the left plot, we
show the no flex case. Naturally, the temperature inside the room is as close as
possible to the desired one. On the right plot, for the flex case, the temperature
inside the room features a higher variation across buildings.

The effect of the electricity price on the aggregated load, for the two data sets,
is displayed in Fig. D.3. On the left plot, the no flex data set shows barely
no relationship between load and price. On the other hand, on the right plot,
the flex data set shows a clear non-linear relationship. In both plots, black
colors indicate that the temperature of the outside air is low. Naturally, the
aggregated load is higher at times with low ambient temperature because of the
need for heating up the water tank.

To sum up, the simulated data sets seem to be fair representations of the be-
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havior of a pool of price-responsive buildings, hence, we proceed to use the
simulated data sets for testing the performance of the proposed load forecasting
method.

D.5 Case Study

We now asses the performance of the reconstruction problem (D.5) when fore-
casting the load of the pool of buildings one step ahead, that is, one hour in
advance. In problem (D.5), the marginal utilities, the minimum power, and the
maximum power are calculated using the methodology introduced in Section
D.2 and D.3. We compare the performance of the proposed methodology using
the flex and no flex data sets, which were introduced in Section D.4.

The regressors that we consider for describing the dynamics of the estimated
parameters in (D.6e), (D.6f) and (D.8d), are the hour indicator, outside tem-
perature, solar irradiance, and historical lagged price and load data. At every
time period t, we assume that the regressors up to that period are known. We
also assume that the price at time t is known. The training set consists of 505
data points, that is, three weeks of data. Furthermore, we set the total number
of load blocks to B = 20.

The first step in the estimation procedure is to tune parameter K in (D.6)
following the cross-validation strategy from Section D.2.1. The results, displayed
in Fig. D.4, show the Root Mean Square test Error (RMSE) for the two data
sets, using a validation period of one week of data. For the flex dataset, the
optimal value of K turns out to be 0.98. Recall that values of K close to 1 indicate
that the interval [P̂ , P̂ ] is wide. Therefore, in the considered application, this
also means higher responsiveness of the load to the price. The continuous line in
Fig. D.4 represents the RMSE for the no flex dataset, for different values of K.
The best forecasting performance is achieved for K ≤ 0.5. In the no flex case, the
load is independent of the price. Consequently, the best forecasts are achieved
when the interval [P̂ , P̂ ] is very small, namely, when P̂ = P̂ . It is noteworthy to
say that the solution in this case is equivalent to fitting an autoregressive linear
model with exogenous inputs by minimizing the mean absolute error.

On average, when using 3 weeks of data, 20 load blocks, and 38 regressors, the
time for the whole estimation process takes around 10 seconds on a personal
Linux-based machine with 4 cores clocking at 2.90GHz and 12 GB of RAM.
R and CPLEX 12.3 under GAMS are used to process the data and solve the
optimization models. We conclude that, because of its low computational re-
quirements, the proposed methodology is attractive for implementation in a
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Figure D.4: The RMSE of the 1-steap ahead predictions is shown for different
values of K, using the no flex dataset (dashed) and the flex dataset
(continuous)

real-life setup.

D.5.1 Benchmark on a Test Period

We benchmark the forecasting capability of the proposed methodology against
two other methods. The first one is a simple persistence model, where the fore-
cast load at time t is set to be equal to the observed load at t− 1. The second
model is an Autoregressive Moving Average Model with eXogneous inputs (AR-
MAX) [D20, Ch. 5], similar to the one used in [D6]. The aggregate load xt
is modeled as a linear combination of the past values of load, past errors, and
regressors. In mathematical terms, the ARMAX model can be written as

xt = µ+ εt +
P∑
p=1

ϕpxt−p +
R∑
r=1

γrZr +
Q∑
q=1

θqεt−q (D.11)

with εt ∼ N(0, σ2) and σ2 being the variance. The optimal combination of
P and Q is chosen according to the AICc criteria [D24]. In order to make
reasonable comparisons, the same explanatory variables are used for our inverse-
optimization-based model and for the ARMAX, including the price at time t.
Recall that the price at time t is considered in the optimality problem (D.8) but
not in the feasibility problem (D.6).

We run 1-step ahead predictions in a rolling-horizon manner for a period of 5
days, re-estimating the parameters at every hour. The upper plot of Fig. D.5
shows the actual aggregate load together with those predicted by the proposed
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Figure D.5: On the top, the actual load is displayed together with the pre-
dictions from the inverse-optimization methodology and the AR-
MAX model. On the bottom, the price is shown together with
the estimated marginal utility blocks

inverse-optimization model (InvFor) and the ARMAX. The estimated minimum
and maximum load bounds are able to explain a certain part of the variability of
the load. The remaining variability is explained by the relationship between the
marginal utilities and the price. The predictions made by the ARMAX are also
able to anticipate the behavior of the load, but to a lesser extent. On the bottom
plot of Fig. D.5, the electricity price is displayed together with the estimated
marginal utility blocks, for each hour of the test period. The magnitude and
distribution of the marginal utilities change with time and capture the dynamic
response of the load to the price.

Performance metrics computed over the test set are summarized in Table D.1.
Each row is relative to one of the three benchmark models. Columns 2 and 4
give information on the Normalized Root Mean Square Error (NRMSE), defined
as

NRMSE = 1
xmax − xmin

√√√√ 1
T

T∑
t=1

(
B∑
b=1

x̂b,t − x′t

)
(D.12)
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and columns 3 and 5 on the Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE = 1
T

T∑
t=1

|
∑B
b=1 x̂b,t − x′t|

(|
∑B
b=1 x̂b,t| − |x′t|)/2

. (D.13)

In Table D.1 we also compare the performance of the proposed forecasting
method using the two simulated data sets. On the left part, we show the perfor-
mance measures relative to the no flex data set. The ARMAX and the InvFor
models yield almost identical results in terms of NRMSE and SMAPE. This
is indeed reasonable because, as mentioned earlier in Section D.2, the InvFor
model with a penalty parameter of K = 0 is equivalent to fitting an ARX.

The differences between the ARMAX and the InvFor stand out when used for
predicting the flex data set. On the right side of Table D.1, we see that our
methodology outperforms the ARMAX with a NRMSE and a SMAPE 32%
and 16.8% lower, respectively. The persistence model, as expected, exhibits the
worst performance. We conclude that the non-linear relationship between the
price and the load is well captured by the InvFor model.

Table D.1: Benchmark for the test set

No Flex Flex
NRMSE SMAPE NRMSE SMAPE

Persistence 0.1727 0.1509 0.3107 -
ARMAX 0.10086 0.08752 0.13107 0.08426
InvFor 0.10093 0.0886 0.08903 0.07003

D.6 Conclusion

This paper proposes a new method to forecast price-responsive electricity con-
sumption. The price response is described by an optimization problem, which
is characterized by a set of unknown parameters. The problem of estimating
these parameters is nonlinear and nonconvex. We formulate a two-step algo-
rithm to statistically approximate its solution, where in each step we solve a
linear problem. The proposed approach is data-driven and makes use of a cross-
validation scheme to minimize the out-of-sample prediction error. Moreover, a
set of regressors is used to explain the variability of the price-response of the
load.

A simulation framework is used to asses the performance of the proposed method-
ology. The simulation comprises a set of price-responsive buildings equipped
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with a heat pump. The presented methodology is used for 1-step ahead predic-
tions. Results show that the non-linear relationship between the price and the
aggregate load is successfully captured and that the proposed method outper-
forms well-known benchmark models.
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